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Abstract. We present a new encoder for hiding parameters in an in-
terval membership function. As an application, we design a simple and
efficient virtual black-box obfuscator for evasive decision trees. The secu-
rity of our construction is proved in the random oracle model. Our goal
is to increase the class of programs that have practical and cryptograph-
ically secure obfuscators.
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1 Introduction

Program obfuscation has received considerable attention by the cryptographic
community in recent years. An obfuscator O is a probabilistic polynomial-time
algorithm that transforms a program C to a semantically equivalent counterpart
C̃, such that a secret that is efficiently computable from C, is hard to extract
given C̃.

The definitional framework of program obfuscation was given by Barak et al.
in their seminal work [4] using a simulation-based security paradigm. They es-
tablished the notion of virtual black-box (VBB) obfuscation, where a polynomial-
time adversaryA that takes input C̃ has a negligible advantage over a polynomial-
time simulator S who only has oracle access to C; in short, anything that is
efficiently computable from C̃, can also be computed efficiently from the input-
output access to the program. Their main results rule out the possibility of
designing efficient obfuscators for a generic class of programs. However, obfus-
cators for specific families of programs may be achievable. Canetti [14] shows
the construction of an efficient obfuscator for point functions, that achieves a re-
laxed notion of virtual black-box security using a probabilistic hashing algorithm
R, which imitates the ‘useful’ properties of a random oracle. The obfuscated
program stores R(x), where x is sampled uniformly from a superlogarithmic
min-entropy distribution, such that on input y, outputs 1 if R(x) = R(y). Such
favoring assertions were followed by designing efficient VBB obfuscators for a
special family of functions (evasive functions [3]) which achieve the goal that
a PPT adversary cannot distinguish between the obfuscation of C drawn ran-
domly from the function family and obfuscation of a function that always outputs
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zero. Notable works in this direction include obfuscation of point-functions [30],
pattern-matching with wildcards [7,8], compute-and-compare programs [21,31],
fuzzy-matching for Hamming distance [19], hyperplane membership [15], etc.

In this paper, we focus on a new technique for encoding interval membership
functions. This is motivated by designing an efficient virtual black-box obfuscator
for evasive decision trees (see Definition 3).

1.1 Privacy-Preserving Classification using Decision Trees

In the interest of establishing the usefulness and significance of obfuscating deci-
sion trees, we provide a brief overview on privacy-preserving classification using
decision tree classifiers.

Decision tree classifiers are extensively used for prediction and analysis in
sensitive applications such as spam detection, medical or genomics, stock invest-
ment, etc. [9,17,28].

Consider an example of a medical facility (model-provider) who designs a
model from sensitive profiles of patients to diagnose certain disease. The model
is then outsourced to a cloud server to provide classification to a user who wants
to make a prediction about her health. If the model is leaked, the sensitive
training data will be disclosed [1,18], breaching the HIPAA1 compliance. What’s
more, the user does not want to reveal her queries and classification results to
the cloud server. This calls for privacy-preserving classification techniques, where
the model should be hidden from anyone but the model-provider, and prediction
queries/classification must remain private to the user, such that no leakage of
useful information happen during the classification phase.

The state-of-art privacy-preserving classification solutions employ an inter-
active approach: encrypt and outsource the model to cloud server, where it
processes encrypted queries and forwards encrypted classification to the users.
The solutions involve multiple rounds of communication and rely upon expensive
cryptographic computations using fully-homomorphic encryption (FHE) [10,11],
garbled circuits [5,6], etc. Brickell et al. [13] suggest an interactive two-party pro-
tocol employing additive homomorphic encryption and ml oblivious transfers
(where l is the bit-length of each input feature and m is the number of decision
nodes), restricting the user from performing multiple queries on the encrypted
tree. In their well-known work, Bost et al. [11] present a comparison protocol be-
tween model-provider and the user for each node in the decision tree using FHE
methods. Tai et al. [25] make use of multiple communication rounds to transfer
the path costs and encrypted labels to the client. The authors of [16] design an
FHE-based solution (SortingHat) to secure prediction queries and classification
results with reduced communication costs, but do not guarantee the privacy of
the model.

Our motivation for obfuscating decision trees is to eliminate interaction be-
tween user and the model-provider/cloud server. In particular, we aim to con-
struct an efficient non-interactive solution to privacy-preserving classification

1 Health Insurance Portability and Accountability Act of 1996
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with evasive decision trees. We now explain why we do not consider obfuscating
arbitrary decision trees. If a decision tree can be learned from the input-output
behaviour of the model, then protecting the privacy of the model is impossi-
ble. Note that, learning a decision tree means identifying the decision nodes
and input attributes associated with them, and identifying the accepting nodes.
Tramer et al. [29] show that a decision tree can be learned through m · log2(b/ϵ)
oracle queries, where m · log2(b/ϵ) oracle queries, where m is the number of
internal nodes, b is the minimum width of an interval in a node, and ϵ is the
specified precision value; they call it model extraction attack. To prevent such
attacks, the existing literature observes API calls to issue warnings [23,27] or
adds perturbations [24,32]. However, since there are no theoretical restrictions
on the number of prediction queries made by a user [26], limiting them is not
reasonable approach towards thwarting such attacks. We define a special class
of decision trees, for which it is hard to find an accepting input, such that an
efficient algorithm cannot extract the model except with negligible probability;
we call such decision trees evasive, and claim that if a decision tree is not evasive,
then it is impossible to protect the privacy of the model, and hence there is no
choice but to restrict to evasive decision trees.

Our restriction to evasive decision trees means that our methods are not
generally applicable to classifiers produced by machine learning algorithms. The
whole point of machine learning is to learn a model based on training data.
Unless the training data is very specifically chosen, then it follows that a classifier
produced by a machine learning process will be learnable from black box access,
because we can use the black box classifier to generate new training data and
then run a learning algorithm on the new training data to produce a new classifier
for the same model. This means that classifiers produced by machine learning
in the real world are generally not evasive and hence preserving privacy of the
model is impossible. Similarly, if one starts with an evasive decision tree and
evaluates it on random inputs then all of them will be rejected. Hence such
data is not useful training data for a machine learning tool. In conclusion, this
paper is about human-made evasive decision trees, not decision trees produced
by machine learning tools.

Lockable obfuscation (also called compute-and-compare obfuscation) [21,31]
is a very general tool which encodes a class of branching programs under learning-
with-errors (LWE) assumption. It could be employed to build a decision tree
obfuscator, by writing the decision tree as a circuit. Nevertheless, we focus on
solutions that are simpler and potentially more practical. In [12], the authors
initiate a theoretical investigation on decision tree obfuscation based on indis-
tinguishability obfuscation [20] which is the ‘best-possible’ obfuscation from the
point of view of VBB, but does not guarantee the privacy of the decision tree
model. We aim to achieve stronger notions of security that allow us to protect
the privacy of the model.

Our work has been used in a recent paper by Banerjee et al. [2]. The authors
aim to provide security against reverse-engineering of PLC programs concerning
critical industrial facilities (nuclear-enrichment etc.) in order to prevent infamous
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attacks such as Stuxnet [22]. They extend our scheme to design a platform
ObfCP, with empirical results that reflect its efficiency in real-time applications.

1.2 Our Contributions

We present a new technique for encoding interval membership functions. As an
application, we construct an efficient VBB obfuscator for evasive decision trees
(see Definition 6). We focus on trees of bounded number of inputs and depth.

Note that, we do not consider privacy-preserving methods to construct the
model. How the decision tree is constructed is out of the scope of this study. A
technical briefing of our construction follows.

Technical Overview. We consider decision trees that perform binary classi-
fication based on the values of n attributes. Attributes are represented as ℓ-bit
strings xi, and are interpreted as integers in [0, 2ℓ). A decision tree is a full
binary tree of depth d. Internal node vj (also called decision node) associates
threshold tj , where tj is an integer between 0 and 2ℓ − 1. Each decision node
tests xi ≤ tj for some i. The leaf nodes (s1, . . . , s2d) are labelled 0 (reject) or
1 (accept). Hence the decision tree is represented by the pairs [[tj , i]], and the
labels on the leaf nodes.

Without loss of generality we may assume that, for any specific path from
the root to an accepting leaf, xi is compared at most twice. Hence each accepting
path corresponds to a sequence of interval membership predicates xi ∈ (ci, ci +
wi]. The key observation is that membership xi ∈ (ci, ci + wi] can be expressed
as a union of distinct predicates xi ∈ [a, a+2p) for certain pairs (a, p). Each such
predicate can be turned into a point function predicate and hence be obfuscated
using hashing. We explain the details in the next paragraph.

Let fi : {0, 1}ℓ → {0, 1}ℓ−i such that fi(y) = ⌊ y
2i ⌋ for i ∈ {0, 1, . . . , ℓ − 1}.

Calculate intersection of sub-intervals Ii corresponding to (ci, ci+wi] (of the form
[a, a+2p)). Encode each entry in Ii using H(fp(a)), where H : {0, 1}∗ → {0, 1}ω
is a cryptographic hash function; call the set Bi. Note that, this method converts
interval membership predicate xi ∈ [a, a+2p) into a point function predicate that
determines whether H(fp(a)) is equal to H(fq(xi)) for some q ∈ {0, . . . , ℓ− 1}.
Finally, for each encoding in Bi, concatenate n entries sorted in the order of
i, apply cryptographic hash function Hc : {0, 1}∗ → {0, 1}q, and publish the
set of hashes. Reordering the nodes in the order of i along each accepting path
hides the structure, though the size of the obfuscated program may reveal the
number of different accepting paths. To classify input (xi)i∈[n], compute the
set of encodings E i by calculating H(fq(xi)), where q ∈ {0, . . . , ℓ − 1} and for
each encoding, concatenate n entries sorted in order of i, and apply Hc. For an
accepting input, one of the hashes computed by the evaluation procedure will
be contained in the set of hashes published by the obfuscator.
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2 Preliminaries

We denote by |S|, size of a set S. We use the standard notations to denote
intervals as (a, b), (a, b], [a, b) and [a, b], for a, b ∈ N. We denote by ⌊x⌋ the
integral part of x, where x ∈ R. We use log2(n) to denote the power to which 2
should be raised to obtain the value n ∈ N. We denote the binary encoding of n
as rℓ−1 · 2ℓ−1 + · · ·+ r0 · 20 for n ∈ N+, where ri ∈ {0, 1}. We denote Hamming

weight of n as wt(n) =
∑ℓ−1

i=0 ri. For a program C, we denote its size by |C|.
We provide the honest parties and the adversaries with a security parameter

λ ∈ N. We model the adversaries as a family of probabilistic polynomial time
(PPT) programs, running in time a · λc, for some constants a, c. A function
µ : N → R+ is called negligible in n, if it grows slower than n−c, for every
constant c. We measure negligibility with respect to the security parameter λ.
We use x←$ X to denote x is drawn uniformly at random from the space X.
Finally, we let ∥ni=1 (ai) denote concatenation a1∥a2∥ · · · ∥an of the sequence
(ai)i∈[n].

3 Obfuscation Definitions

In this section, we present the standard definition of obfuscation and distribu-
tional virtual black box (DVBB) security that our obfuscator satisfies.

Definition 1 (Distributional Virtual Black-Box Obfuscation [3,4]). Let
λ ∈ N be the security parameter. Let C = {Cλ} be a family of polynomial-size
programs parameterized by inputs of length n(λ), and let D = {Dλ} be a class of
distribution ensembles, where Dλ is a distribution over Cλ. A PPT algorithm O
is an obfuscator for the distribution D, if it satisfies the following conditions:

• Correctness: For every λ ∈ N and for every x ∈ {0, 1}n(λ), there exists a
negligible function µ(λ), such that:

Pr
O,C←Dλ

[O(C)(x) = C(x)] > 1− µ(λ)

where the probability is over the sampling of the program and coin tosses of
O.

• Polynomial Slowdown: There exists a polynomial q such that for every λ ∈ N
and for every C ∈ Dλ, the running time of O(C) is bounded by q(|C|), where
|C| denotes the size of the program.

• Virtual Black-Box: For every (non-uniform) polynomial size adversary A,
there exists a (non-uniform) polynomial size simulator S with oracle access
to C, such that for every λ:∣∣∣ Pr

C←Dλ,O,A
[A(O(C)) = 1]− Pr

C←Dλ,S
[SC(1λ) = 1]

∣∣∣ ≤ µ(λ)

where µ(λ) is a negligible function.
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Definition 2 (Evasive Program Collection [3]). A distribution of programs
D = {Dλ}λ∈N parameterized by inputs of length n(λ) is called evasive, if there
exists a negligible function µ(λ), such that for every λ ∈ N, and for every input
x ∈ {0, 1}n(λ)

Pr
C←Dλ

[C(x) = 1] ≤ µ(λ)

where the probability is taken over the random sampling of C from Dλ.

4 Decision Trees

In this section, we formalize binary decision trees. Without loss of generality, we
consider decision trees to be full binary trees and restrict to binary classification.
Following this, we introduce evasive decision trees and what it means to learn a
decision tree.

Definition 3 (Decision Trees). Let n, d, ℓ ∈ N and (xi)
n
i=1 = (x1, . . . xn) ∈

Nn be a finite sequence of input elements, where xi is an integer between 0 and
2ℓ − 1 that represents the value of some attribute.

A decision tree is a representation of a function C : [0, 2ℓ)n → {0, 1}. It is
a full binary tree of depth d with internal nodes (v1, . . . , v2d−1) (where v1 is the
root, v2, v3 are nodes at the second level, and so on) and leaf nodes (s1, . . . , s2d).
Leaf node sk ∈ {0, 1} gives the value of the function C. Internal nodes vj are
labelled by a pair [[tj , i]] that defines a predicate gj as gj(xi) = 1 if and only if
xi ≤ tj. To evaluate the tree on an input (x1, . . . , xn), one follows a path from
the root to a leaf, by taking the left child if gj = 0 and the right child if gj = 1.
The output is the value of the leaf sk at the end point of this walk in the tree.

v2 v3

0

10

10

0 0

10

1

v1

Fig. 1. Binary classification with a decision tree: the circular nodes represent decision
nodes, and the square nodes represent leaf nodes. Decision nodes are numbered in
level-order sequence. The path in brown represents the accepting path with leaf node
labeled 1.

To define model extraction resistance we define the assets of a decision tree.
Note that a decision tree does not necessarily have a unique representation.
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Definition 4 (Asset of Decision Tree). Let C be the function represented
by a decision tree. We define asset(C) to be a sequence of pairs [[tj , i]] and a
sequence of leaf nodes (s1, . . . , s2d) such that the corresponding decision tree from
Definition 3 defines the same function C.

Without loss of generality we may assume xi to be compared at most twice
along an accepting path. We stress that different accepting paths may arise
from different comparisons of xi. It follows that each accepting path is checking
xi ∈ (ci, ci +wi] for some ci and wi. As we now explain, for evasiveness we need
the wi to be not too large, so we introduce an upper bound wmax ∈ N.

Definition 5 (Decision Region). Let n, ℓ, wmax ∈ N. Let ci, ci + wi be
integers between 0 and 2ℓ − 1 and wi ∈ (0, wmax]. Define a decision region as
the hyper-rectangle formed by n intervals (ci, ci + wi].

Evasive Function Family. As already explained, it is impossible to hide the as-
sets in a learnable decision tree. Hence we study evasive decision trees. Through-
out the paper, we assume that an adversary knows the domain of inputs, but
not the accepting inputs.

Definition 6 (Evasive Decision Tree Distribution). Let D = {Dλ}λ∈N be
a distribution of polynomial-size classification functions represented as decision
trees of depth d(λ) on n(λ) variables. We say D is evasive, if there exists a
negligible function µ such that for every λ ∈ N, for every input (xi)i∈[n(λ)]

Pr
C←Dλ

[ P ((xi)i∈[n(λ)]) = 1] ≤ µ(λ)

In short, Definition 6 requires that for every (xi)i∈[n], a program C chosen
randomly from the distribution evaluates to 1 with negligible probability.

h1

h2

h3
h

(a) (b)

Fig. 2. Two example cases of distributions which lead towards non-evasiveness: (a)
Decision region is very big. (b) Overlapping decision regions h1, h2 and h3 always
accept a point x in their common intersection.
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A distribution Xn ∈ [0, 2ℓ)n defines a distribution Dλ, such that C ←
Dλ computes whether an input (xi)i∈[n] is accepted or not as follows: sam-
ple (c1, . . . , cn) ← Xn and (w1, . . . , wn) ← (0, wmax]

n. The accepted inputs
satisfy xi ∈ (ci, ci + wi] for every i ∈ [n]. For the program collection to be
evasive, it is necessary that, for fixed (x1, . . . , xn), the probability is negligible
that xi ∈ (ci, ci + wi] for every i. Thus we require Xn to have large entropy.
As uniform distributions provide the highest entropy, this is the best case. How-
ever, real-world applications may have accepting regions that are less uniform.
The scenarios that lead to non-evasiveness are: (1) the decision regions are too
big (so a random x is likely to be in the set); (2) the number of points in the
space [0, 2l)

n
representing (c1, . . . , cn) is too few (not enough entropy); (3) the

decision regions overlap each other (so one can choose x from the intersection
of the regions). Figure 2 shows two example distributions that give non-evasive
decision trees. Hence for an evasive collection, the distribution Xn needs to have
high entropy and it needs to be “well-spread” (meaning that a set of randomly
chosen accepting regions should have empty intersection).

We now calculate some parameters that suffice for evasiveness. We start with
uniform distribution on [0, 2l)

n
where n, ℓ are polynomials in λ.

Lemma 1. Let n, ℓ ∈ N. Let ci be an integer between 0 and 2ℓ − 1 and wi be
an integer between 1 and wmax. The number of elements in the decision region
(c1, c1 + w1]× · · · × (cn, cn + wn] is at most (wmax)

n.

Proof. Each interval has length at most wmax. ⊓⊔

Lemma 2. Let λ ∈ N be the security parameter and n, ℓ, wmax ∈ N, where
wmax ≤ 2(ℓ−

λ
n ). Fix an input (xi)i∈[n]. Choose uniformly ci ∈ [0, 2ℓ) and wi ∈

(0, wmax]. Then the probability that (xi)i∈[n] belongs to the decision region defined

by (ci, ci + wi], for i ∈ [n] is not more than 2−λ.

Proof. The total number of points (xi)i∈[n] in the space [0, 2ℓ)n is 2ℓn. By Lemma
1, the decision region defined by (ci, ci + wi], i ∈ [n] has size (wmax)

n. Hence
uniformly sampled input (xi)i∈[n] is contained in the decision region with prob-

ability (wmax)
n

2ℓn
. For wmax ≤ 2(ℓ−

λ
n ), the above probability is at most 2−λ. ⊓⊔

The result shows that if the intervals (ci, ci + wi]’s are uniformly chosen

with wi ≤ 2(ℓ−
λ
n ), then the probability that an input (fixed a priori) belongs to

the decision region is negligible in λ. We now prove that the class of decision
tree functions defined by uniform distributions that follow the above mentioned
parameter restrictions, forms an evasive program collection.

Lemma 3. Let λ ∈ N be the security parameter, and let ℓ, n be polynomials in

λ. Let wmax = wmax(λ) be a function such that wmax(λ) ≤ 2ℓ(λ)−
λ

n(λ) . Let 2−λ

be a negligible function. Let Xn be the uniform distribution in [0, 2ℓ)n, and let
Dλ be the corresponding distribution on decision trees that determines if (xi)i∈[n]
belongs to the decision region defined by the ci’s and wi’s. Then Dλ is an evasive
program distribution.
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Proof. The uniform distribution on [0, 2ℓ)
n
defines Dλ. We need to show that for

every λ ∈ N and every (xi)i∈[n], Pr
C←Dλ

[C((xi)i∈[n]) = 1] ≤ µ(λ). For C ← Dλ,

the probability that (xi)i∈[n] is accepted by C is equal to the probability that
(xi) lies in the product of uniformly chosen intervals (ci, ci+wi] as above. Lemma
2 shows the probability is at most 2−λ, which is a negligible function in λ. ⊓⊔

We next discuss what it means to learn an evasive decision tree. If a decision
tree is unlearnable, then there is no model extraction attack.

Definition 7 (Unlearnable Decision Trees). A collection of classification
functions C is unlearnable, if for every polynomial time algorithm A with oracle
access to C, there exists a negligible function µ, such that for every λ ∈ N:

Pr
C←Dλ

[AC(1λ) = asset(C)] ≤ µ(λ)

Remark 1. Note that evasiveness implies unlearnability, because evaluating an
evasive function always returns 0 with overwhelming probability and so no in-
formation about the function is provided by these queries.

We now explore general distributions. As already discussed, we do not want
the support of the distribution to have ’few’ points and the decision regions to be
clustered along the distribution (clumped distribution) so that we can eliminate
the possibilities of non-evasiveness. An important metric for quantifying the
randomness of a distribution is min-entropy, which measures the difficulty of
correctly guessing a sample from a given distribution.

Definition 8 (Min-entropy). A random variable X has a min-entropy, de-
fined by H∞(X) = − log [ maxx Pr [X = x]] and an average (conditional) min-
entropy on a (possibly) correlated random variable Y defined by H∞(X|Y ) =
− log ( Ey←Y [ maxx Pr [X = x|Y = y]].

Definition 9 (Decision Tree Min-entropy). Let ℓ, n be polynomials in the

security parameter λ ∈ N. Let wmax ≤ 2(ℓ−
λ
n ). Let X be a random variable on

[0, 2ℓ)n. Then the decision tree min-entropy of X is defined as:

HD,∞(X) = − log [ max
(xi)ni=1∈ Nn

Pr [X ∈
n∏

i=1

(xi − wmax, xi]]

Lemma 4. Let λ ∈ N be the security parameter, and let D = Dλ be an ensemble

of distributions over [0, 2ℓ(λ))n(λ). For wmax(λ) ≤ 2ℓ(λ)−
λ

n(λ) , Dλ is decision tree
evasive distribution, if min-entropy of Dλ is at least λ.

5 Obfuscating Evasive Decision Trees

In this section, we introduce a new technique for encoding interval membership
functions. We follow this with a description of our decision tree obfuscator.
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5.1 Setup

Without loss of generality, we assume decision trees to be full binary trees that
perform binary classification on an input (xi)i∈[n], where xi ∈ {0, 1}ℓ. We con-
sider a decision tree function C ∈ Dλ with a depth d. We denote decision nodes
by (v1, . . . , v2d−1) and leaf nodes by S = (s1, . . . , s2d). An accepting path pathsτ
is defined the sequence of tuples [[tj , i, b]], such that vj is an ancestor node of
sτ ∈ S, where sτ = 1 and b ∈ {0, 1} denotes the output of the predicate gj(xi).
We assume each element in the input sequence to be compared at most twice
along an accepting path. This assumption in reasonable, since any collection of
inequalities in the form xi ≤ tj and xi > tj defines an interval, and so is defined
by a pair of comparisons. We assume that the evaluation procedure (Algorithm
6) is oblivious to the tuples in pathsτ . This implies the depth is at most two
times the number of input elements.

5.2 Encoding Intervals

We now describe our technique to encode integer intervals. We then extend this
to construct our decision tree obfuscator.

Converting an Inequality into Intervals. A decision node tests x ≤ t for
some fixed t ∈ [0, 2ℓ). In other words, the node partitions [0, 2ℓ) into X = [0, t+1)
and X ′ = [t + 1, 2ℓ). We further divide X and X ′ into disjoint sub-intervals of
the form [a, a+2p). This is the primary building block of our construction. The
formal procedure is given in Algorithms 1 and 2.

Algorithm 1 GenIntX (t)

Input: ℓ ∈ N, t ∈ [0, 2ℓ)
Output: IX = {[aj , aj + 2pj )}j∈[k]

1: IX = ∅ ; temp = 0
2: Compute k = wt(t+ 1)
3: Compute p1, . . . , pk, such that t+ 1 =

∑k
j=1 2

pj and pj < pj−1

4: IX = {[0, 2p1)}
5: for j = 2 to k do
6: aj = temp+ 2pj−1

7: IX = IX ∪ {[aj , aj + 2pj )}
8: temp = aj

9: end for
10: return IX

Lemma 5. Let ℓ ∈ N and t ∈ [0, 2ℓ). Consider algorithms GenIntX (Algorithm
1) and GenIntX ′ (Algorithm 2). Let IX ← GenIntX (t) and IX ′ ← GenIntX ′ . Then
IX defines sub-intervals of the form [a, a + 2p) for some a and p, whose union
is [0, t+ 1), and IX ′ defines sub-intervals of the form [b, b+ 2p

′
) for some b and

p′, whose union is [t+ 1, 2ℓ).
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Algorithm 2 GenIntX ′(t)

Input: ℓ ∈ N, t ∈ [0, 2ℓ)

Output: IX ′ = {[bj , bj + 2p
′
j )}j∈[k′]

1: IX ′ = ∅ ; temp = t+ 1
2: Compute k′ = wt(2ℓ − t− 1)

3: Compute p′1, . . . , p
′
k′ , such that 2ℓ − t− 1 =

∑k′

j=1 2
p′j and p′j > p′j−1

4: IX ′ = [temp, 2p
′
1)

5: for j = 2 to k′ do
6: bj = temp+ 2p

′
j−1

7: IX ′ = IX ′ ∪ {[bj , bj + 2p
′
j )}

8: temp = bj
9: end for
10: return IX ′

Proof. GenIntX (t) divides [0, t+1) into k disjoint sub-intervals {[aj , aj+2pj )}j∈[k]
such that

∑k
j=1 2

pj = t + 1 and pj < pj−1. Since a1 = 0, aj = aj−1 + 2pj−1 ,

we can write IX = {[0, 2p1), [2p1 , 2p1 + 2p2), . . . , [
∑k−1

j=1 2
pj ,

∑k
j=1 2

pj )}, and the
union of these intervals is [0, t+ 1).

GenIntX ′(t) divides [t+1, 2ℓ) into k′ disjoint sub-intervals {[bj , bj+2p
′
j )}j∈[k′]

such that
∑k′

j=1 2
p′
j = 2ℓ−t−1 and p′j > p′j−1. Since b1 = t+1, bj = bj−1+2p

′
j−1 ,

we can write IX ′ = {[t + 1, t + 1 + 2p
′
1), [t + 1 + 2p

′
1 , t + 1 + 2p

′
1 + 2p

′
2), . . . , [t +

1 +
∑k′−1

j=1 2p
′
j , t+ 1 +

∑k′

j=1 2
p′
j )}, and the union of these intervals is [t+ 1, 2ℓ).

⊓⊔

Intersection of Intervals. Let IX be a set of sub-intervals, all of the form
[a, a + 2p) for some a and p. Let IX ′ be a set of sub-intervals, all of the form
[b, b+2r) for some b and r. Define the intersection of IX and IX ′ as IX ∩IX ′ :=
{I ∩ J : I ∈ IX , J ∈ IX ′} \ ∅.

Lemma 6. Let ℓ ∈ N. Consider algorithms GenIntX (Algorithm 1) and GenIntX ′

(Algorithm 2). Let c, c + w ∈ Z be such that 0 ≤ c < c + w < 2ℓ. Let IX ←
GenIntX (c + w), IX ′ ← GenIntX ′(c). Let I = IX ∩ IX ′ = {I ∩ J : I ∈ IX , J ∈
IX ′} \ ∅. Then every interval in I is of the form [a, a + 2i), for some i, and
|I| ≤ 2ℓ− 2.

Proof. We will prove that if I ∈ IX and J ∈ IX ′ are such that I ∩ J ̸= ∅,
then I ⊆ J or J ⊆ I. GenIntX (c + w) divides [0, c + w + 1) into k disjoint sub-
intervals [aj , aj + 2pj ), where k is the Hamming weight of ℓ-bit binary encoding
of c + w + 1. Since pj < pj−1, we can conclude that 2p1 ≤ c + w + 1 < 2p1+1

and IX = {[0, 2p1), . . . , [2p1 + · · ·+ 2pk−1 , 2p1 + · · ·+ 2pk)}, where ℓ > p1. Since
c ∈ [0, c+ w + 1), we consider the following:

• If c+1 = 2q, where q ≤ p1, then IX ′ = {[2i, 2i+1)}i∈{q,q+1,...,ℓ−1}, and it can
be clearly seen that for every non-empty intersection I ∩ J , either I ⊆ J or
J ⊆ I.
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• If 2q−1 < c + 1 < 2q, where q ≤ p1. Let k
′ be the Hamming weight of ℓ-bit

binary encoding of 2q− (c+1). Then, for J ∈ {[c+1, c+1+2p
′
1), . . . , [c+1+

· · ·+ 2p
′
k′−1 , c+ 1+ · · ·+ 2p

′
k′ )}, where 2q = c+ 1+ · · ·+ 2p

′
k′ , J ⊆ I, where

I = [0, 2p1). Also note, for J = [2p1 , 2p1+1) and I ∈ IX \ {[0, 2p1)}, I ⊆ J .
• If 2p1 + · · ·+2pm−1 ≤ c+1 < 2p1 + · · ·+2pm , where m ≤ k. Since GenIntX ′(c)
divides [c+1, 2ℓ) into k′ sub-intervals {[br, br+2p

′
r )}r∈[k′], then let p′1 < · · · <

p′s ≤ pm < p′s+1 < · · · < p′k′ for some s < k′. Let I = [2p1 + · · ·+2pm−1 , 2p1 +
. . . ,+2pm) ∈ IX . Then, for a non-empty intersection J , let J ∈ IX ′ be such
that I ∩ J ̸= ∅. Then J is an element of the set {[c+ 1, c+ 1+ 2p

′
1), . . . , [c+

1+ · · ·+2p
′
s−1 , c+1+ · · ·+2p

′
s)}. Note that, 2p1 + · · ·+2pm = c+1+ · · ·+2p

′
s

as 0 to m− 1 bits of 2ℓ− (c+1) and 2p1 + · · ·+2pm − (c+1) are equal, and
thus J ⊆ I. For all other non-empty intersections, I ⊆ J .

It is clear from Algorithm 1 and 2 that |IX |, |IX ′ | ≤ ℓ (when the Hamming
weight of |X | and |X ′| are ℓ). Let I = IX ∩ IX ′ and consider any H ∈ I. By
the above, either H = I for some I ∈ IX or H = J for some J ∈ IX ′ . It
follows that |I| ≤ |IX | + |IX ′ |. In the case H = I, there is some J ∈ IX ′ such
that I ⊆ J , and so J itself is not counted in |I|. Similarly in the case H = J
there is some I ∈ IX such that J ⊆ I, and so I is not counted in |I|. Hence
|I| ≤ |IX |+ |IX ′ | − 2 ≤ 2ℓ− 2. ⊓⊔

Calculating the Encodings. Let I be a set of sub-intervals, all of the form
[a, a + 2j). The encoder (Algorithm 3) receives I as input, and outputs the set
of encodings E = {h1, . . . , h|I|}. For i ∈ {0, . . . , ℓ − 1} define fi(y) = ⌊ y

2i ⌋,
which defines a function fi : {0, 1}ℓ → {0, 1}ℓ−i. Let H : {0, 1}∗ → {0, 1}ω be a
cryptographic hash function with ω > 2ℓ so that H is injective when restricted to
inputs of length at most ℓ. A random oracle is not generally injective, but when
the output length is large enough compared to the input then it will be. Our
argument behind imposing this additional constraint onH is that every|⌊ y

2i ⌋| ≤ ℓ
maps to a unique encoding in E. Algorithm 4 receives as input E ← IntEnc(I)
and x ∈ {0, 1}ℓ and outputs 1, if x belongs to any of the sub-intervals in I.

Algorithm 3 IntEnc({[aj , aj + 2pj )}j∈[k])
1: E = ∅
2: for j = 1 to k do
3: Compute µj = fpj (aj)
4: Compute hj = H(µj).
5: E = E ∪ {hj}
6: end for
7: return E

Lemma 7 (Correctness). Let c, c+ w ∈ [0, 2ℓ). Consider algorithms GenIntX
(Algorithm 1), GenIntX ′ (Algorithm 2), IntEnc (Algorithm 3), Dec (Algorithm
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Algorithm 4 Dec (with embedded data E)

Input: ℓ ∈ N, x ∈ {0, 1}ℓ
Output: 0 or 1.
1: for i = 0 to ℓ− 1 do
2: Compute H(fi(x))
3: if H(fi(x)) ∈ E then
4: return 1
5: end if
6: end for
7: return 0

4) and input x ∈ {0, 1}ℓ. Let IX ← GenIntX (c+ w) and IX ′ ← GenIntX (c) and
I ← IX ∩ IX ′ . Let H : {0, 1}∗ → {0, 1}ω be injective when restricted to inputs
of length at most ℓ (e.g., ω > 2ℓ). Then x ∈ (c, c+w] if and only if Dec outputs
1.

Proof. Let I = {[aj , aj + 2pj )}j∈[k], then from Lemma 6 we have (c, c + w] =⋃k
j=1[aj , aj + 2pj ). Let x be an integer in (c, c + w], then it must belong to

one of the sub-intervals in I. Algorithm 3 computes fpj
(aj) = µj , for every

[aj , aj +2pj ) ∈ I. If x ∈ [aj , aj +2pj ), then there exists an i ∈ {0, . . . , ℓ−1} such
that fi(x) = fpj

(aj) = µj . Hence H(fi(x)) ∈ E ← IntEnc(I), and Dec outputs
1. If x ̸∈ (c, c + w] then x does not lie in any of the intervals [aj , aj + 2pj ). It
follows that fi(x) ̸∈ {µj : 1 ≤ j ≤ |I|} and therefore, since H is injective, E will
not contain H(fi(x)). Hence, Dec will correctly reject the input. ⊓⊔

We illustrate the interval encoding technique with the following concrete
setting: consider the interval membership predicate x ∈ (10, 14]. To encode the
interval, calculate IX ← GenIntX (14) and IX ′ ← GenIntX ′(10) which gives the
set of sub-intervals in [0, 15) and [15, 256) for ℓ = 8. Finally, calculate IntEnc(I),
where I ← IX ∩ IX ′ . The sets are indicated as follows:

IX = {[0, 8), [8, 12), [12, 14), [14, 15)}

IX ′ = {[11, 12), [12, 16), [16, 32), [32, 64), [64, 128), [128, 256)}

I = {[11, 12), [12, 14), [14, 15)}

IntEnc(I) = {H(f0(00001011), H(f1(00001100), H(f0(00001110))} = {H(0000
1011), H(0000110), H(00001110)}

5.3 Obfuscator O

We now present our decision tree obfuscatorO. Let S = (s1, . . . , s2d) be the list of
leaf nodes and pathsτ denotes an accepting path through the tree to leaf sτ = 1.
Each accepting path is a conjunction of inequalities, and our objective is to
obfuscate the conjunctions using our encoding technique for interval membership
functions (see Section 5.2). Our construction relies on the fact that the terms in
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a conjunction can be reordered. Recall that xi is compared at most twice along
an accepting path, and hence the accepting path corresponds to xi ∈ (ci, ci+wi]
for every i ∈ [n].

Precisely, the obfuscator works as follows: to encode (ci, ci + wi], calculate
IiX ← GenIntX (ci + wi) and IiX ′ ← GenIntX ′(ci), which gives the set of sub-
intervals in [0, ci+wi+1) and [ci+1, 2ℓ). Next, determine Ii ← IiX ∩IiX ′ which
is a set of sub-intervals whose union is (ci, ci +wi]. To encode each sub-interval
in Ii, calculate encodings Bi ← IntEnc(Ii). Let Hc : {0, 1}∗ → {0, 1}q be a
cryptographic hash function with q ≥ 2ωn (and hence injective on restricted
inputs). The main idea is to concatenate each combination of n hashes sorted in
ascending order of i for each entry in Bi, and apply Hc ; call the set of hashes
B. If |B| < 2d(2ℓ − 2)n, add dummy entries drawn uniformly at random from
{0, 1}q. Finally, output B. We give the formal details in Algorithm 5.

On input (xi)i∈[n], the evaluation procedure calculates all possible encodings
by evaluating H(fp(xi)) for every p ∈ {0, . . . , ℓ − 1}; call it E i = {hi

1, . . . , h
i
σ}.

Finally compute all possible Hc(∥i∈[n]hi
qi), where encodings are listed in ascend-

ing order of i. For an accepting input, one of the computed hash values belongs
to the set B published by O. Formally, the evaluation procedure is specified in
Algorithm 6.

5.4 Correctness and Efficiency

We now analyze the correctness and efficiency of the obfuscator.

Lemma 8 (Correctness.). Let λ ∈ N be the security parameter, and let n,
ℓ, ω and q be polynomials in λ. Consider algorithms O (Algorithm 5) and Eval
(Algorithm 6), and an input (xi)i∈[n] with xi ∈ {0, 1}ℓ. Let H : {0, 1}∗ → {0, 1}ω
with ω > 2ℓ, and let Hc : {0, 1}∗ → {0, 1}q with q > 2ωn. Then for every
[[tj , i, b]] ∈ pathsτ , where tj ∈ [0, 2ℓ), i ∈ {1, . . . , n}, b ∈ {0, 1}, for every S =
(s1, . . . , s2d) with sτ ∈ {0, 1}, for every B ← O, and for every input (xi)i∈[n],
if C((xi)i∈[n]) = 1, then Eval outputs 1, else it outputs 0 with overwhelming
probability in λ.

Proof. Algorithm 5 calculates set of encodings Bi ← IntEnc(Ii) for every i ∈ [n].
If there is some i such that [[tj , i, b]] ̸∈ pathsτ (which means xi is not compared in
the path) then Bi = {1ℓ}. Let (xi)i∈[n] be an accepting input. From Definition 5,
xi ∈ (ci, ci+wi], for every i ∈ [n]. From Lemma 7, if xi ∈ (ci, ci+wi], then there
exists a unique hi

k ∈ E i, such that hi
k ∈ Bi. If ∃ i, such that [[tj , i, b]] ̸∈ pathsτ ,

then hi
k = 1ℓ ∈ Bi. Thus, for an accepting input (xi)i∈[n], there exists a unique

(h1
k1
, . . . , hn

kn
), where hi

ki
∈ E i and Hc(h

1
k1
∥ . . . ∥nkn

) will be contained in B, and
Algorithm 6 will correctly output 1.

If C((xi)i∈[n]) ̸= 1, then by Lemma 7, hash values computed from (xi) will
not match the hash values input to Hc. As we choose parameters such that Hc

is injective, Hc(h
1
k1
∥ . . . ∥hn

kn
) will not be contained in B, except if it equals to

one of its dummy entries. Since the number of possible encodings (in Eval) input
to Hc is 2(ℓ+1)n, and w > 2ℓ, q > 2ωn, the probability that Eval incorrectly
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Algorithm 5 O (d, n, ℓ ∈ N, asset(C))

1: B = ∅
2: α = 2d(2ℓ− 2)n

3: for all τ such that sτ = 1 do
4: Compute pathsτ = ([[tj , i, b]] : vj is an ancestor of sτ , and b = gj(tj))
5: for i = 1 to n do
6: IiX = IiX ′ = [0, 2ℓ)
7: if [[tj1 , i, 1]] ∈ pathsτ then

8: IiX ← GenIntX (tj1)
9: end if
10: if [[tj2 , i, 0]] ∈ pathsτ then

11: IiX ′ ← GenIntX ′(tj2)
12: end if
13: Ii ← IiX ∩ IiX ′

14: if (Ii == [0, 2ℓ)) then
15: Bi = {1ℓ}
16: else
17: Bi ← IntEnc(Ii)
18: end if
19: end for
20: Denote Bi = (hi

1, . . . , h
i
σi
), where σi ≤ 2ℓ− 2 for each i.

21: for all ((q1, . . . , qn) ∈ [σ1]× · · · × [σn]) do
22: B = B ∪ {Hc(∥ni=1h

i
qi)}

23: end for
24: end for
25: while (|B| < α) do
26: r←$ {0, 1}q
27: B = B ∪ {r}
28: end while
29: return B

Algorithm 6 Eval (B with |B| = 2d(2ℓ− 2)n)

Input: (x1, . . . , xn), ℓ, d
Output: 0 or 1
1: for i = 1 to n do
2: Ei ← {1ℓ} ∪ {H(f0(xi)), . . . , H(fℓ−1(xi))}
3: end for
4: Ei = {hi

1, . . . , h
i
σ}, σ ≤ ℓ+ 1

5: for all (q1, ..., qi) ∈ [σ1]× · · · × [σn] do
6: if Hc(∥i∈[n]h

i
qi) ∈ B then

7: return 1
8: end if
9: end for
10: return 0
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accepts the input is given by 2(ℓ+1)n

2q = 1
23ℓn

. Finally, the probability that the α

hash values output by O are good is given by (1− 1
23ℓn

)α ≈ 1− negl(λ). ⊓⊔

Complexity Analysis We now discuss the size complexity of the obfuscated
decision tree. Let λ ∈ N, and d, ℓ, n, q be polynomials in λ.

Along an accepting path, the upper bound on the size of Bi is 2ℓ − 2 (see
Lemma 6). There are n such set of encodings, hence the total number of possible
encodings input to Hc is (2ℓ−2)n. Since, the number of accepting paths is O

(
2d
)
,

the overall complexity of storing the obfuscated tree is O
(
2d+n · ℓn · q

)
, where

q is the output size of Hc. Note that the upper bound α = 2d(2ℓ − 2)n on the
number of hashes is much larger than will be needed for most evasive decision
trees, so in practice this parameter could be chosen a lot smaller to get a more
compact obfuscated program.

Next, we analyze the time complexity of the evaluation procedure (Algorithm
6). Each node corresponds to set of encodings E i, where |E i| = ℓ+1. For n input
attributes, the overall running time of the evaluation algorithm is of the order
O
(
ℓn log(α)

)
operations. Since the query response time is exponential in n, we

restrict to decision trees of constant number of input elements.
We now prove polynomial slowdown only for some special cases.

Lemma 9 (Polynomial Slowdown). Let λ ∈ N be the security parameter
and ℓ, n, d be polynomials in λ. Define Tλ as a special family of evasive decision
trees, where d = 5, n ≤ 4 and ℓ = λ

4 . Then for every C ← Tλ, there exists a
polynomial p such that the running time of O(C) is bounded by O

(
p(λ)

)
.

Proof. Let C ← Tλ determines whether an input (xi)
n
i=1 is contained in the

decision region defined by (ci, ci + wi] with wi ∈ (0, wmax]. From Lemma 2,

wmax ≤ 2ℓ−
λ
n , which specifies the maximum width of the intervals. For evasive-

ness, we require ℓ − λ
n ≥ 0, which gives ℓn ≥ λ. Taking ℓ = λ

4 and n = 4, we
get ℓn = λ, which is a feasible condition for evasiveness. Since d = 5, we equate
d− 1 = n. The cost of evaluating O is given by ℓn = (λ4 )

4. ⊓⊔

Parameters for Secure Construction. In the previous sections, we have
discussed the choice of parameters that provide security to our decision tree
obfuscator, i.e. for ℓ = ℓ(λ), d = d(λ), n = n(λ), the conditions for evasiveness
are given in Lemma 2. For the hardness of finding xi that belongs to the decision

region (ci, ci+wi], we require wmax(λ) ≤ 2ℓ(λ)−
λ

n(λ) for every i ∈ [n]. In addition
to that, we impose d ≤ n+ 1 (by construction). We now present some example
parameters along with their bit-security in Table 1.

6 Proof of VBB Security

We prove VBB security in the random oracle model. For simplicity we restrict
to decision trees with one accepting path, and let α = (2ℓ − 2)n be an upper
bound on the number of hash values required for the obfuscated program.
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d ℓ n λ Program size Evaluation cost

5 64 4 128 1264 × 512 654 × 512

3 64 2 64 1262 × 512 652 × 512

Table 1. Example parameter sets for an obfuscated decision tree with wmax ≤ 2ℓ−
λ
n .

For q = 512 bits and one accepting path (q is the output size of hash function Hc), we
calculate the size of the obfuscated program and the cost of the evaluation (algorithms
5 and 6).

We use cryptographic hash functionsH : {0, 1}∗ → {0, 1}ω andHc : {0, 1}∗ →
{0, 1}q in our construction, which we model as random oracles in our security
proof. Our objective is to show that a PPT adversary having access to the ob-
fuscated function has no advantage over a simulator having oracle access to the
function. This is achieved by executing the adversary in a simulation, such that
the adversary cannot distinguish between the simulated and real environment.
We first give a brief intuition to our security proof.

Consider a simulator S who samples parameters ℓ, n following the conditions
in Lemma 9, and sends them to adversary A. A now samples C and provides
S oracle access to C. Since S does not know the program C, it simulates the
obfuscated program and random oracles and provides answers to A’s queries.

If the adversary never queries the circuit with an accepting input, everything
is a correct simulation. However, if the adversary does query the circuit with an
accepting input, then the security reduction immediately uses this clue to mount
a model extraction attack, and hence learn the corresponding accepting path in
the decision tree. The security reduction can then run the obfuscator correctly
for that single accepting path, and program the random oracles to be consistent
with the simulated O (the reduction does not learn anything about the other
possible accepting paths). Hence, again everything is a correct simulation.

Theorem 1. Let λ ∈ N be the security parameter. Let ℓ = ℓ(λ) and α = α(λ)
satisfy the conditions required for Lemma 9. Let Dλ be a distribution of evasive
decision trees. Then for random oracles H : {0, 1}∗ → {0, 1}ω and Hc : {0, 1}∗ →
{0, 1}q, the decision tree obfuscator O is a VBB obfuscator.

Proof. As evident from Lemma 8, O satisfies functionality preservation. Lemma
9 shows that O causes polynomial slowdown. Thus it suffices to show that there
exists a (non-uniform) PPT simulator S for every (non-uniform) PPT adversary
A, such that for an ensemble of decision tree evasive distributions Dλ (from
Lemma 9), the following holds:∣∣∣ Pr

C←Dλ

[A(O(1λ, C)) = 1]− Pr
C←Dλ

[ SC(1λ) = 1]
∣∣∣ ≤ µ(λ)

Every C ← Dλ identifies unique (c1, . . . , cn) ← Xn and (w1, . . . , wn) ←
(0, wmax]

n, and on input (x1, . . . , xn) determines if xi ∈ (ci, ci + wi] for all
i ∈ [n]. Let O(1λ, C) = {h1, . . . , hα} denote the correct obfuscation of C. Let
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A be a PPT adversary that takes as input O(1λ, C). We use this adversary to
design a PPT simulator S that simulates an execution of A.

Since A expects the oracles H and Hc, S provides a simulation of both the
oracles. In order to record the choices of the random oracles, S maintains two
tables : T1 to record responses for queries to H, and T2 to record responses for
queries to Hc.

Since S does not have access to O(1λ, C), it prepares a purported obfuscation
of C as follows: S samples α values uniformly at random from the co-domain of
Hc, and sends {h′1, . . . , h′α} to A.

We assume that A makes polynomially many queries to both the random
oracles. When A queries oracle H with u∗, S looks for v such that (u∗, v) ∈ T1
and returns it to the adversary. If no such v exists, then the simulation samples
a distinct v ∈ {0, 1}ω uniformly at random, adds (u∗, v) to T1, and returns v to
A.

When A makes a query h∗ to the random oracle Hc, the simulator looks
for a val such that (h∗, val) ∈ T2 and returns it to A. If there are no entries
corresponding to h∗, the simulator parses h∗ as (h∗1, . . . , h

∗
n) and looks up table

T1 to find an entry corresponding to each parsed string. If there does not exist
such an entry in T1, then a distinct val ∈ {0, 1}q is chosen uniformly at random,
(h∗, val) is added to T2, and val is returned it A.

If there exists a unique u such that (u, h∗i ) ∈ T1, then the simulator calculates
j ← ℓ − |u|, where |u| denotes the bit length of u, and xi ← u × 2j . Since u
corresponds to µj (for a correct input), adding j zeroes yields an accepting
input for C. Eventually, the simulator queries the oracle C with the (xi)i∈[n]. If
C returns 1, S determines the ci’s and wi’s by doing standard model extraction
attack for that single accepting path, calculates pairs (u, v) and registers the
entries in T1.

Note that we do not learn anything about other possible accepting paths.
Thereafter the simulator calculates the α input entries of T2, defines them to
be α entries from the already published set {h′1, . . . , h′α}, registers the pairs in
T2 and returns val to the adversary. If there are multiple entries in T1, the
simulation halts.

We describe the simulation in form of pseudo code in Algorithm 7 and 8.

Algorithm 7 OracleH(u∗)

1: Find all v such that (u∗, v) ∈ T1
2: if no such v exists then
3: v←$ {0, 1}ω
4: T1 ← T1 ∪ (u∗, v)
5: else
6: if ∃ w (u∗ ̸= w), such that (u∗, v) ∈ T1 and (w, v) ∈ T1 then
7: return ⊥
8: end if
9: end if
10: return v
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Algorithm 8 OracleHc(h
∗)

1: Find all val such that (h∗, val) ∈ T2
2: if no such val exists then
3: Parse h∗ = (h∗

i )i∈[n]

4: counter = 0
5: for i = 1 to n do
6: if (u, h∗

i ) ∈ T1 then
7: counter← counter ++
8: j ← ℓ− |u|
9: xi ← u× 2j

10: end if
11: end for
12: if (counter == n) then
13: b← SC(x1, . . . , xn)
14: if (b == 1) then
15: Calculate (ci, wi)i∈[n] using model-extraction attack
16: Run Algorithm 5 and calculate (u, v), h
17: T1 ← T1 ∪ (u, v)
18: if ∃ u1, u2 (u1 ̸= u2), such that (u1, v) ∈ T1 and (u2, v) ∈ T1 then
19: return ⊥
20: else
21: for i = 1 to α do
22: vali ← h′

i

23: T2 ← T2 ∪ (hi, vali)
24: end for
25: end if
26: end if
27: val←$ {0, 1}q
28: T2 ← T2 ∪ (h∗, val)
29: end if
30: end if
31: return val

The simulated view is distributed identically to the real view. HenceA cannot
distinguish between the real and simulated obfuscation instances. ⊓⊔

We now analyze the scenario where the simulator fails due to conflicts in
table T1 and show that the probability of such conflicts is negligible in λ.

Lemma 10. Let λ ∈ N be the security parameter and let ℓ, n, α be polynomi-
als in λ. Let Dλ be an ensemble of evasive decision tree distributions, and let
O(1λ, C) be the obfuscation of C ← Dλ. Consider Algorithms 7 and 8 and ran-
dom oracles H : {0, 1}∗ → {0, 1}ω and Hc : {0, 1}∗ → {0, 1}q(λ). Let η = η(λ)
be the number of entries in T1, then there exists a negligible function µ(λ) such
that

Pr
C←Dλ

[ SC(1λ) =⊥] ≤ µ(λ)

where S is a PPT algorithm with oracle access to C.
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Proof. The simulation fails if and only if there is a conflict in table T1, and
S halts. Conflicts may arise when S has already responded to an oracle query
u∗ to H with v←$ {0, 1}ω, and later on query h∗ to Hc, it queries the oracle
of C, and populates T1 with (w, v) such that w ̸= u∗. Let η = η(λ) be the
number of entries in T1. The probability that a conflict occurs in T1 is equal
to the probability that a hash value is same as at least one of the η values in
table T1. Since H : {0, 1}∗ → {0, 1}ω, there are 2ω choices for the value. When
there are no entries in T1, the collision probability is 0, when there is one entry
in T1, the collision probability is 1

2ω . Continuing the same way, when there are

η−1 entries in T1, the probability of collision is (η−1)
2ω . Assuming all the samples

are independent, the final step is to draw a conclusion about S’s probability of
failure, given by

Pr
C←Dλ

[ SC(1λ) =⊥ ] =
1 + · · ·+ (η − 1)

2ω

=
η2 − η

2ω+1

≤ µ(λ)

⊓⊔

7 Conclusion

In this paper, we have introduced a new special-purpose virtual black-box ob-
fuscator for evasive decision trees. While doing so, we have presented an encoder
for hiding parameters in an interval-membership function. Our obfuscation con-
struction blows up exponentially in the depth of the tree, hence an interesting
problem would be to investigate solutions that work for more general class of
evasive decision trees.
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