
Obfuscating Decision Trees

Shalini Banerjee, Steven D. Galbraith, and Giovanni Russello

University of Auckland, New Zealand
{shalini.banerjee, s.galbraith, g.russello}@auckland.ac.nz

Abstract. We construct a new encoder for hiding parameters in an in-
terval membership function. As an interesting application, we design a
simple and efficient virtual black-box obfuscator for evasive decision tree
classifiers. The security of our construction relies upon random oracle
paradigm. Our exclusive goal behind designing the obfuscator is that,
not only will the solution increase the class of functions that has cryp-
tographically secure obfuscators, but also address the open problem of
non-interactive prediction in privacy-preserving classification using com-
putationally inexpensive cryptographic hash functions.

Keywords: program obfuscation · privacy-preserving classification · de-
cision trees · hash functions.

1 Introduction

Program obfuscation has received considerable recognition by the cryptographic
community over the recent years. An obfuscator O is a probabilistic polynomial-
time algorithm that transforms a program C to its semantically equivalent coun-
terpart C̃, such that a secret that is efficiently computable from C, is hard to
extract given C̃. However, the sustainability of such constructions rely upon a va-
riety of computational and architectural assumptions, along with several notions
of security guarantees.

The definitional framework of program obfuscation was given by Barak et al. in
their seminal work [3] using a simulation-based security paradigm. They estab-
lished the notion of virtual black-box (VBB) obfuscation, where a polynomial
adversary A having access to C̃ has but a negligible advantage in extracting a
desirable property over a polynomial simulator S, who emulates the oracle of C;
in short, anything that is efficiently computable from C̃, can also be computed
efficiently from the input-output access to the program. Their main results rule
out the possibility of designing efficient obfuscators for generic class of programs,
nonetheless indicating that obfuscators for specific families of programs are less
ambitious and thus achievable. Canetti [12] shows construction of an efficient ob-
fuscator for point functions, that achieves a relaxed notion of virtual black-box
using a probabilistic hashing algorithm R, which imitates the ’useful’ properties
of a random oracle. The obfuscated program stores R(x), where x is sampled

2 Banerjee et al.

uniformly from a superlogarithmic min-entropy distribution, such that on input
y, outputs 1, if R(x) = R(y). Such favoring assertions were followed by design-
ing efficient VBB obfuscation schemes for a special family of functions (evasive
functions [2]) which achieve the goal that a PPT adversary cannot distinguish
between the obfuscation of C drawn randomly from the function family and
obfuscation of a function that always outputs zero. Notable works in this direc-
tion include obfuscation of point-functions [26], pattern-matching with wildcards
[6,7], compute-and-compare programs [18,27], fuzzy-matching for Hamming dis-
tance [17], hyperplane membership [13], etc. and give a strong intuition that
learning a desirable property of a program by identifying the accepting input(s)
is a hard problem.

In this paper, we focus on a new technique for encoding interval membership
functions. We find an interesting and important application in designing an
efficient virtual black-box obfuscator for evasive decision trees (see Definition
4.1). In the following, we present our intuition behind obfuscating decision trees.

1.1 Privacy-Preserving Classification using Decision Trees

In the interest of establishing the usefulness and significance of obfuscating deci-
sion trees, we provide a brief overview on privacy-preserving classification using
decision tree classifiers.

Decision tree classifiers are extensively used for prediction and analysis in sensi-
tive applications such as spam detection, medical or genomics, stock investment,
etc. [8,15,23]. Consider an example of a medical facility (model-provider) who de-
signs a model from sensitive profiles of patients to diagnose certain disease. The
model is then outsourced to a cloud server to provide classification to a user who
wants to make a prediction about her health. If the model is leaked, the sensitive
training data will be disclosed [1,16], breaching the HIPAA1 compliance. What’s
more, the user does not want to reveal her queries and classification results
to the cloud server. This calls for privacy-preserving classification techniques,
where the model is hidden from anyone but the model-provider and prediction
queries/classification remain private to the user, such that no leakage of useful
information happens during the classification phase.

The state-of-art privacy-preserving classification solutions employ an interactive
approach: encrypt and outsource the model to cloud server, where it processes
encrypted queries and forwards encrypted classification to the users. The con-
structions involve multiple rounds of communication and rely upon expensive
cryptographic computations using fully-homomorphic encryption (FHE) [9,10],
garbled circuits [4,5], etc. Brickell et al. [11] suggest an interactive two-party
protocol employing additive homomorphic encryption and ml oblivious trans-
fers (where l is the bit-length of each input feature and m is the number of
decision nodes), restricting the user from performing multiple queries on the

1 Health Insurance Portability and Accountability Act of 1996

3

encrypted tree. In their well-known work, Bost et al. [10] present a comparison
protocol between model-provider and the user for each node in the decision tree
using FHE methods. Tai et al. [24] make use of multiple communication rounds
to transfer the path costs and encrypted labels to the client. The authors of [14]
design an FHE-based solution (SortingHat) to secure the prediction queries and
classification results with reduced communication costs, but do not guarantee
the privacy of the model.

Our intuition behind obfuscating decision trees is to eliminate user-interaction
the model-provider or cloud server. In particular, we aim to construct an efficient
non-interactive solution to privacy-preserving classification with evasive decision
tree classifiers. We now explain why we do not consider obfuscating arbitrary de-
cision trees. If a decision tree could be learned from the input/output behaviour
of the classifier, then protecting the privacy of the model would be impossible.
Viewing along the lines, Tramer et al. [25] show how on submitting a total of
m. log2(b/ϵ) queries, a model could be learned from its black-box access, where
m is the number of internal nodes and ϵ is the minimum width of an interval in
a node; they call it model extraction attack. To prevent such attacks, the exist-
ing literature observes API calls to issue warnings [19,22] or adds perturbations
[20,28]. However, since there are no theoretical restrictions on the number of
prediction queries made by a user [21], limiting them is not reasonable approach
towards thwarting such attacks. We define a special class of decision trees, for
which it is hard to find an accepting input, such that a polynomial adversary
cannot extract the model except with negligible probability; we call such decision
trees as evasive, and claim that if a decision tree is not evasive, it is impossible
to protect the privacy of the model, and hence there is no choice but to restrict
to evasive decision trees.

Note that, lockable obfuscation [27] encodes a class of branching programs under
learning-with-errors (LWE) assumption and thus could be suitable for obfuscat-
ing decision trees. However, we focus on solutions that are simpler and more
efficient.

1.2 Our Contributions

On the whole, we contribute towards designing a new technique for encoding in-
terval membership functions, and as an application we construct an efficient VBB
obfuscator for evasive decision trees (see Definition 4.4). We focus on trees at
constant depth, but the techniques will apply to more general classes of decision
trees. Note that, we do not consider privacy-preserving methods to construct
the model, and how the model is trained is out of the scope of this study. A
technical briefing of our construction is as follows:

Technical Overview. Let n, ℓ, d ∈ N. Consider a function C : Nn → {0, 1}
that classifies input (xi)i∈[n], xi ∈ {0, 1}ℓ based on a full binary tree of depth d.

At each internal node vj , Boolean function gj : {0, 1}ℓ → {0, 1} outputs 1 if and

4 Banerjee et al.

only if xi ≤ tj , where tj is an integer in [0, 2ℓ). we aim to encode [[tj , i]] at each
vj , along with the label of terminal nodes (s1, . . . , s2d+1), where sk ∈ {0, 1}. We
assume that xi is compared at most twice along a path (from root node at level
0 till it reaches terminal node at level d− 1), i.e. xi ≤ ci +wi, xi > ci, where ci,
ci+wi ∈ (t1, . . . , t2d) and wi ≤ ℓ− λ

n . This defines an integer interval (ci, ci+wi]
where xi is true, such that C((xi)i∈[n]) = 1, if xi ∈ (ci, ci +wi] for every i ∈ [n].

We explain the obfuscation as follows: Boolean functions xi ≤ (ci + wi) and
xi > ci can be reduced to intervals [0, ci+wi+1)and [ci+1, 2ℓ) respectively where
xi is true. We divide the intervals into disjoint sub-intervals of the form [a, a+2p),
where p ∈ {0, . . . , ℓ − 1}. Note that the intersection of the two sub-intervals
produces sub-intervals, the union of which is equivalent to the (ci, ci+wi], which
we want to encode. Consider fi : {0, 1}ℓ → {0, 1}ℓ−i such that fi(y) = ⌊ y

2i ⌋ for
i ∈ {0, 1, . . . , ℓ − 1}. We generate the encodings Ai of the intersection of sub-
intervals (of the form [a, a+ 2p)) by calculating H(fp(a)), where H : {0, 1}∗ →
{0, 1}ω is a hash function. Finally, for each encoding in Ai, we concatenate
n entries sorted in order of i and hash them using Hc : {0, 1}∗ → {0, 1}q and
publish the set of hashes. Note that, reordering the nodes in order of i along each
accepting path hides the structure, though the size of the obfuscated program
may reveal the number of different accepting paths. To classify input (xi)i∈[n],
one computes the set of encodings for every i ∈ [n], by calculating H(fp(xi)),
where p ∈ {0, . . . , ℓ − 1} and for each such encoding, concatenates n entries
sorted in order of i, and hashes them using Hc. For an accepting input, one
of the generated hashes will be contained in the set hashes published by the
obfuscator.

2 Preliminaries

Let S be a set defined by an integer interval as S = {x ∈ N : 1 ≤ x ≤ n}.
We denote by |S|, size of the set S. We use the standard notations to denote
intervals as (a, b), (a, b], [a, b) and [a, b], for a, b ∈ N. We denote l-bit binary
encoding of n as rℓ−1.2

ℓ−1 + · · · + r0.2
0 for n ∈ N+, where ri ∈ {0, 1}. We

denote hamming weight of n as wt(n) =
∑ℓ−1

i=0 ri. For a program C, we denote
its size by |C|. We rely upon the notion of computational security and follow
the asymptotic approach throughout the paper. We provide the honest parties
and the adversaries with a security parameter λ ∈ N. We model the adversaries
as a family of probabilistic polynomial time (PPT) programs, running in time
a.λc, for some constants a, c. A function µ : N → R+ is called negligible in n,
if is grows slower than n−c, for every constant c. We measure negligibility with
respect to the security parameter λ. We use ∥ni=1 ai to denote concatenation of
a sequence of strings (a1, . . . , an).

3 Obfuscation Definitions

In this section, we present the standard definition of obfuscation and discuss
distributional virtual black box (DVBB) security that our obfuscator satisfies.

5

We give formal definitions of evasive functions, as our obfuscator targets this
specific class of functions.

Definition 3.1 (Distributional Virtual Black-Box Obfuscation [2,3]).
Let λ ∈ N be the security parameter. Let C = {Cλ} be the family of polynomial-
size programs parameterized by inputs of length n(λ), and let D = {Dλ} be
the class of distribution ensembles, where Dλ is a distribution over Cλ . A PPT
algorithm O is an obfuscator for the family C and the distribution D, if it satisfies
the following conditions:

• Functionality Preservation : For every λ ∈ N and for every C ∈ Cλ, there
exists a negligible function µ(λ), such that:

Pr
O

[∀x ∈ {0, 1}n(λ) : C̃(x) = C(x)] > 1− µ(λ)

where the probability is over the coin tosses of O.

• Polynomial Slowdown : For every λ ∈ N and for every C ∈ Cλ, there exists
a polynomial q such that the running time of O(C) is bounded by q (|C|),
where |C| denotes the size of the program.

• Virtual Black-box : For every (non-uniform) polynomial size adversary A,
there exists a (non-uniform) polynomial size simulator S with oracle access
to C, such that for every distribution D ∈ Dλ:∣∣∣ Pr

C←Dλ,O,A
[C(A(O(C)) = 1]− Pr

C←Dλ,S
[SC(1λ) = 1]

∣∣∣ ≤ µ(λ)

where µ(λ) is a negligible function.

Definition 3.2 (Evasive Program Collection [2]). A collection of programs
C = {Cn}n∈N parameterized by inputs of length n(λ) is called evasive, if there
exists a negligible function µ(λ), such that for every λ ∈ N and every input
x ∈ {0, 1}n(λ):

Pr
C←Cλ

[C(x) = 1] ≤ µ(λ)

where the oracle access to the program allows at most p(n) queries.

4 Decision Trees

In this section we briefly introduce binary decision trees and present some re-
lated formal definitions that will be used throughout the paper. Without loss of
generality, we define decision tree as a full binary tree and restrict classification
labels to be in {0, 1}, i.e. the tree provides binary classification.

Definition 4.1 (Decision Trees). Let n, d, ℓ ∈ N and (xi)
n
i=1 = (x1, . . . xn) ∈

Nn be a finite sequence of input elements, where xi is an integer between 0 and
2ℓ − 1 and represents the value of some attribute for all i ∈ [n] . Classification

6 Banerjee et al.

of an input (x1, . . . , xn) is defined as evaluation of the classification function
C : Nn → {0, 1}, (x1, . . . , xn) 7→ C(x1, . . . , xn) based on a model decision tree
defined as follows:

A full binary tree where D = (v1, . . . , v2d) denotes decision nodes in level-
order sequence, and d is the depth of the tree. Let S = (s1, . . . , s2d+1) be the se-
quence of labels of terminal nodes where sk ∈ {0, 1}. Each node vj ∈ D associates
a Boolean function gj : {0, 1}ℓ → {0, 1}, (xi) 7→ gj(xi) such that gj(xi) = 1, if
xi ≤ tj, which specifies the branch to walk, where tj ∈ [0, 2ℓ) denotes the thresh-
old value at vj. At input (xi), the function gj iterates (d − 1) times starting
from root node at level 0 such that function gj at level ⌊log2 j⌋ determines which
function gj+1 at the next level ⌊log2(j+1)⌋ to be used, till it reaches the terminal
nodes at level (d− 1) which are labeled by one of the classes in {0, 1}.

v2 v3

0

10

10

0 0

10

1

v1

Fig. 1: Binary classification with a decision tree: the circular nodes represent decision
nodes, and the square nodes represent terminal nodes. Decision nodes are numbered
in level-order sequence. The path in red represents the accepting path with terminal
node labeled 1.

Guided by our objective to prevent an adversary from extracting the model, we
make an effort to define assets in a classification program. Each decision node
vj associates Boolean function gj that checks whether the inequality xi ≤ tj
holds or not. We identify tj and index i in (xi)i∈[n], along with the labels of
terminal nodes S, as critical and central to the predictive behavior of the model.
In what follows, we define Structure of Decision Trees as the assets that we want
to protect in a decision tree classification program.

Definition 4.2 (Structure of Decision Trees). For each decision node vj ∈
D, there exists a tuple [[tj , i]], where tj denotes the corresponding threshold value
and i denotes the index in the sequence (x1, . . . , xn). Structure of a decision tree,
denoted by str(C) defines the sequence of 2d tuples and the sequence of labels of
the terminal nodes S.

We assume xi to be compared at most twice along an accepting path. Let
wmax ∈ N and ci, ci + wi be integers between 0 and 2ℓ − 1 and wi ∈ [0, wmax].
Consider xi ≤ ci +wi and xi > ci along a path from root at level 0 till terminal
nodes at level d− 1. The collection of inequalities define an interval (ci, ci +wi],
where xi is true. Finally, C((xi)i∈[n]) = 1 if xi ∈ (ci, ci + wi] for every i ∈ [n].

7

Definition 4.3 (Decision Region). Let n, ℓ, wmax ∈ N. Let ci, ci + wi be
integers between 0 and 2ℓ − 1 and wi ∈ [0, wmax). Define decision region to
be the hyper-rectangular region formed by n overlapping intervals (ci, ci + wi]
determined by the classification function C, such that xi ∈ (ci, ci +wi] for every
i ∈ [n].

Evasive Function Family. As stated in Definition 4.1, a binary classification
program maps input (xi)i∈[n] to one of the classes {0, 1}. From [25], it is evident
that an adversary, by identifying the accepting/rejecting inputs, can extract the
model (learn the assets in the classification program using binary search) within
polynomial attempts. From our discussion in Section 1, we can conjecture that it
is impossible to protect the privacy of the model from generic model-extraction
attacks, and this is our intuition behind restricting to a special class of classifica-
tion programs, for which it is computationally hard to find an accepting input.
We call this evasive collection which states that for every input, a random pro-
gram selected from this collection evaluates to 0 with overwhelming probability.
In what follows, we define evasive decision tree collection, with the exclusive
goal of obfuscating this class of programs, such that adversary cannot learn the
assets from the input/output behavior of the programs. Throughout the paper,
we assume that an adversary knows the domain of inputs, but not the accepting
inputs.

Definition 4.4 (Evasive Decision Tree Collection). Let C = {Cλ}λ∈N be
a family of polynomial-size classification functions where Cλ defines a set of
decision tree classifiers with a security parameter λ. Every C ∈ Cλ maps an
input sequence {xi}i∈[n] to a single output bit, where n = n(λ) and d = d(λ).
We say, C is evasive, if there exists a negligible function µ such that for every
λ ∈ N, for every input (xi)i∈[n] :

Pr
C←Cλ

[C ({xi}i∈[n]) = 1] ≤ µ(λ)

In short, Definition 4.4 points out that for every {xi}i∈[n], a program C chosen
randomly from the collection Cλ evaluates to 1 with negligible probability.

Any distribution Xn ∈ [0, 2ℓ)n defines a distribution Cλ, such that C ← Cλ com-
putes whether an input (xi)i∈[n] is accepted or not. This is equivalent to choosing
(c1, . . . , cn)← Xn and (w1, . . . , wn) ∈ [0, wmax)

n, such that xi ∈ (ci, ci+wi], for
every i ∈ [n]. For the program collection to be evasive, it is necessary that this
probability is negligible. Thus we require Xn to have large entropy. As uniform
distributions provide the highest entropy, we have the best possible conditions
guaranteed under these distributions. However, while dealing with real-world
applications, we might come across scenarios where the sampling is done from
non-uniform distributions. Intuitively, the scenarios that lead to non-evasiveness
are: (1) the decision regions are too big; (2) the number of points in the space
[0, 2l)

n
representing (c1, . . . , cn) are too few; (3) the decision regions overlap

with each other. Figure 2 shows two example distributions that lead towards

8 Banerjee et al.

non-evasiveness in decision trees. Hence for an evasive collection, the distribu-
tion Xn needs to have a large number of points representing (c1, . . . , cn). Adding
to that, the distribution needs to be ’well-spread’, such that the overlapping be-
tween points are relatively small. We further this discussion with the calculation

h1

h2

h3
h

(a) (b)

Fig. 2: Two example cases of distributions which lead towards non-evasiveness: (a)
Decision region h1 is very big. (2) Overlapping decision regions h1, h2 and h3.

of the required parameters for identifying an evasive program collection. We
start with uniform distribution on [0, 2l)

n
, where n, ℓ are polynomials in λ.

Lemma 4.1. Let n, ℓ ∈ N. Let ci is integer between 0 and 2ℓ − 1 and wi is
an integer between 0 and wmax − 1. The maximum number of elements in the
decision region defined by (ci, ci + wi], for i ∈ [n], is at most (wmax)

n.

Proof. For an ci selected uniformly in [0, 2ℓ), wi has to be selected such that
wi < wmax, for some wmax ∈ N. It can be readily seen that the number of ways
of selecting the elements along an interval is wmax. For all the n intervals chosen
uniformly and independently of each other, the number of possible ways is at
most (wmax)

n.

Lemma 4.2. Let λ ∈ N be the security parameter and n, ℓ, wmax ∈ N, where
wmax ≤ 2(ℓ−

λ
n). Fix an input (xi)i∈[n]. Then the probability that (xi)i∈[n] belongs

to the decision region defined by (ci, ci + wi], for i ∈ [n], where ci is chosen
uniformly from [0, 2ℓ), wi is chosen uniformly from [0, wmax), is not more than
2−λ.

Proof. The total number of points in the space [0, 2ℓ)n is given by 2ℓn. The input
(xi)i∈[n] is contained in the decision region defined by (ci, ci +wi], i ∈ [n], when
xi ∈ (ci, ci + wi] for every i ∈ [n], where ci and wi are chosen uniformly from
[0, 2ℓ) and [0, wmax) respectively.

Now, for a fixed input (x1, . . . , xn) to be contained in the decision region, the ci’s
need to be selected such that ci ∈ (xi−wi, xi], for every i ∈ [n]. It can be readily
seen from Lemma 4.1 that the number of ways of selecting (c1, . . . , cn) such that
the wi’s are less than wmax are (wmax)

n and thus the probability that (xi)i∈[n]

belongs to the decision region defined by (ci, ci + wi) is given by (wmax)
n

2ℓn
. For

wmax ≤ 2(ℓ−
λ
n), the above probability is at most 2−λ.

9

Lemma 4.3. Let λ be the security parameter and ℓ, n are polynomials in λ. Let

wmax = wmax(λ) be some function such that wmax(λ) ≤ 2ℓ(λ)−
λ

n(λ) . Let 2−λ be
a negligible function. Let Xn be an uniform distribution on [0, 2ℓ)n and Cλ be
the corresponding distribution on decision trees that checks if (xi)i∈[n] belongs to
the decision region defined by the ci’s and wi’s in the distribution. Then Cλ is
an evasive program collection.

Proof. A uniform distribution on [0, 2ℓ)
n

defines a Cλ, and we need to show
that for every λ ∈ N and every (xi)i∈[n], Pr

C←Cλ

[C((xi)i∈[n]) = 1] ≤ µ(λ). For a

C ← Cλ, probability that (xi)i∈[n] gets accepted is equivalent to the probability

of choosing intervals (ci, ci + wi], where ci ← [0, 2ℓ), wi ← [0, wmax], such that
xi ∈ (ci, ci + wi], for every i ∈ [n]. It is evident from Lemma 4.2 that the
probability is at most 2−λ, which is a negligible function in λ.

We next discuss what it means to learn a decision tree classification program.
An attacker aims to reverse-engineer the program to identify str(C) and thus
unlearnability means that an attacker, with oracle access to the C, cannot de-
termine str(C) with overwhelming probability.

Definition 4.5 (Unlearnable Decision Trees). A collection of classification
functions C is unlearnable, if for every polynomial time adversary A with oracle
access to C, there exists a negligible function µ, such that for every λ ∈ N:

Pr
C←Cλ

[(A)C(1λ) = str(C)] ≤ µ(λ)

5 Constructing the Obfuscator for Evasive Decision Trees

This section presents our construction for obfuscating evasive decision trees along
with an introduction to some basic assumptions and an insight to the building
blocks availed for designing the proposal.

5.1 Setup

Without loss of generality, we assume decision trees to be full binary trees that
perform binary classification on an input (xi)i∈[n], where xi ∈ {0, 1}ℓ. We con-
sider a decision tree classification program C ← Cλ with depth d. We denote
internal nodes by (v1, . . . , v2d) and terminal nodes by S = (s1, . . . , s2d+1). An
accepting path Psτ is defined to be the sequence of tuples [[tj , i, b]], such that vj
is an ancestor node of sτ ∈ S, where sτ = 1 and b ∈ {0, 1} denotes the output
of Boolean function gj(xi). We assume each element in the input sequence to
be used at most twice along an accepting path. This assumption in reasonable,
since any collection of inequalities in the form xi ≤ tj or xi > tj defines an
interval and so is defined by a pair of comparisons. We assume that Evaluation
procedure (Algorithm 5.6) is oblivious to the tuples in Psτ and is only allowed
to know d.

10 Banerjee et al.

5.2 Building Blocks.

We want the obfuscated tree to be unlearnable i.e. we aim to hide str(C) from
a PPT adversary. To achieve the same, we develop a library of building blocks
that enables encoding arbitrary integer intervals, which we leverage to build our
obfuscator.

Reducing Inequality into Intervals A decision node associates function g :
{0, 1}ℓ → {0, 1}, such that g(x) = 1, if x ≤ t and 0 otherwise, where t is
any integer between 0 and 2ℓ − 1. Thus, the Boolean function splits the integer
interval [0, 2ℓ) at each node into two distinct partitions, call it X = [0, t+1) and
X ′ = [t+1, 2ℓ), where each interval contains ℓ-bit binary encoding of the integers.
We further divide intervals X and X ′ into a sequence of disjoint sub-intervals of
the form [a, a+2p), which is the primary building block of our construction. We
present the formal description in Algorithm 5.1 and Algorithm 5.2.

Algorithm 5.1 GenIntX (t)

Input: ℓ ∈ N, t ∈ [0, 2ℓ)
Output: {[aj , aj + 2pj)}j∈[k]

1: Compute X = [0, t+ 1), where X contains ℓ-bit binary encoding of integers.
2: Compute k = wt(|X |), where wt(n) calculates hamming weight of n.
3: Partition [0, t+1) into k disjoint sub-intervals [aj , aj +2pj), such that aj = aj−1 +

2pj−1 and a1 = 0, where p1, . . . , pk (p1 > p2 > · · · > pk) denote the bit positions
of the 1’s in the binary encoding of |X |.

Algorithm 5.2 GenIntX ′(t)

Input: ℓ ∈ N, t ∈ [0, 2ℓ)
Output: {[aj , aj + 2pj)}j∈[k]

1: Compute X ′ = [t+ 1, 2ℓ), where X ′ contains ℓ-bit binary encoding of integers.
2: Compute k′ = wt(|X ′|).
3: Partition [t + 1, 2ℓ) into k′ disjoint sub-intervals [aj , aj + 2pj), such that aj =

aj−1 +2pj−1 and a1 = t+1, where p1, . . . , pk′ (p1 < p2 < · · · < pk′) denote the bit
positions of the 1’s in the binary encoding of |X ′|.

Intersection of Intervals. Let IX be a set of sub-intervals, all of the form
[a, a + 2j) for some a and j. Let IX’ be a set of sub-intervals, all of the form
[b, b+2r) for some b and r. Define intersection of IX and IX’ as I = {I∩J : I ∈ IX,
J ∈ IX’} \ ∅.

Lemma 5.1. Let ℓ ∈ N. Consider algorithms GenIntX (Algorithm 5.1) and
GenIntX ′ (Algorithm 5.2). Let c, c+w ∈ Z be such that 0 ≤ c < c+w < 2ℓ. Let
IX ← GenIntX (c + w), IX’ ← GenIntX ′(c). Let I = {I ∩ J : I ∈ IX, J ∈ IX’} \ ∅.
Then every interval in I is of the form [a, a+ 2i], for some i.

11

Proof. We will prove that if I ∈ IX and J ∈ IX ′ are such that I ∩ J ̸= ∅,
then I ⊆ J or J ⊆ I. GenIntX (c + w) divides [0, c + w + 1) into k disjoint sub-
intervals [aj , aj + 2pj), where k is the hamming weight of ℓ-bit binary encoding
of c + w + 1. Since pj > pj−1, we can conclude that 2p1 ≤ c + w + 1 < 2p1+1

and IX = {[0, 2p1), . . . , [2p1 + · · · + 2pk−1 , 2p1 + · · · + 2pk)}, where ℓ > p1. Since
c ∈ [0, c+ w + 1), we consider the following:

• If c+ 1 = 2q, where q ≤ p1, then IX’ = {[2i, 2i+1)}i∈{q,q+1,...,ℓ−1}, and it can
be clearly seen that for every non-empty intersection I ∩ J , either I ⊆ J or
J ⊆ I.

• If 2q−1 < c + 1 < 2q, where q ≤ p1. Let k′ be the hamming weight of ℓ-bit
binary encoding of 2q− (c+1). Then, for J ∈ {[c+1, c+1+2p

′
1), . . . , [c+1+

· · ·+ 2p
′
k′−1 , c+ 1+ · · ·+ 2p

′
k′)}, where 2q = c+ 1+ · · ·+ 2p

′
k′ , J ⊆ I, where

I = [0, 2p1). Also note, for J = [2p1 , 2p1+1) and I ∈ IX \ {[0, 2p1)}, I ⊆ J .
• If 2p1 + · · ·+2pm−1 ≤ c+1 < 2p1 + · · ·+2pm , where m ≤ k. Since GenIntX ′(c)
divides [c+1, 2ℓ) into k′ sub-intervals {[br, br+2p

′
r)}r∈[k′], then let p′1 < · · · <

p′s ≤ pm < p′s+1 < · · · < p′k′ for some s < k′. Let I = [2p1 + · · ·+2pm−1 , 2p1 +
. . . ,+2pm) ∈ IX. Then, for a non-empty intersection J , let J ∈ IX’ be such
that I ∩ J ̸= ∅. Then J is an element of the set {[c+ 1, c+ 1+ 2p

′
1), . . . , [c+

1+ · · ·+2p
′
s−1 , c+1+ · · ·+2p

′
s)}. Note that, 2p1 + · · ·+2pm = c+1+ · · ·+2p

′
s

as 0 to m− 1 bits of 2ℓ− (c+1) and 2p1 + · · ·+2pm − (c+1) are equal, and
thus J ⊆ I. For all other non-empty intersections, I ⊆ J .

It is clear from algorithms 5.1 and 5.2 that |IX|, |IX’| ≤ ℓ (when the hamming
weight of |X | and |X ′| are ℓ). Let |IX| = |IX’| = ℓ . Since 0 ̸∈ (c, c+w], there exists
an [aj , aj + 2pj) ∈ IX, such that [aj , aj + 2pj) ̸∈ I. Also, since 2ℓ − 1 ̸∈ (c, c+w]

as wt(c+w+1) = ℓ, there exists a [br, br+2p
′
r) ∈ IX’, such that [br, br+2p

′
r) ̸∈ I

and thus |I| ≤ 2ℓ− 2.

Encodings of Interval. Let I be a set of sub-intervals, all of the form [a, a+2j).
The encoder (Algorithm 5.3) receives I as input and outputs the set of encodings
{h1, . . . , h|I|}. Define a family of functions F as follows: F = {f0, . . . , fℓ−1}
where fi(y) : {0, 1}ℓ → {0, 1}ℓ−i such that fi(y) = ⌊ y

2i ⌋. Let H : {0, 1}∗ →
{0, 1}ω be a hash function with ℓ < ω such that H is injective on the set of all
strings of length less than or equal to ℓ. The decoding algorithm 5.4 receives as
input {h1, . . . , hk|I|} ← IntEnc (I) and x ∈ {0, 1}ℓ and outputs 1 if x belongs to
any of the sub-intervals in I.

Algorithm 5.3 IntEnc

Input: I = {[aj , aj + 2pj)}j∈[k]

Output: {h1, . . . , hk}
1: for j = 1 to k do
2: Compute µj = fpj (aj)
3: return hj = H(µj).
4: end for

12 Banerjee et al.

Algorithm 5.4 Dec (with embedded data {h1, . . . , h|I|})

Input: ℓ ∈ N, x ∈ {0, 1}ℓ
Output: 0 or 1.
1: for i = 0 to ℓ− 1 do
2: Compute H(fi(x))
3: if H(fi(x)) ∈ {h1, . . . , h|I|} then
4: return 1
5: end if
6: end for
7: return 0

Lemma 5.2 (Correctness). Consider Algorithms GenIntX (Algorithm 5.1),
GenIntX ′ (Algorithm 5.2), IntEnc (Algorithm 5.3), Dec (Algorithm 5.4) and input
x ∈ {0, 1}ℓ. Let IX ← GenIntX (c + w) and IX’ ← GenIntX (c) and I ← IX ∩ IX’.
Let H : {0, 1}∗ → {0, 1}ω be injective on the set of all strings of length less
than or equal to ℓ, where ℓ < ω. For every integer c, c + w ∈ [0, 2ℓ), for every
{h1, . . . , h|I|} ← IntEnc (I) and for every x ∈ (c, c+ w], Dec outputs 1.

Proof. Let I = {[aj , aj + 2pj)}j∈[k], then from Lemma 5.1, we can say that⋃k
j=1[aj , aj + 2pj) contains all sub-intervals in (c, c+ w]. Let x be an integer in

(c, c+w], then it must belong to at least one of the sub-intervals in I. Algorithm
5.3 computes fpj

(y) = µj , for every [aj , aj + 2pj) ∈ I. If x ∈ [aj , aj + 2pj),
then there exists an i ∈ {0, . . . , ℓ − 1} such that fi(x) = fpj (aj) = µj . Hence
H(fi(x)) ∈ {h1, . . . , h|I|} ← IntEnc(I) and Dec outputs 1. If x ̸∈ [aj , aj + 2pj),

∄ i = {1, . . . , ℓ − 1}, such that fi(x) ∈ (µj)
|I|
j=1 and therefore, (h1, . . . , h|I|) will

not contain H(fi(x)). Finally, Dec will correctly reject the input.

5.3 Obfuscator OD

We now put forward the design of proposed decision tree obfuscator OD which
takes C ∈ Cλ as input and produces C ′ ∈ C′, where C′ denotes a separate family
of polynomial-size programs. We remind the readers that S is the set of terminal
nodes and sτ = 1 denotes an accepting path. Each accepting path through the
tree is a conjunction of inequalities, and our objective is the obfuscate each such
conjunction using our encoding technique for interval membership functions.
Note that, our construction uses the fact that the terms in a conjunction can
be reordered. Each xi ∈ (xi)i∈[n] is present at most twice along an accepting
path, and as such the collection of inequalities xi ≤ (ci +wi) and xi > ci define
xi ∈ (ci, ci + wi], where ci, ci + wi ∈ (t1, . . . , t2d). Ultimately, C((xi)i∈[n])) = 1,
if xi ∈ (ci, ci + wi], for every i ∈ [n]. Our aim is to encode (ci, ci + wi] for every
i ∈ [n] along an accepting path. To do so, we calculate IiX ← GenIntX (ci + wi)
and IiX’ ← GenIntX ′(ci) which gives the set of sub-intervals in [0, ci+wi+1) and
[ci+1, 2ℓ) respectively. Next, we determine Ii ← IiX∩IiX’ to generate sub-intervals,
the union of which is equivalent to the interval (ci, ci+wi]. To encode the interval,

13

we calculate encodings Ai ← IntEnc (Ii). Let Hc : {0, 1}∗ → {0, 1}q be a hash
function which maps arbitrary length bit strings to q-bit strings. Finally, for
every element in Ai, we concatenate n entries sorted in ascending order of i
and hash them using Hc and publish the hashes. Formally, the obfuscation and
evaluation is given in Algorithms 5.5 and 5.6 respectively.

Algorithm 5.5 Obfuscator OD
Input: d, n, ℓ ∈ N, str(C).
Output: α hash values, where α ≤ |S|ℓd−1.
1: Compute Psτ = ([[tj , i, b]] : vj is an ancestor of sτ ∈ S, sτ = 1 and b = gj(tj)).
2: for all τ such that sτ = 1 do
3: for i = 1 to n do
4: if [[tj1 , i, 1]] ∈ Psτ then
5: IiX ← GenIntX (tj1)
6: end if
7: if [[tj2 , i, 0]] ∈ Psτ then
8: IiX’ ← GenIntX ′(tj2)
9: end if
10: Ii ← IiX ∩ IiX’

11: if Ii = ϕ then
12: Ai = 1ℓ

13: else
14: Ai ← IntEnc (Ii)
15: end if
16: end for
17: end for
18: Denote Ai = {hi

1, . . . , h
i
σi
}, where σ ≤ ℓ.

19: for all (qi ∈ σi ∧ hi
qi ∈ A

i) do
20: return Hc(∥ni=1h

i
qi)

21: end for

Algorithm 5.6 Evaluation (with embedded α hashes published by OD)
Input: B = (x1, . . . , xn), ℓ, d.
Output: 0 or 1.
1: for i = 1 to n do
2: Ei ← 1ℓ ∪ {H(f0(xi)), . . . , H(fℓ−1(xi))}
3: end for
4: Ei = {hi

1, . . . , h
i
σ}, σ ≤ ℓ+ 1.

5: for all (q1, ..., qi) ∈ (σ1, . . . , σn) do
6: if Hc(∥i∈[n]h

i
qi) is contained in the set of α hashes then

7: return 1
8: else
9: return 0
10: end if
11: end for

14 Banerjee et al.

5.4 Correctness and Efficiency

In this section we analyze the correctness of the our construction and evaluate
the efficiency of the proposed obfuscator.

Lemma 5.3 (Correctness.). Consider Algorithms 5.5 and 5.6 and an input
(xi)i∈[n], where xi ∈ {0, 1}ℓ. For every [[tj , i, b]] ∈ Psτ , where integer tj ∈
[0, 2ℓ−1], i ∈ {1, . . . , n}, b ∈ {0, 1}, every S = (s1, . . . , s2d+1), where sτ ∈ {0, 1},
every set of α hashes output by Algorithm 5.5 and every input (xi)i∈[n], if
C((xi)i∈[n]) = 1, Algorithm 5.6 outputs 1, and 0 otherwise.

Proof. Algorithm 5.5 calculates set of encodings Ai ← IntEnc (Ii) for every
i ∈ [n]. If ∃ i such that [[tj , i, b]] ̸∈ Psτ , then Ai ← 1ℓ. Let (xi)i∈[n] be an
accepting input. Then from Definition 4.3, it is evident that xi ∈ (ci, ci+wi], for
every i ∈ [n]. From Lemma 5.2, we can conclude that if xi ∈ (ci, ci + wi], then
there exists a unique hi

k ∈ E i, such that hi
k ∈ Ai. If ∃ i, such that [[tj , i, b]] ̸∈ Psτ ,

then hi
k = 1ℓ = Ai. Thus, for an accepting input (xi)i∈[n], there exists a unique

(h1
k1
, . . . , hn

kn
), where hi

ki
∈ E i and Hc(h

1
k1
∥ . . . ∥nkn

) will be contained in the set
of α hashes published by OD and Algorithm 5.6 will correctly output 1.

If C((xi)i∈[n]) ̸= 1, then from Lemma 5.2 it is evident that ∄ hi
k such that

hi
k ∈ E i and hi

k ∈ Ai. Thus Hc(h
1
k1
∥ . . . ∥hn

kn
) will not be contained in the set

of α hashes published by the obfuscator OD with overwhelming probability and
Algorithm 5.6 will correctly reject the input.

Efficiency. Let λ ∈ N, and d, ℓ, n are polynomials in λ. Storing [[tj , i, b]] at a
decision node requires (ℓ+log n+1) bits. Since |Ai| < 2ℓ, where each hash value
is of ω bits, overall storage (in bits) along an accepting path Psτ is given by
costsτ < 2(nℓω + ℓ + log n + 1). Since |S| = m + 1, where m is the number of
decision nodes, # accepting paths < m + 1; the overall complexity for storing
the obfuscated decision tree is given by O

(
mℓ(logn

ℓ + nω)
)
. Evaluation requires

ℓ + 1 computations at each decision node, with the overall running time of the
order O

(
ℓd
)
.

We now prove polynomial slowdown only for some special cases.

Lemma 5.4 (Polynomial Slowdown). Let λ ∈ N be the security parameter
and ℓ, n, d be polynomials in λ. Define Tλ to be a special family of evasive
decision trees, where d = 5 and ℓ = λ

4 . For every C ← Tλ, there exists a
polynomial p such that the running time of OD(C) is bounded by p(|C|, λ).

Proof. Let C ← Tλ computes whether an input (xi)
n
i=1 is contained in the deci-

sion region defined by intervals (ci, ci +wi], where wi ∈ [0, wmax). From Lemma

4.2, we get wmax ≤ 2ℓ−
λ
n , which specifies the maximum width of the intervals.

For evasiveness, we require ℓ − λ
n ≥ 0, which gives ℓn ≥ λ. Now, for ℓ = λ

4 and
n = 4, we get ℓn = λ, which is a feasible condition for evasiveness. Since d = 5,
we equate d− 1 = n. The cost of evaluating OD is given by ℓn = (λ4)

4.

15

Parameters for Secure Construction of OD. The aim of this section is to
explain how to choose the necessary parameters that adhere to the restrictions
of a secure and efficient obfuscator. Our a priori knowledge on the parameters
are as follows: ℓ = ℓ(λ), d = d(λ), n = n(λ), where λ ∈ N is the security pa-
rameter. For evasiveness, the maximum width of the intervals representing the

decision regions should be wmax(λ) ≤ 2ℓ(λ)−
λ

n(λ) keeping to Lemma 4.2. Adding
to that, we require d ≤ n+1. We give some example parameters along with their
bit-security in Table 1.

d ℓ n λ α β Total Cost (in bits)

5 64 4 128 1274 654 80× 654

3 64 2 64 1272 652 80× 652

Table 1: Example parameter sets for an obfuscated decision tree with wmax ≤ 2ℓ−
λ
n ,

ω = 80 bits and one accepting path, where ω is the output size of hash function Hc.
For each parameter set, we calculate the number of hashes α (maximum value) and β
computed by algorithms 5.5 and 5.6 respectively, along with the overall complexity.

6 Proof of VBB Security

Our VBB security is based upon the random oracle paradigm. The security of our
construction relies upon the existence of two preimage resistant hash functions
H : {0, 1}∗ → {0, 1}ω and Hc : {0, 1}∗ → {0, 1}q, which we model as random
oracles. Our objective is to show that a PPT adversary having access to the
obfuscated function has no advantage over a simulator having oracle access to
the function. This is achieved by a simulating the execution of the adversary and
outputting what the adversary does, such that the adversary cannot distinguish
between the simulation and the real environment, a notion called simulation-
based obfuscation. We first give a brief intuition to our security proof. If an
adversary never queries the circuit with an accepting input, the everything is
a correct simulation. However, if the adversary does query the circuit with an
accepting input, then the security reduction immediately uses this clue to mount
a model extraction attack, and hence learn the corresponding accepting path in
the decision tree. The security reduction can run the obfuscator correctly for
that accepting path, and program the random oracles to be consistent with the
simulated OD. Hence, again everything is a correct simulation.

Theorem 6.1. Let λ ∈ N be the security parameter and ℓ = ℓ(λ) and n = n(λ).
Let Cλ be a special family of evasive decision trees following Lemma 5.4. Then
for random oracles H : {0, 1}∗ → {0, 1}ω and Hc : {0, 1}∗ → {0, 1}q, the decision
tree obfuscator OD is a VBB obfuscator.

Proof.As evident from Lemma 5.2,OD satisfies functionality preservation. Lemma
5.4 shows that the obfuscator causes polynomial slowdown. Thus it suffices to

16 Banerjee et al.

show that there exists a (non-uniform) PPT simulator S for every (non-uniform)
PPT adversary A, such that for an ensemble of decision tree evasive distributions
Cλ, the following holds:

Pr
C←Cλ

[C(AO(1λ, C))) = 1]− Pr
C←Cλ

[SC(1λ) = 1]
∣∣∣ ≤ µ(λ)

Every C ← Cλ identifies unique (c1, . . . , cn)← Xn and(w1, . . . , wn)← [0, wmax)
n

and on input (x1, . . . , xn) checks if xi ∈ (ci, ci+wi], for all i ∈ [n]. Let O(1λ, C) =
{h1, . . . , hα} denote the obfuscation of C. Let A be a PPT adversary that takes
as input O(1λ, C). We use this adversary to design a PPT simulator S that
simulates an execution of A.

Since A expects the oracles H and Hc, S provides a simulation of both the
oracles. In order to record the choices of the random oracles, S maintains two
tables : T1 to record responses for queries to H and T2 to record responses for
queries to Hc. Since S does not have access to O(1λ, C), it prepares a purported
obfuscation of C as follows: It takes as input π = (α, ℓ, n) and samples val-
ues uniformly at random from the co-domain of Hc to compute the purported
obfuscation of C, given by {h′1, . . . , h′α}.

We assume that Amakes polynomially many queries to both the random oracles.
We use the notation A → u to indicate that adversary A is making a random
oracle query u and A ← v to indicate that v is returned to A as a response
to this query. When A queries random oracle H with u∗, the simulator looks
up v such that (u∗, v) ∈ T1 and returns it to the adversary. If no such v exists,
then the simulator assigns v with a value chosen uniformly at random from the
co-domain of H, registers the value in T1 and returns it to A.

WhenAmakes a query h∗ to the random oracleHc, the simulator checks for a val
such that (h∗, val) ∈ T2 and returns it to A. If there are no entries corresponding
to h∗, the simulator parses h∗ as a sequence of n strings (h∗i)i∈[n] and looks up
table T1 to find an entry corresponding to each string.

If there does not exist any entry in T1 corresponding to the parsed strings, then
val← {0, 1}q, entry (h∗, val) is recorded in T2 and val is returned it A. If there
exists a unique u such that (u, h∗i) ∈ T1, then the simulator calculates j ← ℓ−|u|,
where |u| denotes the bit length of u, and xi ← u × 2j . Since u corresponds to
the representative value µj for a correct input, adding j 0’s yields an accepting
input for C.

Eventually, the simulator queries the oracle C with the (xi). If C returns 1, S
determines the ci’s and wi’s, calculates pairs (u, v) and registers the entries in
T1. Thereafter the simulator calculates the α input entries of T2 ,maps them to
the α entries from the purported set {h′1, . . . , h′α}, registers the pairs in T2 and
returns val to the adversary. If there are multiple entries in T1, the simulation
halts. The simulation in form of pseudo code is presented as follows:

17

Algorithm 6.1 Simulator SC(1λ, π)
Initialize:

for i = 1 to α do
h′
i←$ {0, 1}q ▷ Set denoting purported obfuscation

end for
T1 ← (); T2 ← () ▷ Initialize tables to record choices of the random oracles
counter ← 0

/* Begin simulation for adversary A*/

Hash Query:

A → u∗ ▷A submits hash query to H
if (u∗, v) ̸∈ T1 then

v←$ {0, 1}ω
T1 ← T1 ∪ (u∗, v)

end if
if ∃ w (u∗ ̸= w), such that (u∗, v) ∈ T1 and (w, v) ∈ T1 then

HALT ▷ Simulation aborts
end if
A ← v ▷ Return v as response to A

A → h∗ ▷ A submits hash query to Hc

if (h∗, val) ̸∈ T2 then
Parse h∗ as sequence (h∗

i)i∈[n]

for i = 1 to n do
if ∃! u, such that (u, h∗

i) ∈ T1 then
counter ← counter ++
j ← ℓ− |u|
xi ← u× 2j

end if
end for
if (counter < n) then

val←$ {0, 1}q
T2 ← T2 ∪ (h∗, val)

else
S → (x1, . . . , xn) ▷ S submits (x1, . . . , xn) to the oracle C
if S ← 1 then

Determine (c1, . . . , cn) and (w1, . . . , wn) using Binary Search
Calculate pairs (u, v)
T1 ← T1 ∪ (u, v)
if ∃ u1, u2 (u1 ̸= u2), such that (u1, v) ∈ T1 and (u2, v) ∈ T1 then

HALT ▷ Simulation aborts
else

for i = 1 to α do
Calculate hi

vali ← h′
i

T2 ← T2 ∪ (hi, vali)
end for

end if
else

val←$ {0, 1}q
T2 ← T2 ∪ (h∗, val)

end if
end if

end if

A ← val ▷ Return val as a response to A

18 Banerjee et al.

At any point, the simulated view is identical to the real view such that the
adversary cannot distinguish between the real and purported obfuscation.

We now analyze the scenario where the simulator fails due to conflicts in table
T1 and show that the probability of such conflicts is negligible in λ.

Lemma 6.1. Let λ ∈ N be the security parameter and let ℓ, n, α are polynomials
in λ. Let Cλ be an ensemble of decision tree evasive distributions and let O(1λ, C)
denote the obfuscation of C ← Cλ. Consider Algorithm 6.1 and random oracles
H : {0, 1}∗ → {0, 1}ω(λ) and Hc : {0, 1}∗ → {0, 1}q(λ). Let η = η(λ) be the
number of entries in T1, then there exists a negligible function µ(λ) such that:

Pr
C←Cλ

[SC(1λ, π) =⊥] ≤ µ(λ)

where S is a (non-uniform) PPT algorithm having oracle access to the function
C.

Proof. The simulation fails when there is a conflict in table T1 and S halts.
Conflicts may arise when S has responded to a random oracle query u∗ to H
with v←${0, 1}ω and later, on the hash query h∗ to Hc, it makes a call to oracle
C and populates T1 with a pair (w, v) such that w ̸= u∗. The probability that
a conflict occurs in T1 is equal to the probability that a hash value is same as
at least one of the η values in table T1. Since H : {0, 1}∗ → {0, 1}ω(λ), there
are 2ω(λ) choices for a hash value. When there are no entries in T1, the collision
probability is 0, when there is one entry in T1, the collision probability is 1

2ω(λ)

and continuing the same way, when there are η− 1 entries in T1, the probability

of collision is (η−1)
2ω(λ) . Assuming all the samples are independent, the probability

with which SC(1λ, π) fails is given by:

Pr
C←Cλ

[SC(1λ, π) =⊥] =
1 + · · ·+ (η − 1)

2ω(λ)

=
η2 − η

2ω(λ)+1

≤ µ(λ)

7 Conclusion

In this paper, we have designed a new special-purpose VBB obfuscator for binary
evasive decision trees. While doing so, we have presented an encoder for hiding
parameters in an interval-membership function. Our security analysis follows
the Random Oracle paradigm. To the best of our knowledge, our construction
provides the first non-interactive solution for privacy-preserving classification
with evasive decision trees. Furthermore, our methods rely upon hash functions
as opposed to computationally expensive cryptographic primitives used by the
state-of-art protocols.

19

References

1. Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Villani, Domenico
Vitali, and Giovanni Felici. Hacking smart machines with smarter ones: How to
extract meaningful data from machine learning classifiers. International Journal
of Security and Networks, 10(3):137–150, 2015.

2. Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and
Amit Sahai. Obfuscation for evasive functions. In Theory of Cryptography Con-
ference, pages 26–51. Springer, 2014.

3. Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil
Vadhan, and Ke Yang. On the (im) possibility of obfuscating programs. In Annual
international cryptology conference, pages 1–18. Springer, 2001.

4. Mauro Barni, Pierluigi Failla, Vladimir Kolesnikov, Riccardo Lazzeretti, Ahmad-
Reza Sadeghi, and Thomas Schneider. Secure evaluation of private linear branch-
ing programs with medical applications. In European symposium on research in
computer security, pages 424–439. Springer, 2009.

5. Mauro Barni, Pierluigi Failla, Riccardo Lazzeretti, Annika Paus, Ahmad-Reza
Sadeghi, Thomas Schneider, and Vladimir Kolesnikov. Efficient privacy-preserving
classification of ecg signals. In 2009 First IEEE International Workshop on Infor-
mation Forensics and Security (WIFS), pages 91–95. IEEE, 2009.

6. James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. New techniques
for obfuscating conjunctions. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 636–666. Springer, 2019.

7. Allison Bishop, Lucas Kowalczyk, Tal Malkin, Valerio Pastro, Mariana Raykova,
and Kevin Shi. A simple obfuscation scheme for pattern-matching with wildcards.
In Annual International Cryptology Conference, pages 731–752. Springer, 2018.

8. Edward S Blurock. Automatic learning of chemical concepts: Research octane
number and molecular substructures. Computers & chemistry, 19(2):91–99, 1995.

9. Joppe W Bos, Kristin Lauter, and Michael Naehrig. Private predictive analysis on
encrypted medical data. Journal of biomedical informatics, 50:234–243, 2014.

10. Raphael Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine
learning classification over encrypted data. Cryptology ePrint Archive, 2014.

11. Justin Brickell, Donald E Porter, Vitaly Shmatikov, and Emmett Witchel. Privacy-
preserving remote diagnostics. In Proceedings of the 14th ACM conference on
Computer and communications security, pages 498–507, 2007.

12. Ran Canetti. Towards realizing random oracles: Hash functions that hide all par-
tial information. In Annual International Cryptology Conference, pages 455–469.
Springer, 1997.

13. Ran Canetti, Guy N Rothblum, and Mayank Varia. Obfuscation of hyperplane
membership. In Theory of Cryptography Conference, pages 72–89. Springer, 2010.

14. Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder VL Pereira. Sortinghat:
Efficient private decision tree evaluation via homomorphic encryption and transci-
phering. Cryptology ePrint Archive, 2022.

15. Christine Decaestecker, Myriam Remmelink, Isabelle Salmon, Isabelle Camby, De-
nis Goldschmidt, Michel Petein, Philippe Van Ham, Jean-Lambert Pasteels, and
Robert Kiss. Methodological aspects of using decision trees to characterise leiomy-
omatous tumors. Cytometry: The Journal of the International Society for Analyt-
ical Cytology, 24(1):83–92, 1996.

16. Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks
that exploit confidence information and basic countermeasures. In Proceedings

20 Banerjee et al.

of the 22nd ACM SIGSAC conference on computer and communications security,
pages 1322–1333, 2015.

17. Steven D Galbraith and Lukas Zobernig. Obfuscated fuzzy hamming distance and
conjunctions from subset product problems. In Theory of Cryptography Conference,
pages 81–110. Springer, 2019.

18. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pages 612–621. IEEE, 2017.

19. Manish Kesarwani, Bhaskar Mukhoty, Vijay Arya, and Sameep Mehta. Model
extraction warning in mlaas paradigm. In Proceedings of the 34th Annual Computer
Security Applications Conference, pages 371–380, 2018.

20. Taesung Lee, Benjamin Edwards, Ian Molloy, and Dong Su. Defending
against model stealing attacks using deceptive perturbations. arXiv preprint
arXiv:1806.00054, 2018.

21. Soham Pal, Yash Gupta, Aditya Shukla, Aditya Kanade, Shirish Shevade, and
Vinod Ganapathy. A framework for the extraction of deep neural networks by
leveraging public data. arXiv preprint arXiv:1905.09165, 2019.

22. Erwin Quiring, Daniel Arp, and Konrad Rieck. Forgotten siblings: Unifying attacks
on machine learning and digital watermarking. In 2018 IEEE European symposium
on security and privacy (EuroS&P), pages 488–502. IEEE, 2018.

23. Craig Silverstein and Stuart M Shieber. Predicting individual book use for off-site
storage using decision trees. The Library Quarterly, 66(3):266–293, 1996.

24. Raymond KH Tai, Jack PK Ma, Yongjun Zhao, and Sherman SM Chow. Privacy-
preserving decision trees evaluation via linear functions. In European Symposium
on Research in Computer Security, pages 494–512. Springer, 2017.

25. Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Stealing machine learning models via prediction {APIs}. In 25th USENIX security
symposium (USENIX Security 16), pages 601–618, 2016.

26. Hoeteck Wee. On obfuscating point functions. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 523–532, 2005.

27. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under lwe. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 600–611. IEEE, 2017.

28. Huadi Zheng, Qingqing Ye, Haibo Hu, Chengfang Fang, and Jie Shi. Bdpl: A
boundary differentially private layer against machine learning model extraction
attacks. In European Symposium on Research in Computer Security, pages 66–83.
Springer, 2019.

	Obfuscating Decision Trees

