
Flyover: A Repayment Protocol for Fast Bitcoin
Transfers over Federated Pegs

Javier Álvarez Cid-Fuentes[0000−0001−7153−4649], Diego Angel Masini, and
Sergio Demian Lerner

IOV Labs Ltd.
{javier, dmasini, sergio}@iovlabs.org

Abstract. As the number of blockchain projects grows, efficient cross-
chain interoperability becomes more necessary. A common cross-chain
protocol is the two-way peg, which is typically used to transfer assets
between blockchains and their sidechains. The criticality of cross-chain
protocols require that they are designed with strong security models,
which can reduce usability in the form of long transfer times. In this pa-
per, we present Flyover, a repayment protocol to speed up the transfer of
bitcoins over federated pegs by allowing untrusted liquidity providers to
advance funds for the users. Transfer times are reduced because liquidity
providers do not have the same security requirements as the underlying
cross-chain protocol. We illustrate the Flyover protocol on the cross-chain
interoperability protocol that connects Bitcoin to the RSK sidechain and
show how Flyover can reduce transfer times without reducing security.
In addition to this, Flyover extends the cross-chain protocol by allowing
liquidity providers to make smart contract calls on RSK on behalf of the
user.

1 Introduction

The applicability of blockchain technology in different domains is growing at a
fast pace, creating a diverse number of use cases and a heterogeneous ecosystem
of blockchains [4]. At the same time, innovative technologies, such as sidechains [14],
networks of blockchains [16], and off-chain protocols [7] are emerging as a solution
to various limitations of current blockchains. Including scalability, decentraliza-
tion, usability, and performance limitations. This creates a fragmented ecosystem
that makes cross-chain interoperability crucial [4, 13].

Two-way pegs [3] are one of the existing cross-chain interoperability protocols
typically used to transfer assets between blockchains and their sidechains [14].
Two-way pegs are a critical component of sidechains, as these cannot operate
without a cross-chain communication protocol that connects them to their parent
chain [5, 6, 8]. As a critical component, two-way pegs must be designed with a
strong security model, which might limit their usability [14].

An example of a sidechain that uses a federated two-way peg is Rootstock
(RSK) [8], which provides stateful smart contract functionality on top of Bit-
coin [11]. The two-way peg that connects RSK to Bitcoin is called the Powpeg.



One drawback of the strong security requirements of the Powpeg is that trans-
fers from Bitcoin to RSK require 100 Bitcoin block confirmations and transfers
from RSK to Bitcoin require 4,000 RSK block confirmations. This translates to
around 16 and 33 hours respectively. These transfer times increase the security
of the Powpeg in case of blockchain reorganizations, but also limit the usability
of the RSK sidechain.

In this paper, we present Flyover, a novel protocol to transfer BTC between
Bitcoin and RSK in a faster way than using the Powpeg. Flyover is a repayment
protocol that allows liquidity providers to advance funds for the user. After the
transfer to the user is completed, liquidity providers are repaid the advanced
funds plus a service fee. In this way, users can potentially receive transfers much
faster as liquidity providers have lower security requirements than the Powpeg.
In addition to this, Flyover allows liquidity providers to call smart contracts in
RSK on behalf of the user. This enables smart contract calls in RSK directly
from Bitcoin.

Flyover provides faster BTC transfers without reducing security by relying
on the Powpeg. In the worst case scenario, the process either falls back to the
the regular Powpeg mechanism or the protocol allows the user to cancel the
transfer. Liquidity providers never have direct access to the user funds, and
thus, users are never at risk of losing their money. In addition, the Flyover
protocol also implements punishing mechanisms to prevent liquidity providers
from misbehaving.

The remainder of this document is organized as follows: Section 2 overviews
repayment protocols similar to Flyover; Section 3 presents the background knowl-
edge needed to fully understand the Flyover protocol; Section 4 describes the
Flyover protocol in detail; and Section 6 presents our conclusions.

2 Related work

The Powpeg implements a common cross-chain protocol to transfer assets be-
tween blockchains that has been formalized by XLCAIM [17] more recently. The
general idea of the protocol is that transferring an asset Ca from a blockchain Ba

to a blockchain Bb consists of locking Ca in a vault in Ba and then minting an
equivalent quantity of an asset Cb on Bb. The inverse transfer consists of burning
Cb in Bb to unlock the equivalent quantity of Ca in Ba. There are several projects
that implement this type of cross-chain protocol, including Polkadot [16], pTo-
kens [2], and Liquid [12]. Among these, Liquid uses a federated peg similar to the
Powpeg that connects Bitcoin to their sidechain. Flyover improves these types of
protocols through a repayment scheme. That is, Flyover introduces an untrusted
third party that advances the funds for the user and later is repaid. This allows
Flyover to reduce transfer times without reducing the security of the process.
Two repayment protocols similar to Flyover are MakerDAO’s Optimism DAI
bridge [9] and Hop [15].

MakerDAO’s DAI bridge uses a loan system to speed-up DAI token trans-
fers from the layer-2 solution Optimism [1] to the underlying blockchain. These



transfers take usually one week due to security reasons. The repayment protocol
allows users to get a collateralized loan before the transfer is fully verified by
the bridge. The loan is issued directly by MakerDAO’s treasury to guarantee the
consistency of the bridge even in case of misbehavior. After the one week period,
users can repay the loan and recover the DAI tokens from the bridge. The main
difference between MakerDAO’s DAI bridge and Flyover is that in Flyover users
receive the funds directly instead of a loan. This makes MakerDAO’s protocol
more complex, as users must be incentivized to repay the loan after one week. In
addition to this, MakerDAO’s bridge relies on an oracle to get information from
the layer-2, which represents a centralized point of failure that does not exist in
Flyover.

Hop is a repayment protocol to speed-up token transfers between rollups [10]
that removes the need to go through the underlying blockchain. The idea is to
use a special Hop token that can be burned at the source rollup and minted
at the destination. To achieve this, a Bonder provides the liquidity for the user
at the destination rollup. The Bonder is then refunded (plus a fee) when the
payment propagates to the underlying blockchain. Bonders can check that the
transfer at the source rollup is valid by running a verifier node for the rollup. In
addition, the Hop protocol also establishes automated market makers to convert
Hop tokens to the canonical token used in each rollup. The main difference
between Hop and Flyover is that Flyover is built on top of a federated two-way
peg, while Hop connects layer-2 solutions built on a shared blockchain.

3 Background

Rootstock (RSK) [8] is a Bitcoin sidechain that provides stateful and turing-
complete smart contract functionality. Although RSK implements its own con-
sensus mechanism, it does not require a money token different from bitcoin
(BTC) to function. That is, fees and computations in RSK are paid in BTC.
This prevents RSK from competing against Bitcoin as a store of value and aligns
RSK’s incentives to Bitcoin. RSK provides a highly secure bridging protocol,
called the Powpeg, to transfer bitcoins from the Bitcoin network and back. For
clarity, we will refer to bitcoins in RSK as RBTC.

The fact that RSK relies on BTC to operate makes the Powpeg an essential
part of the RSK network. The Powpeg is a two-way peg that uses a vault in
Bitcoin, where users can deposit BTC, and a smart contract in RSK that locks
and unlocks RBTC as requested. Consistency and liveness in the Powpeg are
guaranteed by means of three components: a set of Pegnatories, a set of Hardware
Security Modules (PowHSMs), and a pre-compiled Bridge smart contract in
RSK.

Pegnatories run a modified RSK node and act mainly as data relays between
the other components of the Powpeg and the Bitcoin network. The PowHSMs
hold the private keys that control the Bitcoin vault, which consists of a multi-
signature script. Each Pegnatory maintains one PowHSM but does not have



direct access to the corresponding private key. The pre-compiled Bridge contract
serves as a Bitcoin SPV client in RSK.

Figure 1 shows the peg-in process, that is, the process of transferring bitcoin
from Bitcoin to RSK. The process consists of the following steps:

1. The user sends N BTC to the multi-signature address controlled by the
PowHSMs. This is the deposit transaction.

2. The Pegnatories, or other users, periodically update the Bridge contract with
Bitcoin block headers. The Bridge contract selects the best chain based on
cumulative work.

3. The Pegnatories, or the user, submit the deposit transaction to the Bridge
smart contract on RSK.

4. The Bridge contract validates the deposit transaction using its internal view
of the Bitcoin blockchain.

5. After 100 block confirmations, the Bridge contract transfers N RBTC to
the user in RSK. The destination address in RSK is derived from the source
address in Bitcoin.

Fig. 1: Powpeg’s peg-in process.

The Bridge contract requires 100 block confirmations to release the RBTC
to guarantee the security of the Powpeg in the event of Bitcoin chain reorganiza-
tions. In addition to this, the Powpeg establishes a limit in the amount of BTC
that is locked in the vault. If the locked amount exceeds this limit due to a user
deposit, the Powpeg immediately refunds the user in BTC instead of performing
the transfer to RSK.

The peg-out process, that is, the process of transferring bitcoin from RSK to
Bitcoin is more complex because it involves unlocking BTC from the vault in a
secure manner. Figure 2 shows a diagram of this process, which consists of the
following steps:

1. The user sends N RBTC to the Bridge contract.
2. After 4,000 confirmations, the Bridge contract builds a Bitcoin transaction

that unlocks BTC from the vault.



3. The Pegnatories collect the Bitcoin transaction and send it to their PowHSMs.
4. The PowHSMs verify that the Bitcoin transaction has been generated by the

Bridge in an RSK block with a specific amount of proof-of-work (PoW) on
top.

5. After validation, the PowHSMs sign the transaction and the Pegnatories
send the signatures to the Bridge contract.

6. The Bridge puts together the signed transaction when it receives more than
half of the PowHSM signatures.

7. The Pegnatories relay the signed transaction to the Bitcoin network and the
user receives N BTC from the vault.

As with the peg-in process, the Bridge contract requires 4,000 confirmations
due to security reasons. In addition to this, Pegnatories do not directly control
the locked BTC. Instead, the PowHSMs require a particular amount of PoW to
sign a BTC unlocking transaction. This makes stealing from the vault economi-
cally unfeasible as Pegnatories would need to spend computational resources in
mining a significant amount of fake RSK block headers.

4 The Flyover protocol

The Flyover protocol introduces an untrusted third party, called the Liquidity
Provider (LP), that advances bitcoin for the user. In this way, the protocol can
potentially achieve faster transfers than the Powpeg. This is because LPs might
require less confirmations, especially for small value transfers, as their security
requirements are less strict than the Powpeg’s. A breach in the consistency of
the Powpeg would be fatal for the RSK network, while LPs can operate with
higher risk assumptions.

The Flyover protocol requires changes to the pre-compiled Bridge contract,
a new smart contract in RSK called the Liquidity Bridge Contract (LBC), and
the intervention of an LP. In terms of RSK consensus, the Flyover protocol only
defines the interactions with the Bridge contract. The internals of the LBC and
the LP can be defined in several ways, and multiple third-parties can deploy

Fig. 2: Powpeg’s peg-out process.



Fig. 3: Overview of the Flyover peg-in process.

their own components. This creates a potential marketplace of fast bridges that
compete against each other. In the following, we describe the peg-in and peg-out
processes in detail.

4.1 Peg-in process

A peg-in using the Flyover protocol begins with an off-chain interaction between
the user and the LP in which they negotiate the conditions of the service. The
user then makes a deposit in BTC to a special address that is controlled by the
same private keys that control the multi-signature address used in the Powpeg.
The LP verifies the deposit transaction and pays the user the agreed amount
in RBTC through the LBC. Finally, after the usual 100 block confirmations,
the Bridge contract pays the LBC as in a regular Powpeg peg-in and the LBC
refunds the LP.

Figure 3 shows a diagram of the main interactions in Flyover during the
transfer of BTC to RSK. Note that the protocol makes use of the Pegnatories
as data relays between Bitcoin and the Bridge contract, but users can also relay
the information themselves.

The peg-in process requires the addition of a new method to the pre-compiled
Bridge contract called registerFastBTCTransaction that takes the following
arguments:

btcTransaction – The user deposit transaction that locks BTC.
height – The height of the block that contains the deposit transaction.
merklePath – The inclusion proof of the deposit transaction in the block.
derivationHash – A hash used as unique identifier for the peg-in.
btcRefundAddress – The user Bitcoin refund address.
lbcAddress – The LBC RSK address.
lpRefundAddress – The LP Bitcoin refund address.
callPerformed – A boolean indicating whether the LP provided the service.



The LBC uses the registerFastBTCTransaction method to validate the
user BTC deposit and to get the corresponding amount of RBTC after the 100
block confirmations. Apart from this, the LBC makes use of a Bridge method
called getBtcBlockchainBlockHeaderByHeight, which returns the Bitcoin block
header at a given height. We explain the details on how the LBC uses these two
Bridge methods below.

Off-chain interaction The first step in transferring BTC to RSK consists of
an off-chain negotiation of the service conditions between the user and the LP.
In this interaction, the user and the LP agree on a service quote. The LP then
commits to delivering the service by signing the hashed quote. The signed hashed
quote can be used later to punish the LP in case of misbehavior. For this, LPs are
required to lock collateral with the LBC. Peg-in quotes consist of the following
fields:

PegBitcoinAddress: (20 bytes) the Powpeg Bitcoin multi-signature ad-
dress.

LBCAddress: (20 bytes) RSK address of the LBC.

LPRSKAddress: (20 bytes) RSK address of the LP.

BitcoinRefundAddress: (21 bytes) user Bitcoin refund address (including
version prefix).

RSKRefundAddress: (20 bytes) user RSK refund address.

LPBitcoinAddress: (21 bytes) Bitcoin address of the LP (including version
prefix).

CallFee: (8 bytes) unsigned integer representing the fee that the LP charges.

PenaltyFee: (8 bytes) unisgned integer representing the penalty applied to
the LP in case of misbehavior.

DestinationAddress: (20 bytes) RSK address that receives the transfer.
Can be an externally owned account or a contract address.

Data: byte array containing the call arguments in case of a smart contract
call.

GasLimit: (4 bytes) unsigned integer representing the gas limit used in the
call.

Nonce: (8 bytes) integer that uniquely identifies this quote.

Value: (8 bytes) unsigned integer representing the value to transfer.

Timestamp: (4 bytes) unsigned integer representing the time of the agree-
ment.

TimeForDeposit: (4 bytes) unsigned integer representing the time that the
user has to make the deposit transaction.

Confirmations: (2 bytes) number of confirmations that the LP requires
before delivering the service.

CallTime: (4 bytes) unsigned integer representing the time that the LP
has to deliver the service after the required number of confirmations have
occurred.



Some of these fields define the conditions of the service, while others serve
to uniquely identify the LP, the LBC, and the quote itself. During the off-chain
negotiation, the user informs the LP about the value to be transferred, the
destination address, and the data and gas limit of the call. The LP may then
choose the appropriate fees, number of required confirmations and other quote
fields based on this information.

Deposit transaction After receiving the signed quote, the user must make
a deposit to a special Bitcoin address meeting two conditions: first, the deposit
must be greater or equal to Value plus CallFee; second, the deposit must achieve
one block confirmation before Timestamp plus TimeForDeposit. If the deposit
does not meet one of these conditions, the LP is not compelled to deliver the
service and the user receives their funds after the usual 100 block confirmations.
The LP and the user are responsible for choosing the appropriate values for these
fields taking into account the status of the Bitcoin and RSK networks.

The deposit address is derived from the multi-signature address controlled
by the Powpeg. This multi-signature address is a pay-to-script hash (P2SH) ad-
dress that can be unlocked by providing the corresponding script and the num-
ber of required signatures. The Flyover deposit address is generated by hashing
together the quote hash and the BitcoinRefundAddress, LBCAddress and LP-

BitcoinAddress quote fields. The resulting hash is placed at the beginning of
the multi-signature locking script followed by the OP DROP instruction. This in-
struction discards the preceding value, and thus, the behavior of the resulting
locking script remains the same. In this manner, the Flyover deposit address is
linked to a specific quote, and to specific user, LP, and LBC addresses, while
still being controlled by the same private keys that control the Powpeg P2SH
address. This ensures that the Powpeg can unlock the BTC when users request a
transfer from RSK to Bitcoin, and also prevents claiming a deposit using invalid
parameters.

Advancement of funds The LP advances the funds to the user through an
LBC function named callForUser that takes the quote as argument. The LP
calls callForUser after the user deposit achieves the number of block confir-
mations specified in the Confirmations quote field. The callForUser function
then makes a call to DestinationAddress transferring an amount of RBTC
equal to Value; passing Data as input data for the call; and setting the gas limit
of the call to GasLimit. This is possible because, like in Ethereum, a transac-
tion in RSK can be a transfer of value, a contract call, or a contract call that
also transfers value. The Data field of the quote allows users to directly call
smart contracts in RSK from Bitcoin through the Flyover protocol in a seamless
manner.

The LBC checks that the LPRSKAddress quote field corresponds to the caller
address, that the LP has enough liquidity to perform the call, and that the quote
has not been processed already. The LBC also stores the time at which the LP



calls the callForUser function. Note that it is the LP’s responsibility to ensure
that CallFee is enough to cover for the costs of interacting with the LBC.

Resolution The peg-in process can be finalized after 100 block confirmations
on the user deposit. There are several ways in which the process can resolve.
In all cases, resolution is through an LBC function called registerPegIn. The
registerPegIn function can be called by the LP, the user, or any other entity,
such as another LP. The function takes five arguments: the quote, the quote
signature, the serialized Bitcoin deposit transaction, a Merkle tree path proving
the inclusion of the transaction in the block, and the height of the Bitcoin block
that contains the deposit transaction. The registerPegIn function validates the
quote by checking that the provided signature matches the quote hash and the
LPRSKAddress quote field. Then, the registerPegIn function calls the regis-

terFastBTCTransaction Bridge method providing the Bitcoin transaction, the
height, the Merkle tree path, the quote hash, the LBC and refund addresses,
and whether the LP called callForUser. The Bridge then validates that:

– The caller address is the provided LBC address.
– The provided quote hash and serialized Bitcoin transaction have not been

processed before.
– The provided block height is at least 100 blocks from the current main

blockchain tip.
– The Merkle root obtained from the provided Merkle tree path and serial-

ized Bitcoin transaction corresponds to the Merkle root of the block at the
provided height.

– The provided Bitcoin transaction contains an output to the deposit address.
For this, the Bridge contract generates the deposit address from the provided
quote hash and the user, LP, and LBC addresses.

As mentioned before, the Bridge contract is able to perform these validations
because the Pegnatories periodically relay Bitcoin block headers. After the val-
idations, the Bridge contract transfers the deposited amount in RBTC to the
LBC. The LBC can then finalize the process in several ways:

– The LBC refunds the LP if the LP called callForUser before CallTime sec-
onds after the deposit transaction reached the number of agreed confirma-
tions. The LBC uses the Bridge method getBtcBlockchainBlockHeader-

ByHeight to obtain the timestamp of the Bitcoin block.
– The LBC refunds the LP but slashes its collateral by PenaltyFee if the LP

did not call callForUser on time. The LBC burns part of PenaltyFee and
pays the rest to the caller of registerPegIn.

– The LBC punishes the LP as before and refunds the user at RSKRefundAd-
dress if the LP did not call callForUser at all.

In the worst case (i.e., the LP does not deliver), the user receives the RBTC
after the regular 100 block confirmations by calling registerPegIn. Anyone can



call registerPegIn with the incentive of receiving part of the penalty fee. This
guarantees that users are never at risk of losing funds.

In the case that the user deposit makes the total amount of locked BTC
in the Powpeg greater than the maximum allowed amount, the Bridge contract
does not transfer RBTC to the LBC. Instead, the Bridge contract returns the
BTC to BitcoinRefundAddress or LPBitcoinAddress depending on whether
the LP already advanced the RBTC for the user.

4.2 Peg-out process

The peg-out process is less complex than the peg-in because it can take advantage
of RSK’s smart contract functionality to lock the RBTC. Similar to the peg-in,
the peg-out process begins with an off-chain interaction between the user and the
LP. As part of this interaction, the user and the LP compute a derived Bitcoin
address controlled by the user. The LP provides a signed quote and the user
makes an RBTC deposit on the LBC. After a number of confirmations on this
deposit, the LP pays the agreed amount of BTC to the derived user address in
Bitcoin. After this payment achieves a number of confirmations, the LP provides
the LBC with a proof and gets refunded in RBTC. Figure 4 shows a diagram of
the peg-out process.

Apart from getBtcBlockchainBlockHeaderByHeight, the peg-out process
makes use another Bridge method called getBtcTransactionConfirmations

that returns the number of confirmations for a given Bitcoin transaction. We
describe the details of the peg-out process in the following.

Off-chain interaction As with the peg-in, the first step of the peg-out process
is an off-chain negotiation between the user and the LP. In this case, the quote
contains the following fields:

DerivationAddress: (21 bytes) Bitcoin derived address controlled by the
user.

Fig. 4: Overview of the Flyover peg-out process.



LBCAddress: (20 bytes) RSK address of the LBC.
LPRSKAddress: (20 bytes) RSK address of the LP.
RSKRefundAddress: (20 bytes) user RSK refund address.
Fee: (8 bytes) unsigned integer representing the fee that the LP charges.
PenaltyFee: (8 bytes) unisgned integer representing the penalty applied to
the LP in case of misbehavior.
Nonce: (8 bytes) integer that uniquely identifies this quote.
Value: (8 bytes) unsigned integer representing the value to transfer.
Timestamp: (4 bytes) unsigned integer representing the time of the agree-
ment.
DepositTimeLimit: (4 bytes) unsigned integer representing the time limit
that the user has to include the RBTC deposit in the RSK blockchain.
DepositConfirmations: (2 bytes) number of confirmations that the LP
requires before delivering the service.
PaymentConfirmations: (2 bytes) number of confirmations that the LBC
requires on the payment transaction to refund the LP.
TransferTime: (4 bytes) unsigned integer representing the time that the LP
has to deliver the service.
ExpiryTime: (4 bytes) unsigned integer representing the time after which
the user can cancel the service.
ExpiryBlocks: (4 bytes) unsigned integer representing the number of RSK
blocks after which the user can cancel the service.

As part of the negotiation, the user must provide his Bitcoin public key hash.
The LP and the user then compute the derivation address as a P2SH address
similar to the deposit address of the peg-in process. In this case, the locking
script begins with the quote hash (without the derivation address) followed by
the OP DROP instruction and can be unlocked with the user public key. The
resulting derivation address is controlled by the user while being linked to a
specific quote. This makes the LP payment to this address unique and prevents
LPs from claiming multiple user deposits with the same payment transaction.

Deposit transaction After the negotiation, the user sends the signed quote
together with an RBTC deposit of Value plus Fee to the LBC by calling a
method named registerPegOut. This deposit transaction must be included in
an RSK block before DepositTimeLimit to be accepted by the LBC. This is to
ensure that a delay in the deposit does not affect the LP’s ability to deliver the
service on time. The LBC stores the quote hash, the timestamp and the block
number of the deposit for future validations.

Advancement of funds Once the deposit transaction gets DepositConfir-

mations confirmations, the LP pays Value BTC to the derivation address con-
trolled by the user. The LP must ensure that this payment transaction is in-
cluded in the Bitcoin blockchain before TransferTime starting at the time of
the deposit transaction.



Resolution After the payment transaction gets PaymentConfirmations confir-
mations, the LP can submit a proof of the payment to the LBC to get a refund
in RBTC. More precisely, the LP calls a function named refundPegOut with
five arguments: the quote, the raw Bitcoin payment transaction, the hash of the
Bitcoin block header in which the payment transaction is included, a Merkle
tree path proving the inclusion of the transaction in the block, and the height
of the Bitcoin block that contains the payment transaction. The refundPegOut
method validates that:

– The quote is valid and corresponds to a pending peg-out.
– The provided Bitcoin transaction has PaymentConfirmations confirmations.

For this, the LBC calls the Bridge method getBtcTransactionConfirma-

tions.
– The Bitcoin transaction contains an output paying Value to the derivation

address.
– The Bitcoin transaction was included in the blockchain before the time of the

user deposit plus TransferTime. For this, the LBC uses the Bridge method
getBtcBlockchainBlockHeaderByHeight.

After these validations, the LBC refunds Value plus Fee RBTC to the LP.
The LBC slashes PenaltyFee RBTC from the LP’s collateral if the payment
was not made on time.

The user can call an LBC method named cancelPegOut to get a full refund
and penalize the LP if the LP does not submit proof of the payment before
ExpiryTime or ExpiryBlocks since the user deposit. We use two deadlines to
account for network delays. This mechanism protects the user in case the LP
does not deliver the service and forces LPs to claim refunds before a particular
deadline.

5 Security considerations

In this section, we discuss various aspects of the security of the Flyover protocol:
the use of derivation addresses, the LP risks, and the possibility of denial-of-
service attacks.

5.1 Derivation addresses

The central part of the security of the Flyover peg-in process lies in the deriva-
tion of the deposit address. The Bridge only pays RBTC to the LBC address
associated with the BTC deposit (or one of the refund addresses if the lock-
ing limit is exceeded). Including the quote hash in the deposit address prevents
quote re-submission or claiming the RBTC using an incorrect quote. At the
same time, the deposit address is controlled by the PowHSMs, which provide
the same security guarantees as the Powpeg. That is, Flyover reduces the time
to peg-in without reducing its safety. Users are never at risk of losing funds be-
cause anyone can trigger the resolution of the peg-in through the LBC, and LPs



are also guaranteed to receive refunds through the LBC as long as they provide
the service.

The derivation address during the peg-out process guarantees that each BTC
payment to the user is unique. This has two main security implications. On
the one hand, it prevents LPs from claiming multiple refunds using the same
payment transaction. On the other hand, it also prevents LPs from claiming a
refund using a different payment transaction to the same user address.

5.2 Penalty risk

During the peg-in process, the LP must call callForUser after the number of
agreed confirmations on the user deposit but before CallTime. This puts the LP
at risk of being penalized if there are network delays in RSK. LPs must take
into account this risk when negotiating the conditions of the service and set
CallTime and the service fee accordingly.

During the peg-out, the LP also takes the risk of getting the payment Bitcoin
transaction mined before TransferTime after the user deposit. In this case,
TransferTime includes the time that it takes for the user deposit to reach the
number of agreed confirmations. This means that during peg-outs, LPs must
take into account possible network delays both in Bitcoin and RSK.

5.3 Denial-of-service attacks

Both during the peg-in and the peg-out, the LP commits to delivering the service
by signing the agreed quote. This signature serves as a proof that users can
present to the LBC to penalize the LP in case of not delivering the service. This
means that LPs are forced to lock part of their liquidity after signing each quote,
however, users are not required to make the deposit and can let the quote expire.
A malicious user could request many quotes from an LP and never make any
deposits. This would force the LP to lock all of its liquidity and make it unable
to serve honest users.

6 Conclusions

In this paper, we present Flyover, a repayment protocol to speed-up bitcoin
transfers on federated pegs. Flyover is built on top of the Powpeg, which is
the current bridging protocol between Bitcoin and RSK. Flyover achieves faster
transfers than the Powpeg by having untrusted liquidity providers to advance
funds for the user. This is because liquidity providers can operate under higher
risk assumptions than the Powpeg. In addition, Flyover allows users to trigger
smart contract calls on RSK directly from Bitcoin.

Although liquidity providers are external untrusted parties, the security of
Flyover is guaranteed by the same mechanisms that secure the Powpeg. In this
way, Flyover provides faster transfers without reducing the security of the sys-
tem. In case the liquidity provider does not respond, users receive their funds



after the regular number of confirmations (in peg-ins) or can cancel the transfer
(in peg-outs). Liquidity providers are never in direct control of the user funds,
and thus, users are not at risk of losing them.

In the future, we plan to decentralize Flyover even further by making the
initial interaction between the user and the liquidity provider on-chain.

References

1. Optimism. https://community.optimism.io/

2. pTokens, https://www.ptokens.io/

3. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poel-
stra, A., Timón, J., Wuille, P.: Enabling Blockchain Innovations with Pegged
Sidechains. Tech. rep. (2014)

4. Belchior, R., Vasconcelos, A., Guerreiro, S., Correia, M.: A Survey on Blockchain
Interoperability: Past, Present, and Future Trends. ACM Comput. Surv. 54(8)
(2021)

5. Dilley, J., Poelstra, A., Wilkins, J., Piekarska, M., Gorlick, B., Friedenbach, M.:
Strong Federations: An Interoperable Blockchain Solution to Centralized Third
Party Risks. CoRR abs/1612.05491 (2016)

6. Garoffolo, A., Kaidalov, D., Oliynykov, R.: Zendoo: a zk-SNARK Verifiable Cross-
Chain Transfer Protocol Enabling Decoupled and Decentralized Sidechains. In:
Proceedings of the IEEE 40th International Conference on Distributed Computing
Systems. pp. 1257–1262 (2020)

7. Gudgeon, L., Moreno-Sanchez, P., Roos, S., Mccorry, P., Gervais, A.: SoK : Off
The Chain Transactions. Financial Cryptography and Data Security (2020)

8. Lerner, S.D., Álvarez Cid-Fuentes, J., Len, J., Fernàndez-València, R., Gallardo,
P., Vescovo, N., Laprida, R., Mishra, S., Jinich, F., Masini, D.: RSK: A Bit-
coin sidechain with stateful smart-contracts. Cryptology ePrint Archive, Paper
2022/684 (2022)

9. MakerDAO: Announcing the Optimism Dai Bridge with Fast Withdrawals.
https://forum.makerdao.com/t/announcing-the-optimism-dai-bridge-with-fast-
withdrawals/6938

10. McCorry, P., Buckland, C., Yee, B., Song, D.: Sok: Validating bridges as a scaling
solution for blockchains. Cryptology ePrint Archive, Report 2021/1589 (2021),
https://ia.cr/2021/1589

11. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System. Decentralized Busi-
ness Review (2008)

12. Nick, J., Poelstra, A., Sanders, G.: Liquid: A Bitcoin Sidechain. Tech. rep., Block-
stream (2020)

13. Schulte, S., Sigwart, M., Frauenthaler, P., Borkowski, M.: Towards Blockchain
Interoperability. In: Business Process Management: Blockchain and Central and
Eastern Europe Forum. pp. 3–10 (2019)

14. Singh, A., Click, K., Parizi, R.M., Zhang, Q., Dehghantanha, A., Choo, K.K.R.:
Sidechain technologies in blockchain networks: An examination and state-of-the-art
review. Journal of Network and Computer Applications 149, 102471 (2020)

15. Whinfrey, C.: Hop : Send Tokens Across Rollups. Tech. Rep. January (2021)

16. Wood, G.: Polkadot: Vision for a heterogeneous multi-chain framework. Tech. rep.,
Parity (2016)



17. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.:
XCLAIM: Trustless, Interoperable, Cryptocurrency-Backed Assets. In: 2019 IEEE
Symposium on Security and Privacy (SP). pp. 193–210 (2019)


