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Abstract. This Paper proposes FssNN, a communication-efficient se-
cure two-party computation framework for evaluating privacy-preserving
neural network via function secret sharing (FSS) in semi-honest adver-
sary setting. In FssNN, two parties with input data in secret sharing
form perform secure linear computations using additive secret haring and
non-linear computations using FSS, and obtain secret shares of model
parameters without disclosing their input data. To decrease communi-
cation cost, we split the protocol into online and offline phases where
input-independent correlated randomness is generated in offline phase
while only lightweight “non-cryptographic” computations are executed
in online phase. Specifically, we propose BitXA to reduce online com-
munication in linear computation, DCF to reduce key size of the FSS
scheme used in offline phase for nonlinear computation. To further sup-
port neural network training, we enlarge the input size of neural network
to 232 via “MPC-friendly” PRG.
We implement the framework in Python and evaluate the end-to-end
system for private training between two parties on standard neural net-
works. FssNN achieves on MNIST dataset an accuracy of 98.0%, with
communication cost of 27.52GB and runtime of 0.23h per epoch in the
LAN settings. That shows our work advances the state-of-the-art secure
computation protocol for neural networks.

Keywords: Privacy-preserving neural network · Secure multi-party com-
putation · Additive secret sharing · Function secret sharing.

1 Introduction

Machine learning techniques are widely used in practice to produce predictive
models that are widely used in applications such as health-care prediction, fi-
nancial services and policy making. Neural network provides a powerful method
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for machine learning training and inference. To improve accuracy and general-
ization ability of neural network model, it is desirable for multiple parties, each
possessing a part of dataset, to combine their data to jointly train a model. How-
ever, these data are sensitive and cannot be revealed in the clear due to privacy
concerns and regulations.

Privacy-preserving neural network (PPNN) is committed to addressing these
concerns by leveraging cryptographic primitives, such as homomorphic encryp-
tion (HE) and secure multiparty computation (MPC). MPC-based PPNN pro-
vides a more concretely efficient solution by allowing different entities to train
various models on their joint data without revealing any information beyond the
output. Current works of this area are mainly based on two popular routes: i)
MPC over Boolean circuits and ii) MPC over arithmetic circuits. The protocols
evaluating Boolean circuit are built using Yao’s garbled circuits (GC) [1] and
result in constant-round solutions. Secret-sharing (SS)-based solutions [2] have
been used for evaluating arithmetic circuits. Since PPNN involves many arith-
metic operations and applies computations that cannot be succinctly represented
by Boolean circuits, SS has got more attention although it requires a number of
communication rounds linear in the multiplicative depth of the circuit.

Therefore, SS-based solutions still come at a steep performance overhead
that may not be amiable for the real-world scenarios. During training, heavy
cryptographic computations are required to conduct, imposing intensive com-
putational and communication overheads. It is highly desirable to reduce the
performance gap between secure neural network training and plaintext training
for wider deployment of privacy-preserving technologies.

1.1 Related Works

In the past few years, PPNN raised much more attention, and has emerged as
a flourishing research area. Many prior works [3,4,5,6,7,8,9] use a secure com-
putation protocol based on secret sharing to compute the linear function (e.g.
addition and multiplication) and garbled circuits, mix-protocol or homomor-
phic encryption to compute the non-linear function (e.g. comparison and activa-
tion function). They adopt offline-online computation model (aka preprocessing
model [10]) to move a majority of the overheads to the offline phase, but still
require a large number of communication rounds in the online phase.

The main source of inefficiency in prior implementations is that the bulk of
computation for non-linear function (e.g. ReLU), which requires a large number of
rounds of communication. Recently, Boyle et al. [11,12,13,14] proposed function
secret sharing and applied it in secure computation protocol in the preprocessing
model, which is useful for evaluating non-linear activation function with optimal
online communication and round complexity. This motivated several works on
PPNN based on function secret sharing, such as [15,16,17].

The state-of-the-art work [17], called AriaNN, proposes a low-interaction
privacy-preserving framework for private neural network training on sensitive
data. AiraNN designs semi-honest two-party computation protocol based on
function secret sharing to implement an efficient online phase, and proposes
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optimized primitives for the building blocks of neural networks. However, this
work still demands intensive workloads on the parties to conduct heavy crypto-
graphic computations in online phase, and relies on trusted dealer to generate
correlated randomness in offline phase. Therefore, it is still necessary to further
reduce the communication complexity in the online phase and emulate the dealer
via MPC, to enable practical and communication-efficient secure neural network
training.

1.2 Our Contributions

We design and implement FssNN, a new two-party computation (2PC) frame-
work for evaluating privacy-preserving neural network. In real-world applica-
tions, it can be used to enable two parties (data owner) to train a neural network
models on their joint data by first secretly sharing their inputs, and can also be
used in server-aided setting where the parties outsource the model training to
two non-colluding servers. We adopt offline-online computation model where the
time consuming computation of the correlated randomness is moved to offline
phase. To further achieve optimal online communication complexity, we propose
the hybrid method (combining additive secret sharing with FSS) to train linear
layers of neural network via additive secret sharing and non-linear layers via
FSS.

Our contributions can be summarized in the following three aspects:

– BitXA protocol. To multiply a bit and an n-bit integer for linear computa-
tion in online phase, we propose the BitXA protocol to perform the multipli-
cation directly instead of converting the bit to integer first. As a result, the
communication cost is reduced from 2n to n+ 1.

– Distributed comparison function (DCF). To reduce key size of DCF
for non-linear computation in offline phase, we propose an efficient DCF by
designing a simpler and more compact key generation algorithm, and the
key size is slightly smaller than [14]. The new DCF can be used to compute
ReLU and its derivatives DReLU, which are the building blocks for neural
networks and can be run with only one round of communication.

– Distributed DCF key generation. To enlarge input size of neural network
training to 232 and larger, we present the first MPC-friendly PRG-based
distributed DCF key generation scheme, where previous constructions [18]
are only for small input size (e.g., 216 or smaller). Additionally, we presents
a generic 2PC protocol to jointly emulate the trusted dealer in offline phase.

1.3 Organization

Following basic notations and some background on neural network and secure
computation in Section 2, Section 3 presents a high-level overview of FssNN.
Section 4 and 5 present efficient and secure computation protocol for linear layer
(i.e., matrix multiplication and hadamard product) and non-linear layer (i.e.,
ReLU and its derivative DReLU). Specifically, Section 5.1 presents secure ReLU
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and DReLU protocol based on DCF, which is demonstrated in detail in Section
5.2, and Section 5.3 provides a construction for generating DCF key based on
MPC-friendly PRG. Section 6.2 presents experimental results and analysis of
our protocol. Finally, we conclude our paper in section 7.

2 Preliminaries

Notations We use arithmetic operations in the ring Z2n , and we naturally
identify elements of Z2n with their n-bit binary representation. Unless otherwise
specified, we parse x ∈ {0, 1}n as xn−1, · · · , x0, where xn−1 is the most significant
bit (MSB) and x0 is the least significant bit (LSB). In this paper, we consider
computations over finite bit unsigned and signed integers, denoted by U2n and
S2n respectively, over n-bits. We note that U2n = {0, · · · , 2n − 1} is isomorphic
to Z2n . Moreover, S2n = {−2n−1, · · · , 2n−1− 1} can be encoded into Z2n or U2n

using 2’s complement notation or mod 2n operation. In addition, we define the
conversion function between signed and unsigned numbers S2U : S2n → U2n and
U2S : U2n → S2n . Specifically, given x ∈ S2n , there is S2U(x) = x mod N , and
given x ∈ U2n , there is U2S(x) = x −MSB(x) · 2n, where MSB() means to find
the most significant bit.

2.1 Neural Network

Given m training data samples xi each containing d features and the corre-
sponding output labels yi, neural network is a computational process to learn
a function g such that g(xi) ≈ yi. In neural network, g can be represented as
a function of the coefficient matrix W and the input data xi, thus predicted
output is represented as ŷi = g(W,xi). The phase to calculate the predicted
output is called forward propagation, where comprises of a linear operation (e.g.,
matrix operations), followed by a (non-linear) activation function f . One of the
most popular activation functions is the Rectified Linear Unit (ReLU).

To learn the weight W, a cost function C(W) that quantifies the error be-
tween predicted values ŷi and actual values yi is defined, andW is calculated and
updated by the optimization argminWC(W). The solution for this optimization
problem can be computed by using stochastic gradient descent (SGD), which
is an effective approximation algorithm for approaching a local minimum of a
function step by step. The SGD algorithm works as follows: W is initialized as a
vector of random values or all 0s. In each iteration, a sample (xi, yi) is selected
randomly and a coefficient W is updated as: W := W − α∇C(W), where α
is learning rate and ∇C(W) is the partial derivatives of the cost with respect
to changes in weights. The phase to calculate the change α∇C(W) is called
backward propagation, where error rates are feed back through a neural network
to update weight.

In practice, instead of selecting one sample of data per iteration, a small
batch of samples are selected randomly and W is updated by averaging the
partial derivatives of all samples on the current W. This is called a mini-batch
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SGD, and its advantage is that it allows for the use of vectorization libraries to
accelerate computation, resulting in a faster computation.

2.2 Additive Secret Sharing

In this paper, we consider additive secret sharing scheme under two-party setting.
To additively share (Shr(·)) an n-bit value x, the first party P0 sends a randomly
sampled integer ⟨x⟩A1 = r ∈ Z2n to the second party P1, and keeps ⟨x⟩A0 =
x−r mod 2n as the its own share. To reconstruct (Rec(·, ·)) an additively shared
value ⟨x⟩A, Pi sends ⟨x⟩Ai to P1−i who computes ⟨x⟩A0 + ⟨x⟩A1 , where i = 0, 1.
In the following of this paper, denote values used in additive sharing by ⟨·⟩ for
short, as we mostly use additive sharing.

Additionally, consider Boolean secret sharing, which can be seen as additive
secret sharing in Z2 and hence all the protocols discussed in additive secret
sharing can carry over. In particular, the addition operation is replaced by XOR
operation (⊕) and multiplication by AND operation (AND(·, ·)). Denote party
Pi’s share in Boolean sharing by ⟨·⟩Bi .

Addition and Multiplication Assume Pi holds shared values ⟨x⟩i, ⟨y⟩i, it is
easy to non-interactively add the shares by having Pi compute ⟨z⟩i = ⟨x⟩i +
⟨y⟩i mod 2n. In the following text, we omit the modular operation for simplicity.
To perform multiplication, take the advantage of Beaver’s precomputed multi-
plication triplet [19]. Assume that Pb already has shares ⟨a⟩i, ⟨b⟩b, ⟨c⟩b where a, b
are uniformly random values in Z2n and c = a · b. Then Pi locally computes
⟨e⟩i = ⟨x⟩b − ⟨a⟩i and ⟨f⟩b = ⟨y⟩i − ⟨b⟩i. Both parties run Rec(⟨e⟩0, ⟨e⟩1) and
Rec(⟨f⟩0, ⟨f⟩1) to get e, f , and Pi lets ⟨z⟩i = i · e · f + f · ⟨a⟩i + e · ⟨b⟩i + ⟨c⟩i.

Fixed-Point Arithmetic To support arithmetic operation over numbers with
decimal points, use fixed-point representation to map rational numbers to U2n

or S2n . The fixed-point representation allows one to store decimal values with
some approximation using n-bit integers. Consider the fixed-point addition and
multiplication of two shared decimal numbers x and y. Fixed-point addition is a
local operation where the corresponding shares of the operands are added sepa-
rately by each party. Fixed-point multiplication requires “scale adjustment” to
maintain the scale of the output instead of getting doubled for every multipli-
cation performed. We implement this scale adjustment (or truncation) through
a non-interactive “local truncation” procedure [3] where truncation is directly
applied on the shares.

2.3 Function Secret Sharing

This subsection follows the definition of FSS from [14]. Intuitively, a two-party
FSS scheme splits a function f ∈ F into two additive shares f0, f1, such that:
(1) each fb hides f ; (2) for every input x, f0(x) + f1(x) = f(x).
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Definition 1. (FSS: Syntax). A (2-party) function secret sharing (FSS) scheme
is a pair of algorithms (Gen,Eval) such that:

– Gen(1λ, f̂) is a PPT key generation algorithm that given 1λ and f̂ ∈ {0, 1}∗
(description of a function f : Gin → Gout) outputs a pair of keys (k0, k1).

We assume that f̂ explicitly contains descriptions of input and output groups
Gin,Gout.

– Eval(b, kb, x) is a polynomial-time evaluation algorithm that given b ∈ {0, 1}
(party index), kb (key defining fb : Gin → Gout) and x ∈ Gin (input for fb)
outputs a group element yb ∈ Gout (the value of fb(x)).

Definition 2. (FSS: Security). Let F = {f} be a function family. We say that
(Gen,Eval) as in Definition 1 is an FSS scheme for F if it satisfies the following
requirements:

– Correctness: For all f : Gin → Gout ∈ F , and every x ∈ Gin, if (k0, k1) ←
Gen(1λ, f̂), then Pr[Eval(0, k0, x) + Eval(1, k1, x) = f(x)] = 1.

– Privacy: For each b ∈ {0, 1} there is a PPT algorithm Simb (simulator), such

that for every sequence {f̂i}i∈N of polynomial-size function descriptions from
F and polynomial-size input sequence xb for fb, the outputs of the following
experiments Real and Ideal are computationally indistinguishable:
• Real(1λ) : (k0, k1)← Gen(1λ, f̂i); Output kb.
• Ideal(1λ) : Output Simb(1

λ).

Secure Computation via FSS Recent work of Boyle et al.[13,14] showed that
FSS paradigm can be used to efficiently evaluate some function families in 2PC in
the preprocessing model, where Gen and Eval correspond to the offline and online
phase, respectively. Note that unlike in secret-sharing MPC, inputs and outputs
in FSS are public whereas the function is secretly shared. As the parties cannot
learn the values on any intermediate circuit wires, the scheme needs to mask
inputs and outputs for each gate g : Gin → Gout. That is, the input is masked with
rin and the output with rout. Then, to guarantee the correctness of computation,

each gate g is replaced by an offset function g[r
in,rout](x) := g(x− rin)+ rout, where

rin ∈ Gin and rout ∈ Gout. The output of g[r
in,rout](x) is exactly the output of g

masked with rout. This step is repeated for each gate until both parties evaluate
the last circuit gate. With the masked output of the last gate, P0 and P1 can
recover the unmasked output (i.e., the final circuit output) without learning any
intermediate wire values. For more information, refer to [14].

3 FssNN Overview

3.1 The FssNN Framework

Consider the two-party setting (denoted by Pb where b ∈ {0, 1} is party in-
dex, similarly hereinafter.) as shown in Fig. 1. Given the training dataset D =
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{(xi, yi)|i = 1, 2, · · · ,m} which can be horizontally or vertically partitioned,
FssNN works as follows: P0 and P1 hold the shares of each training sample, de-
noted by (⟨xi⟩0, ⟨yi⟩0) and (⟨xi⟩1, ⟨yi⟩1). WeightW is secretly shared between P0

and P1 by initializing ⟨W⟩0 and ⟨W⟩1 to be random locally; P0 and P1 compute
gradient and update ⟨W⟩0, ⟨W⟩1 interactively via the SGD algorithm, which
involves forward propagation and backward propagation. ⟨W⟩0 and ⟨W⟩1 are
updated and remain secretly shared after each iteration of SGD, until the end
when it is reconstructed.

Linear Layer

Backward Prop.Forward Prop.

Non-Linear Layer

Compute Cost

Fig. 1. The FssNN Framework

In details, each layer in forward propagation comprises of a linear operation
(matrix multiplication), followed by a non-linear activation function ReLU. The
backpropogation updates the weights appropriately making use of the deriva-
tive of ReLU (i.e., DReLU), and linear operations (matrix multiplication and
Hadamard product). In FssNN, we propose the hybrid method (combining addi-
tive secret sharing with FSS) to train linear layers of neural network via additive
secret sharing and non-linear layers via FSS. In fact, linear operation in neural
network training can be efficiently implemented by any SS-based 2PC. Therefore,
by leveraging additive secret sharing in offline-online computation model, matrix
addition can be implemented locally and matrix multiplication with single round
of communication in online phase. The function secret sharing (FSS)-based ap-
proach to 2PC with preprocessing can support non-linear operations with the
same online communication and round complexity as linear operation, and only
make use of symmetric cryptography. Therefore, ReLU and DReLU are imple-
mented by using the DCF scheme, comparison-oriented FSS, with the sacrifice
of more correlated randomness than 2PC based on additive secret sharing.
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3.2 Threat Model

We consider the security against semi-honest adversaries, i.e., the corrupted
parties (e.g., P1 in Fig. 1) running the protocol honestly while trying to learn
as much information as possible about others’ input or function share. In our
two-party setting, secure protocols can be used to enable two parties to train a
neural network model on their joint data by first secretly sharing their inputs.
Furthermore, the protocol and framework can also be used in two-server model,
where the data owners (clients) process and secretly share their data between
two non-colluding parties (servers) and then the two servers can train various
models on the clients’ joint data by running our two-party protocol.

4 Secure Linear Layer

Neural network mainly includes linear and non-linear layers. This section de-
scribes how to securely and efficiently achieve matrix multiplication and Hadamard
product in linear layer using additive secret sharing.

4.1 Secure Matrix Multiplication

Neural network makes extensive use of matrix multiplications to benefit from
vectorization techniques. The secure multiplication proposed in Section 2.2 can
be straightforwardly extended to matrix multiplication [3]. Note that multipli-
cation triples are replaced by matrix multiplication triples. Observe that the
matrix multiplication operation used in neural network training has a specific
structure that can be optimized in communication cost: the same matrix X
is used in many multiplications with many different matrices Yi=1,··· ,k. While
we can use independently-generated multiplication triples {(Ai,Bi,Ci)}i=1,··· ,k,
s.t., Ci = Ai × Bi, for each multiplication, Kelkar et al. [20] show a more ef-
ficient way to reuse a part of multiplication triples (i.e., just one A instead of
{Ai}i=1,··· ,k), and call these correlated multiplication triples which enable mul-
tiple online multiplications with the same matrix.

Algorithm 1 illustrates the specific details of correlated matrix multiplication.
It requires {A, {Bi,Ci}i=1,...,k} satisfying Ci = A × Bi to be the correlated
multiplication triples which can be generated using the method outlined in [20].

4.2 Secure Hadamard Product

In backpropagation algorithm outlined in Section 2.1, Hadamard product is heav-
ily used. Observe that the Hadamard product operations used in neural network
training have a specific structure that can be leveraged to further reduce the
communication cost: when computing X⊙Y, the elements of Y are bits (i.e., 0
or 1). Since the arithmetic shares ⟨X⟩ cannot be directly multiplied with boolean
shares ⟨Y⟩B as they are calculated with different moduli. Many previous works
first convert all elements in Y to n-bit values (e.g. Bit2A in [6]) and then perform
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Algorithm 1 MatMul(⟨X⟩, {⟨Yi⟩}i=1,··· ,k)

Input: Secret shares {⟨X⟩b, ⟨Y1⟩b, · · · , ⟨Yk⟩b|b = {0, 1}} and correlated multiplica-
tion triples {A, {Bi,Ci}i=1,··· ,k} generated in offline phase.

Output: Secret shares ⟨Z1⟩b, ..., ⟨Zk⟩b.
1: Pb computes ⟨X−A⟩b, ⟨Y1 −B1⟩b, · · · , ⟨Yk −Bk⟩b locally, and sends them to

P1−b.
2: P0 and P1 reconstruct X−A,Y1 −B1, · · · ,Yk −Bk.
3: for i = 1 to k do
4: Pb computes ⟨Zi⟩b = b · (X−A)× (Yj −Bj)+ (X−A)×⟨Bj⟩b + ⟨A⟩b× (Yj −

Bj) + ⟨Cj⟩b locally.
5: end for
6: return ⟨Z1⟩b, · · · , ⟨Zk⟩b.

secure multiplication, requiring two rounds in the online phase. To be able to
perform the calculation in one round, BitXA is directly proposed to multiplies
an integer by a bit.

Specifically, we begin with scalar operation (i.e., x ·y), which can be straight-
forwardly extended to matrix operation (i.e., X ⊙Y). Formally, given x ∈ Z2n

and y ∈ Z2 and assume x and y are secretly shared between P0 and P1. Denote
the shares by ⟨x⟩0, ⟨y⟩B0 and ⟨x⟩1, ⟨y⟩B1 , where ⟨y⟩B0 , ⟨y⟩B1 is the boolean shares of
y. To calculate ⟨z⟩0, ⟨z⟩1 ∈ Z2n such that ⟨z⟩0 + ⟨z⟩1 = y ·x, BitXA precomputes
some correctness randomness for shares conversion and multiplication in offline
phase, allowing BitXA to be performed in one online round. Algorithm 2 shows
the details of implementing ⟨y⟩B · ⟨x⟩.

Algorithm 2 BitXA(⟨y⟩B , ⟨x⟩)
Input: Secret shares ⟨x⟩0, ⟨x⟩1 and boolean shares ⟨y⟩B0 , ⟨y⟩

B
1 .

Output: Secret shares ⟨z⟩0, ⟨z⟩1.
1: // Offline Phase
2: Dealer samples ⟨δ̂y⟩Bb ←$ Z2 for b = {0, 1}, and subsequently converts them to

arithmetic secret shares by applying the following steps:

– Dealer sets ⟨e⟩0 = ⟨δ̂y⟩B0 , ⟨f⟩0 = 0; ⟨e⟩1 = 0, ⟨f⟩1 = ⟨δ̂y⟩B1 , and computes
(⟨ef⟩0, ⟨ef⟩1)← Mul(⟨e⟩, ⟨f⟩).

– Dealer computes ⟨δy⟩b = ⟨e⟩b + ⟨f⟩b − 2 · ⟨ef⟩b for b = {0, 1}.

3: Dealer samples ⟨δx⟩b, ⟨δz⟩b ←$ Z2n for b = {0, 1}, subject to (⟨δz⟩0 + ⟨δz⟩1) =
(⟨δy⟩0 + ⟨δy⟩1) · (⟨δx⟩0 + ⟨δx⟩1).

4: Dealer sends ⟨δx⟩b, ⟨δy⟩b, ⟨δz⟩b and ⟨δ̂y⟩Bb to Pb respectively.
5: // Online Phase
6: Pb locally computes ⟨x⟩b + ⟨δx⟩b, ⟨y⟩

B
b ⊕ ⟨δ̂y⟩Bb , and sends them to P1−b.

7: Pb reconstructs ∆x = x+ δx,∆y = y ⊕ δ̂y, and sets ∆′
y = ∆y where ∆′

y ∈ Z2n .
8: Pb locally calculates ⟨z⟩b = b ·∆′

y ·∆x + ⟨δy⟩b ·∆x− 2 ·∆′
y ·∆x · ⟨δy⟩b−∆′

y · ⟨δx⟩b−
⟨δz⟩b + 2 ·∆′

y · ⟨δz⟩b.
9: return ⟨z⟩b.
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4.3 Security Analysis

Consider the security in the semi-honest model where two parties follow the
protocol exactly, and to be proven in the framework of Universal Composition
(UC) [21].

Theorem 1. Let Pb denote the corrupted party controlled by an adversary A
where b is either 0 or 1. Adversary A cannot learn any knowledge of the private
data of honest party P1−b in MatMul and BitXA algorithm.

Proof. For matrix multiplication operationMatMul (resp. hadamard product op-
eration BitXA), there is only one interaction between P0 and P1 which happens in
the first step of online phase, where Pb send ⟨X−A⟩b, ⟨Y1 −B1⟩b, · · · , ⟨Yk −Bk⟩b
(resp. ⟨x⟩b + ⟨δx⟩b, ⟨y⟩Bb ⊕ ⟨δ̂y⟩Bb ) to P1−b. A can learn nothing except masked

values X−A,Y1−B1, · · · ,Yk −Bk(resp. ∆x = x+ δx, ∆y = y⊕ δ̂y). And due
to the security of additive secret sharing and boolean secret sharing, the distri-
bution of these masked values and a uniform values are identical for A. Hence,
MatMul and BitXA is a secure primitive in our protocol due to the universally
composable theorem.

5 Secure Non-Linear Layer

This section describes how to securely and efficiently achieve matrix multiplica-
tion and Hadamard product in linear layer using additive secret sharing.

5.1 Secure ReLU Function

The ReLU function is a widely utilized activation function in neural network
training, and ReLU and its derivative are denoted as:

ReLU (x) =

{
x x ≥ 0

0 x < 0
DReLU (x) =

{
1 x ≥ 0

0 x < 0
(1)

Since ReLU (x) = x · 1{x ≥ 0} and DReLU (x) = 1{x ≥ 0}, ReLU (x) =
x · DReLU (x) where 1{b} denotes the indicator function that outputs 1 when b
is true and 0 otherwise. To securely compute ReLU(⟨x⟩), DReLU(⟨x⟩) is computed
first, followed by computing ReLU(⟨x⟩) = BitXA(⟨DReLU(x)⟩B , ⟨x⟩) via BitXA()
algorithms in section 4.2.

Building blocks: DCF and DDCF A special piecewise function, f<
α,β , also

referred to as a comparison function, outputs β if x < α and 0 otherwise. We refer
to an FSS scheme for comparison functions as distributed comparison function
(DCF). And the variant of DCF, called Dual Distributed Comparison Function
(DDCF), is considered and denoted by f<

α,β1,β2
that outputs β1 for 0 ≤ x < α

and β2 for x ≥ α. Obviously, f<
α,β1,β2

(x) = β2+ f<
α,β1−β2

(x) and thus DDCF can
be constructed by DCF.
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Secure DReLU Function Given x, y ∈ UN , Algorithm 3 illustrates a secure
two-party computation protocol to compute 1{x < y}, where (GenDDCF

n−1 ,EvalDDCF
n−1

is a variant of the DCF scheme, and the algorithm is shown in the appendix A.

Algorithm 3 Comp: (GenComp
n ,EvalComp

n )

GenComp
n (1λ, rin1 , r

in
2 , r

out)

1: Let r = (2n − (rin1 − rin2 )) ∈ UN , and α(n−1) = r[0,n−1).

2: (k
(n−1)
0 , k

(n−1)
1 )← GenDDCF

n−1 (1λ, α(n−1), β0, β1), where β0 = 1⊕ r[n−1], β1 = r[n−1].
3: Sample randoms r0, r1 ←$ {0, 1}, s.t. r0 ⊕ r1 = rout.

4: For b ∈ {0, 1}, let kb = k
(n−1)
b ||rb

5: return (k0, k1).

EvalComp
n (b, kb, x̂, ŷ)

1: Parse kb = k
(n−1)
b ||rb.

2: Let z = (x̂− ŷ) ∈ UN .

3: Let m
(n−1)
b ← EvalDDCF

n−1 (b, k
(n−1)
b , z(n−1)), where z(n−1) = 2n−1 − z[0,n−1) − 1.

4: vb = (b · z[n−1])⊕m
(n−1)
b ⊕ rb.

5: return vb.

Further, utilize (GenComp
n ,EvalComp

n ) to compute 1{x < 0}, and subsequently
compute DReLU (x) = 1{x ≥ 0} = ¬(1{x < 0}) where ¬ is the negation oper-
ator. The proposed FSS scheme for DReLU is outlined in Algorithm 4. In this
scheme, it is assumed that P0 and P1 hold secret shares ⟨x⟩0 and ⟨x⟩1 respec-
tively.

Algorithm 4 DReLU(⟨x⟩)
1: // Offline Phase
2: Dealer computes (k0, k1)← GenComp

n (1λ, rin1 , 2
n−1, rout), and sends k0, k1 to P0, P1.

3: Dealer invokes Shr(rin1 ), and subsequently sends ⟨rin1 ⟩0, ⟨rin1 ⟩1 to P0, P1 respectively.
4: // Online Phase
5: For b = 0, 1, Pb computes ⟨x+ rin1 ⟩b = ⟨x⟩b + ⟨rin1 ⟩b locally, and send it to P1−b.
6: For b = 0, 1, Pb reconstructs and obtains x+ rin1 .
7: For b = 0, 1, Pb computes vb ← b⊕ EvalComp

n (b, kb, x+ rin1 , 0) locally.
8: return vb.

5.2 Communication-Optimized DCF

A central building block for our protocol is the FSS scheme for the comparison
function, which is intensively used in neural network to build non-polynomial
activation functions like ReLU. In this paper, we examine the case of x, α ∈ Z2n

and β ∈ Z2 and propose a communication-optimized DCF construction for the
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comparison function f<
α,β . The proposed construction has a smaller key size

compared to state-of-the-art schemes [14] from λ+(n+1)(λ+3) to λ+n(λ+3)
for Gin = Z2n ,Gout = Z2 and security parameter λ.

Intuition The construction draws inspiration from the distributed point func-
tion (DPF) of [12]. The Gen algorithm uses a PRG G and generates two keys
(k0, k1) such that ∀b ∈ {0, 1}, kb includes a random pseudorandom generator
(PRG) seed sb and n shared correction words (CW (1), · · · , CW (n)). A key im-
plicitly defines a GGM-style binary tree [22] with 2n leaves, where the leaves
are labeled by inputs x. Each node in the tree is associated with a label rep-
resented by a tuple (s, v, t) ∈ {0, 1}λ × {0, 1} × {0, 1}, where s represents seed,
v represents resulting bit, and t represents state bit. The label of each node is
fully determined by the label of its parent node. The construction ensures that
the “sum” v0 ⊕ v1 over all nodes leading to an input x that is exactly equal to
f<
α,β(x). Therefore, evaluating a key kb on an input x (i.e., the Eval algorithm)
requires traversing the tree generated by kb from the root to the leaf representing
x, computing (sb, vb, tb) at each node and summing up the values vb. Next, we
will provide a comprehensive explanation of Gen and Eval algorithm by detailing
key generation phase and evaluation phase.

Key generation phase Specifically, the function Gen generates the secret share
of the function f<

α,β(x) (i.e., k0 and k1) by generating distributed GGM-style
binary trees. The two GGM-style trees generated by Gen are equivalent to the
GGM-style trees representing the function f<

α,β(x) when taken together. In this
construction, the path from the root to a leaf node labeled by x is referred to as
the evaluation path of x, and the evaluation path of the special input α is referred
to as the special evaluation path. When x ̸= α, the prefix of x diverges from the
path to α at a exact point, referred to as the divergence node of x relative to
α. To ensure the correct creation of the two trees, we would like to maintain
the invariant : 1) For each node on the special evaluation path, two seeds (on
the two trees) are indistinguishable as random and independent, two resulting
bits are identical and two control bits differ; and 2) For each node outside the
special evaluation path, with the exception of the node that is the left child of
divergence node, the two labels are identical. At the left child of the divergence
node, two seeds and control bits are the same, but the “sum” of two resulting
bits is equal to β.

Note that since the label of a node is determined by that of its parent, if the
aforementioned invariant is satisfied for a node outside the special path, it will
automatically be upheld by its children. Additionally, we can easily meet the
invariant for the root (which is always on the special evaluation path) by simply
including the labels in the keys. The challenge lies in ensuring that the invariant is
also upheld when leaving the special path. In order to describe the construction,
it is useful to view the two labels of a node as a Boolean secret sharing of the
label, consisting of shares ⟨s⟩B = (s0, s1) of the λ-bit seed s, ⟨v⟩B = (v0, v1) of the
resulting bit v and ⟨t⟩B = (t0, t1) of the control bit t. Suppose that the labels of
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Fig. 2. A construction example of Gen<n when n = 2

the i-th node ui on the evaluation path are (s
(i)
b , v

(i)
b , t

(i)
b ) (b = 0, 1). To compute

the labels of the (i+1)-th node, the parties start by locally computing G(s
(i)
b ) for

a PRG G : {0, 1}λ → {0, 1}2(λ+2) and parsing G(s
(i)
b ) as (sLb , v

L
b , t

L
b ; s

R
b , v

R
b , t

R
b ).

The first three values correspond to labels of the left child and the last three
values correspond to labels of the right child. To maintain the invariant, the keys
will include a correction word (CW ) for each level i. As previously discussed,
we only need to take into account the case where ui is on the special evaluation
path. By the invariant we have t = 1, in which case the correction will be applied.
Without loss of generality, let us assume that αi = 1. This implies that the left
child of ui is not on the special evaluation path, while the right child is on
the special evaluation path. To ensure that the invariant is maintained, we can
include in both keys the correction CW (i) = (sL, vL ⊕ β, tL ⊕ 1; sL, vR, tR ⊕ 1).
Indeed, this ensures that after the correction is applied, the labels of the left
(i.e., b = 0) and right child (i.e., b = 1) are (⟨0λ⟩Bb , ⟨β⟩Bb , ⟨0⟩Bb ; ⟨s⟩Bb , ⟨0⟩Bb , ⟨1⟩Bb )
as required. The n correction values CW (i) are computed by Gen from the root
labels by applying the above iterative computation along the special path, and
are included in both keys. Figure 2 illustrates a construction example of Gen
when n = 2, with the specific case of α = α1α2 = 01 being depicted.

Evaluation phase In DCF, the evaluation process involves comparing a public
input x ∈ Z2n to a private value α, and it goes as follows: two evaluators are each
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given a key which includes a distinct initial seed and n correction words. Each
evaluator starts from the root, at each step i goes down one node in the tree
and generate i+ 1-th labels depending on the bit xi using a common correction
word CW (i). At the end of the computation, each evaluator outputs resulting
bit. Note that the tuple (sb, vb, tb) associated with node ui is a function of the
seed associated with the parent of ui and the correction words. Therefore, if
s0 = s1 then for any descendent of ui, k0 and k1 generate identical tuples. The
correction words are chosen such that when a path to x departs from the path
to α, the two seeds s0 and s1 on the first node off the path are identical, and
the sum of v0 ⊕ v1 along the whole path to ui is exactly β if the departure is
to the left of the path to α, i.e. x < α, and is 0 if the departure is to the right
of the path to α. Finally, along the path to α any seed sb is computationally
indistinguishable from a random string given the key k1−b, which ensures the
security of the construction.

Distributed Comparison Function (Gen<n ,Eval
<
n ) are given by Algorithm

5 , where G : {0, 1}λ → {0, 1}2(λ+2) be a pseudorandom generator, and || is
concatenation operator.

Next, we will show the correctness and privacy of the DCF construction
through Theorem 2, and its proof can be found in Appendix B.

Theorem 2. (Proof of Correctness and Privacy) Let G : {0, 1}λ ← {0, 1}2(λ+2)

be a PRG. Then the scheme (Gen<n ,Eval
<
n ) from Algorithm 5 is a DCF for the

family of comparison functions f<
α,β : Gin → Gout with key size λ + n(λ + 3)

bits, where Gin = Z2n ,Gout = Z2 and security parameter λ. The number of PRG
invocations in Gen is 2n and the number of PRG invocations in Eval is n.

5.3 Distributed DCF key generation

In this section, we discuss concrete approaches for implementing offline phase
via a small-scale two-party secure protocol, where two parties jointly emulate
the role of dealer. Recall that this amounts to 2-party protocols for securely
executing the Gen procedure for appropriate DCF gates, in turn reducing to
secure generation of keys for DCF. There are two main methods for achieving
this goal: 1) a variant of the secure DPF generation protocol of Doerner and
Shelat [18] for small and moderate domain sizes (e.g., 216 or smaller), which is
black-box in the underlying PRG; and 2) generic 2PC approaches, implementing
the PRG via “2PC-friendly” ciphers. To support larger domain sizes (e.g., 232

in our approach), the second method is preferred.

PRG-based generation This paper generates k0, k1 based on secure two-

party PRG, where kb = s
(0)
b ||CW (1)||...||CW (n). The specific process is shown in

Algorithm 6, where the algorithm SecPRG() is realized by the LPN-style PRG
proposed by [23].
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Algorithm 5 DCF: (Gen<n ,Eval
<
n )

Gen<n (1
λ, α, β)

1: Let α = α1, · · · , αn ∈ {0, 1}n be the bit decomposition of α.

2: Sample randoms s
(0)
0 ←$ {0, 1}λ and s

(0)
1 ←$ {0, 1}λ, v

(0)
0 = 0, v

(0)
1 = 0, and

t
(0)
0 = 0, t

(0)
1 = 1.

3: for i = 1 to n do
4: sL0 ||vL0 ||tL0 ||sR0 ||vR0 ||tR0 ← G(s

(i−1)
0 ), and sL1 ||vL1 ||tL1 ||sR1 ||vR1 ||tR1 ← G(s

(i−1)
1 )

5: if αi = 0 then
6: Keep← L, Lose← R.
7: else
8: Keep← R, Lose← L.
9: end if
10: sCW ← sLose0 ⊕ sLose1 .
11: vLCW ← vL0 ⊕ vL1 ⊕ (αi · β).
12: tLCW ← tL0 ⊕ tL1 ⊕ αi ⊕ 1, and tRCW ← tR0 ⊕ tR1 ⊕ αi.
13: CW (i) = sCW ||vLCW ||tLCW ||tRCW .

14: s
(i)
0 = sKeep0 ⊕ t

(i−1)
0 · sCW , and s

(i)
1 = sKeep1 ⊕ t

(i−1)
1 · sCW .

15: t
(i)
0 = tKeep0 ⊕ t

(i−1)
0 · tKeepCW , and t

(i)
1 = tKeep1 ⊕ t

(i−1)
1 · tKeepCW .

16: end for
17: Let kb = s

(0)
b ||CW (1)|| · · · ||CW (n).

18: return (k0, k1).

Eval<n (b, kb, x)

1: Parse kb = s(0)||CW (1)|| · · · ||CW (n), and let x = x1, · · · , xn ∈ {0, 1}n, v = 0, and
t(0) = b.

2: for i = 1 to n do
3: Parse CW (i) = sCW ||vLCW ||tLCW ||tRCW .
4: Parse G(s(i−1)) = ŝL||v̂L||t̂L||ŝR||v̂R||t̂R.
5: τ ← (ŝL||v̂L||t̂L||ŝR||v̂R||t̂R)⊕ (t(i−1) · [sCW ||vLCW ||tLCW ||sCW ||vLCW ||tRCW ]).
6: Parse τ = sL||vL||tL||sR||vR||tR.
7: if xi = 0 then
8: v ← v ⊕ vL

9: s(i) ← sL, t(i) ← tL

10: else
11: s(i) ← sR, t(i) ← tR

12: end if
13: end for
14: return v
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Algorithm 6 GenDCF(1λ, b, {⟨αi⟩b}i=1...n, ⟨β⟩Bb )
1: For b = 0, 1, Pb samples randoms s

(0)
b ←$ {0, 1}λ, t(0)b = b.

2: For b = 0, 1, Pb invokes Shr(s
(0)
b ), Shr(t

(0)
b ) to generate secret shares s

(0)
b and t

(0)
b ,

then Pb obtains ⟨s(0)0 ⟩b, ⟨t
(0)
0 ⟩Bb , ⟨s

(0)
1 ⟩b, ⟨t

(0)
1 ⟩Bb respectively.

3: for i = 1 to n do
4: P0 and P1 compute (⟨G(s

(i−1)
b )⟩0, ⟨G(s

(i−1)
b )⟩1) ← SecPRG(⟨s(i−1)

b ⟩0, ⟨s(i−1)
b ⟩1),

where ⟨G(s
(i−1)
b )⟩0 ⊕ ⟨G(s

(i−1)
b )⟩1 = sL,i−1

b ||vL,i−1
b ||tL,i−1

b ||sL,i−1
b ||vL,i−1

b ||tL,i−1
b ,

b = 0, 1.
5: P0 and P1 run a 2PC protocol together to compute:

(sCW , vLCW )←

{
(sR,i−1

0 ⊕ sR,i−1
1 , vL,i−1

0 ⊕ vL,i−1
1 ) αi = 0

(sL,i−1
0 ⊕ sL,i−1

1 , vL,i−1
0 ⊕ vL,i−1

1 ⊕ β) αi = 1

(tLCW , tRCW )←

{
(tL,i−1

0 ⊕ tL,i−1
1 ⊕ 1, tR,i−1

0 ⊕ tR,i−1
1 ) αi = 0

(tL,i−1
0 ⊕ tL,i−1

1 , tR,i−1
0 ⊕ tR,i−1

1 ⊕ 1) αi = 1

P0 and P1 obtain sCW ; vLCW ; tLCW , tRCW .
6: For b = 0, 1, Pb computes CW (i) = sCW ||vLCW ||tLCW ||tRCW locally.
7: P0 and P1 engage in a 2PC protocol to compute:

(s
(i)
b , t

(i)
b )←

{
(sL,i−1

b ⊕ t
(i−1)
b · sCW , tL,i−1

b ⊕ t
(i−1)
b · tLCW ) αi = 0

(sR,i−1
b ⊕ t

(i−1)
b · sCW , tR,i−1

b ⊕ t
(i−1)
b · tRCW ) αi = 1

P0 and P1 obtain (⟨s(i)b ⟩0, ⟨t
(i)
b ⟩0), (⟨s

(i)
b ⟩1, ⟨t

(i)
b ⟩1) respectively, where b = 0, 1.

8: end for
9: Let kb ← s

(0)
b ||CW (1)||...||CW (n).

10: return kb.

In this construction, the number of SecPRG invocations is n and the number
of 2PC invocations is 2n. The “2PC-friendly” PRG [23] can be used to instan-
tiate SecPRG and a secret sharing-based two-party protocol [10] can be used to
implement 2PC.

6 Performance Analysis and Experiment

6.1 Performance Analysis

In this section, we present the performance analysis of our protocol. Table 1 gives
online rounds and communication of our protocols, ABY2.0 [6] and AriaNN [17],
where input size is n1 × n2, n2 × n3 for MatMul, n for BitXA, DReLU and ReLU.

6.2 Experiment

In this section, we present the results of our implementation of FssNN using
Python, and present detailed experiment results and analysis to provide evi-
dence of the effectiveness and efficiency of FssNN. Our implementation utilized
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Table 1. Online communication complexity

Protocol
Rounds Online Comm.

ABY2.0 AriaNN Ours ABY2.0 AriaNN Ours

MatMul 1 1 1 n1n3 n1n2 + n2n3 n1n2 + n2n3

BitXA 1 1 1 2n 2n n+ 1
DReLU 1 + logn 1 1 ∼ 3n n n
ReLU 2 + logn 2 2 ∼ 5n 3n 2n+ 1

the PySyft library [24], which enhances machine learning frameworks such as
PyTorch with a communication layer and supports fixed precision arithmetic.
The experiments are run on a Macbook Air with Apple M1 processor and 8GB
memory in LAN settings.

In order to simplify comparison with existing work, we follow a setup very
close to AriaNN [17], which provides the most extensive experiments of private
training and inference. We report experimental numbers for both the offline and
the online phase of our protocols separately, however in some cases we only
provide the total cost (online + offline) for the purpose of comparison.

Experiments for Secure Layer Function In this section, we compare the
performance of the proposed linear protocols and non-linear protocol with the
counterparts implemented in AriaNN.

Matrix Multiplication We reproduce the matrix multiplication in neural networks
to test the performance of MatMul. Under different batch sizes, experiment tests
offline phase and total communication cost of matrix multiplication in a neural
network with three linear layers in Table 2. Experimental results show that the
application of the correlated matrix multiplication leads to a reduction in com-
munication cost in the offline phase, ranging from 18% to 35%. This reduction
in the number of multiplication triples results in a significant decrease in the
amount of communication required in the offline phase.

Hadamard product We test the performance of HadamProd by measuring re-
quired communication cost of Boolean matrix B multiplied by Arithmetic ma-
trix A where matrix size is both N × N . Table 3 shows the communication
cost and times of HadamProd in offline and online phase. And it shows that our
HadamProd is communication efficient and its communication cost is reduced by
1.6× ∼ 1.7×.
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Table 2. Communication cost and times of MatMul in offline and online phase

Framework Performance
Input size (N)

64 128 256 512 1024

AriaNN
Offline Comm.(MB) 4.663 6.576 10.402 18.054 33.359
Online Comm.(MB) 6.172 8.723 13.824 24.027 44.434
Total Time (ms) 104.253 137.282 200.170 289.409 535.263

FssNN
(Ours)

Offline Comm.(MB) 3.257 4.662 7.473 13.094 24.336
Online Comm.(MB) 6.172 8.723 13.824 24.027 44.433
Total Time (ms) 104.764 135.622 190.929 278.856 497.823

Table 3. Communication cost and times of HadamProd in offline and online phase

Framework Performance
Input size (N)

64 128 256 512 1024

AriaNN
Comm.(MB)

Offline 0.162 0.631 2.506 10.006 40.006
Online 0.063 0.251 1.001 4.001 16.001

Time.(ms)
Offline 5.070 6.640 15.560 65.100 280.530
Online 2.160 2.620 6.070 33.490 128.930

FssNN
(Ours)

Comm.(MB)
Offline 0.109 0.414 1.633 6.507 26.008
Online 0.037 0.142 0.564 2.251 9.001

Time.(ms)
Offline 5.050 8.000 13.500 48.940 190.890
Online 2.210 4.100 5.450 18.960 82.690

DReLU and ReLU To evaluate the performance of DReLU and ReLU, we con-
ducted experiments by calculating DReLU and ReLU for N ×N matrix. We then
measured the communication cost and time. The results of our experiments in-
dicate that DReLU and ReLU designed by FssNN outperforms AriaNN in terms
of communication cost and time. This is attributed to the reduction in key size
of the DCF scheme used in FssNN.

Figure 4 shows the total time and communication of the secure layers func-
tion, where input size is 128 for MatMul, 512 for HadamProd, 256 for DReLU
and ReLU in total time; input size is 1024 for MatMul and HadamProd, 256 for
DReLU and ReLU in total communication.

Experiments for Neural Network We assess secure neural network training
on the dataset MNIST, and consider a 3-layer fully-connected network. Experi-
mental results demonstrate that FssNN achieved lower communication cost and
training time per epoch than AriaNN.
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Fig. 3. Total time and communication of DReLU and ReLU
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Fig. 4. Total time and communication of the secure layers function.

Table 4. Performance of secure neural network training

Framework Model Dataset Epochs Comm. (GB) Time (h) Accuracy

AriaNN FCNN MNIST 15 36.11 0.28 97.95%
FssNN (Ours) FCNN MNIST 15 27.52 0.23 98.00%
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7 Conclusion

PPNN still come at a steep performance overhead that may not be amiable
for the real-world scenarios. During training, heavy cryptographic computations
are required to conduct, imposing intensive computational and communication
overheads. In this paper, we proposed secure and lightweight framework FssNN
for neural network training by leveraging function secret sharing. Our evaluation
shows the practical performance of our design, as well as the substantial per-
formance advantage over prior art. More attempts might be made to construct
actively secure algorithms to defend against malicious adversary.
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A Dual Distributed Comparison Function

Dual Distributed Comparison Function (DDCF) is variant of DCF, is defined
as:

f<
α,β0,β1

(x) =

{
β0 x < α

β1 else
(2)

where x, α ∈ UN , β0, β1 ∈ {0, 1}, and β0 ̸= β1.
Note that f<

α,β1,β2
(x) = β2 + f<

α,β1−β2
(x) and thus DDCF scheme can be

constructed by DCF scheme. Algorithm 7 show details of DDCF, which is slightly
modified compared to [14] and the output group is guaranteed to be Z2.

Algorithm 7 DDCF: (GenDDCF
n ,EvalDDCF

n )

GenDDCF
n (1λ, α, β0, β1)

1: Let β = β1 − β2.
2: (k

(n)
0 , k

(n)
1 )← Gen<n (1

λ, α, β).
3: Sample random r0, r1 ←$ {0, 1}, s.t. r0 ⊕ r1 = β2.

4: For b ∈ {0, 1}, let kb = k
(n)
b ||rb.

5: return (k0, k1).

EvalDDCF
n (b, kb, x)

1: Parse kb = k
(n)
b ||rb.

2: y
(n−1)
b ← Eval<n (b, k

(n)
b , x).

3: vb = y
(n−1)
b ⊕ rb.

4: return vb.

B Proof of Theorem 2

In this section, we will demonstrate the correctness and privacy of the DCF
scheme outlined in Section 5.2.

Proof. We will first address the correctness and then the privacy of the proposed
construction (Gen,Eval).

Correctness: We demonstrate that the s(i) and t(i) generated by Eval match
those set by Gen. This can be proven using mathematical induction: Let x =
x1x2 · · ·xn, α = α1α2 · · ·αn, and v0 = Eval<n (0, k0, x), v1 = Eval<n (1, k1, x).

1. When n = 1, As per line 1 of the algorithm Eval<n (b, kb, x), the {s(0), t(0)}
generated by Eval is consistent with the {s(0), t(0)} set by Gen. Since kb =
s(0)||CW (1), it follows that CW (1) = sCW ||vLCW ||tLCW ||vRCW ||tRCW andG(s(0)) =
ŝL||v̂L||t̂L||ŝR||v̂R||t̂R. We know that vb = (1−x1) · vL⊕x1 · vR, where vL =
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v̂L⊕ (t(0) ·vLCW ) = v̂L⊕ (b ·vLCW ) and vR = v̂R⊕ (t(0) ·vRCW ) = v̂R⊕ (b ·vRCW )
according to line 5 and line 6 of Eval. And according to the definition of
CW (1) and G(s(0)) in Gen, vLCW = vL0 ⊕ vL1 ⊕ (αi · β), vRCW = vR0 ⊕ vR1 and
v̂L = vLb , v̂

R = vRb , and then vb = ((1 − x1) · (b ⊕ vL0 )) ⊕ (x1 · vR0 ), thus
v0 ⊕ v1 = (1− x1) · (α1 · β) = β · 1{x1 < α1} = β · 1{x < α}.

2. Assuming n = i, {s(j), t(j)}j=1,··· ,i−1 generated by Eval are consistent with
those set by Gen. When n = i+1, according to lines 7 to 12 of Eval, when xi =
0 then s(i) = sL, t(i) = tL; when xi = 1 then s(i) = sR, t(i) = tR. Since sL =
ŝL⊕(t(i−1) ·sCW ), sR = ŝR⊕(t(i−1) ·sCW ), tL = t̂L⊕(t(i−1) ·tLCW ), tR = t̂R⊕
(t(i−1) ·tRCW ) where sCW , tLCW , tRCW is an element of CW (i) and ŝL, ŝR, t̂L, t̂R

are an element of G(s(i−1)), it follows that {s(j), t(j)}j=1,··· ,i are consistent
with those generated by Gen<n (1

λ, α). Finally, according to lines 15 to 16 in
Gen, we can conclude that {s(j), t(j)}j=1,··· ,i generated by Eval is consistent
with those set by Gen.

Therefore, it has been established that {s(j), t(j)}j=1,··· ,n generated by algo-
rithm Eval are consistent with those set by Gen, As a result, v0 ⊕ v1 = β when
x < α, and 0 otherwise. Thus, Eval<n (0, k0, x) ⊕ Eval<n (1, k1, x) = f<

α,β (x), that

is, Pr
[
Eval(0, k0, x)⊕ Eval(1, k1, x) = f<

α,β(x)
]
= 1.

Privacy: We prove that each party’s key kb is pseudorandom. This will be done
via a sequence of hybrids, where in each step we replace another correction word
CW (i) within the key from being honestly generated to being random.

The high-level argument for privacy is as follows. Each party b ∈ {0, 1} starts
with a random seed s

(0)
b that is completely unknown to the other party. In each

level of key generation (for i = 1 to n), the parties apply a PRG to their seed

s
(i−1)
b to generate six items: namely, two seeds sLb , s

R
b , two resulting bits vLb , v

R
b

and two control bits tLb , t
R
b . This process will always be performed on a seed

that appears completely random and unknown from the view of the other party;
because of this, the security of the PRG guarantees that the six items appear
similarly random and unknown given the view of the other party. The ith level
correction word CW (i) will “use up” the secret randomness of 5 of these 6 pieces:
the two bits tLb , t

R
b , the resulting bits vLb , v

R
b and the seed sLoseb for Lose ∈ {L,R}

corresponding to the direction exiting the special evaluation path α: i.e. Lose = L
if αi = 1 and Lose = R if αi = 0. However, given this CW (i), the remaining seed
sKeepb for Keep ̸= Lose still appears random to the other party. The argument

then continues in similar fashion to the next level, beginning with seeds sKeepb .

For each j ∈ {1, · · · , n}, we will consider a distribution Hybj defined roughly
as follows:

1. s
(0)
b ← {0, 1}λ chosen at random (honestly), and t

(0)
b = b.

2. CW (1), · · · , CW (j) ← {0, 1}λ+1 chosen at random.

3. For i ≤ j, s
(i)
b ||v

(i)
b ||t

(i)
b computed honestly, as a function of s

(0)
b ||v

(0)
b ||t

(0)
b

and CW (1), · · · , CW (j).
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4. For j, the other party’s seed s
(j)
1−b ← {0, 1}λ and the resulting bit v

(j)
1−b are

chosen at random, and t
(j)
1−b = 1− t

(j)
b .

5. for i > j: the remaining values s
(i)
b ||v

(i)
b ||t

(i)
b , s

(i)
1−b||v

(i)
1−b||t

(i)
1−b, CW (i) are all

computed honestly as a function of the previously chosen values.

6. The output of the experiment is kb := s
(0)
b ||CW (1)|| · · · ||CW (n).

Formally, Hybj is fully described in algorithm. Note that when j = 0, this
experiment corresponds to the honest key distribution, whereas when j = n this
yields a completely random key kb. We claim that each pair of adjacent hybrids
j − 1 and j will be indistinguishable based on the security of the pseudorandom
generator.

Our proof follows from the following three lemmas:

Lemma 1. For every b ∈ {0, 1}, α ∈ {0, 1}n, β ∈ {0, 1}, it holds that

{kb ← Hyb0(1
λ, b, α, β)} ≡ {kb : (k0, k1)← Gen<n (1

λ, α, β}

Lemma 2. For every b ∈ {0, 1}, α ∈ {0, 1}n, β, it holds that

{kb ← Hybn+1(1
λ, b, α, β)} ≡ {kb ← U}

Note that Lemma 1 and Lemma 2 follow directly by construction of Hybj .

Lemma 3. There exists a polynomial p′ such that for any (T, ϵPRG) -secure
pseudorandom generator G, then for every j ∈ {0, 1, · · ·n − 1}, every b ∈
{0, 1}, α ∈ {0, 1}n, β ∈ {0, 1}, and every non-uniform adversary A running in
time T ′ ≤ T − p′(λ), it holds that∣∣∣Pr[kb ← Hybj−1(1

λ, b, α, β); c← A(1λ, kb) : c = 1
]

− Pr
[
kb ← Hybj(1

λ, b, α, β); c← A(1λ, kb) : c = 1
]∣∣∣ < ϵPRG

Proof. Fix an arbitrary j ∈ {0, 1, · · ·n−1}, b ∈ {0, 1}, α ∈ {0, 1}n and β ∈ {0, 1}.
Given a Hyb-distinguishing adversary A with advantage ϵ for these values, we
construct a corresponding PRG adversary B. Recall that in the PRG chal-
lenge for G, the adversary B is given a value r that is either computed by
sampling a seed s ← {0, 1}λ and computing r = G(s), or sampling a random
r ← {0, 1}2(λ+2).

Now, consider B’s success in the PRG challenge as a function of A’s success
in distinguishing Hybj−1 from Hybj . If r is computed pseudorandomly, then it

is clear the generated kb is distributed as Hybj−1(1
λ, b, α, β).

It remains to show that if r was sampled at random then the generated kb is
distributed as Hybj(1

λ, b, α, β). That is, if r is random, then the corresponding

computed values of s
(j)
1−b and CW (j) are distributed randomly conditioned on

the values of s
(0)
b ||t

(0)
b ||CW (j)|| · · · ||CW (j−1), and the value of t

(j)
1−b is given by

1 − t
(j)
b . Note that all remaining values (for “level” i > j) are computed as a

function of the values up to “level” j.
First, consider CW (j), computed in four parts:
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Hybj(1
λ, b, α, β)

1: Let α = α1, · · · , αn ∈ {0, 1}n be the bit decomposition of α.

2: Sample random s
(0)
b ←$ {0, 1}λ and let v

(0)
b = v

(0)
1−b ← 0, t

(0)
b = b, t

(0)
1−b = 1− b.

3: for i = 1 to n do
4: if i < j then
5: Sample CW (j) ←$ {0, 1}λ × {0, 1} × {0, 1}2.
6: else
7: if i = j then
8: Sample random s

(j−1)
1−b ←$ {0, 1}λ and let t

(j−1)
1−b = 1− t

(j−1)
b .

9: end if
10: CW (i) = CompCW(i, αi, G(s

(i−1)
b ), G(s

(i−1)
1−b ), β).

11: (s
(i)
1−b, (t

(i)
1−b) = NextST(1− b, i, t

(i−1)
1−b , sKeep1−b ||t

Keep
1−b , CW (i)).

12: end if
13: (s

(i)
b , t

(i)
b ) = NextST(b, i, t

(1−i)
b , sKeepb ||tKeep1−b , CW (i)).

14: end for
15: Let kb = s

(0)
b ||CW (1)|| · · · ||CW (n)

16: return kb

CompCW(i, αi, S
(i−1)
b , S

(i−1)
1−b , β)

1: Parse S
(i−1)
1−b = sL1−b||vL1−b||tL1−b||sR1−b||vR1−b||tR1−b.

2: Parse S
(i−1)
b = sLb ||vLb ||tLb ||sRb ||vRb ||tRb .

3: if αi = 0 then
4: Set Keep← L, Lose← R
5: else
6: Set Keep← R, Lose← L
7: end if
8: sCW ← sLose0 ⊕ sLose1 .
9: vLCW ← vL0 ⊕ vL1 ⊕ (αi · β)
10: tLCW ← tL0 ⊕ tL1 ⊕ αi ⊕ 1, and tRCW ← tR0 ⊕ tR1 ⊕ αi.
11: return CW (i) ← sCW ||vLCW ||tLCW ||tRCW

NextST(x, i, t
(i−1)
x , sKeepx ||tKeepx , CW (i))

1: Parse CW (i) = sCW ||vLCW ||tLCW ||tRCW .

2: s
(i)
x ← sKeepx ⊕ t

(i−1)
x · sCW

3: t
(i)
x ← tKeepx ⊕ t

(i−1)
x · tKeepCW .

4: return (s
(i)
x , t

(i)
x )
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PRG adversary B(1λ, (j, b, α, β), r) :
1: Let α = α1, · · · , αn ∈ {0, 1}n be the bit decomposition of α.

2: Sample random s
(0)
b ←$ {0, 1}λ and let v

(0)
b ← 0, t

(0)
b = b for b = 0, 1.

3: for i = 1 to (j − 1) do
4: Sample CW (i) ←$ {0, 1}λ × {0, 1} × {0, 1}2.
5: Parse CW (i) = sCW ||vLCW ||tLCW ||tRCW .

6: Expand sLb ||vLb ||tLb ||sRb ||vRb ||tRb = G(s
(i−1)
b ).

7: if αi = 0 then
8: Set Keep← L, Lose← R
9: else
10: Set Keep← R, Lose← L
11: end if
12: (s

(i)
b , t

(i)
b ) = NextST(b, i, t

(1−i)
b , sKeepb , tKeep1−b , CW (i)).

13: Take t
(i)
1−b = 1− t

(i)
b

14: end for
15: Expand sLb ||vLb ||tLb ||sRb ||vRb ||tRb = G(s

(j−1)
b ).

16: Set sLb ||vLb ||tLb ||sRb ||vRb ||tRb = r (the PRG challenge).

17: CW (j) = CompCW(j, αj , r, G(s
(j−1)
b ), β).

18: if αj = 0 then
19: set Keep← L, Lose← R
20: else
21: Set Keep← R, Lose← L
22: end if
23: Compute (s

(j)
x , t

(j)
x ) = NextST(x, j, t

(j−1)
x , sKeepx ||tKeepx , CW (j)), for both x ∈ {0, 1}.

24: Set P = [sL0 ||vL0 ||tL0 ||sR0 ||vR0 ||tR0 ], [sL1 ||vL1 ||tL1 ||sR1 ||vR1 ||tR1 ].
25: Compute (CW (j+1)|| · · · ||CW (n)) = RemainingKey(α, j, CW (1)|| · · · ||CW (j), P ).

26: return kb = s
(0)
b ||CW (1)|| · · · ||CW (n).

RemainingKey(α, j, CW (1)|| · · · ||CW (j), t
(j)
0 , t

(j)
1 , P ).

1: Parse P = [sL0 ||vL0 ||tL0 ||sR0 ||vR0 ||tR0 ], [sL1 ||vL1 ||tL1 ||sR1 ||vR1 ||tR1 ].
2: for i = (j + 1) to n do

3: Expand sLx ||vLx ||tLx ||sRx ||vRx ||tRx = G(s
(i−1)
x ) for both x ∈ {0, 1}.

4: if αi = 0 then
5: set Keep← L, Lose← R
6: else
7: Set Keep← R, Lose← L
8: end if
9: CW (i) = CompCW(i, αi, [s

L
0 ||vL0 ||tL0 ||sR0 ||vR0 ||tR0 ], [sL1 ||vL1 ||tL1 ||sR1 ||vR1 ||tR1 ], β).

10: Compute (s
(i)
x , t

(i)
x ) = NextST(x, i, t

(i−1)
x , sKeepx ||tKeepx , CW (i)), for both x ∈ {0, 1}.

11: end for
12: return (CW (j)||CW (j+1)|| · · · ||CW (n))



FssNN: Secure Neural Network Training via Function Secret Sharing 27

– sCW = sLoseb ⊕ sLose1−b.

– vLCW = vLb ⊕ vL1−b ⊕ (αj · β).
– tLCW = tLb ⊕ tL1−b ⊕ αj ⊕ 1.

– tRCW = tRb ⊕ tR1−b ⊕ αj .

In the case that r is random, then sLose1−b, v
L
1−b, v

R
1−b, t

L
1−b, and tR1−b (no mat-

ter the value of Lose ∈ {L,R}) are each perfect one-time pads. So, CW (j) =
sCW ||vLCW ||tLCW ||tRCW is indeed distributed uniformly.

Now, condition on CW (j) as well, and consider the value of s
(j)
1−b. Depending

on the value of t
(j−1)
1−b , s

(j)
1−b is selected either as sKeep1−b or sLose1−b ⊕ sCW . However,

sKeep1−b is distributed uniformly conditioned on the view thus far, and so in either
case the resulting value is again distributed uniformly.

Finally, consider the value of t
(j)
1−b. Note that both t

(j)
b and t

(j)
1−b are computed

as per NextST, as a function of t
(j−1)
1 and t

(j−1)
1−b , respectively (and t

(j−1
1−b was

set to 1− t
(j−1)
b ). In particular,

t
(j)
b ⊕ t

(j)
1−b = (tKeepb ⊕ t

(i−1)
b · tKeepCW )⊕ (tKeep1−b ⊕ t

(i−1)
1−b · t

Keep
CW )

= tKeepb ⊕ tKeep1−b ⊕ (t
(i−1)
b ⊕ t

(i−1)
1−b ) · tKeepCW

= tKeepb ⊕ tKeep1−b ⊕ 1 · (tKeep0 ⊕ tKeep1 ⊕ 1)

= 1

Combining these pieces, we have that in the case of a random PRG challenge
r, the resulting distribution of kb as generated by B is precisely distributed as
is Hybj(1

λ, b, α, β). Thus, the advantage of B in the PRG challenge experiment

is equivalent to the advantage ϵ of A in distinguishing Hybj−1(1
λ, b, α, β) from

Hybj(1
λ, b, α, β). The runtime of B is equal to the runtime of A plus a fixed

polynomial p′(λ). Thus for any T ′ ≤ T−p′(λ), it must be that the distinguishing
advantage ϵ of A is bounded by ϵPRG. ⊓⊔

This concludes the proof. ⊓⊔
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