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Abstract

Blockchain is a newly emerging technology, however, it has proven effective
in many applications because it provides multiple advantages, mainly as it
represents a trust system in which data is encrypted in a way that cannot
be tampered with or forged. Because it contains many details such as smart
contracts, consensus, authentication, etc. the blockchain is a fertile ground
for researchers where they can continually improve previous versions of these
concepts. This paper introduces a new multi-signature scheme based on
RSA. This scheme is designed to reduce the blockchain’s size and prevent
known attacks and is also applicable in many other settings that require
multi-signatures. Our scheme is in the plain public key model, which means
nodes do not need to prove knowledge or possession of their private key. In
which, whatever the number of signers, the final signature size is equal to
O(k) where k is a security parameter and no interaction between signers is
needed. To verify that a number of parties have signed a shared messagem, a
verifier needs the signature, list of signers, and the messagem. The presented
practical short accountable-subgroup multi-signature (ASM) scheme allows
a valid signature to disclose which subset generated the signature. It is worth
noting that our multi-signatures with public key aggregation is an interactive
two-round protocol and a multi-signature model applied to the entire block
and not to individual transactions.
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1. Introduction

As one of the essential elements in the field of information security, en-
cryption plays a central role in all security aspects Zhao et al. (2019). It
provides the main foundations for data confidentiality, integrity, and data au-
thentication Chait et al. (2021); KARA et al. (2023). Among the most secure
encryption processes currently are Secure Multiparty Computing (SMPC);
SMPC allows a set of distributed elements to jointly compute a random func-
tion without revealing their input Makri et al. (2021). In recent years, the
continuous development of emerging technologies such as cloud computing,
blockchain, and the Internet of Things has led to a focus on SMPC. Indeed,
SMPC has a unique advantage in solving privacy and security issues, espe-
cially since it is a general-purpose tool for calculating private data.

Secure Multiparty Computing (SMPC) is a successful encryption and
authentication process in shared computing in a way that maintains the in-
tegrity of information collected and stored and preserves confidentiality Kara
et al. (2021). In general, the SMPC addresses the problem of collaborative
computing performed by a group of participants in a more secure way within
the framework of distributed computing Archer et al. (2018). The primary
goals that SMPC protocols aim to provide are, first, input confidentiality, as
information derived from the implementation of the protocol must not allow
any inference as to private data held by others; and second, robustness, which
means that no group of conniving elements should be willing to share the
information, or any deviation from the instructions is likely to coerce honest
elements into producing an incorrect result.

The popularity of blockchain is increasing every day. In which blocks
are verified by nodes, which accept them after cryptographic digital signa-
tures. Therefore, an efficient signing process is necessary to ensure that all
nodes reach a consensus Habib et al. (2021) and verify the validity of blocks.
However, with the widespread use of blockchain, fraudulent activities, such
as hacking, have increased. To reduce these fraudulent incidents, multi-
signature agreements are effective solutions because they offer an increased
level of security.

Protocols that are based on multi-signature are a practice that requires
the use of different signatures (hence different keys), rather than just one, to
authorize a task He et al. (2021). This practice is of course used to perform
authorized party tasks. Today, this technology is widely used in several fields,
including electronic transactions. It reinforces the security of transactions in
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a more transparent way.
More specifically, a system with multi-signatures requires that several el-

ements sign a transaction before it is integrated into the blockchain Zhang
et al. (2022). This approach differs from traditional cryptocurrency transac-
tions, which only require one signature (usually from the sender of funds).
These types of systems are sometimes referred to as t − of − N transac-
tions, where t represents the required number of signatures and N is the
total number of signatures.

Although there is a lot of research on this technology, there is still a
need to develop it. This research presents a new model based on the RSA
cryptosystem and signature Rivest et al. (1978), but it merges all signatures
into one in a unique and smooth way. There are several application areas
of the proposed technique, however, we will assign it in a new paradigm
for blockchain, where a new block is only added after being approved by t
element, usually, t is equal to 50% of the total system items.

2. Related work

Multi-signatures notion was first presented by Itakura and Nakamura
Itakura and Nakamura (1983). Recently, this technology has been investi-
gated broadly based on systems such as RSA, Discrete Logarithms, Pairings,
Lattices, etc. In fact, these works vary in improving multi-signature schemes
on different levels such as complexity, but they may overlook some other
aspects.

In Boneh et al. (2018), the authors constructed multi-signature schemes
conceived to reduce the size of the Bitcoin blockchain especially. The pro-
posed constructions in the plain public key model are derived from Schnorr
and BLS signatures. To prevent the rogue public key attack, these con-
structions are based on the techniques invented in Bellare and Neven (2006);
Maxwell et al. (2019) for securing Schnorr multi-signatures. This technique
still needs three rounds.

The authors in Boneh (2003) presented a concept of an aggregate sig-
nature that resembles the multi signatures. In the first one, each element
individually creates her own signature, then an aggregator aggregates all
generated signatures into one signature. In the second strategy, the signers
cooperate to create one signature for the same message. The difference be-
tween the aggregate signatures and multi-signatures can be defined not by
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the messaging flexibility but by the entity that joins all generated signatures
into one.

To strengthen the security of secure multi-party computation (SMC),
Blanton et al. Blanton and Jeong (2018) combined SMC schemes based on
secret sharing with signatures to enforce input correctness in the form of
certification. Based on two types of signatures in the context CL-signatures
Camenisch and Lysyanskaya (2004) and ElGamal (1985), they studied the
enforcement of truthful inputs used in SMC through input certification at the
moment of computation initiation, a party supplying input accompanying it
with a certificate, and proves that the data input used in the computation is
equivalent to what has been certified.

Pixel Drijvers et al. (2020) is a pairing-based secure multi-signature tech-
nique destined for use in blockchains. To protect blockchain against corrup-
tion attacks, this protocol allows signers to evolve their keys over time, where
new keys cannot be used to sign on old data. However, the calculations are
still quite large. In Lee and Kim (2022), the authors proposed a two-round
Multi-signature technique based on Okamoto signatures that supports the
public key aggregation from a public-key signature technique.

Nurzhan et al. Aitzhan and Svetinovic (2016) handled providing trans-
action security issues in decentralized smart grid energy trading without de-
pendence on trusted third parties. Using blockchain technology and multi-
signatures, they implemented a proof-of-concept (PoC) for a decentralized
energy trading system, allowing elements to anonymously negotiate energy
prices and securely execute trading transactions. Paper Damg̊ard et al.
(2022) proposed many lattice-based distributed signing techniques with low
round complexity following the Fiat–Shamir with Aborts (FSwA) paradigm
of Lyubashevsky Matsui (2009). These schemes are distributed variants of
the fast Dilithium-G signature protocol.

Paper Choi and Kim (2016) presented a lattice-based linearly homomor-
phic signature in order to have multiple signers with security proof. To
distribute different secret keys to each user, the authors used well-known
lattice-based protocols such as trapdoor generation and extracting basis.

3. Proposed architecture

In current practice, MultiSign is used for each transaction separately,
which undoubtedly requires a lot of time and space to complete the con-
struction of one block. In fact, many techniques have been proposed to solve
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Figure 1: Proposed multi-signature architecture for blockchain

the problem of large space required by public keys, but there are still many
signatures in the t− of − n model where n is the total number of signatures
and t is the required number of signatures.

In the proposed architecture (Figure 1), the operation is initially normal,
i.e., a transaction is signed only by the sender of funds. After creating a new
block and going through the consensus process, the miner signs their own
block (hash of that block) and then broadcasts it to the network. Each node
receives this signed hash, signs it again (signature of signature), and sends
it again to the miner. The miner waits until receiving t signatures on its
signed hash. The process here is not subject to arrangement, i.e., doesn’t
matter the order of receipt of signatures from other nodes, because each node
signs the signed hash and then sends it to the miner completely independent
of other nodes, so there is no interaction between the signing nodes. Upon
receipt of t responses, the miner signs the list of nodes participating in this
process and broadcasts it on the network. Any element can extract this list,
validate signatures and ensure that a node participates in the process.

The proposed multi-signature technique can be shown in Algorithm 1.
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Algorithm 1 MS algorithm

Require: Block : B, pk : d0, sk : e0,modulus : N
Ensure: sig : σ, signer′slist : SL

1: function Miner Sig
2: s0 ← sige0,N(hash(B))
3: diffuse s0
4: wait until receive t signatures
5: (signature of node i : sigi ← sigei,N(s0))
6: compute σ : σ ← Product(si)
7: construct signer’s list L : L ← Concatenate(signer′s numbers)
8: sign L : SL ← sige0,N(L)
9: diffuse σ, SL

10: end function

4. Model description

The proposed multi-signature scheme consists of three algorithms:
KeyGen is an algorithm that, on input public modulus, generates a public-
private key pair (pk, sk).
Sign is an algorithm that on input a secret key sk and message m from the
message space, outputs signature σ.
V erify is an algorithm that on input a public key pk, a message m, and a
signature σ, outputs a bit.

Our multi-signature model for a message space M is based on the RSA
cryptosystem. Its detail is as follows:
Setup:
We assume that there is a trusted third party (TTP) where all nodes agree
on the public parameters pp. The setup algorithm used by TTP mainly
fixes the distribution of the parameters given an RSA modulus (N). The
public parameters are taken to be an implicit input to all of the following
algorithms.
Key generation:
The TTP runs the key generation algorithm on the same input N to generate
a public verification key d and an initial secret signing key e for each node,
where:
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
N = p× q with p and q are two large prime numbers
ϕ(N) = (p− 1)× (q − 1)
e× d = 1 mod ϕ(N)

Therefore, for a node i there are (ei, di) where (mei)di mod N = m
Signing:
In the first round, the miner (we always call it node0) signs his block as
fellow:

s0 = (h× d0)
e0 (1)

Where h is the block hash, d0 is the public key of the miner, and e0 is its
private key.
Then, the miner diffuses s0 on the network and waits until receiving t response
where t is the required number of signatures. Each node receive s0, sign it
as presented in Equation 2

si = (s0)
ei (2)

where ei is the private key of node i.
In the second round of communication, a node i sends its signature si to the
miner. The miner aggregate all received signatures by multiplying them as
fellow:

σ =
t∏

i=1

si (3)

Knowing that nodes are numbered from 1 to n and numbers are of the same
size (e.g. node1 = 0000000001, node122 = 0001111010, node564 = 1000110100,
etc. for numbering 1023 nodes), the miner constructs a list of signers as fel-
low:

L = ∥ti=1nodei (4)

Then, it signs this list using its private key

SL = Le0 (5)

Finally, the miner diffuses a signed block (SB) on the network where

SB = (Block, d0, σ, SL) (6)

Verification:
After diffusing SB, anyone can verify the signature according to the following
steps:
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• 1: calculate h: h = Hash(Block)

• 2: extracting the signer’s list using miner public key: L = SLd0

• 3: using miner and signers public keys, the verifier calculates s′ as
indicated in Equation 7

s′ =
t∏

i=1

(h× d0)
Di (7)

where Di =
∏t−1

j=1 dj with j ̸= i ; i.e., Di is the product of all signers
public keys except i.

• 4: using miner and signers public keys, the verifier calculates s′′ as
shown in Equation 8

s′′ = (((σd0)d1)d2)...dt (8)

• 5: if s′ = s′′, the signature is accepted.

Correctness:
We put α = h× d0
On the one hand,
we have s′ =

∏t
i=1(h× d0)

Di ⇒
s′ =

∏t
i=1 α

Di that implies,
s′ = αD1 × αD2 × . . . αDt that we gives,
s′ = αd2×d3...dt × αd1×d3...dt × . . . αd1×d2...dt−1

On the other hand,
we have σ =

∏t
i=1 si where si = (s0)

ei with s0 = αe0

σ = s1 × s2 × . . . st
so σ = se10 × se20 × . . . set0
and σ = (αe0)e1 × (αe0)e2 × . . . (αe0)et that implies,
σ = αe0×e1 × αe0×e2 × . . . αe0×et ⇒
we compute s′′ where s′′ = (((σd0)d1)d2)...dt

knowing that (αei)di = α ∀ i ,
s′′ = (αe1 × αe2 × . . . αet)d1)d2)...dt that we gives,
s′′ = αd2×d3...dt × αd1×d3...dt × . . . αd1×d2...dt−1

finally, s′′ = s′.
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5. Experiments and performance

The implementation of the proposed model has been done in Python
language running on a personal computer with Processor Intel(R) Core(TM)
i3-3110M CPU 2.40 GHz, 2 Core(s), 4 Logical Processor(s), 4 Go RAM.

5.1. Execution time

In our experiments, each node was simulated by a process, where multi-
process programming was implemented.

n t size(list) size(N) sig time verf time
100 51 357 bits 364 bits 0.055 (s) 0.762 (s)

Table 1: Multi-signature execution time

Table 1 shows the results of executions. n is the number of nodes, and
t is the required number of signers. We notice that to encode 100 elements
in binary, we need 7 bits. So the list of 51 (t = 51) elements requires 357
bits (size(list)); this is why we used a modulus N of size 364 greater than
the list size. In the applied experiment, the miner must encode each node
number in 7 bits, build a single string (L) by concatenating the 50 codes,
and transform this string into a decimal number; using the secret key, the
miner encrypts (signs) this number as an SL. In the verification, the verifier
decrypts SL using the miner’s public key and extracts L, and represents L
in binary (BinaryL); if size(BinaryL) is less than 357, it must be completed
with ’0’ on the left. Afterward, the verifier divides BinaryL into 7 bits to
identify the signers; finally, uses the public keys of the signers to calculate s′

and s′′.

5.2. Scalability

From previous experience, we notice that the number of signers (t) is
linked to the size of the public key (N) because the numbers of these signers
will be concatenated into a single string (BinaryL), then write this string as
a decimal number (DicimalL), then encrypt this number to become (SL).
When decrypting (SL) by a verifier to extract the list of signed nodes, it
must get the correct value (DicimalL). So DicimalL must be less than
N . Equation 9 shows the relationship between the number of nodes in the
network (n), the number of signers (t), and the public key (N).
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t× ⌜log2(n)⌝ < ⌜log2(N)⌝ (9)

Equation 9 shows that if (n) is a large number then (N) will become a very
large number. Therefore, the technique is not scalable. To solve this problem,
we suggest selecting a fixed number of signers (e.g. 100) regardless of network
size. The members of this list are permanent or variable (randomly) at each
consensus iteration or variable after a certain number of iterations. With
this solution, adding a block only needs to sign t − of − s nodes instead of
t− of − n (where s is the required number of signers) regardless of the total
number of nodes (n) within the network.

5.3. Data size

The proposal is a compact multi-signature with public key aggregation
where nodes are not aggregated using their public keys but their numbers
and this makes a big difference in size. We proposed a short accountable-
subgroup multi-signature (ASM) technique. An ASM technique allows any
subset s of a set of n elements to sign a message m where a valid signature
σ reveals which subset generated the signature. The signature size is only
O(k) bits, the aggregate signers’ list is only O(k) bits, independent of n, and
the signing approach is non-interactive.

In a basic ASM, a signature by a set s is just the concatenation of all the
signatures of s elements. For a security parameter k, the aggregate public
key size is O(| s | ×k) bits, and the signature size is O(| s | ×k) bits. Our
ASM scheme rivals the first ASM proposed by (Boneh et al.) where both the
signature and the public key size are only O(k) bits beyond the description of
the set s, independent of n. To see how all this can be used, consider firstly
a Bitcoin n− of −n Multisig address. If each block contains w transactions,
the signature size which is currently done in Bitcoin is equal to O(w×k×n).
The public key size is also O(w × k × n). Consider now Boneh et al. Boneh
et al. (2018) scheme, both signature size and public key size are O(w× k) as
opposed to O(k) in our technique for both signature and public key size.

Table 2 parameters are according to Boneh scheme Boneh et al. (2018),
where there are tx transactions, each containing inp inputs, all from n−of−n
multisig wallets. G denotes the space required to represent an element of a
group. By selecting the following parameters, tx = 1500, inp = 3, n = 3.
For Bitcoin and MuSig Maxwell et al. (2019), | G | = 32B and | Z | = 32B.
For Boneh scheme, | G1 | = 96B, | G2 | = 48B, and and | Zq | = 32B. For
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our scheme, we assume that the number of nodes is 104, and the number of
signers s is 50% (5000−of−10000). 104 nodes require 14B to be represented,
so the list size | L | = 5000× 14 = 70KB and | N | = 71KB is enough.

combined pk size combined signature size total
size
(KB)

threshold
support

Bitcoin tx× inp× n× | G | tx× inp× n× 2× | Z | 1296 linear
MuSig tx× inp× | G | tx× (| G | + | Z |) 240 small
Boneh
scheme

tx× inp× | G1 | tx× inp× (| G1 | + | G2 |) 864 any

Ours | N | | N | 142 any

Table 2: Comparison of needed space for a block in blockchain Boneh et al. (2018)

6. Security analysis

Since our scheme is based on RSA, we put Lemma 1.

Lemma 1. If an adversary can compute the private key d with known me

where (me)d = m mod N , then an RSA-based signature of an arbitrary
message m can be forged.

Proof. If d′ = d mod ϕ(N), then c = md mod = md′ mod and e × d′ =
e× d = 1 mod ϕ(N). So, C is an RSA signature of m.

By Lemma 1, the security of our scheme depends on the security of an
RSA signature scheme. Since N has two large prime factors p and q, an
adversary can not factor it by any integer factoring algorithm. Moreover,
p− 1 and q − 1 must have large prime factors p′ and q′, respectively.

7. Conclusion

In this paper, we have introduced a new multi-signature scheme based on
RSA encryption-signature. This system is designed to be applied in many
settings that require multiple signatures. In our scheme, the nodes do not
need to prove knowledge or possession of their secret key. Where, regardless
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of the number of nodes in the network, the final signature size in the model is
equal to O(k) where k is a security parameter. All interactions between nodes
have been removed, except in two rounds between the miner and signers. The
proposed architecture is clearly explained and compared to other schemes,
including the current application of Bitcoin.
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