
Computation of Hilbert class polynomials and
modular polynomials from supersingular elliptic

curves

Antonin Leroux

DGA-MI, Bruz, France
IRMAR - UMR 6625, Université de Rennes, France
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Abstract. We present several new heuristic algorithms to compute class
polynomials and modular polynomials modulo a prime P . For that, we
revisit the idea of working with supersingular elliptic curves. The best
known algorithms to this date are based on ordinary curves, due to the
supposed inefficiency of the supersingular case. While this was true a
decade ago, the recent advances in the study of supersingular curves
through the Deuring correspondence motivated by isogeny-based cryp-
tography has provided all the tools to perform the necessary tasks effi-
ciently.
Our main ingredients are two new heuristic algorithms to compute the
j-invariants of supersingular curves having an endomorphism ring con-
tained in some set of isomorphism class of maximal orders. The first one
is derived easily from the existing tools of isogeny-based cryptography,
while the second introduces new ideas to perform that task efficiently for
a big number of maximal orders.
From there, we obtain two main results. First, we show that we can as-
sociate these two algorithms with some operations over the quaternion
algebra ramified at P and infinity to compute directly Hilbert and modu-
lar polynomials mod P . In that manner, we obtain the first algorithms
to compute Hilbert (resp. modular) polynomials modulo P for a good
portion of all (resp. all) primes P with a complexity in Õ(

√
|D|) for the

discriminantD (resp. Õ(ℓ2) for the level ℓ). Due to the (hidden) complex-
ity dependency on P , these algorithms do not outperform the best known
algorithms for all prime P but they still provide an asymptotic improve-
ment for a range of prime going up to a bound that is sub-exponential
in |D| (resp. ℓ).
Second, we revisit the CRT method for both class and modular poly-
nomials. We show that applying our second heuristic algorithm over
supersingular curves to the CRT approach yields the same asymptotic
complexity as the best known algorithms based on ordinary curves and
we argue that our new approach might be more efficient in practice. The
situation appears especially promising for modular polynomials, as our
approach reduces the asymptotic cost of elliptic curve operations by a
linear factor in the level ℓ. We obtain an algorithm whose asymptotic
complexity is now fully dominated by linear algebra and standard poly-
nomial arithmetic over finite fields.



1 Introduction

Hilbert class polynomials and modular polynomials are central objects in number
theory, and their computation have numerous applications. One field where these
computations are of particular interest is cryptography. The main applications
are to be found in elliptic curve cryptography and pairing-based cryptography,
but we can also mention, more marginally, the recent field of isogeny-based
cryptography.

Class polynomials, for instance, play a central role in the CM method, which
is the main approach to find ordinary curves with a prescribed number of points
over a given finite field (see [AM93,BS07]). This has applications to primality
proving with the ECPP method and finding pairing friendly-curves with the
Cocks-Pinch method.

Modular polynomials are related to isogenies between elliptic curves. His-
torically, they play a very important role in the SEA point counting algorithm
[E+98,Sch95] which remains one of the main algorithms used in elliptic-curve
cryptography to generate cryptograhic curves. Moreover, the interest in isoge-
nies have been renewed with the rise of isogeny-based cryptography. While most
applications tend to use the more efficient Vélu formulas [Vél71], we can cite a
few instances where modular polynomials have been considered. For example,
it is used in the CRS key exchange [Cou06,RS06], the very first isogeny-based
protocol, and we can also mention the OSIDH construction [CK19].

The goal of this work is to explore theoretical and practical improvements to
the best-known algorithms to compute class polynomials and modular polyno-
mials modulo prime numbers through the use of supersingular curves.

Related work. One of the main problems behind the computation of class polyno-
mials and modular polynomials is the huge size of their coefficients over Z. There
exists several algorithms of quasi-linear complexity [Eng09,CH02,Sut11,BLS12],
but more often than not, memory is the real bottleneck in the concrete compu-
tations of those polynomials. In theory, size is less an issue when the result is
needed modulo some prime P , but this is only true in practice if we have a way
to skip entirely the computation over Z, which is not so easy to get.

Nonetheless, Sutherland [Sut11] proved that this could be done for class poly-
nomials by a careful application of the CRT method. The result was later applied
to modular polynomials by Bröker, Lauter and Sutherland (BLS) [BLS12]. The
main advantage of the CRT method compared to other approaches is the low
memory requirement (almost optimal in the size of the final output), and this is
why this method has achieved the best results in terms of scaling.

For both class and modular polynomials, the main tools used in the com-
putations are ordinary elliptic curves. The ordinary curves are preferred to su-
persingular curves because the former have proven over time to lead to more
efficient algorithms than the latter. The situation has changed with the recent
interest on the connection between supersingular curves and quaternion algebras
sparked by isogeny-based cryptography.
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Since the work of Deuring [Deu41], it is known that endomorphism rings of
supersingular curves in characteristic p are isomorphic to maximal orders in the
quaternion algebra Bp,∞ ramified at p and infinity, and that, conversely, every
such maximal order types arises in this way. This is the first result of what is now
called the Deuring correspondence. In this work, we are particularly interested
in the task of computing the j-invariants of the (at most 2) supersingular elliptic
curves over Fp2 having a given maximal order type as endomorphism ring.

The first concrete effort to realize that task is an algorithm of Cervino [Cer04]
to compute the endomorphism rings of all supersingular curves in characteristic
p. The complexity of this algorithm is O(p2+ε) and it becomes rapidly impracti-
cal. This algorithm was more recently improved by Chevyrev and Galbraith in
[CG14] but the complexity is still O(p1,5+ε). As part of cryptanalytic efforts to
understand the difficulty of various problems related to the Deuring correspon-
dence, a heuristic algorithm of polynomial complexity in log(p) was introduced
by Eisenträger, Hallgren, Lauter, Morrison and Petit [EHL+18] . This algorithm
builds upon the previous works of Kohel, Lauter, Petit and Tignol [KLPT14]
and Galbraith, Petit and Silva [GPS17].

More concretely, these works prove that an isogeny can be efficiently com-
puted between two supersingular curves of known endomorphism ring by trans-
lating the problem over the quaternions with the Deuring correspondence, solv-
ing the translated problems over quaternions, before translating back the solu-
tion as an isogeny. This can be applied directly to compute the j-invariants of
all curves with an endomorphism ring contained in a given maximal order type
by using one starting curve E0 of known endomorphism ring (such a curve can
always be computed efficiently with the CM method).

Contributions. Our main contribution is to reintroduce the use of supersingu-
lar elliptic curves in the computation of Hilbert class polynomials and modular
polynomials by using the recent progress on the algorithmic Deuring correspon-
dence.

The main sub-routine of our method is aimed at translating a set of isomor-
phism class of maximal orders into their corresponding supersingular j-invariants
under the Deuring correspondence. We introduce two algorithms, with different
performance profiles, to perform that task.

With these new algorithms, we obtain an improvement over the asymptotic
complexity of the class and modular polynomials computation in a wide range
of primes below some upper-bounds that depend either on the discriminant of
the class polynomial or the level of the modular polynomial. Moreover, we show
that our new algorithm can also be used in the CRT method to reach the same
complexity as ordinary curves, but with possibly better practical efficiency.

1.1 Technical overview

We start by looking at our main-subroutine that consists in the computation of
the j-invariants of supersingular elliptic curves corresponding to some set of max-
imal order isomorphism classes (called maximal order types, see Definition 1).
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In the rest of this article, unless specified otherwise, a curve is considered to be
a supersingular elliptic curve.

Maximal orders to j-invariants. We propose two algorithms dedicated to that
task. Let consider that a set S of types is given in input, together with some
prime p.

Our first algorithm is called OrdersTojInvariantSmall() and it consists merely
in a sequential execution of the sub-algorithm (that we call SingleOrderTojInvariant())
from [EHL+18]. SingleOrderTojInvariant() perform the desired translation for one
type of maximal order. When everything is done carefully, it can be executed in
O(log(p)4+ε) under experimentally verified heuristics detailed in [KLPT14] and
related to the probability for numbers represented by some quadratic form to be
prime. Thus, since OrdersTojInvariantSmall() consists in #S executions of Single-
OrderTojInvariant(), the total heuristic complexity of OrdersTojInvariantSmall() is
O(#S log(p)4+ε). For a generic p and set of maximal order type S, we do not
know how to do better than that. However, when S is close to be maximal (the
maximal size being upper-bounded by the number of supersingular curves), it
becomes sub-optimal due to the amount of redundant computation performed
along the way. In that case, it becomes much more practical to use an algorithm
designed to sieve through the entire set of types, only focusing on the ones in S
when they’re met along the way. It requires a bit of care to perform this task
in the most efficient manner but it can be done, and this leads to the algorithm
OrdersTojInvariant() of complexity O(#S log(p)2+ε+p log(p)1+ε). This algorithm
requires one heuristic that we detail in Section 3, as Claim 1. It is related to the
expansion property of the supersingular isogeny graphs.

We stress that both algorithms are designed to work (and analyzed) for a
generic prime p which is why they are so interesting.

A direct application. Our heuristic algorithms OrdersTojInvariantSmall() and
OrdersTojInvariant() can be used directly to compute the roots of class and
modular polynomials modulo P (under the assumption that these roots are
supersingular). The method is pretty straightforward: find the maximal order
types corresponding to the desired roots, then, compute them with OrdersTo-
jInvariantSmall() and OrdersTojInvariant(). With the complexity we have stated,
this is already enough to obtain an asymptotic improvement over existing generic
methods when P is not too big (compared to the discriminant or level of the
associated class or modular polynomial).

If we write S the ”degree” of the polynomial (it is h(D) = O(
√
|D| log(D)ε)

for Hilbert polynomials of discriminant |D| and O(ℓ2) for modular polynomials of
level ℓ), then we obtain the following complexity with OrdersTojInvariantSmall():

O(S log(P )4+ε + S log(S)2+ε log(P )).

With OrdersTojInvariant(), the complexity becomes

O(S log(P )2+ε + P log(P )1+ε + S log(S)2+ε log(P )).
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In both cases, the latter term comes from the polynomial reconstruction step
that must be performed to recover the polynomial from its roots. Note that the
size of the output is O(S log(P )). In terms of space, the requirement is optimal
in both cases: so O(S log(P )).

It is clear that the second algorithm will be better when P = O(S log(S)).
However, whenever S = o(P ) (which is often the case in applications), it will be
better to use the variant with OrdersTojInvariantSmall().

In comparison, the best previously known generic methods based on the CRT
have complexity O(S1+α log(S)3+ε) where α = 1 for Hilbert polynomial and 1/2
for modular polynomial.

Thus, our algorithm based on OrdersTojInvariantSmall() will have a better

asymptotic complexity when P = o(2S
α/4

). While this is not enough to give an
improvement in all cases, this is still an improvement for a significant range of
primes P .

When P becomes too big with respect to ℓ, it becomes better to use the
CRT method, and we will see that our second algorithm OrdersTojInvariant()
can be applied to this approach as well. The context of CRT typically makes
use of several primes that are in O(S) and this is why it will be better to use
OrdersTojInvariant() than OrdersTojInvariantSmall().

Below, we briefly explain the principle of the CRT method to compute class
and modular polynomials, then we detail how to use our new algorithms in that
context and outline the differences between our proposed method and the one
from Sutherland and BLS.

The CRT for class polynomials. Let us take a prime P and a discriminantD < 0.
We want an efficient algorithm to compute HD(X) mod P . Our main algorithm
is essentially the same as the one introduced by Sutherland [Sut11].

Let us write O for the quadratic imaginary order of discriminant D < 0.
We give a brief outline of Sutherland’s algorithm. We may assume that the
factorization of D is known as computing it is negligible compared to the rest
of the computation. We define PD to be a set of primes. We write BD for the
bound on the bit-size of the coefficients of HD over Z.

Here is how the algorithm works:

1. Select some primes p1, . . . , pn in PD with
∏n

i=1 pi > 2BD .
2. Compute a suitable representation of Cl(D).
3. For each pi ∈ PD :

(a) Compute the coefficients of HD mod pi.
(b) Update CRT sums for each coefficient of HD.

4. Recover the coefficients of HD mod P .

The only difference with the concrete method proposed by Sutherland and
ours is in the choice of the set PD . In [Sut11], the set PD is made of primes
of the form (t2 − Dv2)/4, whereas in our case PD is made of non-split primes
that are coprime with the square part of D (note that those two conditions are
mutually exclusive).
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In both cases, the HD mod pi are constructed from their roots. These roots
are always j-invariants of elliptic curves in characteristic pi, but this is where
the similarity ends. In the former case, the elliptic curves are ordinary and are
defined over Fpi , whereas in the latter case, we obtain supersingular elliptic
curves defined over Fp2

i
. The ordinary and supersingular case are very different

and the resulting algorithms are also very different.
For the supersingular case, we recover the roots using our second algorithm

OrdersTojInvariant(). We will see that, for the CRT, the size of the primes pi is
such that we are in the regime that favours OrdersTojInvariant() over OrdersTo-
jInvariantSmall().

Note that the case of non-split prime pi have already been considered in the
context of the CRT method by [BBEL08], but only for very small primes because
of the inefficiency of Cervino’s algorithm.

For modular polynomials. Let ℓ be a prime distinct from P . We want an efficient
algorithm to compute Φℓ(X,Y ) mod P . It can be done in a very similar fashion
to class polynomials: compute Φℓ mod pi for some pi in a set Pℓ and reconstruct
the final polynomial with CRT.

The idea introduced by Bröker, Lauter and Sutherland (BLS in the rest of this
article) is to use primes of the form (t2−4v2Dℓ2) with t, v,D ∈ N for which there
is a very specific volcano structure. This structure implies the existence of two
distinct sets of ordinary curves defined over Fpi : the curves with endomorphism
ring isomorphic to O for some quadratic imaginary order O of discriminant
D and class number bigger than ℓ + 2 and the curves with endomorphism ring
isomorphic to Z+ℓO. Since the latter are ℓ-isogenous to the former, it is possible
to recover the full Φℓ mod pi by computing the j-invariants corresponding to
these two sets of curves. The volcano structure allows for efficient computation
by minimizing the number of ℓ-isogeny computations.

For supersingular curves, the choice of primes is even easier than for class
polynomials: we can use any primes pi that is big enough. As long as the num-
ber of supersingular curves is bigger than ℓ + 2 we will be able to recover the
full modular polynomial. This idea has already been considered by Charles and
Lauter in 2005 [CL05] but in a rather direct way (where each of the ℓ-isogeny
involved is computed using the Vélu formulas).

We prove that using the Deuring correspondence and OrdersTojInvariant(), we
can avoid entirely any ℓ-isogeny computation and minimize the cost of elliptic
curve operations.

Generic improvements to the CRT method. There are several ways to improve
the CRT method in practical applications. First, alternative class polynomials
and modular functions, with smaller height bounds) can be used instead of the
standard Hilbert class polynomial and modular polynomials for the same prac-
tical purpose.

Second, for a number of applications such as the CM method and the SEA
point counting algorithm, computing these polynomials is actually not neces-
sary. What is really needed is the ability to evaluate them. Sutherland showed
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[Sut12,Sut13] that it was possible to do better than compute-then-evaluate in
both cases, providing, in particular, an additional improvement in terms of mem-
ory requirement for those applications.

Using supersingular curves rather than ordinary ones should not prevent
from applying all these practical improvements. For clarity’s sake we focus on
the simpler computation of the standard polynomials and leave to the reader
the task of adapting these improvements to our new setting which should not
be too daunting.

Organisation of the article. The rest of this paper is organized as follows: in
Section 2, we introduce some background on isogenies, quaternion algebras and
the Deuring correspondence. Then, in Section 3, we introduce our main new
algorithm to compute efficiently j-invariants corresponding to maximal order
types. In Section 4, we explain in details how this algorithm can be applied to
the computation of class polynomial with the CRT method. In Section 5, we do
the same for modular polynomials.

Acknowledgement. We thank Andrew Sutherland for very useful feedback on
this work.

2 Background material

2.1 Notations

Basic complexities. We write MZ(b) for the cost of multiplying two integers of
less than b bits. For asymptotic complexities we consider MZ(b) = O(b1+ε). For
instance, this covers the complexity of all arithmetic operations in a finite field
Fp of characteristic p of less than b bits.

Similarly, we write MP(b) for the cost (in terms of arithmetic operations over
k) of multiplying two polynomials of degree smaller than b over a base field k.
Depending on the size of b we will either use MP(b) = O(b log(b)1+ε or O(b1+ε).

Finally, the cost of fast interpolation algorithm for a polynomial of degree b
is O(M(P(b) log(b)).

2.2 Elliptic curves, quaternion algebras and the Deuring
correspondence

More precise references on the topics covered in this section are: the book of Sil-
verman [Sho94] for elliptic curves and isogenies, the book of John Voight [Voi18]
on quaternion algebras and theoretical aspects of the Deuring correspondence,
the thesis of Antonin Leroux [Ler22] for the algorithmic aspects of the Deuring
correspondence.
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Supersingular elliptic curves and isogenies. An isogeny φ : E1 → E2 is a non-
constant morphism sending the identity of E1 to that of E2. The degree of an
isogeny is its degree as a rational map (see [HS09] for more details). When the
degree deg(φ) = d is coprime to p, the isogeny is necessarily separable and
d = #kerφ. An isogeny is said to be cyclic when its kernel is a cyclic group.
The Vélu formulas [Vél71] can be used to compute any cyclic isogeny from its
kernel. For any φ : E1 → E2, there exists a unique dual isogeny φ̂ : E2 → E1,
satisfying φ ◦ φ̂ = [deg(φ)].

Endomorphism ring. An isogeny from a curve E to itself is an endomorphism.
The set End(E) of all endomorphisms of E forms a ring under addition and com-
position. For elliptic curves defined over a finite field Fq, End(E) is isomorphic
either to an order of a quadratic imaginary field or a maximal order in a quater-
nion algebra. In the first case, the curve is said to be ordinary and otherwise
supersingular. We focus on the supersingular case in this article. Every supersin-
gular elliptic curve defined over a field of characteristic p admits an isomorphic
model over Fp2 . It implies that there only a finite number of isomorphism class
of supersingular elliptic curves. The Frobenius over Fp is the only inseparable
isogeny between supersingular curves and it has degree p. We write π : E → Ep.
For any supersingular curve E, the property End(E) ∼= End(Ep) is satisfied but
we have E ∼= Ep if and only if E has an isomorphic model over Fp.

Quaternion algebras. For a, b ∈ Q⋆ we denote by H(a, b) = Q + iQ + jQ + kQ
the quaternion algebra over Q with basis 1, i, j, k such that i2 = a, j2 = b and
k = ij = −ji. Every quaternion algebra has a canonical involution that sends an
element α = a1 + a2i+ a3j + a4k to its conjugate α = a1 − a2i− a3j − a4k. We
define the reduced trace and the reduced norm by tr(α) = α+α and n(α) = αα.

Orders and ideals. A fractional ideal I of a quaternion algebra B is a Z-lattice
of rank four contained in B. We denote by n(I) the norm of I, defined as the
Z-module generated by the reduced norms of the elements of I.

An order O is a subring of B that is also a fractional ideal. Elements of an
order O have reduced norm and trace in Z. An order is called maximal when
it is not contained in any other larger order. A suborder O of O is an order of
rank 4 contained in O.

In this work, we will work with isomorphism classes of maximal orders in
some quaternion algebra B and this is why we introduce the notion of type.

Definition 1. The type of an order O written TypO is the isomorphism class
of O.

The left order of a fractional ideal is defined as OL(I) = {α ∈ Bp,∞ | αI ⊂ I}
and similarly for the right order OR(I). A fractional ideal is integral if it is
contained in its left order, or equivalently in its right order. An integral ideal
is primitive if it is not the scalar multiple of another integral ideal. We refer to
integral primitive ideals hereafter as ideals.
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The product IJ of ideals I and J satisfying OR(I) = OL(J) is the ideal gen-
erated by the products of pairs in I × J . It follows that IJ is also an (integral)
ideal and OL(IJ) = OL(I) and OR(IJ) = OR(J). The ideal norm is multiplica-
tive with respect to ideal products. An ideal I is invertible if there exists another
ideal I−1 verifying II−1 = OL(I) = OR(I

−1) and I−1I = OR(I) = OL(I
−1).

The conjugate of an ideal I is the set of conjugates of elements of I, which is an
ideal satisfying II = n(I)OL(I) and II = n(I)OR(I).

We define an equivalence on orders by conjugacy and on left O-ideals by
right scalar multiplication. Two orders O1 and O2 are equivalent if there is an
element β ∈ B⋆ such that βO1 = O2β. Two left O-ideals I and J are equivalent
if there exists β ∈ B⋆, such that I = Jβ. If the latter holds, then it follows that
OR(I) and OR(J) are equivalent since βOR(I) = OR(J)β. For a given O, this
defines equivalences classes of left O-ideals, and we denote the set of such classes
by Cl(O).

The Deuring correspondence is an equivalence of categories between isogenies of
supersingular elliptic curves and the left ideals over maximal order O of Bp,∞,
the unique quaternion algebra ramified at p and ∞, inducing a bijection between
conjugacy classes of supersingular j-invariants and maximal orders (up to equiva-
lence) [Koh96]. Moreover, this bijection is explicitly constructed as E → End(E).
Hence, given a supersingular curve E0 with endomorphism ring O0, the pair
(E1, φ), where E1 is another supersingular elliptic curve and φ : E0 → E1 is an
isogeny, is sent to a left integral O0-ideal. The right order of this ideal is isomor-
phic to End(E1). One way of realizing this correspondence is obtained through
the kernel ideals defined in [Wat69]. Given an integral left-O0-ideal I, we define
the kernel of I as the subgroup

E0[I] = {P ∈ E0(Fp2) : α(P ) = 0 for all α ∈ I}.

To I, we associate the isogeny

φI : E0 → E0/E0[I].

Conversely, given an isogeny φ, the corresponding kernel ideal is

Iφ = {α ∈ O0 : α(P ) = 0 for all P ∈ ker(φ)}.

In Table 1, we recall the main features of the Deuring correspondence.

Effective Deuring correspondence After establishing the nice theoretical results
of the Deuring correspondence, it is natural to ask if we can obtain efficient algo-
rithms to perform the translation between the two sides of our correspondence.
This trend of work was started by Kohel, Lauter, Petit and Tignol in [KLPT14],
and developed By Galbraith, Petit and Silva in [GPS17]. In [EHL+18], Eisen-
trager, Haller, Lauter, Petit and Morrison provided the first complete picture
of the situation (at least heuristically). It turns out that if we start from the
quaternion side (either as a maximal order or an ideal), there are polynomial-
time algorithms to compute the corresponding element (j-invariant, or isogeny).
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Supersingular j-invariants over Fp2 Maximal orders in Bp,∞
j(E) (up to Galois conjugacy) O ∼= End(E) (up to isomorpshim)

(E1, φ) with φ : E → E1 Iφ integral left O-ideal and right O1-ideal

θ ∈ End(E0) Principal ideal Oθ
deg(φ) n(Iφ)

φ̂ Iφ
φ : E → E1, ψ : E → E1 Equivalent Ideals Iφ ∼ Iψ
Supersingular j-invariants over Fp2 Cl(O)

τ ◦ ρ : E → E1 → E2 Iτ◦ρ = Iρ · Iτ
Table 1: The Deuring correspondence, a summary from [DFKL+20].

In particular, Eisentrager et al. introduced a heuristic polynomial-time algorithm
that computes the j-invariant corresponding to a maximal order type given in
input. Henceforth, we call this algorithm SingleOrderTojInvariant(). It will be a
crucial building block in one of our algorithm.

3 Computing j-invariants corresponding to maximal
orders.

Let us fix some prime number p.

In this section, we introduce two algorithms to compute the j-invariants of
supersingular curves over Fp2 corresponding to a set S of maximal order types
in Bp,∞. By the Deuring correspondence, we know that each maximal order type
in Bp,∞ corresponds to one or two j-invariants of supersingular curve over Fp2 .

We will explain in Section 3.1 how to represent efficiently maximal order
types as elements in some set H. Concretely, the input S to our algorithms will
be given as some subset of H.

Our two algorithms presented in Section 3.2 target two opposite situations
with respect to the relative size of p and S. The first algorithm is called Orders-
TojInvariantSmall(). As the name suggests, it targets the case where #S/p is
”small”, and it is a quite direct application of standard results on the effective
Deuring correspondence. Indeed, it consists in the sequential execution for each
element in S of the algorithm SingleOrderTojInvariant() introduced in [EHL+18]
and that can compute the j-invariants associated to one maximal order type.
OrdersTojInvariantSmall() will work the best when S is made of a ”small” portion
of all possible types. Its asymptotic complexity is O(#S log(p)4+ε + log(p)6+ε)
and works for any prime p and set S.

The second algorithm is called OrdersTojInvariant() and it is more involved
in both design and analysis. It targets the case where S is made of a significant
portion of all O(p) possible types and is based on the idea that since S is
big enough, the strategy that consists in going through the entire supersingular
isogeny graph, collecting the j-invariants we want along the way, is quite optimal.
Its complexity is O(S log(p)2+ε+p log(p)1+ε). Hence, the cutoff between the two
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methods will be for some S with #S = Θ(p/ log(p)2+ε). Note that our second
algorithm will be optimal when p/#S = Θ(log(p)1+ε).

In the rest of this work, we will sometimes refer to these two algorithms by
calling them the ”small” and ”big” case respectively.

3.1 Hashing to maximal order types

One of the important point for making our algorithms practical is to have a good
way to handle sets of maximal order types and test if a type belong in some set
of types.

For any maximal order O, we will represent TypO by an invariant H(O).
The purpose of this section is to introduce an efficiently computable invariant
H(O) and the corresponding function H.

To derive an invariant for an isomorphism classes of lattices, it is quite natural
to look at the smallest elements of that lattice. This idea was introduced by
Chevyrev and Galbraith [CG14] in a related context. Let us take a maximal
order O. It can be shown (see [CG14]) that 1, x1, x2, x3 is a basis of O where
2x1−tr(x1), 2x2−tr(x2), 2x3−tr(x3) realize the successive minima of the lattice
OT = {2x−tr(x)|x ∈ O}. Thus, if we take the Grammatrix of this basis (possibly
reordering x1, x2, x3 so that tr(x1x2) ≤ tr(x1x3) ≤ tr(x2x3) if there are some
equalities of norm between x1, x2 and x3) we obtain 10 values (the Gram matrix
is symmetric) that uniquely represent the lattice O.

This is enough to obtain an invariant of size O(log(p)) as it can be shown that
log(n(xi)) = O(log(p)) for all i ∈ {1, 2, 3}. If needed, for compactness, one can
then apply some kind of hash function h : {0, 1}∗ → H where H is big enough to
make the probability of a collision negligible over all our maximal order types.

For a generic statement, we take an arbitrary function h (which might be the
identity) and assume its computational cost is negligible. Then, we define H as:

1. Compute OT .
2. Compute the three successive minimas of OT .
3. Derive the basis of O.
4. Compute the Gram Matrix M associated to this basis.
5. Output H(O) = h((Mi,j)1≤i≤j≤n).

Proposition 1. The hash function H presented above can be computed in O(log(X)1+ε)
when all the coefficients in the decomposition of the basis of O over ⟨1, i, j, k⟩
are smaller than X.

Proof. This can be achieved using the algorithm to reduce ternary quadratic
form of [ER01], or the L̃1 algorithm from [NSV11] to perform lattice reduction
in small dimension, to compute the successive minimas of OT .

3.2 Matching maximal orders and j-invariant

Let us fix a prime p. We assume that a function H as introduced in Section 3.1
is defined and we assume that the underlying hash function h is such that there
is no collisions over all maximal order types in Bp,∞.
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The case of small S. The algorithm in the small case is quite simple to describe,
it is made of consecutive executions of a sub-algorithm SingleOrderTojInvariant()
described as [EHL+18, Algorithm 12]. The complexity of this algorithm was
analyzed by Galbraith, Petit and Silva in [GPS17] and it is O(log(p)6+ε) for the
first execution and O(log(p)4+ε) after that.

The algorithm we obtain by applying SingleOrderTojInvariant() on each ele-
ment of the input set S is called OrdersTojInvariantSmall() and its complexity is
O(#S log(p)4+ε + log(p)6+ε). Note that this result holds under various heuris-
tic that are detailed in [KLPT14,GPS17]. In terms of space, the complexity is
optimal: O(#S log(p)).

The case of big #S. The nice thing with SingleOrderTojInvariant() is that it
allows us to target specifically any maximal order type. This flexibility makes
OrdersTojInvariantSmall() a good candidate whenS is not too big, but it becomes
more and more costly as #S/p increases.

To overcome this problem when the ratio #S/p increases, we can try to
mutualize as much computation as possible by using an approach that explores
the entire isogeny graph and only targets the specific elements of S along the
way. Since, our exploration of the isogeny graph is completely generic, we will be
able to do this more efficiently than applying SingleOrderTojInvariant() for each
maximal order type.

More concretely, our idea is the following: take a smooth degree L such that
all supersingular curves are L-isogenous to some starting curve E0 of endomor-
phism ring in TypO0 for some maximal order O0. Compute all the O0-ideals of
norm L and their right orders and select the ones contained in the set S. Then,
enumerate efficiently through all the corresponding isogenies of degree L and
collect the j-invariants of the codomains. Since quaternion operations cost less,
we will do the exhaustive part over the quaternions, while minimizing the cost
of elliptic curve operations by ”selecting” the L-isogenies than we cannot avoid
to compute.

Note that we do the ideal and isogeny phases in a simultaneous manner in
OrdersTojInvariant(). The good complexity we obtain will come from the care we
take in computing all the required isogenies in the most efficient way possible,
and in particular to avoid as many useless isogeny computations as possible.
For that, the choice of L will be very important. In particular, if L = L1L2, by
factorization of isogenies, we can compute all relevant L-isogenies by computing
all L1-isogenies and only a subset of all the O(L1L2) L2-isogenies. This subset
obviously depends on S and the L1L2-isogeny computations account for the
S log(p)2 terms in the complexity (because we will choose L2 to be smooth). The
p log(p) covers the costs of the quaternion operations (which does not depend
on S since we cover all maximal order types) and L1 isogeny computations.

Before describing the algorithm in itself, we need to provide several properties
and one heuristic claim that are going to be crucial for analyzing the algorithm
complexity and proving its correctness. Note that our heuristic is different from
the ones used in the analysis of SingleOrderTojInvariant().
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Preliminary results and a heuristic assumption. Our first results target the de-
gree L of the isogenies that we will use. As we explained above, this degree is
crucial for optimizing the algorithm. To enable the fast computation of a lot
of L-isogenies at the same time, we need it to be power-smooth (for efficient
application of the Vélu formulas), but with coprime factors that are not too
small.

Let us write Φ(N) the number of cyclic isogenies of degree N for any N ∈ N.

Lemma 1. There exists a bound B and constants C0, 1 < C1 < C2 such that
for every number N > B, there exists a set of n coprime factors L1, · · · , Ln with√
C0 log(N) ≤ Li < C0 log(N) for all 1 ≤ i ≤ n− 1, C0/2 log(N) ≤ Ln < C0Ln

and C1N ≤
∏n

i=1 Φ(Li) < C2N .

The proof of Lemma 1 is not hard but it is quite tedious so it is given in
Appendix A.

Remark 1. In practice, for a given N we will call such a set of factors L1, · · · , Ln,
a degree-basis for N . When each Li is a prime power of the (n−i+1)−th smallest
prime number ℓn−i+1, we say that L1, . . . , Ln is a good degree-basis of N . The
choice of sorting the prime factors of the Li in descending order will be important
for our algorithm.

We derive the following result that will be useful in our analysis.

Proposition 2. Take an integer N > B with good degree-basis L1, L2, · · · , Ln

with n > 6. Then, there exists a constant k ≤ 6 and a constant C3 such that

n−k∑
i=1

(n− i)

i∏
j=1

Φ(Lj) < C3
N

log(N)2
(3.1)

Proof. We are going to show the bound for k = 6.

For that we are going to use the equalities
∑m

i=0 X
i = Xm+1−1

X−1 and
∑m

i=1 iX
i =

X(mXm+1−(m+1)Xm+1
(X−1)2 ) for any m and X. By our definition of a degree-basis in

Lemma 1, we have that Φ(Lj) ≥ Li ≥
√

C0 log(N) for all 1 ≤ j ≤ n. Thus,∏i
j=1 Φ(Lj) < C2N/

∏n
j=i+1 Φ(Lj) < C2N/(

√
C0 log(N))n−i. Let us take X =√

C0 log(N). We have
∑n−6

i=1 (n− i)
∏i

j=1 Φ(Li) < C2N
∑n−6

i=1 (n− i)Xn−i. Then,

we have
∑n−6

i=1 (n−i)Xn−i =
∑n−1

i=6 iXi = X6
∑n−7

i=0 (i+6)Xi. Then, we apply our

two equalities to get
∑n−6

i=1 (n−i)Xn−i = X6(6Xn−6−1
X−1 )+ (n−7)Xn−5−(n−6)Xn−6+X

(X−1)2 ) =

X6 (n−1)Xn−5−(n−12)Xn−6−5X+1
(X−1)2 . Since, asymptotically, we will have X < 1 while

n will increase, we have that the leading term in the numerator of the frac-
tion is 1, and so there exists C ′

3 such that
∑n−6

i=1 (n − i)Xn−i ≤ C ′
3X

4. Thus,∑n−6
i=1 (n− i)

∏i
j=1 Φ(Li) <

C2C
′
3

C2
0

N
log2(N) .

Our heuristic claim is about the size of L required to meet the condition that
all supersingular curves are L-isogenous to some curve E0. We rewrite this under
the Deuring correspondence as a condition on maximal orders and ideals.
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Claim 1 There exists a constant C4 such that for any prime p and maximal
order O0 in Bp,∞, given any number N > pC4, every maximal order type in
Bp,∞ is obtained as the type of the right order of a left integral O0-ideal of norm
N .

Remark 2. Claim 1 is consistent with experiments regarding the diameter of
the graph of supersingular 2-isogenies made in [ACNL+21]. We also made some
small experiments that seems to be consistent with that idea.

In case our claim fails, it is possible to use several starting curve E0 to de-
crease the probability of missing some curve. If this is still not enough, and
a few types are not obtained in this manner, it is always possible to apply
SingleOrderTojInvariant() to compute the remaining j-invariants without damag-
ing too much the complexity.

For a given input p to OrdersTojInvariant(), we assume the knowledge of a
good degree-basis L1, · · · , Ln (see Remark 1) of C4p (where C4 is the constant
in Claim 1). In OrdersTojInvariant(), we will use the Li torsion points for all i.
For supersingular curves, these points can always be defined over an extension
Fpmi . We have the following lemma to bound the value of all the mi from Li.

Lemma 2. Let p be a prime number and E0 a supersingular curve over Fp2 .
For any integer N , coprime with p, the torsion subgroup E0[N ] is defined over
an extension Fp2m of degree m ≤ N over Fp2 .
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Algorithm 1 OrdersTojInvariant()

Input: A prime p. A good degree-basis L1, · · · , Ln, and a set of maximal order types
in Bp,∞.

Output: The set of j-invariants corresponding to the maximal orders of S.
1: Compute a supersingular curve E0 over Fp2 with known endomorphism ring O0.
2: Compute I0 = O0⟨α0, L⟩ one left integral O0-ideal of norm L.
3: Find α ∈ End(E0) such that gcd(n(x+yα), L) = 1 for all x, y with gcd(x, y, L) = 1.

4: for i ∈ [1, . . . , n] do
5: Compute a basis P0,i, Q0,i of E0[Li] over Fpmi .
6: Compute the generator R0,i of E[I0 +O0Li] from Pi, Qi.
7: Compute S0,i = α(R0,i).
8: end for
9: Set List = [{E0,O0⟨1⟩, [R0,1, . . . , R0,n], [S0,1, . . . , S0,n]}].
10: Set M = and m = 0.
11: if H(O0) ∈ S then
12: M =M ∪ {(H(O0), j(E0))} and m = m+ 1.
13: end if
14: for i ∈ [1, . . . , n] do
15: NewList= [].
16: for x ∈ List do
17: Parse x as E, I, [Ri, . . . , Rn], [Si, . . . , Sn].
18: for all cyclic subgroups ⟨CRi + [D]Si⟩ of order Li in ⟨Ri, Si⟩ do
19: Compute P := [C]Ri + [D]Si.
20: Compute J the ideal O0⟨α0(C +Dα), Li⟩.
21: Set K := I ∩ J .
22: Let O = OR(K).
23: if i < n then
24: Compute φ : E → E/⟨P ⟩.
25: Compute List1 = [φ(Ri+1), . . . , φ(Rn)].
26: Compute List2 = [φ(Si+1), . . . , φ(Sn)].
27: end if
28: if H(O) ∈ S and not contained in M already then
29: if i = n then
30: Compute φ : E → E/⟨P ⟩.
31: Set List1 = [], List2 = [].
32: end if
33: M =M ∪ {(H(O), j(E/⟨P ⟩))} and m = m+ 1.
34: end if
35: if m = #S then
36: Return M .
37: end if
38: Concatenate NewList and [E/⟨P ⟩,K, List1, List2].
39: end for
40: List = NewList.
41: end for
42: end for
43: return M .
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Proposition 3. Assuming Claim 1, OrdersTojInvariant(p) is correct.

Proof. By Claim 1 and our choice of L, we see that each maximal order types in
Bp,∞ is obtained as the right order of a L-ideal. Thus, we need to prove that our
algorithm goes through every possible L-ideal and that it computes correctly
the j-invariant associated with the right orders of those ideals. We will make
our reasoning over isogenies and the Deuring correspondence will allow us to
conclude the result over ideals.

Every cyclic L-isogeny can be factored as φn ◦ . . . ◦φ1 where φi is an isogeny
of degree Li. When Ri, Si is a basis of E[Li], then all cyclic subgroups of order
Li are generated by an element [C]Ri + [D]Si. There is a 1-to-1 correspondence
between cyclic subgroups of order Li and cyclic isogenies of degree Li. Since
R0,i, S0,i is a basis of E0[Li] and φi−1 ◦ · · · ◦φ1 has degree coprime with Li, the
two points Ri, Si are a basis of E[Li] and so this proves that our enumeration
covers all possible isogenies of degree Li at each iteration of index i of the loop
in line 18.

Thus, at the end of the loop we have covered all L-isogenies, and this means
that if our ideal computation is correct, then we have covered all maximal order
types and our algorithm is correct.

Remains to prove that the ideal I1 ∩ . . . ∩ Ii where each Ij = O0⟨α0(Cj +
Djα), Lj⟩ is the ideal corresponding to the isogeny φi ◦ . . . φ1 where each φj

has kernel φj−1 ◦ · · · ◦ φ1([Cj ]R0,j + [Dj ]S0,j) or equivalently that the kernel of

φi ◦ . . . ◦ φi =
∑i

j=1([Cj ]R0,j + [Dj ]S0,j).
For that, it suffices to prove the result for each coprime factor of the degree,

so we need to prove that E0[Ij ] = ⟨[Cj ]R0,j + [Dj ]S0,j⟩. Let us go back to the
definition of an ideal kernel given in Section 2. We have E0[Ij ] = {P, β(IJ) =
0∀β ∈ Ij{. Since Ij contains LjO0, it is clear that the kernel must be a sub-
group of E0[Lj ]. Since multiplication in Bp,∞ amounts to composition of the
corresponding isogenies, it suffices to verify that kerα0(Cj + Djα) ∩ E0[Lj ] =
⟨[Cj ]R0,j + [Dj ]S0,j⟩.

First, note that we have kerα0 ∩ E0[Jj ] = ⟨R0,j⟩ by definition of α0 and
R0,j . Then, we have ([Cj ] + [Dj ]α)([Cj ]R0,j + [Dj ]S0,j) = ([Cj ] + [Dj ](α)([Cj ] +
[Dj ]α)(R0,j) = [n(Cj+Djα)]R0,j . This proves that we have ⟨[Cj ]R0,j+[Dj ]S0,j⟩ ⊂
kerα0(Cj +Djα) ∩ E0[Lj ].

By definition of α the scalar n(Cj + Djα) is coprime with Lj and so the
endomorphism Cj +Djα is a bijection on E0[Lj ]. Thus, there cannot be another
subgroup than ⟨[Cj ]R0,j +[Dj ]S0,j⟩ that is sent to ⟨R0,j⟩ and this concludes the
proof that kerα0(Cj +Djα) ∩ E0[Lj ] = ⟨[Cj ]R0,j + [Dj ]S0,j⟩.

With that last fact, we have proven the point.

Complexity analysis. Below, we give as Theorem 1, a complexity statement
for Algorithm 1. We derive this result from smaller statements for all the main
Steps of Algorithm 1. The proofs of these statements include a more detailed
description of the steps when needed. When a step has a complexity that will
end-up being negligible before the total cost, we will sometimes not bother with
a precise statement.
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Note that all operations involving manipulations of the list M can be done
efficiently in O(1) using adequate data structure so we do not analyze this part
of the computation.

Since we look for an asymptotic statement, we assume that the size n of the
log factor basis used is bigger than 6 so we can apply Proposition 2.

Proposition 4. Under GRH, Step 1 can be executed O(poly(log(p))).

Proof. The first step can be performed using an algorithm that was described as
part of the proof of [EHL+18, Proposition 3]. The idea is the following. Select the
smallest fundamental discriminant d such that p is inert in the ring of integer Rd

of Q(
√
d). Note that it can be proven that d = O(log(p)2) under GRH. Then, we

know that there are supersigular curves that admit an embedding of Rd in their
endomorphism ring. The j-invariants of these curves are the roots to the Hilbert
class polynomial Hd. It suffices to find one root of Hd over Fp to get a supersin-
gular curve E0 whose endomorphism ring will contain the Frobenius π and an
endomorphism ι of norm d. This endomorphism can be found by computing all
the isogenies of degree d with the Vélu formulae. Since the suborder ⟨1, ι, π, ι◦π⟩
has an index in O(d) = O(poly(log(p))) inside End(E0), and recovering the full
endomorphism ring can be done in O(poly(log(p))).

This proves the result for Step 1.

Proposition 5. Step 2 and Step 3 can be executed in O(poly(log(p))) and the
output α0 and α have coefficients in O(poly(p)) over the canonical basis of Bp,∞.

Proof. First, note that we can fix a basis of O0 with coefficients (over the canon-
ical basis of Bp,∞) in O(p).

The Steps 2 and 3 can be solved in a similar manner despite a final goal
that is quite different. For Step 2, it is sufficient to find an β0 such that that the
matrix of the action of β0 on a basis of the L-torsion has two distinct eigenvalues.
Then, we can take α0 = β0 − λ where λ is one of the two eigenvalues. Note that
this is equivalent to saying that β0 needs to have two distinct eigenvalues mod
Li for all 1 ≤ i ≤ n.

For Step 3, a sufficient condition to obtain α such that gcd(n(x+yα), L) = 1
for all x, y with gcd(x, y, L) = 1 is to have that the matrix of α over a basis of
the Li-torsion with no eigenvalues for all 1 ≤ i ≤ n.

The existence and value of these eigenvalues mod Li for a quaternion el-
ement β can be verified directly by computing the roots of the polynomial
X2 + tr(β)X + n(β) mod Li.

Thus, to solve the two steps, we can apply the following method. First, for
each Li dividing L, find one element β0,i (resp. αi) in O0/LiO0 with two dis-
tinct (resp. no) eigenvalues mod Li. Since the ring O0/LiO0 is isomorphic to
M2(Z/LiZ) it is clear that a solution can be found by enumerating over the L4

i

elements of O0/LiO0.
Then, the final element β0 (resp. α) can be obtained by CRT (doing this

coefficient-wise over the basis of O0). The coefficients of β0 (resp. α) will have
size O(L) over the basis of O0 and so we get the desired result by taking into
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account the coefficients of this basis over the canonical basis of Bp,∞. For each Li,
we have to enumerate at most L4

i quaternion elements, so the final complexity
statements follows from the complexity of computing modular squareroot and
the complexity of CRT.

Proposition 6. The FOR loop in line 4 can be executed in O(poly(log(p))).

Proof. The loop is repeated O(log(p)) times. Computing a basis is a very stan-
dard task and it can be done in O(poly(log(p))) since mi = O(log(p)). The gen-
erator R0,i can be computed in O(poly(log(p))) using the algorithm described
in [GPS17] to find the kernel of an ideal. Evaluating the endomorphism α can
be done by evaluating a basis of End(E0) and then performing the scalar multi-
plications corresponding to the coefficients of α in this basis. The first part can
be done in O(poly(log(p))) by choice of E0 and the second can also be done in
O(poly(log(p))) by the size bound given on the coefficients of α in Proposition 5.

The main computational task of OrdersTojInvariant() is quite clearly per-
formed during the loop in line 14. This FOR loop contains two inner loops.
We will incrementally provide complexity statements for each of these loops in
orders to clearly decompose the cost of each operations.

Proposition 7. At index i < n− 6, Step 24 produces a polynomial over Fp2 of
degree smaller than Li in O(MP(Li) log(Li)) operations over Fpmi . This polyno-
mial defines uniquely the isogeny φ. At index n − 6 ≤ i ≤ n, Li = ℓeii for some
prime ℓi ≤ 13 (the 6-th prime) and Step 24 produces ei polynomials of degree ℓi
over Fp2 in O(e2i ) operations over Fpmn . These polynomials uniquely defines the
isogeny φ.

Proof. It can be shown with the Vélu formulaes [Vél71], that to represent an
isogeny it suffices to compute its kernel polynomial, i.e., the polynomial whose
roots are the x-coordinate of the points of the kernel and that this polynomial
is always defined over Fp2 even if the kernel points are not.

From a single kernel point, the O(Li) points of the kernel can be generated
in O(Li) operations over Fpmi . Then, the kernel polynomial can be constructed
with complexity O(MP(Li) log(Li)) from its roots.

When n − 6 ≤ i ≤ n, we can write Li = ℓeii for some prime ℓi = O(1) and
then, we can factor our isogeny of degree Li as ei isogenies of degree ℓi. All these
isogenies can be computed in time O(e2i ) from a kernel generator (see [JDF11]
for more on this topic).

Proposition 8. There exists a constant C such that, at any index i ≤ n − 6,
the number of Fp-operations executed in Steps 25,26 of the FOR loop in line 18
is upper bounded by C(n − i) log(p)MP(log(p)). When i > n − 6, we have the
upper-bound C(n− i)llog(p)2MP(log(p))

Proof. For each i < j ≤ n, we need to evaluate the polynomial produced by
Step 24 on the points Ri+1, . . . , Rn and Si+1,...Rn

. By Proposition 7, when i ≤
n− 6, each evaluation costs O(Li) operations over Fpmj . The cost of arithmetic
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over Fpmj in operations over Fp is upper-bound by C ′MP(mj) for some constant
C ′. So we get the result from Li = O(log(p)) and mj = O(log(p)) by Lemma 2.

When i > n − 6, there are ei = O(llog(p)) polynomials of degree ℓi = O(1)
and we get the desired result.

Remark 3. The Vélusqrt algorithm from [BFLS20] cannot be applied here be-
cause the kernel of the isogenies and the point on which the evaluation is per-
formed do not live in the same extension.

Proposition 9. There exists a constant C such that, at any index i ≤ n−6, the
number of binary operations executed in each execution of the FOR loop in line 18
is upper bounded by CΦ(Li)(n−i) log(p)MP(log(p))MZ(log(p)). When n−6 < i <
n, the number of binary operations is smaller than CΦ(Li)llog(p)

2MP(log(p))MZ(log(p)).

Proof. For each execution of this loop, the number of iteration is exactly Φ(Li).
Arithmetic over quaternion orders and ideals such as intersection and right order
computation can be performed in O(MZ(log(p))) (because the coefficients have
size in O(log(p)) and these operations are simple linear algebra in dimension 4).
Then, the hash can be computed in O(log(p)1+ε). Thus, the total cost of the
loop is O(Φ(Li) log(p)

1+ε) for quaternion operations for any i. This is negligible
compared to other operations when i < n.

The verification that H(O) ∈ S and insertion in the hash map operation can
be done in O(1) with the appropriate hash-map structure.

Then, there are the cost of operations over Fp for the isogeny computation.
To derive the total complexity, we apply Propositions 7 and 8. Arithmetic over
Fp takes O(MZ(log(p))) binary operations. For any i, the kernel computation is
negligible. When i ≤ n− 6, the isogeny computation takes

O(Φ(Li) log(p)MP(log(p))MZ(log(p))),

then the evaluations take O((n− i)Φ(Li) log(p)MP(log(p))MZ(log(p))).
Similarly, when n− 6 < i < n, this cost is replaced by

O(Φ(Li)llog(p)
2MP(log(p))MZ(log(p))).

Proposition 10. There exists a constant C such that, at any index i ≤ n− 6,
the number of binary operations executed in the FOR loop in line 16 is upper
bounded by C

∏i
j=1 Φ(Li)(n − i) log(p)3+ε. When n − 6 < i < n, it is upper

bounded by C
∏i

j=1 Φ(Li)(n − i) log(p)2+ε). When i = n, it is upper-bound by

C(#S log(p)2+ε + p log(p)1+ε).

Proof. There are Φ(Li) cyclic subgroups of order Li. Thus at index i < n, the

size of List is
∏i−1

j=1 Φ(Li) and the result follows directly from Proposition 9.
When i = n, we perform the quaternion computations (intersection, right

order and computation of the hash value) for all
∏n

j=1 Φ(Li) subgroups. Thus,

since we have
∏n

j=1 Φ(Li) = O(p) by Lemma 1 and Claim 1, and the cost

of quaternion operations is O(log(p)1+ε) as in the proof of Proposition 9, we
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get that the cost for quaternion operations is O(p log(p)1+ε). The isogeny com-
putation is only performed when the right maximal order is contained in S,
thus, we can upper-bound the number of times where an isogeny is computed
by #S. As for all the i ≥ n − 6, the cost of each Ln-isogeny computation is
O(llog(p)2MP(log(p))MZ(log(p))) and this proves the result.

Proposition 11. The loop in line 14 can be executed in O(#S log(p)2+ε +
p log(p)1+ε) binary operations.

Proof. The total cost of the loop is directly obtained by summing over all
i the bounds in Proposition 10. We start by summing over all i ≤ n − 6.
We get an upper-bound on the number of binary operation by C

∑n−6
i=1 (n −

i)
∏i

j=1 Φ(Li) log(p)
3+ε. So we get O(p log(p)1+ε) after applying Proposition 2.

For n− 6 < i < n, we get the upper-bound

C

n−1∑
i=n−5

(n− i)

i∏
j=1

Φ(Li) log(p)
2+ε.

Since by Lemma 1, Ln > C0/2 log(p), we have
∏i

j=1 Φ(Li) ≤ C ′p/ log(p) for
some constant C ′ and any i < n. Thus, since there is a constant number of
summands, we get the cost is in O(p log(p)1+ε) for those indices.

Finally, at i = n, we can apply directly the bound from Proposition 10. The
final cost is O(#S log(p)2+ε + p log(p)1+ε).

All the results above lead directly to the following theorem.

Theorem 1. Under Claim 1, on input p and S, OrdersTojInvariant() can be
executed in

O(#S log(p)2+ε + p log(p)1+ε)

binary operations.

Remark 4. Similarly, we can show that the space requirement of OrdersTojInvariant()
is in O(#S log(p) + p log(p)).

Good choice of primes. The analysis we provided above for both OrdersTo-
jInvariantSmall() and OrdersTojInvariant() does not assume anything on the prime
p. There are some ”nice” choices of primes p for which we could basically gain a
factor log(p) over all elliptic curve operations by having all the required torsion
point defined over Fp2 (thus saving the cost of operations over big Fp-extensions).
Since we are interested in a generic statement, we do not bother with these
marginal gains.

In the context of applying OrdersTojInvariant() to the CRT method, this idea
will have its importance in the concrete choice of primes pi. However, due to
the linear dependency in p, it does not appear possible to select all CRT primes
among these ”nice” primes. And so the CRT complexity will depend on the
worst-case complexity of our algorithm OrdersTojInvariant().
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4 Computation of the Hilbert class polynomial

Let D be a negative discriminant. As explained in the introduction, the CRT
method (whether it is to compute HD in Z or modulo a big prime P ) consists
mainly in computing HD mod pi for a bunch of small primes pi.

In Section 4.1, we introduce an algorithm to perform that computation when
the prime pi is such that the roots ofHD over Fp are j-invariants of supersingular
curves. This algorithm uses the algorithm OrdersTojInvariant() from Section 3.2
as its main sub-routine. This algorithm has the best known complexity for a
generic prime when P is ”small” (relatively to D). However, if the prime is big,
it will be more efficient to use OrdersTojInvariantSmall() instead as explained in
Section 3. When modified to use OrdersTojInvariantSmall() instead of OrdersTo-
jInvariant(), the algorithm we present in Section 4.1 can also compute directly
HD mod P for any primes P that is not split and coprime with the square
factor of D, and its complexity is in O(h(D) log(P )4+ε).

Depending on the respective size of P and D (in particular when log(P ) =
o(|D|1/8)), this algorithm has a better asymptotic complexity than all known
algorithm.

In Section 4.2, we compare the gain of using our algorithm with supersingular
curves in the CRT method over the best known algorithm from Sutherland
[Sut11] based on ordinary curve.

4.1 Computing the class polynomial modulo a prime.

Let us fix some prime p and some negative discriminant D. We write h for the
class number of D.

Our goal in this section, is to explain how to compute the Hilbert class
polynomial HD(X) mod p. In all cases, this polynomial is reconstructed from
its roots. When p can be written as (t2 −Dv2)/4 for two integers t, v, the prime
p is split in the quadratic order O of discriminant D, and the roots of HD are
j-invariants of ordinary curves in Fp. This case was treated by Sutherland in
[Sut11]. In the opposite case where p is non-split and coprime with the square
part of D, the roots are j-invariants of supersingular curves over Fp2 and we
explain below how to compute them.

In the ordinary case, the interesting curves are obtained in two main steps:
start by identifying one interesting curve, and then enumerate through all the
interesting curves using the action of the class group Cl(O).

For supersingular curves, we have three main steps. We start to do something
very similar to what is done for ordinary curves, but working over the maximal
orders of the quaternion algebra Bp,∞. The idea is that this step is much more
efficient when working directly over Bp,∞ because the operations are much sim-
pler. The Deuring correspondence states that the set of maximal order we obtain
in this manner are isomorphic to the endomorphism rings of the elliptic curves
we want to compute. Thus, we constitue a set SD(p) of maximal order type
and we can apply OrdersTojInvariant() on this set to compute the j-invariants we
need. This execution constitutes our third step.
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The fourth and final step in our algorithm is common with the third step of
the ordinary case: recover the polynomial HD from its roots. Note that this is
done using standard polynomial arithmetic.

At a high level, our algorithm works in the following way :

1. Find a maximal order O in Bp,∞ with O ↪→ O.
2. Use the action of Cl(D) to find SD(p), the set of isomorphism classes of

maximal orders in Bp,∞ with an optimal embedding of O and record their
multiplicities.

3. Compute the roots of HD mod p with OrdersTojInvariant(p,SD(p)).
4. Recover HD mod p.

Step 1. This task has already been solved in the context of generating backdoor
curves to the SIDH scheme [QKL+21] and generating keys for the Séta encryp-
tion scheme [DFFdSG+21]. First, we need to solve a quadratic equation over Q
to find a, b, c, d ∈ Q such that Z[a+ib+jc+kd] is the quadratic order of discrim-
inant D. This can be done using Simon’s algorithm [Sim05] to solve quadratic
forms in dimension 4. The complexity of Simon’s algorithm is polynomial once
the factorization of the determinant is known. In our case, the quadratic form
we consider is basically b, c, d, e 7→ (qb2 + p(c2 + qd2)− e2D and its determinant
is equal to p2q2D2f for some small integer f . Hence, the full factorization is easy
to compute because we know the factorization of D.

Now that θ = a+ ib+ jc+kd has been computed, we need to find a maximal
order O containing it. Let us take A as the smallest common denominator of
a, b, c, d, we have A = O(poly(log(pD))). Then Aθ ∈ O0 where O0 is any maximal
order containing the sub-order ⟨1, i, j, k⟩. Since Aθ ∈ O0, the right order of the
ideal I = O0Aθ+O0C contains θ. We can setO = OR(I) andO can be computed
in O(poly(log(p|D|))).

Hence, this step can be performed in O(poly(log(p|D|))) and is negligible
compared to the rest of the computation.

Step 2. We go from one maximal order type to all maximal order types of interest
by using the group action of the class group in a manner similar to what is used
by Sutherland in [Sut11]. But, in our case, instead of isogeny computation, we
can simply use arithmetic over quaternions through the action of ideals of the
form O(θ − λ) + Oℓ on the set of maximal orders containing θ which cover all
maximal order types we need. Any group action computation for an ideal of
norm ℓ takes O(log(ℓ)). Thus, using the same estimates than in [Sut11], we see
that this part can be performed in O(h log(|D|)ε) = O(

√
|D| log(|D|)ε).

We can hash (with the function introduced in Section 3.1) all the maximal or-
der types obtained in this manner to create the setSD(p) inO(

√
|D| log(|D|)ε log(p)1+ε).

Step 3. This step consists simply in the execution of OrdersTojInvariant() on
the set SD(p) computed in Step 2. Thus, by Theorem 1 and the estimates
on h, the complexity of this step is O(

√
|D| log(|D|)ε log(p)2+ε + p log(p)1+ε).

Alternatively, it is possible to use the OrdersTojInvariantSmall() algorithm and
obtain a complexity of O(

√
|D| log(|D|)ε log(p)4+ε).
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The reconstruction step. The complexity of this step isO(
√

|D| log(|D|)2+ε log(p)1+ε)
as was proven in [Sut11].

The total complexity. Putting together all the results above, we get that, when
using the OrdersTojInvariant() algorithm, the complexity is

O(
√
|D|(log(|D|)2+ε log(p)1+ε + log(|D|)ε log(p)2+ε) + p log(p)1+ε).

With OrdersTojInvariantSmall(), the complexity becomes

O(
√
|D|(log(|D|)ε log(p)4+ε + log(|D|)2+ε log(p)1+ε)).

Thus, we see that the first algorithm will be better for small values of p.
There will be a cut-off around a value of p in O(

√
|D| log(|D|)3+ε). In that range

of prime, our algorithm with OrdersTojInvariant() has the best known generic
complexity. For primes, bigger than that, it is better to use the variant with
OrdersTojInvariantSmall() due to the quasi-linear dependency in p. For a range of
medium-sized primes, this algorithm will have the best known complexity. The
cut-off with the CRT method (whose complexity is O(|D|1+ε)) will happen for

p = O(2|D|1/8).

Space complexity. In terms of memory requirement our two algorithms are op-
timal and require O(h(D) log(p)).

4.2 Application to the CRT method and comparison with existing
method.

In this section, we analyze the benefit of using supersingular curves in the CRT
method compared to ordinary curves as done by Sutherland in [Sut11]. We refer
the reader to the algorithm outlined in Section 1.1.

The choice of primes. The final crucial parameter for stating a complexity es-
timate for the CRT method with the algorithm of Section 4.1 is the choice of
primes p1, . . . , pn ∈ PD . In fact, for supersingular curves, this part is quite easy.
It suffices to take all non-split primes coprime with the square part of D. For
practical efficiency, some primes might be better than others so it might be
worth considering a finer metric than size, but for a first and simple estimate, it
is easier to consider that we take the n smallest primes satisfying the reduosity
constraint. Under GRH, it can be shown that we have n = O(BD/ log(BD))
and max1≤i≤n pi = O(log(BD)). With the usual BD = O(

√
(|D|) log(|D|)) that

holds under GRH, we get that we can take O(
√

|D|) primes with max1≤i≤n pi =

O(
√

|D| log(|D|)).
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The final heuristic complexity estimate. Thus, under GRH and the heuristic of
Section 3, if we sum the complexity estimate given in Section 4.1 over all pi;
the final complexity estimate of the CRT method with supersingular curves is
O(|D| log(|D|)3+ε). This is the same asymptotic complexity as the CRT method
for ordinary curves introduced by Sutherland [Sut11]. The dominant step is also
the same: the polynomial reconstruction (Step 4 in our algorithm). However,
note that in practice this part might not be the bottleneck due to better hidden
constants.

Comparison of supersingular and ordinary cases. Let us start by the recon-
struction step. We remind that the concrete complexity of this step is O(

√
|D|-

log(|D|)2+ε log(p). It is pretty similar in both cases and we argue that the prac-
tical cost should be roughly the same. This is not completely obvious since the
primes will not have the same size in the two cases and the roots are defined over
Fp for ordinary curves against Fp2 over supersingular curves. First, the size of
the primes does not really matter because the product

∏n
i=1 pi have roughly the

same size in the two cases and the complexity of the reconstruction is linear in
log(pi) for all i. Second, since in the supersingular case, the Galois conjugate (by
the action of the Frobenius) of a root of HD mod pi is also a root, by building
the remainder tree from polynomials of the form (X − j)(X − jpi) ∈ Fpi

[X], we
see that we can make the entire computation over Fp2

i
as in the ordinary case

(and thus avoid the constant overhead brought by multiplications over Fpi
). We

conclude from this brief reasoning that the reconstruction cost will be essentially
the same in the two cases.

Now, if we forget the reconstruction step, we see that using supersingular
curve offers an asymptotic advantages. Indeed, in Steps 1, 2 and 3 of our al-
gorithm, the dominant step is the execution of OrdersTojInvariant() in Step 3,
which has a O(|D| log(|D|)2+ε) complexity (if we consider the executions over all
primes pi ∈ PD and we use log(pi) = O(log(|D|))). In particular, this is smaller
than the O(|D| log(|D|)5/2+ϵ) that dominates that part of the computation in
Sutherland’s algorithm (corresponding to the computation of one curve with the
correct endomorphism ring).

This is the first reason that suggests that the supersingular case might be
more efficient than the ordinary one, but this is not the main one. The main
reason behind the practical speed-up we hope to obtain is that we can use smaller
primes. Indeed, the expected maximum of our primes is in O(

√
|D| log(|D|))

(against O(|D| log(|D|)1+ε for ordinary curves). Moreover, we can take all the
small primes that satisfy the reduosity condition. In particular, we will be able
to use a good portion of primes significantly smaller than

√
|D|.

We hope that the very small primes will give a nice improvement in practice
because for these primes, some of the roots will have big multiplicities, which
should help perform every steps more efficiently in practice (for example there
will be less than O(

√
|D|) j-invariants to compute in that case) and it should

improve the practical efficiency.
Note that there is also a good potential for practical improvement by carefully

selecting the primes in PD and choosing the log-factor-basis used for each of those
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prime in order to minimize the degree of the extension required to compute the
isogenies in OrdersTojInvariant(). A selection is also performed in the algorithm of
Sutherland to help improve the cost of finding one curve with the good cardinal,
so it would be natural to do the same thing in our case.

Even if OrdersTojInvariant() proves to be too slow to beat the version of
Sutherland by using only supersingular primes, it is clear that it is worth consid-
ering an hybrid set of primes PD containing a mix of supersingular and ordinary
primes to obtain the best efficiency as the computation will be definitely very
fast for a lot of small non-split primes.

Further improvement: batching class polynomial computation. OrdersTojInvariant()
can be easily modified to handle several sets S1, . . . ,Sk more efficiently than k
executions of OrdersTojInvariant() for each Si.

Thus, if we have several discriminantsD1, . . . , Dk, and a prime p in
⋂

1≤i≤k PDk
.

A good part of the computations performed to compute HD1
, . . . ,HDk

mod p
can be done at the same time at a reduced cost.

Moreover, if some HDi have some common roots, the common divisors could
be constructed once and for all.

Thus, our new method could be used to batch efficiently the computation of
several class polynomial at the same time.

5 Computation of the modular polynomials

Let ℓ be a prime number. As explained in the introduction, the CRT method
(whether it is to compute Φℓ in Z or modulo a big prime P ) consists mainly in
computing Φℓ mod pi for a bunch of small primes pi.

In Section 5.1, we introduce an algorithm to do so for any big enough prime
pi. This algorithm uses the algorithm OrdersTojInvariant() from Section 3.2 as
its main sub-routine. And it has the best known complexity when P is ”small”
(relatively to ℓ) However, if the prime is big, it will be more efficient to use
OrdersTojInvariantSmall() as explained in Section 3. When modified to use Orders-
TojInvariantSmall() instead of OrdersTojInvariant()), the algorithm we present in
Section 5.1 can also compute directly Φℓ mod P for any prime P and its com-
plexity is in O(ℓ2 log(P )4). Depending on the respective size of P and ℓ (in
particular when log(p) = o(ℓ1/4)), this algorithm has a better asymptotic com-
plexity than all known algorithm. Note that this method works for every p and ℓ
(as soon as p is big enough). In particular, it can be used to compute Φℓ mod p
in applications where we need to find ordinary curves that are ℓ-isogenous. This
was not the case for Hilbert polynomial where the roots are either all ordinary
or all supersingular.

In Section 5.2, we compare the gain of using our algorithm with supersingular
curves in the CRT method over the best known algorithm from Broker, Lauter
and Sutherland [BLS12] based on ordinary curve.
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5.1 Computing modular polynomial modulo a prime

The idea of our algorithm for modular polynomials follows the same principle
as the class polynomials algorithm. There is a slight difference because modular
polynomials are bivariate but it does not change the generic principle of the
algorithm. Indeed the full polynomial Φℓ is interpolated from Φℓ(j, Y ) for enough
j-invariants j. The univariate polynomial Φℓ(j, Y ) is reconstructed from its roots,
that are the j-invariants of curves ℓ-isogenous to j.

Once again, we start by identifying the interesting curves through the Deuring
correspondence. More concretely, for a set of prescribed maximal orders, we
will compute all the ℓ-ideals associated to these maximal orders and compute
their right orders. Then, we apply OrdersTojInvariant() to find the j-invariants
corresponding to the maximal orders computed during the previous steps, finally
we interpolate the modular polynomial Φℓ mod p.

Here is how it can be done concretely:

1. Compute a set of maximal order types O1,0,O2,0, . . . ,Om,0 ⊂ Bp,∞ for m ≥
ℓ+ 2.

2. For each 1 ≤ i ≤ m, compute the types Oi,1 . . .Oi,ℓ+1 of maximal orders
connected to Oi,0 with an ideal of norm ℓ.

3. Create the setSℓ made of the hashed values of all types in
⋃

1≤i≤m,1≤k≤ℓ+1 Oi,k.
4. Compute each j-invariant associated to the elements of S with OrdersTo-

jInvariant(p,Sℓ).
5. For each 1 ≤ i ≤ m compute Φℓ(ji,0, X) from its roots ji,k for 1 ≤ k ≤ ℓ+1.
6. Reconstruct Φℓ(X,Y ) mod p from the Φℓ(ji,0, X).

With what we saw in Section 4 all the steps of the algorithm above are
pretty straightforward. Note that we have m = O(ℓ) and we assume that p is
big enough so that there exists more than m maximal order types over Bp,∞.
We briefly recall the complexities of each step.

1. By Claim 1, the complexity is O(ℓ log(p)1+ε) by computing the m distinct
types Oi,0 as right orders of L-ideals for some L = O(p) (computing right
orders can be done in O(log(p)1+ε) in that case).

2. O(ℓ2(log(p) + log(ℓ)) as there are (ℓ+ 1)m ideal computation and each one
takes O((log(p) + log(ℓ))1+ε).

3. O(min(p, ℓ2)(log(p)+log(ℓ))1+ε) as there are at most O(min(p, ℓ2)) maximal
order types in Sℓ and it takes O(log(p) + log(ℓ))1+ε) to compute their hash
with the function H.

4. O(p log(p)1+ε +min(p, ℓ2) log(p)2+ε) as #Sℓ = O(min(p, ℓ2)).
5. O(ℓ2 log(ℓ)2+ε log(p)1+ε) as shown in [BLS12].
6. O(ℓ2 log(ℓ)2+ε log(p)1+ε) as shown in [BLS12].

Total complexity. In conclusion, the complexity of the algorithm to compute Φℓ

mod p with OrdersTojInvariant() is

O(ℓ2(log(ℓ)2+ε log(p)1+ε + log(p)2+ε) + p log(p)1+ε).
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When using OrdersTojInvariantSmall() instead, we obtain the following asymp-
totic complexity:

O(ℓ2(log(p)4+ε + log(ℓ)2+ε log(p)1+ε)),

Thus, we see that the first algorithm based on OrdersTojInvariant() will be
better for small values of p. We can estimate a cut-off for a value of p in O(ℓ2+ε).
In that range of primes, our algorithm with OrdersTojInvariant() has the best
known generic complexity to compute Φℓ mod p. For primes bigger than that,
it is better to use the variant with OrdersTojInvariantSmall() to avoid the quasi-
linear dependency in p. For a range of medium-sized primes, this algorithm
will have the best known complexity. The cut-off with the CRT method (whose

complexity is O(ℓ3+ε)) will happen for p = O(2ℓ
1/4

).

Space complexity. In terms of memory requirement our two algorithms are op-
timal and require O(ℓ2 log(p)).

5.2 Applications to the CRT method and comparison with existing
method

In this section, we analyse the benefit of using supersingular curves in the CRT
method and compare it with the algorithm described by Bröker, Lauter and
Sutherland in [BLS12]. We refer the reader to the algorithm outlined in Sec-
tion 1.1. Since the CRT is typically based on a lot of very small primes, we use
the variant with OrdersTojInvariant().

Choice of primes. The only constraint on our CRT primes pi is the size. We
need to have enough maximal order types, which means that p/12 must be
slightly bigger than ℓ. As for Hilbert polynomials, we analyze the case where we
simply select the set of primes Pℓ as made of the smallest primes satisfying the
constraint and such that

∏n
i=1 pi > 2Bℓ where Bℓ is the bound on the bit-size

of the coefficients of Φℓ(X,Y ). In practice, it might be better to select primes
that will enable an efficient execution of OrdersTojInvariant() but this is harder
to analyze. Since we have Bℓ = O(ℓ log(ℓ)), we expect to have n = O(ℓ) primes
with max1≤i≤n pi = O(ℓ log(ℓ)).

The final heuristic complexity estimate. With everything we said above, under
GRH and the heuristic of Section 3.2, the asymptotic cost of the CRT method
with our algorithm is O(ℓ3 log(ℓ)3+ε). This is the same as the method based
on ordinary curves. In both cases, the asymptotic bottleneck is the polynomial
reconstruction step.

Practical comparison between supersingular and ordinary cases. Let us start by
the reconstruction step. We remind the reader that the complexity of this step
is O(ℓ2 log(ℓ)2+ε log(p)). As for the class polynomial case, these two steps are
pretty similar in the supersingular and ordinary cases. Similarly, we expect the
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practical cost to be the same. It is less easy to see in the modular polynomial
case, but the symmetry of Φℓ with respect to the action of the Galois group of Fp2

allows us to perform almost all computations over Fpi . The linear dependency
in log(pi) concludes the claim.

For the rest, we expect our algorithm to outperform the BLS method. There
are various explanations behind that claim, but all of them are basically impli-
cations of the following fact: we can consider primes pi ∈ Pℓ with pi = O(ℓ log ℓ).
For each pi, there are O(pi) supersingular curves (and so O(pi) supersingular
j-invariants over Fp2), which is enough to reconstruct the modular polynomial
Φℓ, even though intuitively, it should require O(ℓ2) distinct points.

The first implication of that fact, is that we drastically reduce the asymp-
totic cost of the expensive elliptic curve operations in the execution of the CRT
method. Indeed, with supersingular curves, this part only requires O(ℓ2+ε) op-
erations over various Fpi

(against O(ℓ3+ε) in BLS).

The polynomial reconstruction should also be positively impacted by the
fact that the O(ℓ) univariate polynomials required to interpolate Φℓ have a lot
of common roots.

Moreover, if we remove the common polynomial reconstruction part, we
see that the asymptotic cost is also in favour of the supersingular case with
O(ℓ3 log(ℓ)1+ε) against O(ℓ3 log(ℓ)3+ε) in BLS. And the hidden constants should
also be in favour of supersingular case since the dominant step in our algorithm
consists in basic operations over lattices in the quaternion algebra Bp,∞ while
these are Fp operations in BLS.

All in all, it is very likely that using our algorithm in the CRT method will
bring a practical improvement over the BLS algorithm. Contrary to the class
polynomial case, where we need to be more careful, we do not expect that it
could be favourable to use a mix of supersingular and ordinary curves instead
of supersingular curves only. However, this improvement will be less and less
noticeable as the value of ℓ increases, since the asymptotically dominant step is
the polynomial reconstruction which is the same in both methods.

Batching the computation. Similarly to the modular polynomial case, the set
of small primes can be reused in the computations over various ℓ. Once again,
the situation is even better in the modular case, because, apart from size, there
are no restrictions on the primes. Thus, if we want to compute Φℓi for primes
ℓ1, ℓ2, . . . , ℓk of the same size, we will be able to use the same exact set PD for
all the computations. Thus, only the polynomial reconstruction phase will be
specific to each ℓi, and the rest needs to be done only once.

On the computation of Φℓ(E, Y ). In an application like the SEA algorithm,
computing the full Φℓ is actually useless. What we need to do is to evaluate
Φℓ(E, Y ) for some curve E defined over Fp. Sutherland [Sut13] showed how
to adapt the CRT method to that purpose. The complexity is essentially the
same as the one to compute the full polynomial, but the memory requirement
is smaller and the practical complexity is better as well.
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Thus, our new algorithm yields an improvement for that task as well (when
p is not too big). However, for a generic E (that can be ordinary for instance),
it is not clear that we can do better than the complexity to compute the full
Φℓ. We have an obvious improvement to O(ℓ log(p)4), when E is a supersingular
curve of known endomorphism ring but this case is not so useful for the usual
applications (in that case, we can simply apply the Deuring correspondence to
circumvent the need for the modular polynomial).

6 Conclusion

We have introduced several new algorithms to compute modular polynomials
of level ℓ and Hilbert polynomials of discriminant D modulo a generic prime
number P from supersingular curves. When used directly, we see that we obtain
the first algorithms of complexity in ℓ2 and

√
|D| for generic primes. Depending

on the relative size of ℓ,|D| and P , we exhibit improvements over the best known
asymptotic complexities for a significant range of primes.

Moreover, when applied to the CRT method, we obtain an algorithm whose
complexity is the same as the version with ordinary curves, but with the po-
tential to give a practical improvement (in particular in the case of modular
polynomials).

It remains to see how efficient our new algorithms are in practice. There are
several practical challenges to overcome before providing an implementation of
the proposed algorithms (in particular related to the field extensions involved
in the computations of some isogenies), and this is why we leave the concrete
implementation to future work.
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A Proof of Lemma 1

Let us prove Lemma 1.

Proof. To simplify a bit the proof, we do not prove exactly Lemma 1, but a
variant where we replace Φ(Li) by Li anytime its appears in the formulation of
the proposition. Since we have Li = ℓeii and Φ(Li) = ℓei−1

i (1 + ℓi), the proof of
Lemma 1 can clearly be derived in a similar manner.

Let us take C0, 1 < C1 < C2 three constants. We leave these constants
unspecified for now. We start our reasoning without assuming anything on those
constants, and we will encounter conditions on them during the proof. At the
end, we will verify that these constraints can all be satisfied.

We also take a bound B that we assume to be ”big enough” for various
asymptotic inequalities to be verified.
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Let us take some number N > B. Our goal is to construct a good factor-basis
(as defined in Remark 1).

Let us construct two integers n,Λn recursively from Λ0 = 1 in the following
manner: if λi ≥ C1N , then set n = i, otherwise let Λi+1 = λi+1Λi with λi+1 =
ℓeii+1 where ℓi+1 is the i + 1-th prime and ei is one if ℓi ≥ C0 log(N) or the
biggest exponent such that Li+1 < C0 log(N). It is clear that such our little
recursive algorithm always terminates and so we can get two integers n,Λn in
that manner for any N . Moreover, we have C0/2 log(N) ≤ λ1 since ℓ1 = 2
and

√
C0 log(N) ≤ λi for all other i. Then, there is two possibilities: either

Λn < C2N or Λn ≥ C2N .

First case: Λn < C2N . Then, if we set Li = λn−i+1 for 1 ≤ i ≤ n, we will show
that L1, . . . , Ln is a valid factor basis. By definition of each Li, it is clear that is
suffices to prove that the n-th prime (the divisor of L1) is smaller than C0 log(N).
Since Λn < C2N , we can take logarithms to get n/2(log(C0) + log log(N)) <
Λn < log(C2)+log(N) from the bound

√
C0 log(N). It follows that since N > B

is ”big enough”, we can assume n < 3 log(N)/ log log(N). Similarly, as it is clear
than n grows with N , we can assume ℓn < 2n log(n) < 6 log(N) by the usual
estimates ℓn ≈ n log(n). Thus, if C0 > 6, we have proven that L1, . . . , Ln is a
valid factor basis for N .

Second case: Λn ≥ C2N . Since Λn is too big, we will try to remove a factor
δ to be able to extract our factor basis from Λn/δ. Since N is big enough, we
can assume n ≥ 4. We don’t want to touch λ1 since the bound is tight, but
we can remove some powers of ℓ2, ℓ3. The idea is that we can remove up to
O(

√
Log(N) from each λi. Moreover since Λn−1 < C1N , we can easily show

that Λn = O(N log(N)). Thus, it is clear that we can remove enough from
λ2, λ3, to get to the point where ΛN/δ < C2N . However, we need to preserve
the equality C1N ≤ ΛN/δ. Fortunately, for that it suffices that C2/C1 is big
enough.

More precisely: since we have Λn−1 < C1N , by the same estimate as before
we have n < 1 + 3 log(N)/ log log(N). Hence, with ℓn < 2n log(n) we get ℓn <
7 log(N). Thus, we can assume Λn = Λn−1λn < 7C1N log(N). Thus, we get

C1N ≤ Λ < 7NC1 log(N). (A.1)

Now, we want to find δ|Λn such that C1N ≤ Λn/δ < C2N . We start by using
λ2. Let us take δ2 as the biggest divisor of λ2 such that

δ2 < min(Λn/(C1N),
√
C0 log(N)/ℓ2).

If we assume C2 > ℓ2C1, then we have δ2 ≥ ℓ2 and so we can take a non-trivial
δ2. In that case, we get C1N ≤ Λn/δ2 < Λn.

If Λn/δ2 < C2N we are done. Indeed, by definition on δ2, we now that the
lower bound C1N ≤ Λn/δ2 is preserved. Then, since δ2 <

√
C0 log(N)/ℓ2, we get

λ2/δ2 > λ2ℓ2/
√
C0 log(N), and since by definition we have λ2 > C0 log(N)/ℓ2,

we get that λ2/δ2 >
√
C0 log(N). Moreover, with the same reasoning as above,
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if C0 > 7, we have proven that λn < C0 log(N). This prove that setting Li =
λn−i+1 for 1 ≤ i ̸= 2 ≤ n and Ln−1 = λ2/δ2 give us the desired factor basis.

If not and Λn/δ2 ≥ C2N , we will now try to remove a divisor of λ3. Before
that, it is useful to try to upper-bound Λn/δ2 more precisely. We have δ2 >
1/ℓ2 min(Λn/(C1N),

√
C0 log(N)/ℓ2).

If Λn/(C1N) <
√
C0 log(N)/ℓ2, then δ2 > Λn/(ℓ2C1N) and so Λn/δ2 <

ℓ2C1N . This is smaller than C2N by our assumption on C1 and C2 and so this
is a contradiction. Thus we must have Λn/(C1N) ≥

√
C0 log(N)/ℓ2 and we can

get the lower-bound δ2 ≤
√

C0 log(N)/ℓ22. If we plug that into Eq. (A.1), we
obtain the following

C1N ≤ Λ/δ2 <
7ℓ22C1√

C0

N
√

log(N). (A.2)

Now, we define δ3 as the biggest divisor of λ3 such that

δ3 < min(Λn/(C1δ2N),
√

C0 log(N)/ℓ3).

Then, following the same reasoning as for δ2, we get that if we assume further
C1ℓ3 < C2, then we can take a non-trivial δ3. Furthermore, we have that either
Λn/(δ2δ3) and we can derive our factor basis, or we must have Λn/(δ2C1N) ≥√
C0 log(N)/ℓ3. In that case, we can plug this in Eq. (A.2) to get

C1N ≤ Λn

δ2δ3
<

7ℓ22ℓ
2
3C1

C0
N. (A.3)

If we assume that C2 >
7ℓ22ℓ

2
3C1

C0
, then we are also done.

In conclusion, we can derive our log factor-basis for any big enough N as-
suming that the constants C0, C1, C2 satisfies:

– C0 > 7.
– C2 > 3C1.
– C2 > 5C1.
– C2 > 1575C1

C0
.

(we used ℓ2 = 3, ℓ3 = 5). This system can clearly be satisfied and so this proves
the result.
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