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Abstract. We give a construction of a 2-round blind signature scheme based on the hardness of stan-
dard lattice problems (Ring/Module-SIS/LWE and NTRU) with a signature size of 22 KB. The protocol
is round-optimal and has a transcript size that can be as small as 60 KB. This blind signature is around
4 times shorter than the most compact lattice-based scheme based on standard assumptions of del Pino
and Katsumato (Crypto 2022) and around 2 times shorter than the scheme of Agrawal et al. (CCS
2022) based on their newly-proposed one-more-SIS assumption. We also give a construction of a “keyed-
verification” blind signature scheme in which the verifier and the signer need to share a secret key. The
signature size in this case is only 48 bytes, but more work needs to be done to explore the efficiency of
the protocol which generates the signature.

1 Introduction

Blind signatures, protocols in which a user obtains a signature of a message from a signer without
the latter learning anything about the message, are one of the foundational primitives of privacy-
based cryptography [Cha82]. Their importance is steadily increasing due to the emergence of digital
currency and the population’s growing privacy expectations. There have been many practical in-
stantiations of this primitive from various assumptions, and there are currently concrete proposals
to deploy these primitives on national levels to create a central bank digital currency (e.g. [CM22]).

Another important recent development is the ongoing transition of cryptography based on assump-
tions such as factoring and discrete log to cryptography based on conjectured quantum-safe as-
sumptions. With the 6 year NIST post-quantum standardization effort having recently produced
four public-key schemes (one encryption and three digital signature) to be standardized in the next
year [NIS22], the NSA is now mandating that a full transition to quantum-safe cryptography must
occur by the beginning of the 2030s [NSA22]. It is quite probable that this timeline will closely
coincide with the large-scale deployment of blind signatures and other forthcoming privacy-based
cryptographic schemes; which strongly implies that these will therefore need to be quantum-safe as
well. But while there are many very efficient blind signatures based on classical assumptions, there
has been a dearth of research on quantum-safe blind signatures.3

The state of affairs has been recently improved with two proposals for lattice-based blind signatures
which, while less efficient than their classical counterparts, are certainly in the realm of practicality.
The scheme of [dPK22] is a blind signature based on standard lattice assumptions4 with signa-
ture sizes being around 100 KB and total communication being under a megabyte. The scheme
in [AKSY22] is based on the new one-more-SIS assumption proposed in that paper, with the ad-
vantage being that the scheme is more efficient, being around 45KB in size and also requiring less
communication to create a signature.

In our work, we improve on this state of the art by presenting a practical blind signature based on
standard lattice assumptions which shrinks the signature size down to approximately 22 KB. We
also propose a keyed-verification blind signature scheme in which the signature is only 48 bytes, but
the downsides of the latter are that the generation of the signature is less efficient and verification
requires the signer’s secret key.

3 The “quantum-safe” in the title of [CM22] only refers to a particular security property – the overall scheme, however,
is not quantum-safe because it is based on RSA.

4 All the lattice assumptions in the papers we discuss and those in the current paper are over lattices with polynomial
structure.



Our schemes are round-optimal, meaning that the signature is generated after 2 rounds. Round-
optimality is useful in practice because communication latency is often a major bottleneck in in-
teractive protocols. It can be additionally useful because it allows off-line pre-computation of an
entire part of the protocol for one of the parties, which could allow even a fairly low-powered user
to participate in the protocol. Moreover, 2-round blind signatures need not worry about delicate
issues involving concurrent executions of the signing protocol, which can complicate the design of
multi-round blind signatures and have led to concrete attacks in the past [BLL+21].

Scheme Assumption Signature Size

[AKSY22] one-more-SIS + LWE + NTRU 45 KB

[dPK22] SIS + LWE 100 KB

Blind Signature SIS + LWE
22 KB

(This work) + NTRU

Keyed-Verification
Blind Signature SIS + LWE 48 B

(This Work)

Table 1: Potentially Practical Round-Optimal Lattice-Based Blind Signatures. All the assumptions are for the versions
of the specified lattice problems over polynomial rings.

Below we give a detailed sketch of our constructions. We will assume that the reader is somewhat
familiar with basic lattice cryptography.

1.1 Blind Signature

The starting point of our construction is the generic blind signature construction of Fischlin [Fis06]
and its more efficient adaptation for lattices, based on the one-more-SIS assumption by Agrawal et
al. [AKSY22]. The public keys in [AKSY22] consist of polynomial matrices A and B, where A is
created together with a trapdoor that allows for efficient pre-image sampling of short #»s satisfying
A #»s =

#»
t for arbitrary

#»
t , and B is a random CRS. The aforementioned trapdoor serves as the

signer’s secret key. The scheme also uses a cryptographic hash function H(·) modeled as a random
oracle.

The user, who wants to get µ signed, commits to H(µ) using randomness #»r , which is a vector of
small norm, as

#»c := B #»r + H(µ) (1)

and send #»c to the signer.5 The signer then proceeds to sign this commitment using a lattice-based
signature scheme based on (the soon-to-be NIST standardized) FALCON [PFH+17]. In particular,
the signer uses his secret trapdoor to create a short vector #»s satisfying A #»s = #»c and sends #»s to
the user. In order to create a signature for µ, the user reveals µ and creates a NIZK proof π that
proves knowledge of short #»s , #»r satisfying

A #»s = B #»r + H(µ). (2)

The NIZK proof π can be efficiently created using the recent linear-size zero-knowledge proofs from
[LNP22].

The unforgeabilty property of blind signatures requires that an adversary who makes k signing
queries should only be able to produce at most k valid signatures. A technical issue that arises
in protocols that are constructed in the same vein as Fischlin’s is that proving security requires
us to use a successful adversary to obtain k + 1 valid witnesses to some relation (in the case of
the above scheme, #»s and #»r ). But because the adversary only gives a zero-knowledge proof, we
can’t immediately obtain these. One could consider extracting k+ 1 times using rewinding, but this
would exponentially (in k) blow up the soundness error in the security proof. One therefore needs to

5 All the operations in our paper are over the usual polynomial rings of the form Zq[X]/(Xd + 1).
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modify the proof system by additionally creating an encryption to the witness and then producing
a sound NIZK which includes the original statement as well as the fact that the encryption is of the
witness.6 The protocol of [AKSY22] thus also includes an encryption of the witness #»r , #»s as part of
the signature and this incurs approximately a factor 2 blow-up in the signature size.

We modify the Fischlin/Agrawal et al. construction in two ways in order to remove the new one-more-
SIS assumption and the ciphertext that’s part of the signature. The need for the new assumption
in [AKSY22] comes from the fact that the #»c from (1) that the signer produces a pre-image for is
not necessarily random because the user can first compute H(µ) and then choose the #»r conditioned
on H(µ) in some way so as to influence the distribution of #»c . The need for the one-more-SIS 7

assumption comes exactly from the fact that the signer can be forced to produce pre-images of
vectors that are non-random; whereas the GPV [GPV08] and FALCON [PFH+17] signatures avoid
this assumption by making sure that the signer only outputs short pre-images of random oracle
outputs. In order to ensure that #»c is truly random, we modify it to be

#»c = B #»r + H(µ,H( #»r )) (3)

and also include a NIZK proof that #»c is correctly constructed. We also include an “encryption to
the sky” of the witness #»r and µ and include the proof of the encryption in the NIZK. The signature
for µ is then modified to be (ρ = H( #»r ), π), where π is a NIZK proof of knowledge of a short #»s and
#»r satisfying

A #»s = B #»r + H(µ, ρ). (4)

Importantly, there is no need to encrypt the witness #»r and #»s and, unlike in the proof of (3), the
user does not need to prove that ρ = H( #»r ).

Efficiency. The proof π for (4) is constructed using the general technique from [LNP22] for proving
simple lattice relations and we compute the proof size (and thus the size of the blind signature, since
µ and ρ are just 32 bytes each) to be approximately 22 KB. Because the framework of [LNP22] is
quite recent, there haven’t been any implementations of it, and so we aren’t able to provide the
running time of the prover and the verifier. But earlier versions of lattice-based zero-knowledge
proofs upon which [LNP22] is based had implementations in which the prover and verifier had
running times on the order of milliseconds (c.f. [LNS20]) for proving similar relations.

The NIZK produced by the user in the first step (3) is proving the validity of cryptographic hash
function inputs and outputs, which is computationally less efficient than the NIZK that just proves
the simple lattice relations. Nevertheless, because this NIZK is not part of the signature, we do
not need to overly optimize its size and there are various ways to make it rather efficient. The
instantiation of our blind signature, which uses a FALCON-like domain (i.e. a ring Zq[X]/(X512+1)
where q is less than 213), requires a hash function that outputs 13 ∗ 512/8 = 832 bytes, which is
essentially 26 SHA outputs. Modern quantum-safe zero-knowledge proof systems, whose security
relies only on properties of cryptographic hash functions, can construct such proofs in under 20
seconds and verify them in under 10 seconds (c.f. [BFH+20, Table 1]). The proof sizes are several
hundred kilobytes, but as previously mentioned, this is not part of the signature size. Additionally,
because the proof is sent in the first message of the 2-round signing protocol, the user can compute
it offline. There are other things besides hash functions that need to be proved in (3), but those
are just basic lattice relations which, at worst, could be proved using the linear-sized proofs from
[LNP22] at a cost of another few hundred kilobytes.

A promising recent approach which may produce even faster and shorter proofs for R1CS and lattice
relations is the new sub-linear protocol LaBRADOR [BS22] which creates very short (≈ 60KB)
proofs for R1CS instances of reasonable size (up to 230 constraints) based on the hardness of

6 This is sometimes referred to as “encryption to the sky” because in the real protocol, decryption is not performed
(in fact, the public key is usually not even validly constructed and is just a random string that is indistinguishable
from an actual public key.

7 This assumption roughly states that an algorithm that is given k pre-images on targets of his choice cannot produce
pre-images of k + 1 random targets.
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standard lattice problems. Because lattice-based schemes are generally more efficient than hash-
based ones (e.g. lattice-based signatures are several orders of magnitude faster than hash-based
ones), one should expect that the running-time and memory consumption of lattice-based zero-
knowledge proofs will also be considerably smaller. And finally, there are also proposals for replacing
SHA as the cryptographic hash function in scenarios that require efficient zero-knowledge proofs,
which should also result in a major speed-up (c.f. [BGL20]), and should take the prover time of (3)
to well under a second. We leave the implementation of [LNP22, BS22] and their adaptations to
our blind signature scheme as important future work.

Security. The NIZK proof of (3) produced by the user in the first move plays two roles. The first,
as mentioned, it allows the security proof of the blind signature to be based on standard lattice
problems. The intuition for this is that by putting #»r as an input to H(·), we force the adversary
to pick the #»r before querying the random oracle – thus the right-hand side of (3) is random and
not under the control of the user. The second useful role is that because we additionally include
an “encryption to the sky” of the witness µ, #»r during this move, one will not need any encryption
to the sky as part of the signature output. The reason is that we only need to obtain one new
signature from the adversary instead of k+ 1 because we can already obtain k valid signatures from
the adversary’s signing queries because we can obtain µ and #»r via decryption. Thus all we need
to do is use rewinding (or reprogramming the random oracle in the non-interactive setting when
applying Fiat-Shamir) on one proof, which does not result in an exponential loss of soundness.

The security of our scheme is proved in two steps. First, we consider a regular (i.e. non-blind)
signature scheme similar to GPV [GPV08] and [PFH+17] in which the signature of a message µ
consists of short vectors #»r , #»s and a bit-string ρ = H( #»r ) satisfying A #»s = B #»r + H(µ, ρ).8 The
verification only checks that the more “relaxed” condition from (4) is satisfied – that is, it does not
additionally make sure that ρ = H( #»r ).

Using similar techniques, which are only slightly more complicated due to the nested random oracle,
as showing that the GPV signature is based on SIS, it can be shown that breaking the above signature
scheme is as hard as SIS – that is, finding a short non-zero vector #»x satisfying [A||B] · #»x =

#»
0 .

Given random A,B, the reduction publishes them as the public key. By the NTRU assumption,
the random A is indistinguishable from one with an NTRU trapdoor. If the adversary ever queries
H( #»r ) on a fresh #»r , the simulator assigns a random value as the output. If the adversary queries
H(µ, ρ), then the simulator checks whether ρ is one of the outputs for some previously-queried H( #»r ).
If it’s not, then he assigns it a random value (this query can never be used in a signature query
because the adversary does not know the pre-image of ρ). If ρ = H( #»r ) for some previously-queried
#»r , then the simulator chooses a short #»s from the correct distribution (a Gaussian with a small
standard deviation), computes A #»s , and programs H(µ, ρ) := A #»s − B #»r . Because the entropy of
#»s is large enough, A #»s is uniformly random, and thus H(µ, ρ) is random. If the adversary makes a
signing query using a µ, #»r for which an #»s was already chosen, the simulator outputs this #»s as the
signature. Otherwise, he creates the #»s and the value for H(µ,H( #»r )) as above, and outputs #»s .

When the adversary outputs a forgery µ, ρ, #»r , #»s satisfying (4), he necessarily needed to have
previously queried H(µ, ρ). This implies that the simulator already knows a tuple ( #»r ′, #»s ′) sat-
isfying A #»s ′ = B #»r ′ + H(µ, ρ). From this equation and the forgery satisfying (4), he obtains
A( #»s − #»s ′) − B( #»r − #»r ′) =

#»
0 . Since the #»s ′ is unpredictable to the adversary, there is a high

probability that ( #»s − #»s ′) 6= #»
0 , and thus we obtain a short non-zero #»x satisfying [A||B] · #»x =

#»
0 .

Having proved that the above signature scheme is secure in the random oracle model, we can assume
that it is secure when H is instantiated with some concrete cryptographic hash function (e.g. SHA).
We then use the assumption that the signature scheme with the concrete hash function is secure
to prove the security of the blind signature. In particular, we assume that we have an adversary

8 The GPV and FALCON schemes do not have the #»r vector (or one can think of it as being
#»
0 ). It is only needed

in our scheme because it serves as the commitment randomness in the first step.
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who can forge a fresh message in the blind signature scheme, and use it to break the signature.9 To
simulate the signer, we obtain the first message of the adversarial user and, assuming that the NIZK
is sound, we can decrypt the witness #»r and µ. We then send this #»r and µ to the signing oracle to
obtain a signature #»s and forward it to the adversary. If the adversary is to win the blind signature
game, he needs to produce a signature of some message µ that he has not queried. If he outputs a
µ and ρ and a NIZK proof of knowledge of an #»r and #»s satisfying (4), then we can extract this one
witness #»r , #»s and output µ, #»ρ , #»r , #»s as a valid signature forgery.

1.2 Keyed-Verification Blind Signature

Keyed-verification anonymous credentials, introduced in [CMZ14], are more efficient anonymous
credential schemes in the scenario where the credential issuer is also the verifier (or, more generally,
the verifier must possess some secret key associated with the issuer). This naturally fits into the
context of a blind signature scheme in the scenario where the entity issuing the signature is also the
verifier. This could, for example, occur in an e-cash application where the merchant who is paid by
the user does not do the check for double-spending and validity by himself, but instead sends the
coin and its signature to the issuing bank in order to have it checked. While this scenario restricts
who can do the verification, the advantage is that the resulting scheme can be more compact.

A Keyed-Verification Blind Signature scheme can be constructed generically from a Verifiable Obliv-
ious PRF (VOPRF). A VOPRF is an interactive protocol between a server and a client. The server
has a key K for some PRF F , and during the protocol, the client should learn F (K,µ) for a message
µ of his choosing while learning nothing about K; and the server should similarly learn nothing
about µ.

Converting a VOPRF into a Keyed-Verification Blind Signature is simple – the signer (server)
and the user (client) execute a protocol in which the user learns F (K,µ), which is then the user’s
signature of µ. One can generically construct a quantum-resistant VOPRF using standard MPC
techniques, but the resulting scheme will not be round-optimal (c.f. the discussion in [ADDS21,
Appendix E].) There does, however, exist a construction of a round-optimal lattice-based VOPRF
[ADDS21], which adapts the classical “hashed Diffie Hellman” technique (c.f. [CHL22] for a good
survey) to lattices, and it serves as a starting point for our construction.

Because we need a blind signature rather than VOPRF, we are able to give a more efficient con-
struction by relaxing what we need out of the VOPRF. In particular, instead of the client obtaining
an evaluation of F (K,µ) for a message µ of his choosing, in our version he obtains F (K, (µ, ρ)),
where ρ is a randomly-generated value outside of his control. While this is not a VOPRF, it perfectly
suffices for our blind signature because the user can simply output ρ along with µ.10 Constructing
this weakened version of a VOPRF turns out to be more efficient than the standard VOPRF con-
struction from [ADDS21] mainly because it does not require “noise drowning” which is needed in
[ADDS21] for the server’s privacy.11 Not needing to add large errors allows our scheme to have a
smaller overall system modulus. This, in turn, allows to take a significantly smaller lattice dimension
and should improve the running time of the scheme by at least an order of magnitude.

Our construction. The public key consists of a random square polynomial matrix B and a vector
#»
t
T

= #»s TB + #»e 1
T where #»s and #»e are low-norm polynomial vectors with #»s being the secret key.

The user, similar to (3), commits to his message µ as

#»c := B #»r + # »e2 + H (µ,H( #»r , # »e2)) , (5)

9 The blindness of the scheme is easy to see because (3) is a hiding commitment and everything else is proved using
zero-knowledge proofs.

10 It would be interesting to see whether this weaker version of a VOPRF also has other applications.
11 Noise drowning is a term for a technique used in lattice cryptography in which a very large random integer is added

to some element drawn from a narrow distribution in order to make the resulting sum statistically close to the
distribution of the large integer.
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and creates a NIZK for the statement the commitment is of the right form. As in (3), putting
the randomness into the hash ensures that the (uniform) distribution of #»c is outside of the user’s
control.12

Upon receiving the #»c from the user, the signer computes an LWE sample using his secret #»s as
h = #»s T #»c + e3 and proves that it is a valid LWE sample and that the #»s is the same #»s that was
used to construct the public key

#»
t T . Now we observe that if we define #»u = H (µ,H( #»r , # »e2)), then

h− #»
t T #»r = #»s T #»u︸ ︷︷ ︸

uniform

+ #»s T # »e2 + e3 − # »e1
T #»r︸ ︷︷ ︸

small

. (6)

If the modulus is large enough and the user outputs ρ = H( #»r , # »e2) in his signature of µ, then both
the user and the signer would be able to compute dh− #»

t T #»r c = d #»s T #»uc, where d·c is the rounding
of each integer of the polynomial to the highest few (e.g. 2) order bits. The user thus outputs
ρ, dh− #»

t T #»r c as the signature of µ, which is only 48 bytes in length.

Efficiency. The signature size of the scheme is very short, and verification is quite efficient since it
doesn’t involve any zero-knowledge proofs. The protocol itself, however, is less efficient than the one
for the basic blind signature from the previous subsection. While the NIZK that the signer sends
to the user is a proof of lattice relations and can be created using the protocol from [LNP22], the
proof of (5) does require proving knowledge of inputs and outputs of cryptographic hash functions.
In order to ensure that dh− #»

t T #»r c = d #»s T #»uc, we needed to use a modulus that is a lot larger than
the largest coefficient of #»s T # »e2 + e3− # »e1

T #»r . This requires taking q ≈ 2150 and the overall dimension
of the LWE instance to be ≈ 6000. This means that the hash function maps onto a domain of
size ≈ 217 bytes, which would require computing 212 SHA functions. This is around 100X larger
than the 26 SHA functions needed to hash to the domain in the blind signature scheme from the
previous section. Using current techniques (e.g. [BFH+20]), this would take around 30 minutes,
which is too slow for many applications. Nevertheless, we think that using a more NIZK-compatible
hash function as well as exploring the eventual speed-up which should arise from using lattice-based
zero-knowledge proofs (e.g. [BS22]) could result in this number coming down to something more
manageable. So unlike our main blind signature proposal, which is already practical, we think that
there is still work left to be done before our Keyed-Verification Blind Signature can be considered for
real-world applications. Still, the possibility of having a round-optimal quantum-safe scheme with
a very short signature size is a very intriguing prospect that we believe should encourage research
toward these efficiency improvements.

Security. The privacy of the user’s µ is preserved because the commitment #»c is hiding H(µ, ρ) and
because dh− #»

t T #»r c being equal to d #»s T #»uc, with all but negligible probability, implies that the #»e 2

and #»r generated by the user are hidden.

To show the privacy of the signer, we first note that the fact that #»c is generated uniformly at
random (and cannot be influenced by the user) implies that h = #»s T #»c +e3 is indistinguishable from
uniform based on MLWE. Note that while the user can’t control the #»c , he can send the same one
twice. Therefore it’s important that the signer also uses the same error e3 for creating the h. This
is why the signer generates the e3 using a PRF (using a secret key K) that takes as input the #»c .
Therefore the h will be the same for the same #»c . Furthermore, because #»u = H(µ, ρ) is an output
of the random oracle and the modulus is large, the value d #»s T #»uc does not give out any additional
information because it can be derived from the information already known by the adversarial user
(i.e. d #»s T #»uc = dh− #»

t T #»r c).

The soundness of our scheme follows from the fact that for a new µ′, #»u = H(µ′, ρ′) is uniformly
random, and so by the LWE assumption d #»s T #»uc is indistinguishable from a completely random

12 In this protocol we explicitly separate out the “secret” and the “error” of the LWE equation as #»r and #»e 2, whereas
in the blind signature in the previous section, the two were lumped together into #»r and B was extended to include
an identity matrix. The reason for this is that the current protocol uses a “Diffie-Hellman”-like protocol (in which
the separation between the secret and error is important for efficiency) whereas the previous one used trapdoor
sampling (where the secret and the error have the exact same function and so can be lumped together).
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element of some small entropy depending on the rounding function, and thus the adversary has a
negligible chance of producing a v′ = d #»s T #»uc that would be accepted.

Comparison to generically using the VOPRF from [ADDS21]. The reason our scheme is more
efficient than the VOPRF of [ADDS21] is that in their scheme the first move of the client/user was
the commitment #»c := B #»r + # »e2 + H(µ) along with a zero-knowledge proof proving the correctness
of the construction.13 Because the input to H was not tied to #»r and #»e 2, the user could later send
#»c ′ = B #»r + # »e2

′ + H(µ) and then subtract the responses h = #»s T #»c + e3 and h′ = #»s T #»c ′ + e′3 to
obtain #»s T ( #»e 2 − #»e ′2) + (e3 − e′3). In order for this to not leak information about #»s T , the errors
e3, e

′
3 needed to be significantly larger than #»s T ( #»e 2 − #»e ′2) so as to “drown out” any effect of #»s on

the difference. This results in the modulus being at least q = 2256 and would require the overall
lattice dimension to increase by some noticeable factor as well over the one used in our scheme. We
would estimate that the size of the outputs of the hashes in (5) would increase by at least an order
of magnitude, which would result in needing to prove that many more hash functions, which would
make the running time of the proof significantly less efficient.

Acknowledgements. This work is supported by the EU H2020 ERC Project 101002845 PLAZA.

2 Preliminaries

2.1 Notation.

Let q be a positive integer and let d be a power of two. We denote by Rq the ring Z[x]/(q, xd + 1).
Let p be a positive integer less than q. We define a coefficient-wise rounding function d·cp : Rq → Rp
that multiplies the central representant of each coefficient by p/q and rounds to the nearest integer.
If p is clear from the context we omit the subscript p.

2.2 Blind signatures

We provide the correctness and security definitions of blind signatures [Cha82]. A round-optimal
blind signature scheme consists of the following five algorithms:

– KeyGen(1λ)→ (sk, pk) : Takes the security parameter as input and outputs a secret key sk and
a public key pk.

– Sign1(pk, µ) → (ρ1, SU ) : This is the first part of a signing protocol between a user U and a
signer S, where U uses a public key and a message µ ∈ {0, 1}∗, to compute a state SU and a
first message ρ1, which they send to S.

– Sign2(sk, ρ1)→ ρ2 : The second part of the interaction, where S uses their signing key sk and a
first message ρ and outputs a second message ρ2, which they send to U .

– Sign3(ρ2, SU ) → sig : The last part of the interaction, where U uses ρ2 and SU to derive a
signature sig or ⊥ if the signing protocol failed.

– Verify(pk, µ, sig)→ {0, 1}: A verification algorithm that takes as input a public key pk, a message
µ and a signature sig and outputs a bit to indicate whether the signature is deemed valid (1) or
invalid (0).

All the algorithms take the security parameter λ as input (sometimes implicitly). We also define a
keyed-verification variant of blind signatures, where the Verify algorithm additionally requires sk as
input.

We require (keyed-verification) blind signatures to satisfy three properties: correctness, which says
that honestly generated signatures should verify with probability close to 1, anonymity, which says
that the signer cannot link signatures to the interaction with which they were created, and one-more

13 The H used in [ADDS21] was not a cryptographic hash function, but a lattice-based PRF [BP14], but this does
not matter for this discussion.
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unforgeability, which says that if a user is allowed to execute the signing protocol Q times it can
obtain no more than Q valid signatures. These properties are formalized in Figure 1.

Definition 2.1 (correctness). A (keyed-verification) blind signature (KeyGen, Sign,Verify) is correct if
there exists a negligible function negl, such that for any message µ we have

Pr

Verify(sk,pk, µ, sig) = 1

∣∣∣∣∣∣∣∣
(sk, pk)← KeyGen(1λ)
(ρ1, SU )← Sign1(pk, µ)
ρ2 ← Sign2(sk, ρ1)
sig← Sign3(ρ2, SU )

 ≥ 1− negl(λ) .

Definition 2.2 (anonymity). A (keyed-verification) blind signature (KeyGen, Sign,Verify) is anonymous
if for every polynomial-time three-part stateful adversary A = (A1,A2,A3) there exists a negligible function
negl such that for any two messages µ0, µ1 we have∣∣∣∣∣∣∣∣∣∣

Pr

A3(sig0, sig1) = b

∣∣∣∣∣∣∣∣∣∣
pk← A1(1λ), b

$← {0, 1}
(ρ01, S

0
U )← Sign1(pk, µ0), (ρ11, S

1
U )← Sign1(pk, µ1)

ρb2, ρ
1−b
2 ← A2(ρb1, ρ

1−b
1 )

sig0 ← Sign3(ρ02, S
0
U ), sig1 ← Sign3(ρ12, S

1
U )

If sig0 = ⊥ or sig1 = ⊥, then (sig0, sig1)← (⊥,⊥)

− 1

2

∣∣∣∣∣∣∣∣∣∣
< negl(λ) .

Definition 2.3 (one-more unforgeability). A (keyed-verification) blind signature
(KeyGen, Sign,Verify) is one-more unforgeable if for every polynomial-time adversary A that makes
at most Q queries (Q is a function of λ, bounded above by a polynomial) there exists a negligible function
negl such that

Pr

[
∀1 ≤ i < j ≤ Q+ 1 : µi 6= µj

∀1 ≤ i ≤ Q+ 1 : Verify(sk,pk, µi, sigi) = 1

∣∣∣∣ (sk, pk)← KeyGen(1λ)

{(µi, sigi)}i∈[Q+1] ← ASign2(sk,·)),Verify(sk,pk,·,·)(pk)

]
< negl(λ) .

In the case of keyed-verification blind signatures, the adversary has access to a verification oracle that on
input (µ, sig) returns Verify(sk, pk, µ, sig).

Fig. 1: The three security definitions of a (keyed-verification) blind signature scheme: correctness, anonymity and one-
more unforgeability. For keyed-verification blind signatures the definitions are slightly different, with the modifications
given in gray

.

3 Blind Signature

We first introduce the basic signature scheme that forms the starting point in the construction of our
blind signature scheme. The basic signature is based on Falcon [PFH+17], which is an instantiation of
the GPV framework [GPV08]. It uses an NTRU trapdoor, and comes with fast FFT-type algorithms
for computing the trapdoor basis and its Gram-Schmidt orthogonalization. In slightly simplified
notation, a Falcon public key is the matrix A = (t,1) ∈ R1×2

q defining an NTRU lattice L⊥q (A).
The corresponding private key is a trapdoor basis for the lattice that makes it possible to sample
relatively narrow Gaussian vectors in any lattice coset. A signature for a message µ ∈ {0, 1}∗
consists of a Gaussian distributed short preimage vector #»s ∈ R2

q such that A #»s = H(µ), i.e. a

Gaussian vector in the lattice coset (0,H(µ))T +L⊥q (A). Here the hash function H on the right hand
side is modeled as a random oracle that maps onto Rq. We use a deterministic variant of Falcon
where the randomness for the preimage sampler comes from a PRG that is seeded with a key κ in
the secret key and the message µ. We extend Falcon by adding a second uniformly random non-
trapdoored matrix B ∈ R1×2

q to the public key, and a random short vector #»r ∈ R2
q to the message

that can be chosen by the user in order to blind the right hand side. More precisely, a signature for
a message (µ, #»r ) consists of a Gaussian short preimage #»s such that A #»s = B #»r + H(ρ, µ), where
ρ = G( #»r ) ∈ {0, 1}2λ for a second random oracle G. Despite the additional term B #»r , the right hand
side c = B #»r + H(G( #»r ), µ) is still given by a random oracle evaluated at the message (µ, #»r ). This
is important for the security proof as it means that an adversary can only use the signing oracle in
the forgery game to query preimages for independently random polynomials c and not for specific
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ones of his choosing. On the other hand, an important observation for our blind signature is that
the relation between ρ and #»r via the random oracle G does not need to be checked in signature
verification. The reason is that #»r has to be short and therefore a forged signed message gives a short
preimage for h = H(ρ, µ) under the matrix (A,−B). We summarize the basic signature scheme in
Figure 2.

Now, when a signature is viewed solely as a signature for µ, it consists of the random bit string ρ
and the short vectors #»r , #»s such that A #»s = B #»r +H(ρ, µ) = B #»r +h = c. This makes it very easy to
prove knowledge of signatures without revealing c. One can reveal ρ, and prove knowledge of #»r and
#»s in zero-knowledge without the complication of proving random oracles. Revealing ρ means that
h is revealed, but not the full right-hand side c. Indeed, the random oracle G hides #»r and then B #»r
blinds c under the Ring-LWE assumption. So in our blind signature scheme, the user can request
signatures by sending a polynomial c as this is all that is needed for the signature sampling, and
then anonymously prove knowledge of a signature. But in order for this to be secure the user must
prove well-formedness of c in his signature queries, i.e. he must prove that c = B #»r + H(G( #»r ), µ)
for a short vector #»r .

keygen(B),B ∈ R1×2
q

01 f , g ← Dd
σ0 ⊂ Rq

02 κ← {0, 1}λ
03 A = (fg−1,1) ∈ R1×2

q

04 Extend f , g to a trapdoor basis
T ∈ R2×2

q for the lattice L⊥q (A)
05 pk = (A,B), sk = (T ,B, κ)

sign(µ, #»r , sk), µ ∈ {0, 1}∗, #»r ∈ R2
q

01 If ‖ #»r ‖ > βr, return ⊥
02 Parse sk = (T ,B, κ)
03 ρ = G( #»r )
04 c = B #»r + H(ρ, µ)
05 Preimage sample #»s ← D2d

σ such that A #»s = c
by using the trapdoor basis T , with randomness
seeded from (κ, µ)

06 If ‖ #»s ‖ > βs, resample
07 sig = (ρ, #»s )

verify(µ, #»r , sig, pk)
01 Parse sig = (ρ, #»s ), pk = (A,B)
02 If ‖ #»r ‖ > βr or ‖ #»s ‖ > βs, return 0
03 If A #»s 6= B #»r + H(ρ, µ), return 0
04 Return 1

Fig. 2: The basic signature scheme.

Theorem 3.1. The signature scheme from Figure 2 is one-more unforgeable under the NTRU and
Ring-SIS assumptions when the hash functions G and H are modeled as random oracles. More pre-
cisely, for an adversary A in the signature forgery game that makes up to Q queries to the (random)
oracles and has advantage AdvSIG(A), there exists an adversary B that distinguishes NTRU public
keys fg−1 from uniformly random with advantage AdvNTRU(B), and an adversary C that solves
Ring-SIS with norm bound β = 2

√
β2s + β2r with advantage AdvRSISβ (C), such that

AdvSIG(A) ≤ AdvNTRU(B) + AdvRSISβ (C) +
Q

2λ−1
.

Proof. First, we simulate the signing oracle for the adversary without making use of the NTRU
Trapdoor by exercising control over the random oracles G and H. We implement these oracles as
shown in Figure 3. Notice that the algorithms for G and H produce uniformly random outputs for
new queries and consistent outputs for repeated queries. For consistency, the algorithms maintain
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G( #»r )

01 If ∃ρ ∈ {0, 1}2λ s.t. ( #»r , ρ) ∈ R,
02 ρ← {ρ′ ∈ {0, 1}2λ | ( #»r , ρ′) ∈ R}
03 Return ρ
04 ρ← {0, 1}2λ
05 R = R ∪ {( #»r , ρ)}
06 Return ρ

H(ρ, µ)
01 If ∃h ∈ Rq s.t. (ρ, µ,h) ∈ S,
02 h← {h′ ∈ Rq | (ρ, µ,h′) ∈ S}
03 Return h
04 #»s ← D2d

σ ⊂ R2
q

05 If ‖ #»s ‖ > βs, resample
06 If ∃ #»r ∈ R2

q s.t. ‖ #»r ‖ ≤ βr and ( #»r , ρ) ∈ R,
07 #»r ← { #»r ′ ∈ R2

q | ‖ #»r ′‖ ≤ βr ∧ ( #»r ′, ρ) ∈ R}
08 Else,
09 #»r ← D2d

σ0 ⊂ R
2
q

10 If ‖ #»r ‖ > βr, resample
11 h = A #»s −B #»r
12 S = S ∪ {(ρ, µ,h)}
13 S′ = S′ ∪ {( #»r , #»s ,h)}
14 Return h

sign′(µ, #»r )
01 ρ = G( #»r )
02 h = H(ρ, µ)
03 ( #»r ′, #»s ′)← {( #»r ′, #»s ′) ∈ R2

q ×R2
q | ( #»r ′, #»s ′,h) ∈ S′}

04 If #»r ′ 6= #»r , abort
05 Return #»s ′

Fig. 3: The oracles for the forgery game. G and H are random oracles and sign′ is a simulation of the signing oracle
that makes use of the relation S′ maintained by H.

the relations R and S. For random outputs, G just samples a uniformly random ρ ∈ {0, 1}2λ for every
new query. H first checks if the argument ρ ∈ {0, 1}2λ was output by G before and if there exists a
corresponding input #»r in the relation R that is short. In this case the algorithm chooses one such
#»r at random. Otherwise H just samples a short Gaussian #»r over Z2d. Next, H samples #»s ← D2n

σ

and programs the output h such that A #»s = B #»r +h. Here h is statistically indistinguishable from
uniformly random because the standard deviation σ is above smoothing for the sublattice L⊥q (A).
The preimage ( #»r , #»s ) is recorded in the relation S′. Observe that the relation S′ contains short
preimages ( #»r , #»s ) for all polynomials h that have ever been output by H.

Now, for a signing query (µ, #»r ) the simulated oracle sign′ runs ρ← G( #»r ) followed by h← H(ρ, µ).
Then the relation S′ contains a preimage ( #»r ′, #»s ) such that A #»s = B #»r ′ + h and sign′ chooses one
such preimage at random. If #»r ′ 6= #»r the forgery game is aborted. Otherwise (ρ, #»s ) is returned as
the signature to the adversary. We now analyze the probability that the aborting condition #»r ′ 6= #»r
happens. Firstly, it could happen if there existed a collision for h in S, i.e. if H outputted h for
different inputs. Since the space for h is huge (more than 26000 elements, depending on parameters)
this in fact can not happen. Secondly, abort can happen if there is a collision for ρ in R. Since the
space for ρ is of size 22λ the probability for this is essentially Q2/22λ+1. Finally, it can happen if the
adversary called H(ρ, µ) before ρ was output by G. The probability for this is bounded by Q/2λ.

So, the new game with simulated signing oracle has statistical distance at most Q/2λ−1 from the
original game. We can then replace the left polynomial t = fg−1 in the matrix A from the public key
by a uniformly random t. The adversary A can only distinguish this with advantage AdvNTRU(B).

Finally, assume the adversary produces a forged signature (ρ, #»s ) for a message (µ, #»r ) that he did
not use in any of his signing queries. That is, we get A #»s = B #»r + H(ρ, µ). Then in the relation S′

there also is a short preimage ( #»r ′, #»s ′) for the hash h = H(ρ, µ). We show that ( #»r , #»s ) 6= ( #»r ′, #»s ′)
with high probability. Assume that #»r = #»r ′. Then, given h, the conditioned distribution for #»s ′ is
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the Gaussian distribution with standard deviation σ in the coset (0,B #»r +h)T +L⊥q (A). Since the
min-entropy of this distribution is large, the probability that #»s ′ = #»s is small. Hence, we have a
non-trivial Ring-SIS solution A( #»s− #»s ′)−B( #»r− #»r ′) = 0 of length 2

√
β2s + β2r with high probability.

Signer User

T ∈ R2×2
q ,B ∈ R1×2

q , pk A,B ∈ R1×2
q , pk

#»r ← Dσ0 ∈ R
2
q

If ‖ #»r ‖ > βr, resample

c = B #»r + H (G( #»r ), µ)

r ← {0, 1}λ

ct = PKE.Enc( #»r , µ; pk, r)

c, ct, π1� π1 = NIZK1.P

 #»r , µ, r

∣∣∣∣∣∣∣
c = B #»r + H (G( #»r ), µ)

∧ ct = enc( #»r , µ; pk, r)

∧ ‖ #»r ‖ ≤ βr


If NIZK1.V (π1) = 0, abort

#»s ← A−1
σ (c) ∈ R2

q

If ‖ #»s ‖ > βs, resample
#»s -

ρ = G( #»r )

h = H(ρ, µ)

π2 = NIZK2.P

(
#»r , #»s

∣∣∣∣∣A #»s = B #»r + h

∧ ‖ #»s ‖ ≤ βs ∧ ‖ #»r ‖ ≤ βr

)
Signature for µ is ρ, π2

Verifying a signature:

h = H(ρ, µ)

Return NIZK2.V (π2)

Fig. 4: Our first blind signature scheme. NIZK1 is a sound zero-knowledge proof system, NIZK2 is an adaptively
knowledge-sound zero-knowledge proof system, and PKE a CPA-secure public-key encryption scheme. pk is a public
key for PKE. A corresponding secret key is not known to anybody.

So since the basic signature scheme is secure in the random oracle model, we can assume that the
scheme where H and G are instantiated with a concrete hash function such as SHA2 is secure. Now
we turn to the blind signature scheme as given in Figure 4 and prove its security by reducing it to
the unforgeability of the basic signature scheme and the soundness and zero-knowledge properties
of the NIZKs. For technical reasons in the security proof, we also need that the user encrypts the
witness to the sky. But we do not think that this is actually needed for security in practice.

Theorem 3.2. The blind signature scheme in Figure 4 is one-more unforgeable based on the un-
forgeability of the basic signature scheme and of the soundness of the NIZKs. More precisely, for
every adversary A that makes at most Q oracle queries in the one-more unforgeability game, there
exist adversaries B and C against the soundness of the NIZK and the unforgeability of the basic
signature scheme, respectively, such that

AdvBSIG(A) ≤ (Q+ 1)AdvSND(B) + AdvSIG(C).

Proof. In the reduction, we can assume that we know the secret key corresponding to the public
key pk for the encryption to the sky. So when the adversary A makes a signing query we first verify
the proof π1. If this is successful we decrypt the ciphertext ct and get a message µ and a vector
#»r ∈ R2

q . The proof shows that c = B #»r + H(G( #»r ), µ) and ‖ #»r ‖ ≤ βr. By the soundness property
of the NIZK, the adversary can not come up with a valid proof for a false statement, except with
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Parameter Instantiation Explanation

λ 128 security parameter
d 512 degree of the cyclotomic ring R
q 7933 modulus
Dσ0 U(S2) prob. distribution for polynomials of #»r
σ 232 standard deviation

βr 2
√
md norm bound on #»r

βs σ
√

2nd norm bound on #»s

Table 2: Overview of parameters and notation. Here, U(S2) denotes a uniformly random distribution over polynomials
in R with coefficients between −2 and 2.

advantage AdvSND(B). So we assume that the statement is true. Then we can query the signing
oracle from the unforgeability game with the message (µ, #»r ) and get a signature (ρ, #»s ) for it. We
return #»s to the adversary.

Now, when the adversary successfully producesQ+1 signed messages (µi, ρi, π2,i) for i = 1, . . . , Q+1,
we can check for each if the message was used in one of the at most Q signing queries. So there
exists a signed message (µ∗, ρ∗, π∗2) where the message µ∗ has not been used. We can then use the
extractor for the NIZK to extract a witness ( #»s ∗, #»r ∗) such that A #»s ∗ = B #»r ∗+H(ρ∗, µ∗), ‖ #»s ‖ ≤ βs
and ‖ #»r ‖ ≤ βr. So we have a forged signature (ρ∗, #»s ∗) for the message (µ∗, #»r ∗) that has not been
queried in the unforgeability game for the basic signature scheme.

Theorem 3.3. The blind signature scheme in Figure 4 is anonymous based on the zero-knowledge
property of the NIZK. More precisely, for every adversary A in the anonymity game there exists an
adversary B that can distinguish simulated NIZK proofs from real ones with advantage AdvZK(B),
an adversary C against the CPA security of the encryption scheme with advantage AdvCPA(C), and
an adversary D that can distinguish Ring-LWE with advantage AdvRLWE(D), such that

AdvANON(A) ≤ AdvZK(B) + AdvCPA(C) + AdvRLWE(D).

Proof. First we replace the two NIZKs in the signing protocol and the signature generation by their
simulations. This can only be distinguished by the adversary with advantage AdvZK(B). Then the
two proofs π1 and π2 do not depend on µ, #»r and #»s anymore. It remains to show that the right-hand
sides #»c = B #»r + H(G( #»r ), µ) and the ciphertexts ct do not leak information about the messages,
given that the adversary also gets the hashes ρ = G( #»r ) and h = H(ρ, µ). The ciphertexts for the
two different messages can only be distinguished with advantage AdvCPA(C). For the right-hand
sides c we prove that the pair (B #»r ,H′( #»r )) is indistinguishable from uniformly random under the
Ring-LWE assumption when H′ is modeled as a random oracle. So in the reduction to Ring-LWE we
get a polynomial t that is either a Ring-LWE sample or uniformly random. We sample a uniformly
random h ∈ Rq and send (t,h) to the adversary. When the adversary calls the random oracle for
the first time with a short vector #»r ∈ R2

q such that B #»r = t and ‖ #»r ‖ ≤ βr we return h, otherwise
we return a uniformly random polynomial. This perfectly simulates the view of the adversary and he
can only distinguish the two cases when he can distinguish Ring-LWE, with advantage AdvRLWE(D).

Parameter selection. We measure the hardness of the computational lattice problems with the root
Hermite factor δ and aim for δ < 1.0045 similarly as in [BLS19, ALS20, ENS20, LNS21] for 128-
bit security. For Module-SIS, we applied the standard methodology from [MR09, GN08]. As for
Module-LWE, we used the LWE-Estimator by Albrecht et al. [APS15].

We propose the parameters in Table 2. Namely, we set (q, d) = (7933, 512) where 7933 is a prime
congruent to 5 modulo 8. For the commitment randomness #»r generated by the user, we need
AdvRLWE(D) to be negligible. By setting Dσ0 to be uniform distribution over polynomials in Rq
with coefficients between −2 and 2, we obtain the root Hermite factor 1.0042.
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We use NTRU lattices [DLP14, PFH+17] to instantiate preimage sampling. Namely, let

σ = 1.17
√
q · 1

π

√
1

2
ln

(
2 +

2

ε

)
where ε =

2−λ

4d
.

Then, there exist two PPT algorithms NTRU.TrapGen (c.f. [DLP14, Algorithm 2]) and NTRU.SamplePre
(c.f. [DLP14, Theorem 1]) such that for any c ∈ Rq and NTRU.TrapGen(q, d)→ (t,T) ∈ Rq×R2×2

q :

∆
(
NTRU.SamplePre(t,T, c, σ),

[
t 1
]−1
σ

(c)
)
≤ 2−λ.

Further, we discuss the bounds on the secret vectors. Since coefficients of #»r are between −2 and
2, we set βr = 2

√
md. As for #»s , we use the general tail-bound property of discrete Gaussians over

lattices [AGHS13, Lemma 3] and set βs = s
√

2nd.

As for the first message sent by the user, we need an IND-CPA encryption scheme enc and the
proof π1 to satisfy correctness, zero-knowledge, and soundness. As discussed in the introduction, π1
can be instantiated fairly efficiently using [BS22] or [BFH+20]. Since this part does not contribute
to the signature size, we leave picking a concrete instantiation of π1 as future work. Recall that
the signature is a non-interactive zero-knowledge proof of knowledge of #»s and #»r such that (i)
A #»s = B #»r +

#»

h , (ii) ‖ #»s ‖ ≤ βs, and (iii) ‖ #»r ‖ ≤ βr. Using the standard way to map equations over
Rq to Zq using rotational matrices, one can equivalently prove knowledge of #»s ∈ Z2d

q and #»r ∈ Z2d
q

such that:
A #»s = B #»r +

#»

h (mod q), ‖ #»s ‖ ≤ βs, ‖ #»r ‖ ≤ βr
where (A,B,

#»

h) is a statement. To this end, we apply the recent lattice-based zero-knowledge
framework by Lyubashevsky et al. [LNP22] to prove the relations above. Hence as required by the
[LNP22], we pick the proof system modulus q̂ to be a product of two primes congruent to 5 modulo
8, where the smaller one is q = 7933. The reason is that A #»s = B #»r +

#»

h (mod q) is equivalent
to ( q̂q ·A) #»s = ( q̂q · B) #»r + q̂

q ·
#»

h (mod q̂), thus we transformed the original relation over Zq to Zq̂
and we can apply directly the protocol from [LNP22, Figure 10]. We compute the parameters using
the SAGE code provided by [LNP22], and additionally make use of small optimizations (related
to rejection sampling) introduced in the follow-up work [LN22]. For our parameters in Table 2, we
obtain the proof system modulus q̂ = 2199023260649 ≈ 241 and the total proof size is 21.5KB.
Including 2λ bits of ρ, the total signature size can be bounded by 22KB. We also include the public
and secret key calculation in Table 3. Recall that since B is uniformly random, we can only store
the seed for generation, hence the size of a is the most expensive part of the public key. As for the
secret key T, we use the naive bound that the coefficients of T are less than 1.17

√
q in the absolute

value.

Public key Secret key Signature

1KB 2KB 22KB

Table 3: Public key, user secret key, and signature sizes of our first blind signature scheme.

Finally, for the unforgeability property, we need to make sure that AdvRSISβ (C) is negligible for

β = 2
√
β2s + β2r . From the parameters in Table 2, we obtain the root Hermite factor 1.0043.

4 Keyed-Verification Blind Signatures

4.1 Description of the scheme.

Our scheme is parametrized by the following values (functions of the security parameter). Given
these values, the protocol is described in Figure 5.

– q, the MLWE modulus,
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– d, the dimension of the ring Rq = Zq[X]/(Xd + 1),

– n, the in number of Rq elements in the MLWE secret #»s ,

– p, the modulus used for the rounding d·cp,

– De, an error distribution on Rq,

– βs, βe, `2-norm bounds,

– PKE = (keygen, enc, dec), a public key encryption scheme with randomness space R.

– HRnq ,H{0,1}2λ ,HDe , hash functions that respectively output elemens of Rq, {0, 1}2λ, and elements
of Rq sampled from the error distribution De distribution conditioned on their `2-norm being
less than βe,

– two non-interactive zero-knowledge proofs systems NIZK1, NIZK2 for their respective relations

R1 =

(( #»c , ct, pk), ( #»r , # »e2, µ))

∣∣∣∣∣∣∣∣
‖ #»r ‖ ≤ βs, ‖ # »e2‖ ≤ βs,
ct = enc(pk, ( #»r , # »e2, µ))
ρ := H{0,1}2λ( #»r , # »e2)

#»c := B #»r + # »e2 + HRnq (µ, ρ)

 , and

R2 =

(( #»c ,
#»
t , h), ( #»s , # »e1, e3))

∣∣∣∣∣∣
‖ #»s ‖ < βs, ‖ # »e1‖ < βs, ‖e3‖ < βe,

h = #»s T #»c + e3
#»
t T = #»s TB + # »e1

 .

4.2 Security Analysis

We first prove the correctness and anonymity of our scheme.

Theorem 4.1. Suppose NIZK1 and NIZK2 are correct, and that
√
d
(
2dβ2s + βe

)
p/q is negligible,

then the keyed-verification blind signature of Figure 5 is correct. If in addition, NIZK1 is zero-
knowledge, NIZK2 is adaptively knowledge-sound, the PKE is IND-CPA secure, and the MLWEn,De
and MSISn,2n,2

√
2βs

problems are hard, then the blind signature is anonymous.

Proof. correctness. Due to the correctness of the NIZK protocols the proofs will pass verification
with overwhelming probability, so the interactive signing protocol outputs (ρ, v) = (H{0,1}2λ( #»r , #»e 2),

dh− #»
t T #»r c), where h = #»s T (B #»r + # »e2 + #»u) + e3, and

#»
t T = #»s TB + # »e1

T, where #»u = HRnq (µ, ρ). So
we have

v = d #»s T (B #»r + # »e2 + #»u) + e3 − ( #»s TB + # »e1
T) #»r c

= d #»s T #»u︸ ︷︷ ︸
uniform

+ #»s T # »e2 + e3 − # »e1
T #»r︸ ︷︷ ︸

small

c .

Where the #»s T #»u term is uniformly random. The sum of the error terms #»s T # »e2 + e3 − # »e1
T #»r has

`2-norm at most 2dβ2s + βe. Correctness fails if the error terms affect the rounding of one of the
coefficients. If a coefficient of the error terms has value e, then the probability that da+ ecp 6= dacp
for a uniformly random a ∈ Zq is at most |e|p/q, because there are p boundaries where the value of
d·cp changes, and for each boundary, the probability that it ends up between a and a + e is |e|/q.
By a union bound over all coefficients, it follows that the probability that an error with an `1-norm
of x affects the rounding of a random element of Rq is at most px/q. Since in general ‖·‖1 ≤

√
d ‖·‖,

it follows that the verification fails with probability at most

negl(λ) +
√
d
(
2dβ2s + βe

)
p/q ,

which is negligible by assumption.

anonymity. We prove anonymity through a sequence of games.
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Signer User

#»s ∈ Rnq ,K ∈ {0, 1}λ, #»e 1 ← Dne B,
#»
t T = #»s TB+ # »e1

T, pk

#»r , # »e2 ← Dr ∈ Rnq : ‖ #»r ‖ ≤ βs, ‖ #»e 2‖ ≤ βs,

ct := enc(pk, ( #»r , # »e2, µ))

#»c := B #»r + # »e2 + HRnq

(
µ,H{0,1}2λ (

#»r , # »e2)
)

#»c , ct, π1� π1 := NIZK1.P

( #»r , # »e2, µ)

∣∣∣∣∣∣∣∣
‖ #»r ‖ ≤ βs, ‖ # »e2‖ ≤ βs,
ct = enc(pk, ( #»r , # »e2, µ))
ρ := H{0,1}2λ (

#»r , # »e2)
#»c := B #»r + # »e2 + HRnq (µ, ρ)


If NIZK1.V(π1) = ⊥:

Return ⊥
e3 := HDs (K,

#»c ) ∈ Rq
h := #»s T #»c + e3

π2 := NIZK2.P

( #»s , # »e1, e3)

∣∣∣∣∣∣∣∣∣∣
‖ #»s ‖ < βs,
‖ # »e1‖ < βs,
‖e3‖ < βe,

h = #»s T #»c + e3
#»
t T = #»s TB+ # »e1

 h, π2 -

If NIZK2.V(π2) = ⊥:
Return ⊥

ρ := H{0,1}2λ (
#»r , #»e 2)

v := dh− #»
t T #»r c

Return sig = (ρ, v)

Verify(sig = (ρ, v), µ)

#»u := HRnq (µ, ρ)

Check that v = d #»s T #»uc

Fig. 5: Our keyed-verification blind signature scheme, parametrized by the values and subroutines given in Section 4.1.
B is a publicly known random matrix ∈ Rn×nq and pk is a public key for PKE for which no corresponding secret key
is not known to anybody.

– The first game, Game0, is precicely the anonymity game of Definition 2.2.

– In the next game, Game1, the challenger simulates the random oracle and uses the ZK-simulator
to produce the proof π1, rather than computing the proof honestly. The ZK property of NIZK1

implies that the distinguishing advantage of the adversary in Game1 differs from its distinguishing
advantage in Game0 by at most a negligible amount.

– In Game2, the challenger encrypts a dummy message instead of ( #»r , # »e2, µ). It follows from the
IND-CPA security of the PKE, that the distinguishing advantage of the adversary in Game2 differs
from its distinguishing advantage in Game1 by at most a negligible amount.

– In Game3, the challenger uses the adaptive knowledge soundness of NIZK2 two times to extract
#»s b, # »e1

b, eb3 for b ∈ {0, 1} such that
∥∥ #»s b

∥∥ ≤ βs and
∥∥ #»e b1

∥∥ ≤ βs,
∥∥eb3∥∥ ≤ βe,

#»
t T = #»s bTB + # »e1

bT,
and hb = #»s bT #»c b+eb3 for b ∈ {0, 1} in expected polynomial time. If #»s 0 6= #»s 1, then the challenger
can output the MSIS solution ( #»s 0 − #»s 1, #»e 0

1 −
#»e 1
1) for the matrix

(
B 1

)
, which contradicts

the assumed hardness of MSISn,2n,2
√
2βs

. So with all but a negligible probability #»s = #»s ′. If
the extractor fails or if #»s 6= #»s ′ the game aborts and output s a random bit (which happens
with negligible probability), otherwise the game proceeds as in Game2, so the distinguishing
advantage of the adversary in Game3 differs from its distinguishing advantage in Game2 by at
most a negligible amount.

– In Game4, if sig0 6= ⊥ and sig1 6= ⊥ the challenger uses the extracted value of #»s to replace both
signatures by (ρb, vb = d #»sHRnq (µb, ρb)c) for b ∈ {0, 1}, regardless of the values hb sent by the
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adversary. This changes the signatures with probability at most
√
d
(
2dβ2s + βe

)
p/q, which is

negligible by assumption, so the distinguishing advantage of the adversary in Game4 differs from
its distinguishing advantage in Game3 by at most a negligible amount.

– In Game5, the challenger sets #»c b and ρ uniformly at random, instead of #»c b = B #»r + #»e 2 +ρb and
ρ = H{0,1}2λ( #»r , #»e 2). This does only affect the distinguishing advantage of the adversary by at
most a negligible amount, because otherwise the adversary could be used to break the MLWEn,De
problem if we model H{0,1}λ as a random oracle, as argued in the proof of Theorem 3.3.

Finally, note that the distinguishing advantage of the adversary in Game5 is exactly zero, since the
bit b chosen by the challenger is now information-theoretically hidden from the adversary. Therefore,
the distinguishing advantage of the adversary for Game0 must have been negligible.

Before we prove the one-more unforgeability of our keyed-verification blind signature, we introduce
a new hard problem, hashed learning with errors. Then we prove that the hashed learning with
errors problem is as hard as the usual learning with errors problem in the random oracle model, and
we reduce the one-more unforgeability of our blind signature to the hardness of the hashed learning
with errors problem.

Definition 4.2 (hashed module learning with errors). Let HRnq be a hash function that outputs
elements of Rnq , and let HDe be some hash function that samples elements from Rq according to the

error distribution De. Let #»s ∈ Rnq be some vector over Rq, and K ∈ {0, 1}λ a bitstring, then we

define an oracle O #»s ,K,HRnq ,HDe
that when queried on a message µ ∈ {0, 1}∗, returns #»s THRnq (µ) +

HDe(K,µ).

The hashed module learning with errors (HMLWEHRnq ,HDe
) problem asks to distinguish O #»s ,K,HRnq ,HDe

for some #»s ′ drawn from Dn
e and K

$← {0, 1}λ from a random oracle that outputs elements of Rq
uniformly at random.

We will prove that our blind signature scheme is secure, assuming the HMLWE problem is hard from
some concrete hash function such as SHA-2 or SHA-3. To argue why this assumption is reasonable,
notice that if the hash functions are modeled as random oracles, then the HMLWEH1,H2 is as hard
as the standard MLWEn,De problem.

Lemma 4.3. The HMLWEHRnq ,HDe
problem is at least as hard as the MLWEn,De problem with an

unlimited amount of samples if HRnq and HDe are modeled as random oracles.

Proof. We give a reduction from MLWEn,De to HMLWEHRnq ,HDe
that works as follows: each time the

HMLWE adversary makes a query for a fresh message µ, the reduction asks the MLWE challenger for
a fresh MLWE sample ( #»a , b), and stores (µ, #»a , b) in a table. If the query was a random oracle query
for HRnq , then the reduction answers with #»a , and if the query was a HMLWE query, then it answers
with b. If the HMLWE adversary makes a query for a message µ for which there already is an entry
(µ, #»a , b) in the table, then the reduction returns #»a or b if the query was a random oracle query for
H1 or a HMLWE query respectively. The reduction simulates the random oracle HDe honestly.

Let K
$← {0, 1}λ be some key. If the reduction is receiving real MLWE samples with a secret #»s , then

the reduction behaves as (HRnq ,HDe ,O #»s ,K,HRnq ,HDe
, as long as the adversary does not query HDe on

an input K,µ, which happens only with a negligible probability since K has high min-entropy and is
information-theoretically hidden from the adversary. If the reduction is receiving random samples,
then the reduction behaves as three random oracles. Therefore the distinguishing advantage of the
reduction against MLWE equals the distinguishing advantage of the adversary against HMLWE up
to a negligible amount due to the adversary guessing K.

We will also assume that the function

fB : (µ, #»r , #»e 2) 7→ B #»r + # »e2 + HRnq (µ,H{0,1}2λ( #»r , #»e 2))
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is collision-resistant, which is a reasonable assumption because it is true if HRnq and H{0,1}2λ are
modeled as random oracles. Now we are ready to prove the one-more unforgeability of our keyed-
verification blind signature.

Theorem 4.4. Assume the HMLWEHRnq ,HDe
problem is hard, that the function fB as defined above

is collision-resistant, and that PKE is correct. Furthermore, assume that NIZK1 is adaptively sound,
and NIZK2 is zero-knowledge, that

√
dβep/q is a negligible function, and that ducp has high min-

entropy for u
$← Rq. Then the keyed-verification blind signature of Figure 5 is one-more unforgeable.

Proof. Let A be a polynomial-time adversary. We prove that A only has a negligible probability
of winning the one-more unforgeability game using a sequence of games. Let εi be the winning
probability of the adversary A in Gamei.

– The first game, Game0 is exactly the one-more unforgeabilty game of Definition 2.3, played by
A.

– In the next game, Game1 the challenger runs (sk, pk) ← PKE.keygen and replaces the random
public key in the crs by pk. The public key in the CRS is indistinguishable from the one generated
by PKE.keygen, so ε0 − ε1 = negl(λ).

– In Game2, the challenger simulates the random oracle queries for the second NIZK, and uses
the zero-knowledge simulator of NIZK2 to generate the π2 proofs in the resposes to the signing
queries. By the zero-knowledge property, the simulated proofs are indistinguishable from real
proofs, so ε1 − ε2 = negl(λ).

– In Game3, the challenger uses sk to decrypt ct each time the adversary makes a signing query
( #»c , ct, π1), and the game aborts if dec(sk, ct) does not return #»r , # »e2, µ such that ‖ #»r ‖ , ‖ # »e2‖ ≤ βs,
and #»c = B #»r + # »e2 + HRnq (µ,H{0,1}2λ( #»r , #»e 2)). It follows from the adaptive soundness of NIZK1

and the correctness of PKE, that the abort only occurs with negligible probability. So, ε2− ε3 =
negl(λ).

– In Game4, the challenger changes the way it samples e3 when answering signing queries, us-
ing the information they get from decrypting ct. Instead of e3 ← HDe(K,

#»c ) it puts e3 ←
HSe(K,µ,

#»r , #»e 2). This does not alter the view of the adversary if the adversary does not
make queries of the form (K, ?) (which happens with overwhelming probability because K has
high min-entropy), and if the adversary does not make queries with the same #»c , but different
(µ, #»r , #»e 2). The latter can only happen with negligible probability since we assume the function
fB is collision-resistant.

– In Game5 the challenger simulates for itself the O #»s ,K,HRnq ,HDe
oracle (from now on we omit the

subscript for brevity) and queries it on 1, . . . , n to produce
#»
t T . It calls HRnq on inputs 1, . . . , n

to get the n collumns of B. The challenger answers signature queries with h = B #»r + # »e2 +
O(µ,H{0,1}2λ( #»r , # »e2)). It answers verification oracle queries (µ, (ρ, v)) with 1 if v = dO(µ, ρ)c and
with 0 otherwise. We almost haven’t changed the game, just rewritten it in terms of the oracle
O. The only difference between Game4 and Game5 is that the verification oracle in Game4 checks
v = d #»s T #»uc and in Game5 it checks v = d #»s T #»u +HDe(K,µ, ρ)c. Since

√
dβep/q is negligible, the

probability that this changes the outcome of any of the at most polynomially many verification
queries is negligible, and therefore ε4 − ε5 = negl(λ).

– In Game6 the challenger behaves like in Game5 except that it simulates a random oracle and
uses it instead of the O oracle. We can construct a polynomial-time distinguisher BA that
distinguishes between O and a random oracle with advantage |ε6 − ε5|, so it follows from the
assumed hardness of HMLWE that ε6 − ε5 = negl(λ).

In Game6, we say that a verification query (µ, sig = (ρ, v)) is “fresh” if there was no signing query
that made the challenger sample HRq on input (µ, ρ). The probability that a fresh verification

query results in 1 is the probability that v = duc for u
$← Rq. Since duc is assumed to have high
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Parameter Instantiation Explanation

λ 128 security parameter
d 64 degree of the cyclotomic ring R
q ≈ 2152 modulus
p 4 modulus after rounding
n 93 MLWE-rank

De D1
discrete Gaussian distribution

with standard deviation 1

βs 78 norm bound on #»s , #»e 1,
#»r , #»e 2

βe 8 norm bound on e3
|pk| 110 KB public key size
|sig| 48 B signature size

Table 4: Overview of parameters and notation for our keyed-verification blind signature.

min-entropy, the probability that any of the (at most polynomially many) fresh verification queries
results in a 1 is negligible. Without loss of generality, the adversary outputs only signatures for which
it queried the verification oracle. (If this is not already the case we can define a new adversary that
verifies its signatures before outputting them.) If the messages in the (Q + 1) message-signature
pairs returned by the verifier are pairwise distinct, then at least one of the Q+1 verification queries
is fresh, since the adversary only makes Q queries to the signing oracle. Therefore, the probability
that all the Q+ 1 signatures are valid is negligible.

Since each game transition decreases the winning probability by at most a negligible amount, and
in the last game Game6 the winning probability is negligible, it follows that the adversary only has
a negligible probability of winning the one-more unforgeability game Game0.

4.3 Parameter selection

To achieve a security level of 2λ We require that our parameters from Section 4.1 satisfy the following
constraints:

– It requires 2λ resources to solve the MLWEn,De problem,

–
√
d
(
2dβ2s + βe

)
p/q < 2−λ to ensure that the rounding function is unaffected by the errors with

overwhelming probability, and

– d log(p) & λ to ensure that duc has λ bits of min-entropy for uniformly random u
$← Rq.

– NIZK1,NIZK2, and PKE reach the security level 2λ.

To satisfy these constraints for λ = 128, one can use parameters as in Table 4: a ringRq of dimension
d = 64 with 152-bit modulus q, MLWE rank n = 93, and errors drawn from a distribution with
standard deviation e = 1 to get a root Hermite factor of δ = 1.00445, as per the LWE estimator by
Albrecht et al. [APS15]. We put p = 4, βs = 78, and βe = 8. In this case, #»c is dn log q bits large,
which amounts to 110 KB, and the size of ( #»r , #»e 2) is roughly 40 KB. This means that NIZK1 needs
to prove that a hash function with 40 KB of input and 110 KB of output is computed correctly.
The size of the signature sig = (ρ, v) is 2λ+ d log p bits which is only 48 Bytes.
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