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Abstract—We introduce a new notion of multiverse
threshold signatures (MTS). In an MTS scheme, multiple
universes – each defined by a set of (possibly overlapping)
signers, their weights, and a specific security threshold –
can co-exist. A universe can be (adaptively) created via a
non-interactive asynchronous setup. Crucially, each party
in the multiverse holds constant-sized keys and releases
compact signatures with size and computation time both
independent of the number of universes. Given sufficient
partial signatures over a message from the members of
a specific universe, an aggregator can produce a short
aggregate signature relative to that universe.

We construct an MTS scheme building on BLS sig-
natures. Our scheme is practical, and can be used to
reduce bandwidth complexity and computational costs in
decentralized oracle networks. As an example data point,
consider a multiverse containing 2000 nodes and 100
universes (parameters inspired by Chainlink’s use in the
wild), each of which contains arbitrarily large subsets
of nodes and arbitrary thresholds. Each node computes
and outputs 1 group element as its partial signature; the
aggregator performs under 0.7 seconds of work for each
aggregate signature, and the final signature of size 192
bytes takes 6.4 ms (or 198K EVM gas units) to verify. For
this setting, prior approaches, when used to construct MTS,
yield schemes that have one of the following drawbacks: (i)
partial signatures that are 48× larger, (ii) have aggregation
times 311× worse, or (iii) have signature size 39× and
verification gas costs 3.38× larger. We also provide an open-
source implementation and a detailed evaluation.

I. INTRODUCTION

A threshold signature scheme [25], [26] allows for
distributing a secret signing key among multiple parties
such that each party can (non-interactively) generate
a partial signature over any message m using its key
share.2 Given sufficiently many partial signatures, an un-
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2Our work primarily focuses on non-interactive signing. We remark
that some threshold signature schemes only support interactive signing.

trusted aggregator can combine them into a compact sig-
nature attesting that a threshold number of signers signed
m. Threshold signatures have seen widespread use in
recent years, especially within the blockchain ecosys-
tem [43]. Furthermore, efforts to standardize threshold
cryptosystems have already begun [39].

Threshold signatures have traditionally been studied in
a static setting where the signers and the threshold are
fixed and all verifiers have the same belief (i.e., trust)
in the signers. However, as we discuss shortly, emerging
applications in blockchains involve verifiers who do not
necessarily share the same beliefs. In particular, each
verifier might live in its own universe, where it trusts
only a specific subset of signers and wishes to choose
its own security threshold. We ask whether it is possible
to design threshold signature schemes where multiple
such universes can co-exist.

A naı̈ve approach to handle this scenario involves
simply executing a fresh instance of a threshold signature
scheme for each universe. This, however, leads to highly
impractical solutions even for modest choices of param-
eters (see discussion later in this section). The main goal
of our work is to address this scalability challenge.

Multiverse Threshold Signatures. We introduce a new
notion of multiverse threshold signatures (MTS), where
at any time, a verifier can define a new universe contain-
ing any subset of the parties present in the system. The
multiverse is the set of all such (possibly overlapping)
universes with possibly different security thresholds. A
party signs a message irrespective of what (or how many)
universes it is in, and an aggregator can take a threshold
number of partial signatures corresponding to a universe
and produce a short aggregate signature (independent of
the size of the universe) that can be verified under the
specific universe’s verification key.

An MTS scheme must satisfy the following properties:

1) non-interactive setup: a universe involving any set
of parties can be setup via a non-interactive protocol.

2) compact keys: each party’s state is oblivious to the
universes that it belongs to. In particular, each party’s
key material (and state) is independent of the number
of universes that it participates in.

3) compact partial signatures: each party’s partial sig-



nature is compact, i.e., it is independent of the num-
ber of universes the party belongs to. In particular,
its partial signature should be reusable for computing
aggregate signatures across different universes.

4) fast aggregation and verification: it should take
constant time to verify an aggregated signature for
any universe. In the best case, aggregation will be
linear in the number of partial signatures – we require
that this aggregation be concretely efficient.

The security requirements are similar to that of stan-
dard threshold signatures. Namely, we require that an
aggregate signature associated with a universe can only
be verified when a threshold number of parties in that
universe have signed the corresponding message.

Our multiverse model is inspired by an important
scaling issue that arises in oracle networks for smart
contracts, which rely heavily on threshold signatures.

Application: Decentralized Oracle Networks. Oracles
enable smart contracts to perform transactions based on
off-chain data, such as issuing DeFi transactions based
on the exchange rate of tokens or automatically pro-
tecting user funds during an undercollateralization event
(e.g., unforeseen fractional reserve practices from off-
chain custodians [1]). In Chainlink [19], [27],3 whenever
the data feed’s value (e.g., MKR/ETH exchange rate)
fluctuates beyond a limit, the oracle nodes collectively
agree on a new value to submit on-chain along with a
threshold signature that is verified by the smart contract.

Historically, smart contract authors have shared the
same data feed, whenever possible, typically to offset
high gas costs on platforms such as Ethereum. However,
with substantially higher throughput and lower fees on
the next generation of smart contract platforms, and with
the increased set of applications with diverse security
and cost profiles, the one-size-fits-all approach is no
longer adequate. For instance, contracts that perform
autonomous real-time auditing of collateral prefer the
(proof-of-reserve [1]) data feed to be fulfilled by a set of
highly reputed and rigorously audited oracle nodes [6];
such contracts may also choose higher thresholds for
the signature. On the opposite end of the spectrum,
contracts with lower security needs (e.g., sports betting)
may opt for lower-cost oracle nodes and latency-sensitive
applications may choose highly available nodes, or opt
for lower security thresholds for the signatures. Indeed,
Chainlink’s users already have the appropriate knobs
– i.e., choice of oracle nodes (with reputation scores),
signing threshold, etc. This scenario naturally maps to
our multiverse setting since each separate preference can

3At the time of writing, Chainlink is the largest oracle network, com-
prising over 300 participant nodes, serving over 2000 data feeds, and
generating over $4.5M USD in monthly revenue for the participants.

be modeled as a separate universe with a specific subset
of all nodes and a specific threshold.

As signature verification is done by a smart contract,
it places additional efficiency requirements for MTS. In
particular, we need the verification EVM gas costs to
be small.

Drawbacks of existing approaches. While the notion
of MTS is new to this paper, we observe the drawbacks
of existing approaches in realizing MTS. As discussed
earlier, a naı̈ve approach for the multiverse setting can
be obtained by implementing an independent copy of
a threshold signature scheme for every universe. It is
not hard to see, however, that such a solution quickly
runs into scalability issues. A node that belongs to n
different universes would need to use n different signing
keys to sign the same message n-many times, generating
n-many partial signatures, which are then broadcast to
the aggregator. Hence, the state size, signature size, and
computation all scale linearly with n. Consider some
data points based on the metrics reported by ChainLink.
For example, even with 20 universes, and each universe
spanning an average of 500 (active) nodes who will sign
the message, an aggregator receives 0.46 MB worth of
partial signatures, for a single message (data feed), or
more challengingly, nearly 1 GB traffic for over 2000
data feeds served by the Chainlink network4. This is for
a single message! This approach quickly exhausts band-
width on a peer-to-peer network. The problem becomes
completely unmanageable in the weighted setting,5 as
both the network traffic and the signer’s computation are
linear in the weights.

To avoid such scaling issues, one can devise an
alternative solution by using succinct non-interactive
arguments of knowledge (SNARK) [11], [12]. The high-
level idea is to design an aggregator who computes
a SNARK attesting to having witnessed a threshold
number of signatures over a message. This approach,
however, yields prohibitive aggregation costs. Even using
state-of-the-art SNARKs (such as PLONK [29]) and the
most efficient signature schemes such as EdDSA [10]
results in aggregation time in the order of a few minutes
for modest choices of parameters (see Section VI).
Moreover, even such performance numbers are only pos-
sible when we instantiate EdDSA with SNARK-friendly
hash functions such as MiMc [7], whose security is
not well-understood. Finally, we note that this approach
inherently makes non-black-box use of the hash function

4In Chainlink’s protocol [19], for each message to be signed, there
is a single leader who prepares the message and requests all nodes
(that are supporting the relevant price feed, for instance) to sign it.

5In a weighted setting, instead of a T out of N access structure,
parties are assigned different weights, and aggregation is possible
only when partial signatures are produced by parties whose combined
weight is larger or equal to the threshold. A special case of this is the
standard threshold setting, in that each party has equal weight.
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and therefore does not yield a security proof in the
Random Oracle Model.

We also consider the Micali et. al.’s [38] SNARK ap-
proach specialized to the signature setting for obtaining
smaller aggregation times. However, this reduction in
aggregation time is at the cost of a larger signature size
and an increase in the verification gas cost, which is
undesirable for our application.

Finally, one may wonder if multisignatures [14], [37]
can be used to construct multiverse threshold signa-
tures. In particular, every party samples its own public
key/secret key pair; the public key of each universe
would be the public keys of all the users in the universe.
To aggregate partial signatures, the aggregator generates
a multisignature6 on all the partial signatures to certify
that enough parties from the universe sign the message.
The apparent advantages of this approach are that: 1)
a party’s private key is oblivious to the universes that
it belongs to; 2) there is no setup phase; and, 3) in
the weighted setting, the aggregator’s computation is
independent of weights, providing off-chain scalability
in the case of oracle networks. However, the multisig
approach has prohibitive performance and cost concerns
on the verification side. For instance, the aggregated sig-
nature itself needs to contain the information regarding
which set of parties have signed; thus, the signature
size is linear in the universe size. On that note, the
universe’s public verification key and the verification
time also grow linearly in the size of the universe. In
the case of oracle networks, these drawbacks make the
smart contract prohibitively expensive; on Ethereum, it
takes up to 60 million gas to set up the smart contract
for 2000 signers, which is prohibitive. We provide a
cost analysis for the multisignature-based approach (on
Ethereum smart contracts) in Section VI.

Advantages of MTS. We now describe how the effi-
ciency features of MTS can help address the shortcom-
ings of existing approaches. Recall that while selecting a
data feed, a smart contract specifies an access structure,
which includes the set of oracle nodes, their weights,
and a threshold. Hence, a data feed maps to a universe,
wherein the highly reputed oracle nodes would typically
be members of a large number of universes.

The compact partial signatures property of MTS
addresses the bandwidth concern: the bandwidth reduces
from 1 GB to 1 MB for the data point discussed above.
Second, regardless of the node’s weight or the number
of smart contracts (universes), each node must only
keep a compact key of size the security parameter κ
= 128 bits, and does not require any information about
its universes during signing. Finally, due to the non-

6Note that this aggregate signature is not unique, as any multisigna-
ture aggregated from enough partial signatures will pass verification.

interactive asynchronous setup property, nodes can
go offline without being penalized (though economic
incentives encourage honest participation); that is, a node
can come online and participate in a universe’s creation
independently of other nodes. Compare this to the setup
for BLS, where parties engage in an interactive DKG
protocol [24], [33]. The signing phase is identical to
BLS, so parties operate non-interactively, and a threshold
number of correct participants is sufficient to construct
an aggregate signature. We stress that having a compact
state and a non-interactive setup not only makes the
system efficient, but also greatly simplifies its design.

Our Contribution. The contribution of this work is
two-fold: we first present formal definitions of multi-
verse threshold signatures. Second, we give the first
construction of an MTS scheme building on the BLS
signature. We prove that our scheme satisfies existen-
tial unforgeability based on the knowledge of exponent
assumption [23]. We provide an open-source implemen-
tation of our scheme at http://github.com/rsinha/mts. We
then present a detailed evaluation of our MTS scheme,
where we show that it is practical for application to
decentralized oracle networks.

II. TECHNICAL OVERVIEW

In this section, we give a high-level overview of our
construction of the BLS-based [16] multiverse threshold
signature scheme. For simplicity, the presentation in this
section only considers the unweighted setting, but it
naturally extends to the weighted setting.

A. The Multiverse Model

A multiverse is a possibly overlapping set of uni-
verses each containing an arbitrary subset of all parties
{P1, P2, . . .} in the system and a specific threshold.
When a new party Pi enters the system, it chooses a
private key ski and publishes the corresponding public
key pki. Then, the online parties engage in a separate
setup phase for each universe, where each party indepen-
dently contributes randomness to the public parameters
unique to that universe. Once a universe is set up, it can
be used to produce threshold signatures. During signing,
each party Pi uses its private key ski to sign a message
m, and the partial signature is broadcasted or sent to
an aggregator – this step is totally agnostic of any uni-
verse. For each universe, there is a separate aggregating
procedure which combines the partial signatures for that
particular universe. Crucially, the partial signatures are
“reusable” so that the same partial signature can be used
in an unlimited number of aggregation procedures across
multiple universes to produce many signatures on the
same message. Each aggregated signature verifies only
with respect to a specific universe.

3

http://github.com/rsinha/mts


The setup phase can happen concurrently with other
setups or signing phases. Moreover, both the setup
and signing phases are fully asynchronous and non-
interactive, and they require honest participation from
only a threshold (say, T ) number of parties.

We emphasize that, in our model, we do not assume
the aggregator to be honest for unforgeability.

B. Construction

Background on Threshold BLS. We start by recalling
the standard threshold BLS signature scheme. Let G be
a group with a prime order p and a generator g where
the standard pairing-based assumption holds. Let H be
a cryptographic hash function that maps messages to
group elements. In the threshold BLS signature scheme,
there is a setup phase, in that a random secret key
sk ← Fp is sampled and shared among the parties
using Shamir secret sharing for a threshold T ; the
public key is set to be pk = gsk. Let ski be party-i’s
share. To ensure complete decentralization the setup is
implemented by an interactive distributed key generation
(DKG) protocol such as [33]. To sign a message m,
party i uses ski to compute H(m)ski as its (partial)
signature. Given at least T signatures {H(m)ski}i, one
can simply use Lagrange interpolation to compute the
aggregated threshold signature H(m)sk, which verifies
as e(pk, H(m)) = e(g,H(m)sk).

Extending Threshold BLS to the Multiverse. To
extend this scheme from a single universe to a multiverse
setting, one encounters several roadblocks. First, a naı̈ve
approach is to simply repeat the threshold BLS for every
universe. That is, to create a new universe, involving
parties will engage in a fresh instance of the DKG
protocol to generate new secret shares of this new
universe. As mentioned before, this runs into a scalability
issue as for each party the size of the secret key, the
computation, and the corresponding signatures all grow
linearly with the number of universes. Recall that, we
need our signatures to be generated independently of any
universe. However, it appears hard to achieve if the setup
phase generates correlated shares of the secret-keys – this
makes the individual secret-key shares compatible only
with one public-key and hence one universe. Therefore
we change the setup phase in a way, which ensures that
the individual secret-keys are compatible with different
public-keys.

Our Approach. We let each party pick its own se-
cret key independently and publish the corresponding
public-key. Then each universe combines a different
combination of the public-keys to compute a universe-
specific public-key. In more detail, suppose a universe
consists of parties P1, P2, . . . , PN with a threshold T .
Then each party Pi chooses an independent secret-key

ski ← Fp and publishes the public-key pki = gski .
Note that the secret keys sk1, . . . , skN implicitly de-
fines a degree-(N − 1) polynomial f (hidden from all
parties) where f(i) = ski. Moreover, any evaluation
of this polynomial, and in particular the verification
key pk = gf(0), can be constructed via Lagrange
interpolation in the exponent. Now, we notice that if
N − T points on this polynomial f are somehow made
public, this effectively reduces the degree of the poly-
nomial f from N − 1 to T − 1. For instance, suppose
f(−1), f(−2), . . . , f(−(N − T )) are publicly known.
Then, given any T signatures {H(m)ski}i, an aggregator
can compute H(m)f(−1), . . . ,H(m)f(−(N−T )) locally
and subsequently is able to compute the aggregated
signatures σ = H(m)f(0).

Although this approach works for a single universe, it
breaks down when used directly in a multiverse setting.
The crux of the problem stems from the fact that since
the evaluations for different polynomials (corresponding
to different universes) collide, it ends up revealing too
many linear equations. Let us elaborate with an example.
Consider four parties among which P1 and P2 are honest,
but P̃3 and P̃4 are controlled by the adversary. Now
consider a universe U that consists of P1, P2, P̃3 and
has a threshold 2, which means the evaluation fU (−1)
is public where fU is the secret degree-2 polynomial
corresponding to universe U . Again, assume another
universe U ′ consisting of P1, P2 and P̃4 with threshold
2 – this implies the point fU ′(−1) of polynomial fU ′ is
also public. Now note that, since fU (−1) and fU ′(−1)
each reveal one linear relation about the honest party’s
secret keys sk1 and sk2, the malicious parties could
potentially use them to reconstruct sk1 and sk2 entirely!7

To resolve this issue in the multiverse setting, we
refrain from publishing additional points explicitly to
reduce the threshold, but instead change how verification
works and use the additional points in the exponent
(which, as mentioned above, everyone can compute from
the public keys). Without loss of generality, suppose
that P1, P2, . . . , PT sign a message m. Each party
Pi publishes H(m)f(i) as a partial signature. Addi-
tionally, one can compute the public points gf(j) for
j ∈ {−1,−2, . . .}. The challenge is now to use these
together to ensure verification as well as unforgeability.

7For instance, by Lagrange interpolation over degree-2 polynomial,
we have f(−1) = 6f(1)− 8f(2) + 3f(3). In the first universe with
ordering P1, P2, P̃3, the adversary learns 6sk1 − 8sk2. In the second
universe with ordering P̃4, P1, and P2, it learns −8sk1 + 3sk2. In
any field F, where (6,−8) and (−8, 3) are linearly independent, the
adversary could fully reconstruct sk1 and sk2.
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To see this, we first express the secret key as follows:

f(0) =λ−1f(−1) + · · ·+ λ−(N−T )f(−(N − T ))︸ ︷︷ ︸
Public Points

+

λ1f(1) + · · ·+ λT f(T )︸ ︷︷ ︸
Partial Signatures

,

where the λi’s are the appropriate Lagrange coefficients.
For the ease of notation, let us write f(0) = fpub(0) +
fpar(0), where fpub(0) stands for the public points part
and fpar(0) stands for the partial signature part. We
observe that

e
(
g,H(m)f(0)

)
= e

(
g,H(m)f

pub(0)+fpar(0)
)

= e
(
gf

pub(0), H(m)
)
· e

(
g,H(m)f

par(0)
)
.

Therefore, the verification procedure could check

e

(
pk

σpub
, H(m)

)
= e(g, σpar), (1)

where the aggregator computes the threshold signature
σpar = H(m)f

par(0) from the partial signatures and the
verifier later computes σpub = gf

pub(0) from the public
points. Note that, both these computations require the
knowledge of participating sets (as Langrage coefficients
depend on that information). This becomes a problem
for the verifier, as by definition threshold signature
verification should be agnostic about the participating
sets. Furthermore, the verification procedure needs to
perform O(N) amount of work to compute σpub incur-
ring significant computation cost.

A potential way to resolve this issue could be to
ask the aggregator to also compute σpub. The verifier
would then verify the aggregated signature (σpub, σpar)
by checking Equation 1. However, one can see that this
construction is not secure. Note that for any α ∈ Fp,

(σpub, σpar) =
(
pk · g−α , H(m)α

)
is a signature that will pass Equation 1 violating unforge-
ability completely. This attack is due to the fact that σpub

is not the correct aggregation of the public points. Rather,
the adversary intentionally picks σpub such that it knows
the exponent of pk/σpub, namely, α.

Our construction handles this issue via a different
route. During the setup of a universe, we ask the parties
to engage in a one-round protocol to collectively raise
the public points to some random power k ∈ Fp. In
particular, we ask party Pi to pick a random ki ← Fp

and send

gki ,

((
gf(−1)

)ki

,
(
gf(−2)

)ki

, . . . ,
(
gf(−(N−T ))

)ki
)
.

The final public parameter pp of the universe shall be(
gk ,

((
gf(−1)

)k

,
(
gf(−2)

)k

, . . . ,
(
gf(−(N−T ))

)k
))

,

where k =
∑

i ki.
8 An aggregator now additionally

computes σpub
1 that needs to pass a second verification

equation:
e(σpub, gk) = e(σpub

1 , g). (2)

This check ensures that as long as σpub is a linear
combination of the public points, one can compute σpub

1

by using the same linear combination on the public pa-
rameter. Alternatively, if σpub is not a linear combination
of the public points, one can not find the unique σpub

1

that passes Equation 2 except with negligible probability.
Unforgeability follows from the fact that as long as σpub

is a linear combination of the public points, the adver-
sary never knows the exponent of pk/σpub and without
knowing that one can not forge a signature. Hence, we
prove existential unforgeability assuming a variant of the
widely used knowledge of exponent assumption [23].

The above modification leads to a one-round setup
phase. However, this also requires a stateful aggregator,
because the aggregator needs to use the entire public
parameter pp during aggregation and, hence, needs to
maintain it in its local state.

Handling Offline Parties. One salient feature about
the setup phase is that it does not require all parties to
be online. In particular, the security only relies on the
presence of one honest party who contributes a random
ki to the random power k. Therefore, with a corruption
threshold of T − 1, the setup of a universe is successful
as long as ⩾ T parties participate in the setup phase.

Extension to the weighted setting. One can extend
our scheme to the weighted setting via the standard
virtualization approach. That is, if party Pi has weight
Wi, it participates in the protocol as Wi (virtual) parties,
by computing Wi partial signatures. To that end, Pi

persists a κ-bit secret key, and uses PRG expansion
to derive Wi secret values. Crucially, we also allow a
party to have different weights in different universes. A
subtle issue here is that we want the signing step to be
agnostic to any universe. Hence, if a party has different
weights in different universes, it is unclear how many
partial signatures it should compute. Motivated by our
applications, we assume that there is an upper bound
B on the maximum weights. Consequently, each party
derives B keys from the κ-bit secret, and releases B
partial signatures on each message.

Strong Unforgeability. An astute reader may find that
the signatures that will pass our verification algorithms
are not unique. Indeed, suppose > T number of parties
have signed the message; there are multiple ways to
aggregate the signature. Namely, the aggregator could

8The actual protocol computes k =
∑

i αi · ki, where αi is the
output of the random oracle on input (gk1 , . . . , gkn , gki ). Similar
to [14], this is to prevent attacks from rushing adversaries.
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use any subset (with size ⩾ T ) of partial signatures to
compute the aggregated signature. Hence, if there are
enough partial signatures, one may find exponentially
many correctly aggregated signatures. Consequently, it
is unclear how one defines strong unforgeability for
our scheme. Achieving strong unforgeability without
harming efficiency is a fascinating open problem.

III. PRELIMINARIES

Let N be the set of all natural numbers {1, 2, . . .}
For any integer n, [n] refers to the set of integers
{1, 2, . . . , n}. For any integers n < m, [n : m] refers
to the set {n+1, . . . ,m}. For any vector v⃗, we use v⃗[i]
to denote the ith coordinate of v⃗ and v⃗[: i] to denote the
slicing up to the ith element.

We use κ as the security parameter. A function f(κ)
is negligible if for all polynomial p(κ), f(κ) < 1/p(κ)
for all large enough κ.

For any vectors a⃗, b⃗ over a field Fp, we use ⟨⃗a, b⃗⟩
to denote vector inner product. We use ga⃗ to denote
the vector ga1 , ga2 , . . . , gak , where a⃗ = (a1, . . . , ak).
Similarly, if a⃗ ∈ Gk is a vector over a group G of order
p and b⃗ ∈ Fk

p , ⟨⃗a, b⃗⟩ denote vector inner product over
the exponents. That is,〈

a⃗, b⃗
〉
=

k∏
i=1

a⃗[i]b⃗[i] ∈ G.

A machine is probabilistic polynomial time (PPT) if it
is a probabilistic algorithm that runs in time poly(κ).

Definition 1 (co-CDH Assumption). A pairing group
(G1, G2) with generator g1, g2 and a bilinear pairing e :
G1×G2 → GT satisfies the co-CDH assumption if, for
all PPT adversary A, it holds that

Pr [A(g1, g2, gs1, gs2, gr2) = gsr2 : s, r ← F] = negl(κ).

Definition 2 (Knowledge Assumption). With respect to
(1) groups G1, G2 of prime order p and its generator
g1, g2 and (2) a random oracle H : {0, 1}∗ → G2,
the knowledge assumption states that for all polynomial
N = poly(κ) and stateful PPT adversary A = (A1,A2),
there exists a knowledge extractor E such that, for all
s, r ∈ F and h1, . . . , hN ∈ G1, we have

Pr


(y = xk)∧

(x ̸=
∏

i∈[N ]

(hi)
bi) :

k′ ← Fp, α← Fp

({hk′′

i }i∈[N ], g
k′′

2 ) = A1({hk′

i }i∈[N ], g
k′

2 )

gk2 = (gk
′

2 )α · gk
′′

2 , hk
i = (hk′

i )α · hk′′

i

(x, y) = AH
2 (α, gk2 , {hi, h

k
i }i∈[N ])

EH(α,A, gk2 , {hi, h
k
i }i∈[N ]) = b⃗


= negl(κ),

where both A and E takes g1, g2, g
s
1, g

s
2, g

r
2 as public

input.

Our knowledge assumption is similar to the
knowledge-of-exponent (KEA) assumption [9], [23] ex-
cept that we consider an oracle-aided adversary A, which
has access to a random oracle H .

Definition 3 (BLS Signature [16]). The BLS signature
scheme consists of the following tuple of algorithms
(KGen,Sign,Verify): Let e(G1, G2) → GT be a non-
degenerate, efficiently computable, bilinear pairing be-
tween G1, G2 of prime order p and target group GT .
Let g1 be the generator of G1. Furthermore let H :
{0, 1}∗ → G2 be a random oracle.

• KGen(1κ) : Sample s← Fp and set verification key
as VK = gs1 and the signing key as sk = s.

• Sign(m, sk) : Output σ = H(m)sk.
• Verify(VK,m, σ) : Output 1 if e(g1, σ) =
e(VK, H(m)). Otherwise, output 0.

Boneh et. al. [16] proved the strong unforgeability prop-
erty assuming the co-CDH assumption.

Our construction also uses the following non-
interactive zero-knowledge proof of knowledge for the
discrete log problem.

Definition 4 (NIZKPoK for DL). A NIZKPoK of dis-
crete log problem consists of a tuple of algorithms
(Gen,P,V,S, E) that satisfies the following guarantees.

• Correctness. For all x ∈ Fp,

Pr

[
V(crs, gx, π) = 1 :

crs← Gen(1κ)

π ← P(crs, gx, x)

]
= 1.

• Zero-knowledge. There exists a simulator S such
that for all gx, the output of S(gx) is indistinguish-
able from the output of P(crs, gx, x).

• Simulation Extraction. For all PPT A and x ∈ Fp,

Pr

[
(V(crs, gx, π) = 1)

∧ (E(A, gx, π) ̸= x)
:

crs← Gen(1κ)

π = AS(crs, gx)

]
= negl(κ).

Construction of NIZKPoK for DL. One can construct
a NIZKPoK for DL based on Schnorr’s protocol.

Schnorr NIZKPoK for DL:
• Gen(1κ): Sample random oracle crs = H .
• P(crs, gx, x) : Sample r ← Fp. Compute c =
H(g, gx, gr) and z = r+c·x. Output (gr, c, z).

• V(crs, gx, π = (gr, c, z)) : Output 1 if

c = H(g, gx, gr) ∧ gz = gr · (gx)c.

Correctness is trivial. The simulation for zero knowledge
is straightforward by programming the random oracle.
The simulation extraction property follows from the
forking lemma [41].
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IV. MULTIVERSE THRESHOLD SIGNATURE SCHEME

In this section, we present the formal definition for
a Multiverse Threshold Signature Scheme. We write
{P1, P2, . . .} for all the parties in the system. We write
{W1,W2, . . .} for their corresponding weights where
without loss of generality we assume that Wi ∈ N.

Definition 5 (Weighted Threshold Access Structure). An
access structure Λ over a set U ⊆ {P1, P2, . . .} of
parties is a weighted threshold access structure with a
threshold T if it associates a weight with each party
in this particular set; and any subset S ⊆ U is called
authorized (which we denote as S ∈ Λ) if and only if∑

i∈S Wi ⩾ T .

Definition 6 (Universe). A universe (U,Λ) is specified
by an arbitrary subset U of all parties {P1, P2 . . .} and
an access structure Λ over U .

We also consider the standard notion of (unweighted)
threshold access structure, which is a special case where
Wi = 1 for each i in each universe.

Definition 7 (Multiverse Signature Scheme). A multi-
verse signature scheme is a tuple of PPT algorithms de-
noted by Σ = (KGen,UGenon,UGenoff ,Sign,Aggregate,
Verify) defined as follows:

• (pk, sk)← KGen(1κ): On input the security param-
eter 1κ, output a public-secret key pair (pk, sk).

• ρ ← UGenon((U,Λ), sk) : On input a universe
(U,Λ) and secret key sk, it samples a message ρ.

• (VK, pp) = UGenoff((U,Λ), ρ) : On input a uni-
verse (U,Λ) and all party’s messages ρ, it outputs
a verification key VK and public parameters pp.

• σ ← Sign(sk,m) : On input the secret key sk and
message m, output a partial signature σ.

• σ = Aggregate((U,Λ), pp, σ) : On input the uni-
verse (U,Λ), the public parameter pp, a set of
signatures σ, output an aggregated signature σ.

• b = Verify(VK, σ,m) : On input the verification key
VK, a signature σ and a message m, output either
b = 0 (reject) or b = 1 (accept).

Remark 1. The universe setup consists of two phases.
During the online phase, every party samples one mes-
sage ρ ← UGenon using its private key and private
randomness. In the offline phase, the verification key and
the public parameter of the universe can be computed
via the deterministic function UGenoff using all parties’
messages. Notably, one party can reuse the same secret
key for the setup of multiple universes without storing
any additional information in its secret state.

To formalize the security of our scheme, we define the
following oracles (OKGen, OCorrupt, OSign,OUGen),
which allows the adversary to interact with the chal-

lenger. These oracles9 allow the adversary to add new
honest parties to the system, set up any universes, corrupt
parties, and request partial signatures in an arbitrary
interleaved manner. The challenger maintains a state
which includes the following:

• H is the set of honest parties;
• M is the set of malicious parties;
• L is the set of universes that have already been

setup;
• Tm is the set of honest parties which have already

signed the message m;
• ski is the secret key of an honest party Pi;
• ω(U,Λ),i is the randomness of Pi used during setup

of the universe (U,Λ);
• ρ(U,Λ), the messages of honest parties during setup

of the universe (U,Λ).
All the sets are all initialized as ∅ and all the variables
are initialized as ⊥.

OKGenstate(Pi)

1) If Pi ̸∈ H ∪ M then generate (pki, ski) ←
KGen(1λ), update H = H ∪ {Pi} and output
pki. Otherwise, output ⊥.

OCorruptstate(Pi)

1) Update M = M ∪ {Pi}.
2) If Pi ∈ H then update H = H\{Pi}, and

output ski. Otherwise, output ⊥.

OSignstate(Pi,m)

1) If Pi ∈ H then update Tm = Tm ∪ {Pi} and
output Sign(sk,m), else output ⊥.

OUGenstate(U,Λ)

1) update L = L∪ {(U,Λ)}. For each Pi ∈ H ∩
U , set ρi ← UGenon((U,Λ), ski). Finally, set
ρ(U,Λ) = {ρi}Pi∈H∩U , and output ρ(U,Λ).

Definition 8 (Correctness). A multiverse signature
scheme Σ satisfies correctness if for any PPT adversary10

A with oracle access to OKGen, OCorrupt, OSign, and
OUGen, the output of the Correctness−GameA(1κ) de-
fined in Figure 1 is 1 with probability at least 1−negl(κ).

9The adversary is allowed to directly add malicious parties without
using these oracles.

10For the sake of simplicity, we assume that the adversary is
restricted to instantiate a universe for a (Λ, U) only once. We stress that
this assumption is made only for simplicity and our schemes remain
secure even if the same universe is instantiated multiple times.
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1) The adversary outputs a universe (U,Λ) and
the messages of the corrupted parties in that
universe. Also, it outputs a message m and a
set of partial signatures for parties in set S:

((U,Λ), {ρi}Pi∈M∩U ,m, {σj}Pj∈S)← A(1κ).

2) The verification key and public parameter are
computed as follows:

(VK, pp) = UGenoff((U,Λ), ρ(U,Λ)∥{ρi}Pi∈M∩U ).

Among these let S′ ⊆ S denotes the sub-
set where all partial signatures {σj}j∈S′ are
honestly computed (hence, correct) by calling
OSign(Pj ,m).

3) The output of this game is 1 if and only if at
least one of the following conditions is met.
• All parties in the universe are corrupted at

setup. That is, ρ(Λ,U) = ∅.
• The subset of correct signatures is not an

authorized subset. That is, S′ /∈ Λ.
• The aggregated signature verifies. That is,
Verify(VK, σ,m) = 1, where

σ = Aggregate((U,Λ), pp, {σj}Pj∈S).

Fig. 1: Correctness− GameA(1κ)

Definition 9 (Security). A multiverse signature scheme
Σ satisfies security if for any PPT adversary A with
oracle access to OKGen, OCorrupt, OSign, and OUGen,
the output of the following Forgery−GameA(1κ) defined
in Figure 2 is 1 with at most negl(κ) probability.11

1) The adversary outputs a universe (U,Λ) and
the UGenon message of the corrupted parties
in that universe. Additionally, it outputs a
message m and a signature σ. That is,

((U,Λ), {ρi}Pi∈M∩U ,m, σ)← A(1κ).

2) The verification key and public parame-
ter are computed. That is, (VK, pp) =
UGenoff((U,Λ), ρ(U,Λ)∥{ρi}Pi∈M∩U ).

3) The output of this game is 1 only if all of the
following conditions are met.
• The adversary has not acquired sufficient

partial signatures of m; i.e. M ∪ Tm /∈ Λ.

11We note that our security game allows the adversary to launch non-
malleability attacks. For instance, the adversary could copy an honest
party’s public key (and its corresponding NIZKPoK) as its own public
key. Intuitively, these attacks, however, are not helpful for producing
a valid forgery. Our security proof implicitly proves this.

• The signature verifies, i.e.,

Verify(VK, σ,m) = 1.

Fig. 2: Forgery − GameA(1κ)

On our security notion and comparison to [8]. In a
recent work, Bellare et. al. [8] investigate the subtleties
in the security definitions of threshold signature schemes.
In particular they look into unforgeability which guaran-
tees that the adversary should not be able to produce any
“non-trivial forgery” except with negligible probability.12

In particular, based on what makes a “trivial forgery”,
they define various levels of security.

We note that our definition considers the strongest
possible security as a forgery is only considered non-
trivial as long as < T − c honest parties sign the
message (which is captured by M ∪ Tm /∈ Λ in our
definition). Besides achieving the strongest existential
unforgeability notion, our definitions are stronger in the
following aspects.

• We consider malicious security even for the uni-
verse setup phase together with the signing phase.
In most prior works, the security of setup phase is
considered separately [33].

• The multiverse setting is novel to our work. Hence,
the adversary could interleave the universe setup
and signing requests in an arbitrary manner.

• Our correctness guarantee is also stronger in that
even if some parties submit invalid signatures, the
aggregate signature should still be correct with
overwhelming probability as long as a sufficient
amount of partial signatures are honestly generated.

Finally, as we discussed earlier, our scheme is weaker
in that we do not achieve strong unforgeability.

V. THE PROTOCOL

A. Multiverse Threshold Signature Protocol for
Weighted Threshold Access Structure

In this section, we present a multiverse signature
protocol for weighted threshold access structure.

Notation and Building Blocks.
• Let G1, G2 be prime-order groups with g1, g2

as their respective generators. Let p be the
order of G1 and G2. Let e(G1, G2)→ GT be
a bilinear map between G1, G2 and the target
group GT .

• Let {P1, P2, . . . } be a list of all the parties in
the system. We assume that there exists an up-
per bound B such that for any universe (U,Λ),

12In the non-threshold setting a “trivial forgery” is simply defined
by the signatures obtained by querying the signing oracle.
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every party Pi ∈ U has weight Wi ⩽ B.
• Let H : {0, 1}∗ → G2 and H ′ : {0, 1}∗ → Fp

be a random oracle.
• Let F : {0, 1}κ → FB

p be a PRG.

Description of KGen(1κ) :
1) Sample a random PRG seed s← {0, 1}κ.
2) Output (pk = g

F (s)
1 , sk = s) ∈ GB

1 × {0, 1}κ.

Description of UGenon((U,Λ), sk) :

1) Parse (U,Λ) =
(
{(pki, Pi,Wi)}|U |

i=1, T
)

. As-
sume parties are indexed by some canonical
ordering. Let j be the index s.t. gF (sk)

1 = pkj .
2) Let W =

∑
i∈[|U |] Wi. We shall reconstruct

the degree-(W −1) polynomial defined by the
W public keys of the parties in the universe,
where party Pi specifies Wi points.

3) In particular, let pk∗j = pkj [1 : Wj ] and

pk = pk∗1∥pk
∗
2∥ · · · ∥pk

∗
N ∈ GW

1 .

Define a polynomial f ∈ Fp[X] of degree W−
1 such that gf(x)1 = pk[x] for x ∈ [W ].

4) Interpolate these points on the exponents:

evals0 =
{
g
f(x)
1

∣∣ x ∈ {−(W−T ), . . . ,−1, 0}}.
5) Sample k ← Fp, then compute

evals1 =
{
g
k·f(x)
1

∣∣ x ∈ {−(W−T ), . . . ,−1}}.
6) Compute NIZKPoK πDLog for each group el-

ement in pkj using witness F (sk).
7) Output ρ =

(
evals1, g

k
2 , π

DLog
)
.

Description of UGenoff((U,Λ), ρ) :
1) Repeat the same steps in UGenon and compute

evals0 = {gf(x)1 | x ∈ {−(W −T ), . . . ,−1}}.

2) Parse ρ = {ρ1, . . . , ρN ′} and initialize Q = ∅.
3) For each i ∈ [N ′], parse

ρi =
(
evals1,i, g

ki
2 , πDLog

i

)
.

4) Add i to Q if the proof πDLog
i verifies and

e(evals1,i, g2) = e(evals0,i, g
ki
2 ).

5) Let αi = H ′({gkj

2 }j∈Q, g
ki
2

)
and evals1 be

the (coordinate-wise) linear combination of all
elements in {evals1,i}i∈Q with coefficients αi.

6) Set pp = (evals0, evals1), and set VK =

(VK0 = g
f(0)
1 ,VK1 =

∏
i∈Q(g

ki
2 )αi).

7) Output (VK, pp).

Description of Sign(sk,m) :

1) Output signature σ = H(m)F (sk) ∈ GB
2 .

Description of Aggregate((U,Λ), pp, σ) :

1) Parse (U,Λ) =
(
{(pki, Pi,Wi)}|U |

i=1, T
)

. As-
sume parties are indexed by some canonical
ordering.

2) Parse σ = {σi}Pi∈S . Initiate an empty set Q.
Sample a random vector r⃗ ← FB

p . For each
Pi ∈ S ∩ U , add Pi to Q if

e(⟨pki, r⃗⟩, H(m)) = e(g1, ⟨σi, r⃗⟩).

3) Let X be the set of evaluation points cor-
responding to parties in Q. For instance, if
Q = {1, 3}, X = [1 : W1] ∪ [W1 +W2 + 1 :
W1 +W2 +W3].

4) Let λi be the Lagrange coefficients satisfying

f(0) =
∑

i∈X∪[−(W−T ):−1]

λi · f(i).

Note that λi are determined by the set X .
5) We write {λi}i∈X in short as λ⃗par and
{λi}i∈[−(W−T ):1] in short as λ⃗pub

6) Parse pp =
(
B⃗, A⃗

)
∈ G

2(W−T )
1 . Compute

σ′
0 := ⟨B⃗, λ⃗pub⟩ and σ′

1 := ⟨A⃗, λ⃗pub⟩.

7) Let σ⃗ be the concatenation of σi’s where Pi ∈
Q. Compute σ′ := ⟨σ⃗, λ⃗par⟩.

8) Output σ = (σ′, σ′
0, σ

′
1).

Description of Verify(VK, σ,m) :

1) Parse VK = (VK0,VK1), σ = (σ′, σ′
0, σ

′
1).

2) Output 1 (and 0 otherwise) if it holds that{
e(VK0/σ

′
0, H(m)) = e(g1, σ

′)

e(σ′
1, g2) = e(σ′

0,VK1)
.

B. Correctness

We now show via the following theorem that our con-
struction satisfies correctness according to Definition 8.

Theorem 1. Let us assume that the NIZKPoK proof sys-
tem for DLOG is complete with probability 1. Then our
MTS scheme is correct with overwhelming probability.

Proof. In our proof, we use the same notations for all
variables that appeared in our description of the scheme
in Section V-A.
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Suppose at the end of Correctness-Game, the ad-
versary A outputs: ((U,Λ), {ρi}Pi∈M∩U ,m, {σj}Pj∈S).
Let S′ ⊆ S be the subset of signatures that are
honestly generated. We would like to show that
with all but negligible probability, if (U ̸⊆M) ∧
(S′ ∈ Λ) Then Verify(VK, σ,m) = 1, where σ =
Aggregate((U,Λ), pp, {σj}Pj∈S).

As U ̸⊆ M , there exists some P ∗ ∈ U ∩H .
Therefore, ρ∗ ∈ ρΛ,U is honestly computed by
the oracle OUGenstate(U,Λ). Now consider run-
ning UGenoff((U,Λ), ρΛ,U∥{ρi}Pi∈M∩U ): since ρ∗ is
honestly computed, we must have P ∗ ∈ Q
and thus Q ̸= ∅. Now for all Pj ∈ Q,
since e(evals1,j , g2) = e(evals0, g

kj

2 ), we have
e(evals1, g2) = e(evals0,VK1). Therefore it al-
ways holds that e(σ′

1, g2) = e(⟨evals1, λ⃗par⟩, g2) =
e(⟨evals0, λ⃗par⟩,VK1) = e(σ′

0,VK1). Thus verifier’s first
check will pass.

For any Pj ∈ S′, since σj is the output of A’s query
to OSign(Pj ,m), we have σj = H(m)F (skj) and, thus,
e(⟨pkj , r⃗⟩, H(m)) = e(g1, ⟨σj , r⃗⟩) for any r⃗. Therefore
S′ ⊆ Q.

We further claim that with all but negligible probabil-
ity, for all Pj ∈ Q \ S′, we have σj = H(m)F (skj). To
prove this, notice that if σj ̸= H(m)F (skj), then

Pr
r⃗
[e(⟨pkj , r⃗⟩, H(m)) = e(g1, ⟨σj , r⃗⟩)] ⩽ 1/|Fp|.

By a union bound,

Pr[∃Pj ∈ Q \ S′ : σj ̸= H(m)F (skj)] ⩽
|Q \ S′|
|Fp|

,

which is negligible in κ. Since S′ ∈ Λ and S′ ⊆ Q,
we have Q ∈ Λ, and thus

∑
Pi∈Q Wi = |X| ⩾ T . Since

f(x) is a degree W−1 polynomial, it can be interpolated
correctly using its evaluations at X ∪{T −W, . . . ,−1}.
Let f(0) =

∑
x∈X

⋃
{T−W,...,−1} λx · f(x). Notice that

e(VK0/σ
′
0, H(m)) = e(g1, H(m)f(0)−

∑
x∈{T−W,...,−1} f(x)·λx)

= e(g1, H(m)
∑

x∈X f(x)·λx) = e(g1, σ
′).

Thus Verify(VK, σ,m) = 1 with 1−negl(κ) probability.

C. Security
We prove the security/unforgeability of our scheme

according to Definition 9 via the following theorem.

Theorem 2. In addition to the knowledge assump-
tion (Assumption 2), let us assume that the underlying
NIZKPoK proof system for DLOG is sound with over-
whelming probability. Then the security of our MTS
construction can be reduced to the co-CDH assump-
tion (Definition 1).

Due to the space limit, we shall only give an overview
of the proof in the main body. The full security proof is
deferred to Appendix A.

Proof Overview. Our security proof reduces the security
of our MTS scheme to the security of the co-CDH
assumption. In particular, given an adversary A that
breaks the MTS scheme with non-negligible probability,
we construct an adversary A∗ that breaks co-CDH with
non-negligible probability.

On a high level, A∗ interacts with an external chal-
lenger for the co-CDH security game. It receives the
challenge gs1, gs2, and gr2 from the challenger and pro-
ceeds to interact with the adversary A. When it simulates
the MTS security game, A∗ will embed the challenge gs1
as the public key of some random honest parties. For the
other honest parties, it samples their secret keys honestly.
Additionally, A∗ will program the random oracle H and
embed the challenge gr2 as the hash H(m) of a few
random messages. For the other messages, it honestly
samples a random r′ and sets H(m) = gr

′

2 . In the end,
we show that if A successfully produces a forgery for
the MTS game, we could use it to compute grs2 with
some non-negligible probability. Below, we highlight
some technical challenges.
Oracle queries. A∗ can answer most queries by A
directly with a few exceptions. First, suppose A requests
an honest party with embedded challenge gs1 as its public
key to sign a message m with the embedded challenge
gr2 as its hash value H(m). A∗ cannot compute the
partial signature H(m)s as it does not know neither s
nor r. However, by carefully choosing the embedding
probability, we will ensure that this never happens with
a non-negligible probability.

Second, since we allow A to adaptively corrupt par-
ties, it may decide to corrupt an honest party with the
embedded challenge gs as its public key. Again, we
cannot give the secret state of this party as we do not
know s. However, with a non-negligible probability, A
will not corrupt any honest parties with an embedded
challenge. This is because A succeeds with a non-
negligible probability in the MTS game, and A only
succeeds if it does not corrupt all parties. Therefore,
with a non-negligible probability, A does not corrupt
any parties where we embed the challenges, as there are
very few of them. Therefore A∗ can successfully answer
all of A queries with a non-negligible probability.
Solve co-CDH challenge. Conditioned on (1) A∗ can
successfully answer all of A queries and (2) A indeed
successfully generates a forgery, we now need to argue
that we can solve the co-CDH problem and compute gsr2 .
Note that A produces a signature (σ, σ0, σ1) such that{

e(VK0/σ0, H(m)) = e(g1, σ)

e(σ1, g2) = e(σ0,VK1)

Our plan is to show that with a non-negligible probability
VK0/σ0 can be written as ga·s+b

1 for some a ̸= 0 and
b that A∗ knows. If so, σ must be equal to H(m)a·s+b.
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And, consequently, if H(m) is a hash value with the
embedded challenge gr2 (which happens independently
with a non-negligible probability), we can easily use σ
to compute gsr2 .

To argue this, we invoke the knowledge assumption13

to argue that the only way that A can compute σ0 and σ1

that pass the second equation is by a linear combination
of the public points, and one can extract such a linear
combination. Consequently, one can write VK0/σ0 di-
rectly as some linear combination of all parties’ pub-
lic keys. Furthermore, by relying on the knowledge
extraction property of the NIZKPoK scheme, we can
extract the malicious parties’ secret keys. Henceforth,
we know all the exponents of public keys in the linear
combination, except for those with embedded challenges,
which means VK0/σ0 can indeed be written as ga·s+b

1 .
Next, we note that a ̸= 0 with high probability, as

we pick a random honest party to embed the challenge;
therefore, no matter what linear relation the adversary
chooses to aggregate the public points, one can prove
that a ̸= 0 with high probability.
Security Loss. Our proof shows that if the adversary
A succeeds in the MTS game with some non-negligible
probability δ, then A∗ succeeds in solving the co-CDH
problem with some non-negligible probability δ′. We
emphasize that our security proof does not optimize the
security loss between δ′ and δ. Note that this security
loss affects the choices of security parameters and,
henceforth, all parameters in our scheme, e.g., signature
size, aggregation/verification time, etc. Therefore, tighter
security loss will potentially lead to more efficient con-
struction. We leave this as exciting future works.

VI. IMPLEMENTATION AND EVALUATION

We implement our MTS construction in Rust and
release it open-source at https://github.com/rsinha/mts.
We use the BLS12-381 pairing-based curve [15], and
the hashing to elliptic curve method defined in [28].
For efficiency, we implement multi-exponentiation of
group elements (within the aggregator) using Pippenger’s
method [17], [40], which, for n group elements, requires
O(n / log(n)) running time as opposed to O(n).

For a fair comparison of all schemes, we only im-
plement the single-threaded version of our algorithms,
though there are obvious opportunities for parallelism.
All experiments are run on a Macbook Pro with M1 Pro
chip and 32 GB RAM. We also report EVM gas costs14

for publishing and verifying signatures on-chain.

13Note that A is an oracle-aided circuit that has access to the random
oracle H . In particular, our knowledge assumption assumes that one
could extract from such oracle-aided circuits.

14Our calculation uses the pre-compiled gas costs for alt bn128
curve as defined in EIP-1108 [22]: ECADD costs 150, ECMUL costs
6000, and k pairings cost 35, 000 ·k+45, 000. The gas cost for each
32-byte storage slot is 20000.

We measure the performance of signing, verification,
and aggregation algorithms. We compare our MTS con-
struction against alternative threshold signature schemes,
when adapted to the multiverse setting. These include:
1) generic zk-SNARK approach; 2) compact certificates
in Micali et. al. [38]; 3) (vanilla) threshold BLS; and, 4)
multisignature based on BLS. These are described below.

Aggregation using zk-SNARKs. The aggregator can
function as a prover who convinces the verifier that
it knows a threshold number of valid signatures, each
verifiable under a distinct public key. To set up this
experiment, we use the gnark library [2] to create
a circuit composing multiple instances of the signa-
ture verification circuit.15 For fairness, we choose the
most SNARK-friendly signature scheme available in the
gnark library, which is EdDSA signatures – with the
gnark frontend, a single EdDSA verification produces
roughly 6.2K constraints in the Groth16 system [35] and
13.1K constraints in the PLONK system [29]. To get a
ballpark estimate, we will assume the verifier has the
entire address book mapping nodes to their public keys;
alternatively, the proof can be constructed with respect to
a commitment to the address book, but that only adds to
the prover (aggregator) running time that we report. Note
that this approach computes the MiMc [7] hash function,
used in the signature scheme as a random oracle, inside
the SNARK circuit. As we show later, the aggregator’s
running time is prohibitively expensive.

Compact Certificates. Micali et. al. [38] introduce
compact certificates, based on non-interactive proofs of
knowledge in the random oracle model. The certificate
proves that signers have a sufficient total weight, while
only including logarithmic number of individual signa-
tures. As we show later, the certificate size is orders of
magnitude larger than ours, incurring a heavy gas cost.

Threshold BLS. The (vanilla) threshold BLS system
uses a BLS scheme that is setup by a distributed key
generation (DKG) protocol, such as Gennaro et. al. [33]
or with the recent improvements in [44]. Recall that a
party produces independent partial signatures for each
universe; not surprisingly, as we show later, the network
bandwidth usage is prohibitively expensive.

BLS Multisignature. We also test MTS based on
BLS multisignatures [14], [37], where rogue key attacks
are addressed via proofs-of-possession in a setup phase
– see Appendix B for details on this construction. In
this scheme: 1) the aggregate signature contains the
identity of each signer; and, 2) the aggregate public

15Alternatively, we could have produced k independent Groth16
proofs, and aggregated them using Bunz et. al. [20] (implemented
in [30]), that results in O(log(k)) sized proofs. Recursive composition
techniques also exist [18], but they are relatively inefficient.
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key is computed by the verifier (e.g. smart contract) by
aggregating the public keys of all signers. As we show
later, this scheme has expensive (on-chain) verification
cost, both in the setup cost (storing linear public keys)
and operation cost (multiplying linear group elements).

A. Signature Size

We report the signature size in Table I. Depending
on the scheme, a signature has several components:
G1 and G2 denote group elements (of size 48 and
96 bytes, respectively) from the source groups of the
pairings curve, and F denotes field elements (of size 32
bytes). Except for compact certificates and BLS multisig,
all other schemes produce an aggregate signature of
constant size, with threshold BLS producing the shortest
signature of size 1 group element (48 bytes).

Compact certificates use logarithmic size proofs; for
128-bit security, soundness requires them to output a
certificate of size 7.5-12 KB for 100 parties, and roughly
40-250 KB for 10K parties – Table I includes a data
point for threshold that is 80% of total weight, and the
signature is even larger for lower thresholds.16 In fact,
for a few hundred nodes, the certificate is larger than
simply outputting all signatures, due to the overheads of
the Merkle paths – their approach is targeted towards
networks with millions of nodes, but that is orders of
magnitude larger than any existing blockchain network
(Bitcoin has 10K nodes). Therefore, compact certificates
are impractical for our use case, especially since the
aggregate signature is published and verified on-chain.

BLS multisig produces a linear size aggregate signa-
ture, as the aggregator must communicate which parties
have signed (1 bit per party). Though asymptotically
worse, it fares better in practice compared to compact
certificates; for n nodes, the signature must have 1 group
element and n bits – for practical values of n, say 1000
nodes, we have a 224 byte signature.

B. Verification Time

Table I also reports verification complexity, in alge-
braic operations, wall clock time, and Ethereum virtual
machine (EVM) gas units (computed using [3]) – we
report the EVM gas cost for both smart contract setup
(where the verification key is stored on-chain) and per-
signature verification. Algebraic operations are of several
types: H denotes hash functions, P denotes pairing
operations, while group operations in G1 are either expo-
nentiations or multiplications. Again, with the exception
of compact certificates and BLS multisig, all schemes
have constant time.

16Irrespective of the number of nodes and weights, the certificate
contains the following number of signatures (in addition to the Merkle
path hashes) for 128-bit security : 1343 for T = 0.55W, 702 for T =
0.6 W, 380 for T = 0.7 W, 272 for T = 0.8W, and 217 for T = 0.9W.

Verifying compact certificates has the highest gas
cost. We are also under-approximating here, as we only
include the gas cost of computing keccak256 hashes
(costing 28 gas units [4]) in the Merkle paths and the
EdDSA (over Curve25519) signatures (costing 2000 gas
units [5]); i.e., we are not including the cost of verifying
the proof against the commitment to the public key set.

BLS multisigs require linear group additions to com-
pute the aggregate key, causing the gas cost to exceed
that of MTS verification beyond a few hundred signers. It
also requires the smart contract setup to store n public
keys on-chain, which comes out to 60 million gas for
2000 nodes (roughly $1460 at the time of writing).

The summary of our analysis here is that compact
certificates and BLS multisignatures have high veri-
fication complexity, when used in the multiverse setting.

C. Bandwidth Requirement

We now analyze the inbound bandwidth complexity
from the point of view of the aggregator. The bandwidth
is a proxy for network traffic flowing over P2P channels
in the oracle network. We report the results in Table II,
for select parameters of network size, weight (per party),
and the number of universes.

All three of compact certificates, multisig, and zk-
SNARK based approaches use similar bandwidth, as
each party sends one signature – bandwidth is indepen-
dent of the weight or the number of universes.

In our MTS scheme, the bandwidth is linear in the
weight, but constant in the number of universes. Our
conclusion from this study is that while MTS is worse
than the SNARK approach for large weights, the band-
width is still under 10 MB for reasonable weights, and
therefore not problematic for practical parameters. In
contrast, the threshold BLS scheme uses a little under 1
GB for 100 universes, for weight B = 50 – this is for one
message, and is quickly unmanageable for our setting, as
Chainlink concurrently serves several hundreds of data
feeds (with separate message for each feed).

The summary of the bandwidth analysis here is that
the naı̈ve application of threshold BLS to the multi-
verse setting is not at all scalable.

D. Aggregation Time

1) Unweighted Setting: We start with the unweighted
setting because it is a default or natural setting in several
applications of threshold signatures. Table III displays
the running time of the aggregator for the different
schemes in the unweighted setting (i.e., B = 1). We
measure how the running time increases as the size of
the network grows (while keeping the threshold to be
a fixed fraction T = W/2, where W = n equals the
number of nodes). Since aggregation is performed for
each universe separately, the reported running time is
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TABLE I: Signature Size and Verification Time

Scheme Signature Size Verify Operations Verify Time EVM Gas (Setup / Verify)

zk-SNARK (Groth16) 2 G1, 1 G2 (192 B) 3 P , 1 G1 exp 13 ms 300,000 / 203,000

Comp. Cert. (T = 0.8W) 272 G1, 272 F (17.5 KB) 272 H , 816 G1 mul, 544 G1 exp 190 ms 20,000 / > 672,000

Threshold BLS 1 G1 (48 B) 2 P 3.51 ms 60,000 / 118,500

Multisig BLS (n = 2000) 1 G2, n bits (224 B) n G1 mul, 2 P 5.12 ms 60,000,000 / 415,000

MTS 2 G1, 1 G2 (192 B) 4 P , 1 G1 mul 6.43 ms 90,000 / 198,500

TABLE II: Bandwidth Analysis of Aggregation (MBs)

Nodes,
Weight, Comp. Cert. Thresold Multisig

Universes and SNARK BLS BLS MTS
500, 1, 1 0.031 0.023 0.047 0.047

500, 1, 100 0.031 2.29 0.047 0.047
500, 50, 1 0.031 1.14 0.047 2.28

500, 50, 100 0.031 114.44 0.047 2.28

1000, 1, 1 0.062 0.047 0.091 0.094
1000, 1, 100 0.062 4.58 0.091 0.094
1000, 50, 1 0.062 2.29 0.091 4.58

1000, 50, 100 0.062 229 0.091 4.58

2000, 1, 1 0.125 0.091 0.18 0.188
2000, 1, 100 0.125 9.16 0.18 0.188
2000, 50, 1 0.125 4.58 0.18 9.16

2000, 50, 100 0.125 457 0.18 9.16

TABLE III: Unweighted Aggregation Time (sec)

Nodes Groth16 / PLONK Thr. BLS Mul. BLS MTS
100 11.25 / 6.97 0.011 0.00029 0.027

200 24.50 / 14.62 0.019 0.00057 0.046

500 71.14 / 39.29 0.057 0.0015 0.11

1000 186.34 / 126.34 0.126 0.0029 0.25

1500 289.26 / 218.97 0.2 0.0044 0.42

2000 484.37 / 302.90 0.282 0.0058 0.61

for each universe. All experiments are run on a single
CPU core for a fair comparison amongst all schemes.

Both threshold and multisig BLS allow for efficient
aggregation, wherein multisig requires at most n group
multiplications. The SNARK prover is too inefficient
for networks beyond a few hundred parties, as any
latency beyond 30 seconds is too long for our setting.

Fig. 3: MTS Aggregation Running Time

2) Weighted Setting: One valuable property of com-
pact certificates, multisig, and SNARK is that aggre-
gation is independent of the weights (compact certifi-
cates do depend on the threshold); so their performance
in the weighted setting is same as Table III above.
Nevertheless, despite being asymptotically worse, we
show that MTS aggregation is significantly more efficient
for reasonable weight parameters (e.g., for B < 25).
See Figure 3 for an exhaustive benchmarking of MTS
aggregation. MTS aggregation is roughly twice the run-
ning time of threshold BLS, as MTS performs multi-
exponentiation in both groups G1 and G2 to compute
the three group elements within the signature.

We find that the majority of time is spent in computing
Lagrange coefficients, which is a quadratic operation.
Tomescu et al. [44] shows how to make this computation
quasi-linear, by using FFT and evaluating polynomials at
roots-of-unity, and we can borrow their techniques.

VII. PRIOR WORKS

We briefly summarize the existing works on threshold
signatures. Since their introduction [25], [26], a large
body of works has studied the security for threshold sig-
nature of prominent signature schemes such as ECDSA
signature [21], [31], [32], [34], Schnorr signature [36],
and BLS signature [13]. On the other hand, threshold
signature schemes could be generically implemented by
using any signature schemes and succinct non-interactive
proofs [11], [12]. Recently, Micali et. al. [38] uses
this approach to construct threshold signatures specially
tailored for the weighted setting. Finally, multisigna-
tures [14], [37] could be viewed as a special case of
the threshold signature, where the aggregate signature
certifies that all parties have signed the message.

VIII. CONCLUSION

We propose a multiverse threshold signature scheme,
with compact keys, compact partial signatures, and a
non-interactive setup. The final signature size is compact,
and allows for fast verification, even on smart contracts.
Experiments show that the scheme is practical for appli-
cation in decentralized oracle networks for blockchains.
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APPENDIX

A. The Security of our MTS Scheme

In this section, we show that our construction satisfies
security according to Definition 9. We formally prove
Theorem 2. In our proof, we use the same notations
for all variables that appeared in our description of the
scheme in Section V-A.

Suppose there exists an adversary A which breaks the
security of the multiverse signature scheme; we show
how to construct another adversary A∗, using A as a
subroutine, to break the co-CDH assumption.

Simulation Strategy. A∗ will receive the challenge
(gs1, g

s
2, g

r
2) from the external challenger and proceed

to interact with A. It embeds the challenge gs1 as the
honest party’s public key with an appropriate probability.
It also embeds the gs2 as the answer of the random
oracle query with an appropriate probability. When A
requests a partial signature from the honest party with the
embedded public key on a message with the embedded
challenge, A∗ aborts as it cannot compute the partial
signature. When the adversary tries to corrupt an honest
party with the embedded challenge, A∗ aborts as it
cannot explain the secret state of the honest party. Our
objective is to prove that: when the adversary A correctly
forges a signature in the multiverse game, we shall use it
to solve the co-CDH challenge. Additionally, we need to
prove that this happens with non-negligible probability.

The formal description of A∗ is presented below.

Notations.
1) Let Σ be the multiverse signature scheme as

described in V-A using the pairing groups
(G1, G2, e) and random oracle H .

2) Let A be an adversary which breaks the secu-
rity of the multiverse signature scheme Σ with
some non-negligible probability p1(κ).

3) Let qH be the upper bound on the number of
times that A queries the random oracle. Let
κc be the upper bound on the total number of
parties in the system. Note that both are upper
bounded by the size of the circuit A.

4) Let E be the knowledge extractor given in the
knowledge assumption (see Definition 2). Let
(ENIZKPoK,SNIZKPoK) be the knowledge extrac-
tor and simulator given in NIZKPoK for DL
(see Definition 4).

Description of adversary A∗:
1) Initiate state as described in IV. Furthermore,

initiate an empty set R (This is the set of
parties with the embedded challenge). Run the

adversary A on input 1κ. Respond to its oracle
queries as follows:

a) (Response to H(m))
• Sample a random a← F. With probabil-

ity 1/qH , set H(m) as gr2 ·ga2 . Otherwise,
set H(m) as ga2 .

b) (Response to OKGenstate(Pi))
• If Pi ∈ H ∪M output ⊥.
• Otherwise, sample (pki, ski) ←
KGen(1κ). Then sample vector γ⃗i ∈ FB

p

such that for each j ∈ [B], with
probability 1

κc+1 , γ⃗i[j] ← Fp is
randomly sampled, and otherwise being
zero. Reset pki ← pki · (gs1)γ⃗i , and add
(Pi, γ⃗i) to R if γ⃗i ̸= 0B .

• Let H = H ∪ {Pi} and output pki.
c) (Response to OCorruptstate(Pi))

• Set M = M ∪ {Pi}.
• If Pi ∈ H then set H = H\{Pi}. If
Pi /∈ R, output ski. Otherwise, declare
failure.

d) (Response to OUGenstate(U,Λ))
• Set L = L ∪ {(U,Λ)}. For each
Pi ∈ H ∩ U , if Pi /∈ R, honestly
compute ρi =

(
evals1, g

k
2 , π

DLog
)
←

UGenon((U,Λ), ski) using the secret ski.
Otherwise, simulate the proof πDLog as
πDLog ← SNIZKPoK(pki).

• Set ρ(U,Λ) = {ρi}Pi∈H∩U and output it.
e) (Response to OSignstate(Pi,m))

• If Pi /∈ H , output ⊥. Otherwise set
Tm = Tm ∪ {Pi}.

• If Pi /∈ R, output Sign(ski,m).
• If Pi ∈ R, check if H(m) is embedded

with gr2 . If not, suppose H(m) = ga2 .
Answer it by raising the secret key to
the a-th power. If H(m) is embedded
with gr2 , declare failure and abort the
protocol.

2) Let ((U,Λ), {ρi}Pi∈M∩U , σ,m) be
A’s output. For each Pi ∈ M ∩ U ,
extract Pi’s secret vector s⃗i = F (ski):
s⃗i ← ENIZKPoK(A, πDLog

i , pki). Let (VK, pp) =
UGenoff((U,Λ), ρ(U,Λ)∥{ρi}Pi∈M∩U ). Parse
pp = (B⃗, A⃗) and VK = (VK0,VK1).

3) If U∩R = ∅, declare failure. Otherwise, using
({s⃗i}Pi∈U , {γ⃗i}Pi∈R) , compute (α0, β0, α⃗, β⃗)
such that VK0 = (gs1)

α0 · gβ0

1 and B⃗ =

(gs1)
γ⃗ · gβ⃗1 . This can be achieved as follows:

Consider the matrix L ∈ FW×(W−T+1)
p where
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each column consists of the Lagrange coeffi-
cients that map [f(1), . . . , f(W )] to [f(T −
W ), . . . , f(0)]. Let skU be the concatenation
of s⃗i for each Pi ∈ U , and γ⃗U be the
concatenation of γ⃗i for pi ∈ U (where γ⃗i = 0B

for j /∈ R). Then compute [β⃗, β0] = skU ·M
and [α⃗, α0] = γ⃗U ·M .

4) If H(m) is not embedded with the chal-
lenge gr2 , declare failure. Otherwise, assume
H(m) = ga2 · gr2 .

5) If M ∪Tm /∈ Λ and Verify(VK, σ,m) = 1 and
m is not queried to the external challenger,
then do the following:

a) Parse σ = (σ′, σ′
0, σ

′
1). Then using

E(A, pp), extract λ⃗ ∈ FW−T
p such that

σ′
0 := ⟨B⃗, λ⃗1⟩, and σ′

1 := ⟨A⃗, λ⃗1⟩. Write
α1 = ⟨α⃗, λ⃗⟩ and β1 = ⟨β⃗, λ⃗⟩, so that
σ′
0 = (gs1)

α1 · gβ1

1 .
b) If α0 ̸= α1, output the answer

grs2 =
(
σ′ ·H(m)β1−β0

)(α0−α1)
−1

· (gs2)−a.

c) Otherwise, declare failure.

Analysis of A∗’s winning probability.
To analyze A∗ winning probability, we first use a

sequence of hybrids to argue that A cannot distinguish
whether it is interacting with A∗ or the real MTS game.

Hybrid 0. : In this experiment, when A∗ interacts
with A, it uses the real view. That is, it does not
embed any challenges (henceforth, it also uses the honest
proof of NIZKPoK instead of a simulated one). The
point is that, since this is the real experiment, A will
successfully produce a forgery in the MTS game with a
non-negligible probability.

Next, we switch to the description of our adversary
A∗ in the following two hybrids.

Hybrid 1. : In this hybrid, we embed the challenges,
but still use the secret s to generate the NIZKPoK
proof. That is, we first sample s ← Fp and define
(gs1) = gs1. Whenever A queries OKGenstate(Pi), first
sample vector γ⃗i ∈ FB

p such that for each j ∈ [B],
with probability 1

κc+1 , γ⃗i[j]← Fp is randomly sampled,
and otherwise being zero. If γ⃗i = 0B , then sample
(pki, ski) ← KGen(1κ), otherwise sample s⃗i ← FB

p

directly instead of a PRG seed, and then set pki =
gs⃗i1 . Finally Reset pki ← pki · (gs1)γ⃗i . Later, when-
ever A queries OSignstate(Pi,m), we compute σ =
H(m)s·γ⃗i+(F (ski) or s⃗i) accordingly. Since we never re-
lease the secret seed ski for Pi ∈ R, this hybrid is
indistinguishable from the previous hybrid due to the
security of PRG.

Hybrid 2. : In this hybrid, we simulate the
NIZKPoK proof. Specifically, whenever A queries
OUGenstate(U,Λ), for all Pi ∈ R ∩ U , instead
of honestly compute ρi = (evals1, g

k
2 , π

DLog) ←
UGenon((U,Λ), ski) using the secret ski. We simulate
the proof πDLog using the simulator of NIZKPoK. In-
distinguishability immediately follows from the zero-
knowledge property.

Hybrid 3. : In this hybrid, we also program the random
oracle and embed the challenge gr2 . Additionally, we will
also declare failure at those places where (1) we cannot
answer without the knowledge of s or r (in particular,
at step 2(c) and 2(e)) and (2) A∗ fails since it did not
successfully embed a challenge (in particular, at step 3
and 4). Note that, the only difference from hybrid 2 is
that A∗ will now sometimes declare failure and abort.
For example, it happens if the adversary corrupts an
honest party. However, conditioned on A∗ succeeding
in producing a forgery, these failures will not happen
with an independent and non-negligible probability. For
instance, for each partial signature requested, there is a
probability of 1/qH · 1/κc+1 that we will embed both
the public key and the hash H(m). Therefore, for each
partial signature, there is a probability 1/qH · 1/κc+1

of failure. Since the adversary requests at most qH · κc

partial signatures. The probability that A∗ never fail is at
least (1− 1/qH · 1/κc+1)qH ·κc

, which is non-negligible.
Similarly, we could bound the other failure probability.
We note that this analysis is entirely analogous to the
security proof of the BLS signature as one program the
random oracle and embed the challenges. We refer the
readers to [16] for a more elaborated analysis of this.

Therefore, we have established that when A∗ interacts
with A, A will successfully output forgery at step 2
with a non-negligible probability. Finally, we analyze the
probability that A∗ successfully transforms the output of
A to the solution of the co-CDH challenge.

Invoking Knowledge Assumption. Next, we argue that,
at step 5, A∗ will indeed be able to extract a linear
combination λ⃗. Indeed, we could invoke Assumption 2
where the group element h1, . . . , hN corresponds to
the public points of the polynomial gf(−1)

1 , g
f(−2)
1 , . . ..

The random exponent k′ corresponds to some honest
party’s ki. (Since the adversary succeeds in producing
a forgery, there must be an honest party within the
universe.) The maliciously chosen k′′ corresponds to∑

j ̸=i αj · kj . Finally, the exponent k corresponds to
k = α · k′ + k′′ =

∑
i αi · ki. Now, we fix all the

randomness of A∗ and {αj}j ̸=i and treat A as an
oracle-aided circuit17 that plays the security game of
Assumption 2 and outputs two elements σ0, σ1. Since

17Here, A has access to the random oracle H .
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σ0, σ1 passes the pairing e(σ0, g
k
2 ) = e(σ1, g2), it clearly

satisfies σ1 = σk
0 . Therefore, Assumption 2 claims that

there is an extractor that extracts a linear combination
except for a negligible failure probability. In the rest of
the analysis, we assume that A∗ successfully extracts a
linear combination. Now, the only case left where A∗

might abort is the following bad event.

Bad : { In step 5(b), (α0 − α1) = 0}.

This event corresponds to that the random linear combi-
nation of s is 0, which makes it useless in producing a
solution to the co-CDH problem.

We next argue that this bad event does not happen
with a non-negligible probability. Let λ⃗ be defined as in
the description of A∗. Given such λ⃗, we have:

α1 − α0 =
〈
[α⃗, α0], [λ⃗,−1]

〉
= γ⃗U ·M · [λ⃗,−1]T .

Let γ⃗T := [λ⃗,−1] ·MT . Since M is full row rank (its
rank is W−T+1), and [λ⃗,−1] ̸= 0W−T+1, γ⃗T contains
less than W −T +1 zero entries. Since A’s total weight
is at most T−1, by pigeonhole principle there must exist
some index i such that:

1) γ⃗T [i] ̸= 0;
2) with probability 1

κc+1 , γ⃗U [i] ← Fp is randomly
sampled, and otherwise being zero.

Then with probability at least 1
κc+1 , there exists some

index i such that:
1) γ⃗T [i] ̸= 0;
2) γ⃗U [i]← Fp is randomly sampled.

Let γ⃗∗
T and γ⃗∗

U be the truncated vectors that only consist
of these indexes. Then

Pr[α1 − α0 = 0] = Pr
γ⃗U

[⟨γ⃗∗
U , γ⃗

∗
T ⟩ = 0] ⩽ 1/|Fp|.

Overall, we have

Pr[α1 − α0 = 0] ⩽ 1− 1

κc+1
+

1

|Fp|
⩽ 1− 1

κO(1)
.

Therefore, with a non-negligible probability α0−α1 ̸= 0.
To conclude, we have shown that with a non-negligible

probability, A∗ outputs some solution. Finally, we verify
that, when the bad event does not happen, A∗ indeed
outputs a valid solution. To see this, observe that σ′ =
(H(m)s)(α0−α1) · H(m)β0−β1 and H(m) = gr2 · ga2 .
Thus,

(
σ′ ·H(m)β1−β0

)(α0−α1)
−1

· (gs2)−a = (gr2 ·ga2 )s ·
(gs2)

−a = gsr2 .
In conclusion, A∗ wins with a non-negligible proba-

bility.

B. MTS Construction based on BLS Multisignature

We now present an alternative construction of MTS
for weighted threshold access structure, based on BLS
multisignatures with Proof of Possession (PoP) [42].

Notation and Building Blocks.
• Let G1, G2 be prime-order groups with g1, g2

as their respective generators. Let p be the
order of G1 and G2. Let e(G1, G2)→ GT be
a bilinear map between G1, G2 and the target
group GT .

• Let {P1, P2, . . . } be a list of all the parties in
the system.

• Let H : {0, 1}∗ → G2 be a random oracle.

Description of KGen(1κ) :
1) Sample sk← Fp. Output (pk = gsk1 , sk).

Description of UGenon((U,Λ), sk) :

1) Parse (U,Λ) =
(
{(pki, Pi,Wi)}|U |

i=1, T
)

. As-
sume parties are indexed by some canonical
ordering. Let j be the index s.t. gsk1 = pkj .

2) Compute PoP πDLog for the group element pkj
using witness sk. Output ρ = πDLog.

Description of UGenoff((U,Λ), ρ) :

1) Parse (U,Λ) =
(
{(pki, Pi,Wi)}|U |

i=1, T
)

.
2) Parse ρ = {ρ1, . . . , ρN ′}.
3) For each i ∈ [N ′], parse ρi = πDLog

i .
4) For each i ∈ [N ′], remove (pki, Pi,Wi) from

U if πDLog
i is not a verifying PoP.

5) Set pp = ⊥, and set VK = (U,Λ).
6) Output (VK, pp).

Description of Sign(sk,m) :

1) Output signature σ = H(m)sk ∈ G2.

Description of Aggregate((U,Λ), pp, σ) :
1) Parse σ = {σi}Pi∈S .
2) Set σ′ =

∏
Pi∈S σi.

3) Output σ = (σ′, S).

Description of Verify(VK, σ,m) :

1) Parse VK = ((U,Λ), ρ).
2) Parse (U,Λ) =

(
{(pki, Pi,Wi)}|U |

i=1, T
)

.
3) Parse σ = (σ′, S).
4) Compute VK′ =

∏
pi∈S pki.

5) Output 1 if e(VK′, H(m)) = e(g1, σ
′) ∧∑

Pi∈S Wi ⩾ T ; output 0 otherwise.

We compare our MTS construction (section V-A) with
the above multisig-based scheme in section VI.
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