Unlimited Results: Breaking Firmware Encryption of ESP32-V3

Karim M. Abdellatif, Olivier Hériveaux, and Adrian Thillard

Ledger, Donjon

Abstract

Because of the rapid growth of Internet of Things (IoT),
embedded systems have become an interesting target for ex-
perienced attackers. ESP32 [13] is a low-cost and low-power
system on chip (SoC) series created by Espressif Systems.
The firmware extraction of such embedded systems is a real
threat to the manufacturer as it breaks its intellectual prop-
erty and raises the risk of creating equivalent systems with
less effort and resources. In 2019, LimitedResults [20] pub-
lished power glitch attacks which resulted in dumping secure
boot and flash encryption keys stored in the eFuses of ESP32.
Therefore, Espressif patched this vulnerability and then ad-
vised its customers to use ESP32-V3, which is an updated
SoC revision. This new version is hardened against fault in-
jection attacks in hardware and software as announced by
Espressif [12]. In this paper, we present for the first time
a deep hardware security evaluation for ESP32-V3. The
main goal of this evaluation is to extract the firmware en-
cryption key stored in the eFuses. This evaluation includes
Fault Injection (FI) and Side-Channel (SC) attacks. First,
we use Electromagnetic FI (EMFI) in order to show that
ESP32-V3 doesn’t resist EMFI. However, by experimental
results, we show that this version contains a revised boot-
loader compared to ESP32-V1, which hardens dumping the
eFuse keys by FI. Second, we perform a full SC analysis on
the AES accelerator of ESP32-V3. We show that an attacker
with a physical access to the device can extract all the keys
of the hardware AES-256 after collecting 60K power mea-
surements during the execution of the AES block. Third,
we present another SC analysis for the firmware decryp-
tion mechanism, by targeting the decryption operation dur-
ing the power up. Using this knowledge, we demonstrate
that the full 256-bit AES firmware encryption key, which is
stored in the eFuses, can be recovered by SC analysis using
300K power measurements. Finally, we apply practically the
firmware encryption attack on Jade hardware wallet [4].

Keywords— ESP32-V3, EMFI, Side-Channel Attacks
(SCAs), eFuses

SPI
|—| Bh;z(:ﬂ] Bluetooth RF
Baseband receiver
controller
o
Generator M’
SDIO . WiFi RF
WiFi MAC Baseband Transmitter
UART

o1

(@]
Z| |z

i

PWM

Temperature
enso

| Touch Sensor | RTC
ULP Recovery
PMU Coprocessor memory
ADC

Figure 1: ESP32 architecture [11]

1 Introduction

Embedded systems applications range from smart cards, mo-
bile devices, hardware wallets, to industrial control. ESP32
is one of these chips which are widely used in such sys-
tems [11] such as cameras for video streaming, health care
applications, and recently ESP32-V3 in security devices
such as hardware wallets [4]. It is a single 2.4 GHz Wi-
Fi-and-Bluetooth chip designed with the TSMC 40 nm tech-
nology. In addition, it has an integrated Wi-Fi solution for
Bluetooth IoT applications. According to Espressif, it is de-
signed for mobile devices, wearable electronics, and IoT ap-
plications. It is equipped with the following security features
as shown in Fig. 1:

* IEEE 802.11 standard security features all supported,
including WFA, WPA/WPA2 and WAPI

e
(R s T
N obe o O o PV

Figure 2: ESP32-V1 Figure 3: ESP32-V3

¢ Secure boot

¢ Flash memory encryption

1024-bit OTP, up to 768 bits for customers

¢ Cryptographic hardware accelerators: AES, SHA-2,
RSA, Elliptic Curve Cryptography (ECC), Random
Number Generator (RNG)

Era of IoT makes devices such as ESP32 vulnerable to
hardware attacks (e.g., SC and FI attacks). These attacks
have been considered as a known threat to embedded systems
since more than 20 years. SCAs are a class of vulnerabilities
that leverage physical leakage, such as power consumption
or electromagnetic emanations, to gain information about
sensitive data being manipulated by a device. Since their
inception by Paul Kocher in the late 1990s with the discov-
ery of timing attacks [19], several SCAs such as Differen-
tial Power Analysis (DPA) [18], Correlation Power Analysis
(CPA) [6], and template attacks [7] have shown a very high
efficiency against embedded systems. FI attacks are used
to perform malicious data modifications by influencing the
execution of the chip, in order to bypass sensitive opera-
tions such as memory protection and secure boot. In addi-
tion, faulted responses during the execution of cryptographic
operations can be analyzed using Differential Fault Analy-
sis (DFA) attacks [3] to extract secret keys. These attacks
can be performed by injecting faults using laser/optical [23],
electromagnetic [8], and glitches (power and clock) [21].

In 2019, LimitedResults [20] presented FI attacks using
power glitches on ESP32-V1, which resulted in revealing
flash encryption and secure boot keys stored in the eFuses
of ESP32-V1. The main idea of this attack is to inject a
single power glitch during the power up, when the memory
protection bits are manipulated. At the same time, Raelize
[22] also presented an EMFI attack to bypass secure boot
and flash encryption by targeting the power up using a single
EM pulse.

As a positive reaction from Espressif [12], ESP32-V3 has
been released in the market since March 2020 as shown in
Fig. 3 to replace ESP32-V1 because of the following security
enhancements:

» ESP32-V3 is hardened against fault injection attacks in

hardware and software. Therefore, it prevents any FI
attacks to dump the eFuse keys.

e It supports a new RSA-based secure boot scheme
(ESP32 Secure Boot V2) where the eFuse memory con-
tains only the public key unlike the previous version
which was based on AES-256.

* It has a new feature to permanently disable the UART
Download Mode via eFuse (UART-Disable).

From the above new added features of ESP32-V3, we can
conclude that the only sensitive data stored in the eFuses is
only the firmware encryption key to protect the firmware.

In this work, we extensively evaluate ESP32-V3 against
EMFTI and SC attacks in order to extract the firmware
encryption key. First, we show by experimental results
that ESP32-V3 doesn’t contain any hardware counter-
measures that could thwart EMFI. This is achieved by
faulting a simple application on ESP32-V1 and ESP32-
V3 circuits. However, it contains checks on the boot
ROM level that harden dumping the eFuse keys using
FI. This conclusion is obtained by reproducing the FI at-
tack presented by LimitedResults on ESP32-V1 and fol-
lowing the same attack path on ESP32-V3 using EMFI.
Second, we change the attack strategy from FI to SC. A
full SCA is presented against the hardware AES accel-
erator of ESP32-V3. We show that an attacker with a
physical access to the device can extract all the keys of
the hardware AES-256 accelerator after collecting 60K
power measurements. Third, we present a full SCA on
the firmware decryption mechanism. This is achieved
by locating the firmware decryption process during the
power. We confirm after the experimental analysis that
the AES-256 core used for flash encryption/decryption is
not the same hardware AES accelerator. By using a flash
emulator to control the bootloader and collecting 300K
traces during the power up, all the 256-AES keys stored
in the eFuses are extracted. Finally, we present a practi-
cal example of extracting the firmware of Jade hardware
wallet [4].

The remainder of this paper is organized as follows. Sec-
tion 2 provides a detailed review on the security of ESP32-
V3. In Section 3, we detail the full EMFI evaluation of
ESP32-V3 and the comparison with ESP32-V1. Section
4 presents the SCA on the hardware AES accelerator of
ESP32-V3. 1In Section 5, we highlight the SCA on the
firmware decryption mechanism to dump the firmware en-
cryption keys. Section 6 shows a practical example of ex-
tracting the firmware of Jade wallet. Section 7 concludes
this work.

2 ESP32-V3 Security

ESP32 (including V3) has a 1024-bits eFuse memory (see
[13]). It is divided into 4 blocks of 256 bits each as shown
in Fig. 4. BLKO is used entirely for system purposes. BLK1
and BLK?2 are used to store flash encryption and secure boot
keys, respectively. BLK3 can be reserved for the custom
MAC address, or used entirely for user application. Once

Reserved Flash Encryption Secure Boot User Application
(System Purposes) Key Key
BLKO BLK1 BLK2 BLK3

Figure 4: eFuses overview [11]

these keys are written in the eFuses memory, any software
running on the ESP32 can not read (or update) them (dis-
abled software readout). Only the ESP32 hardware can read
and use those keys for performing secure boot and flash en-
cryption.

2.1 Secure Boot

Secure boot is one of the ESP32 (including V3) security fea-
tures, which ensures running trusted and signed (by a known
entity) applications on the chip. There are two versions of
ESP32 secure boot:

Secure Boot V1 : Itis used for previous ESP32 versions
(prior to ESP32-V3). The digest is generated after hashing
the result of encrypting the bootloader with the chip’s pub-
lic key using BLK?2 key, as shown in Eq. 1. Then, the di-
gest should be stored at address 0x00 and the bootloader is
at 0x1000. During the power up, the boot ROM generates
a digest from the bootloader stored in the flash using eFuse
BLK2 and compares it with the digest stored at address 0x00
to validate the bootloader as shown in Fig. 5. It can be ac-
tivated using the command shown in List. 1 through the es-
pefuse.py script provided by Espressif. After the fault injec-
tion attacks reported in [20][22], Espressif designed secure
boot V2 which is based on RSA signature verification, in or-
der to avoid storing the secure boot key in the chip.

Digest = SHA-512(AES-256((Bootloader || publickey), BLK2)))
€]

espefuse .py burn_efuse ABS_DONE_O
Listing 1: Enabling secure boot V1

Secure Boot V2 : In order to avoid storing the secure
boot key in the eFuses, V2 was proposed. It is based on a
public key signature verification using RSA. The bootloader

0x1000

(=3
S

%
S

d

Continue or Not

Flash

Bootloader || Public key

SHA-512 }1—‘ AES-256

eFuse BLK2

Digest = I Bootloader || Public key =

Figure 5: Signature verification of V1

0x1000

Flash

Bootloader || RSA public key
liSignaturc

’ RSA Signature Verification ‘ ’ SHA-256 ‘

o |

Continue or Not

RSA public key

eFuse BLK2
SHA-256(RSA public key)

Validation of RSA public key

Bootloader= = A RSA public key || Signature= = B

Figure 6: Signature verification of V2

image stored in the flash contains the main bootloader, an
RSA public key, and an RSA signature. Before activating
this mode, the bootloader is signed by a user private key us-
ing the esptool program and stored at address 0x1000. In ad-
dition, eFuse BLK?2 stores the SHA-256 digest of the RSA
public key, to ensure the correctness of the public key gen-
erated from the main private key. During the power up,
the boot ROM looks up the public key stored in the boot-
loader’s image, and validates its SHA-256 digest with the
value stored in eFuse BLK?2. After the successful validation,
the RSA signature verification is executed as shown in Fig. 6.
Also, it can be activated using the command shown in List. 2
through the esptool program.

i espefuse.py burn_efuse ABS_DONE._1
Listing 2: Enabling secure boot V2

0x1000

0x9000

0xE000
0x10000

] AES-256

_ Cache |

Key

-‘—>
| o

adg_‘dress Key tweak ‘

ota_data_initial = [

Firmware =

eFuse BLK1 ‘

Bootloader =

partition-table = [N

Figure 7: Flash encryption of ESP32

2.2 Flash Encryption

When the ESP32 (including V3) is used, any firmware or
data is stored in the external SPI flash memory. It may con-
tain proprietary firmware and sensitive user data, such as user
keys, credentials for gaining access to a private network, etc.
The flash encryption block encrypts all the flash content us-
ing AES-256 and writes encrypted code to the external flash
memory for enhanced security. When the CPU reads the ex-
ternal flash through the cache, the flash decryption block can
automatically decrypt instructions and data read from the ex-
ternal flash (see Fig. 7), thus providing hardware-based secu-
rity for application code. According to Espressif [13], flash
encryption uses AES-256 decryption and flash decryption
uses AES-256 encryption.

During the power up, the firmware bootloader reads the
FLASH _CRYPT CNT eFuse value. If the value is an even
number of bits sets, it configures and enables the flash en-
cryption block to decrypt the flash content. The flash en-
cryption key is stored in the eFuses BLK1 internal to the chip
and, by default, is protected from software access. This key
is “tweaked” with the offset address of each 32 bytes block
of flash (key tweak). This means that every 32 bytes block
(two consecutive 16 bytes AES blocks) is encrypted with a
unique key derived from the flash encryption key.

The generated tweak depends on the
FLASH CRYPT _CONFIG eFuse setting. It is a 4 bits
eFuse slot where each bit enables XORing of a particular
range of the key bits where:

* Bit 0, bits 0-66 of the key are XORed

* Bit 1, bits 67-131 of the key are XORed
* Bit 2, bits 132-194 of the key are XORed
* Bit 3, bits 195-256 of the key are XORed

According to Espressif, It is recommended that
FLASH _CRYPT _CONFIG is always left at the default
value OxF, so that all key bits are XORed with the block
offset. More details about FLASH _CRYPT_CONFIG are
shown in [15]. In order to enable the flash encryption as
recommended by Espressif, the following commands are
executed through the esptool program:

espefuse.py ——port PORT burn_key flash_encryption
flash_encryption_key .bin

> espefuse.py ——port PORT burn_efuse

FLASH_CRYPT_CONFIG Oxf

; espefuse.py ——port PORT burn_efuse FLASH.CRYPT_CNT

Listing 3: Enabling flash encryption

2.3 Disabling JTAG and UART Bootloader

The eFuse has one-time programmable bit fields that allow
the user to disable support for JTAG debugging and UART
bootloader. By default, enabling flash encryption and/or se-
cure boot will disable JTAG debugging. On first boot, the
bootloader will burn an eFuse bit to permanently disable
JTAG at the same time it enables the other features. As
a countermeasure to the previous physical attacks [20][22],
Espressif added another countermeasure to ESP32-V3, in or-
der to disable the UART bootloader and disable any eFuse
read commands. To activate this feature, the following com-
mand is executed through the esptool program:

espefuse .py ——port PORT burn_efuse
UART_DOWNLOADDIS 1

Listing 4: Enabling UART-disable

3 EMFI Evaluation

After highlighting the security of ESP32-V3 in the previous
section, we evaluate these countermeasures against EMFIL.
In order to understand clearly the impact of such counter-
measures on ESP32-V3, reproducing the previous attack of
[20] is an important step to understand clearly the coun-
termeasures added in ESP32-V3. Therefore, the evaluation
methodology that we will follow is to first study the EMFI
on ESP32-V1 and then ESP32-V3.

3.1 Setup

In order to obtain a stable setup, ESP32-V1 and ESP32-V3
circuits were soldered on a fabricated PCB with the mini-
mum features for the normal operation as shown in Fig. 8.

0°TA 9X9 @4NJD 2£dS3

0°'TA 9%9 BYNID S3

oo
[=]<]
oo
oo
oo
oo
oo

gooooon
gooooon
gooooon
ooooooon

Figure 9: EMFI setup

We used Scaffold [17], which is an open source hardware
evaluation board, in order to communicate with ESP32 chips.
SiliconToaster [1] was used to inject EM pulses up to 1 kV. A
Tektronix MSO44 200 MHz digital oscilloscope with a max-
imum sampling rate of 6.25 GS/s, was used to measure and
capture the instantaneous power consumption of the DUT.
The Scaffold board is fixed on an XYZ table in order to scan
the chip during the experiment. The overall setup is shown
in Fig. 9 and Fig. 10.

digitalWrite (4, HIGH); //Trigger High

> for (i = 0; i < 500; i++) {}
: digitalWrite (4, LOW); //Trigger Low

Serial . print(i);

if (i !'= 500){
Serial . print (”Faulted”);
} else{

Figure 10: EM probe on ESP32

8 Serial . print ("Ok™);

Listing 5: Glitchable application

Algorithm 1: eFuse attack methodology
Data: N = Nb trials = 50
i=0;
while True do

PrepareFault();

ChipRestart();

CaptureTrace();

ReadeFuse();

i+=1;

if (i == N) then

break;
MoveProbe()

3.2 Attack Methodology

As we mentioned before, in order to understand the new se-
curity enhancements of ESP32-V3, it is relevant to repro-
duce the attack of [20]. Two main fault injection attempts
are performed on ESP32-V1 and ESP32-V3. We start with
a glitchable application for the basic characterization of the
target as shown in List. 5. The main idea of chip characteri-
zation is to reduce the fault parameters research such as pulse
width and find out the sensitive area to EMFI. After that, the
eFuse attack is performed following Algorithm 1. It shows

the overall scenario of the attack for each physical spot of the
scanned area. PrepareFault function includes fault param-
eter preparation such as pulse width and offset. The chip is
faulted during the power up, when the eFuse protection bits
are manipulated (during ChipRestart ()).

3.3 EMFI on ESP32-V1

The initial characterization was done with a simple “loop”
application as shown in List. 5, which is commonly used
as an initial evaluation step. We adjusted the SiliconToaster
settings to inject EM pulses with 450V and the EM probe
scanned all the chip surface using 0.25mm motor step in
order to break the glitchable application. Several physical
spots have been found vulnerable to EM pulses as shown in
Fig. 11.

4.0
3.5

3.0

N N
o [

Y position in (mm)
=
w

1.0

0.5

0.5 1.0 3.0 3.5 4.0

Xositidd in (nfm)
Figure 11: Successful fault map of the glitchable application

The following step is to attack the eFuse memory using
the same methodology. The main idea is to target the power
up process when the eFuse protection bits are manipulated.
Fig. 12 shows the power consumption of ESP32-V1 during
the power up. We scanned the chip using smaller motor step
(0.1mm). For each physical spot, Algorithm 1 was executed.
We found that the first chip activity after the power up is the
interesting shooting zone for the successful faults. Fig. 13
shows the the power consumption of the chip in case of a
successful fault. The fault map that shows the physical spots
of successful faults is presented in Fig. 14. The following
subsection will highlight the same methodology on ESP32-
V3.

12

5

Number of faults

-

60

40

20

-20

-40

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 12: Power up of ESP32-V1

60

40

20

m-luwm

-20

-40

0 1000 2000 3000 4000 5000 6000

Figure 13: Power consumption in case of a successful fault

of ESP32-V1

4.0 30
3.5
25
3.0
2.5
2.0
1.5
1.0
0.5
0.00

.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X position in (mm)

Y position in (mm)

Figure 14: Successful fault map on ESP32-V1

Number of faults

3.4 EMFI on ESP32-V3

In order to verify that ESP32-V3 is not equipped with any
hardware against EMFI, we evaluated the chip using the
glitchable application. We used the same parameters of
ESP32-V1 evaluation such as motor step, pulse voltage, tim-
ing, and pulse width. Fig. 15 shows the success map of
the EMFI effect in case of using the glitchable application.
Therefore, we can conclude that ESP32-V3 has no any hard-
ware countermeasure against EMFL.

4.0 10
3.5

s
3.0
2.5

6
2.0
15
1.0

2
0.5
0.0, 0

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

Number of faults

Y position in (mm)

X position in (mm)

Figure 15: Successful EMFI effect on the glitchable applica-
tion of ESP32-V3

The next step is to dive into the eFuse attack using EMFI.
We followed the same strategy of ESP32-V 1. The first step is
to understand the power up trace and compare it with ESP32-
V1 to see if there is a difference between them. Therefore,
we measured the power consumption of the chip during the
power up as shown in Fig. 16. It is clear from this power trace
that ESP32-V3 contains three additional activities compared
to ESP32-V1 that reflects the fault countermeasures on the
boot ROM level.

We followed the methodology of injecting multiple faults
during the boot ROM countermeasures as shown in Fig. 17.
After scanning the chip several times using random number
of pulses with random offsets during the boot ROM coun-
termeasures, we haven’t obtained successful faults but we
obtained several cases where the chip is crashed because of
the multiple fault pulses. Fig. 18 shows the physical spots
where the chip is crashed.

60

40

20

-20

-40

60

40

20

-20

-40

Y position (mm)

3 blocks

e
T ™ L

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 16: Power up of ESP32-V3

g

"0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

0 1000 2000 3000 4000 5000 6000 7000 8000

Figure 17: Multiple EM pulses on ESP32-V3

40

30

25

20

Number of faults

X position (mm)

Figure 18: Chip crash map

Wb
U

Figure 19: Overall setup

3.5 Discussion

In this section we have shown the difference between V3
and V1 of ESP32. It was clear that the major difference
between them is the boot ROM countermeasures that con-
firms V3 is patched against FI by adding verification coun-
termeasures during the power up. However, V3 doesn’t resist
EMFI which was proven by breaking the glitchable applica-
tion. Moreover, multiple EMFI pulses haven’t yet succeeded
against V3.

4 Breaking AES Core by SCAs

In this section, we present a detailed SC analysis of the hard-
ware AES accelerator deployed in ESP32-V3. For the sake
of clarity, the following techniques will be used in order to
evaluate the AES core:

Correlation Power Analysis (CPA) [6]: A type of SCAs
that has been demonstrated to be a realistic threat to many
critical embedded systems. It aims at finding correlation be-
tween an estimated leakage model (Hamming weight (HW)
or Hamming Distance (HD)) and the actual power output
of a device. The attack success depends on the accuracy
of the leakage model (such as Hamming Weight (HW) or
Hamming Distance (HD)) which is mathematically corre-

lated with the actual power measurements. The correlation
coefficient p between the actual power consumption and the
predicted model can be calculated using Eq. 2. X represents
a set of real power consumption values while Y is a set of the
predicted leakage model values. The Cov is the covariance
operation while Var is the variance operation.

p— Cov(X,Y))
VVar(X)\/Var(Y)

Leakage detection: A methodology to identify leakage
moments which contain sensitive information. It reduces the
computation complexity of security evaluation and improves
the efficiency of the SCAs. Several methods have been used
to identify the amount of leakage such as T-test [16] and
NICV [2]. In this paper, we chose to use the signal-to-noise
ratio (SNR) to detect these points of interest. The formula of
SNR is given in Eq. 3. It gives the ratio between the deter-
ministic data-dependent leakage and the remaining noise. X
represents the random variable associated to the real power
traces, Y is the label which is determined, E is the expecta-
tion, and Var is the variance of a random variable.

Var(E(X|Y))

T EarxIm)

3)

4.1 Setup

We used the same PCB shown in Fig. 8 in order to be easily
plugged into Scaffold [17]. Fig. 19 shows the overall setup
which contains the following components:

¢ A Scaffold board with the device under test (DUT).
¢ A PC to communicate with the Scaffold-based DUT.

¢ A Tektronix MSO54 1 GHz digital oscilloscope with a
maximum sampling rate of 6.25 GS/s, used to measure
and capture the instantaneous power consumption of the
DUT during the execution of the AES.

4.2 Calling AES accelerator

In order to evaluate the AES accelerator, a custom firmware
that triggers an AES encryption using a controlled key and
plaintext has been developed (see List. 6). It has been
designed and compiled using ESP-IDF [10]. To call the
AES accelerator, we configured the following options in the
toolchain build settings:

* Enabling the hardware AES Accelerator was selected
from Component-config — mbedTLS.

o Setting the frequency to 160 MHz by setting
Component-config — ESP32-specific — CPU
frequency to 160 MHz.

while (1) {
if (Serial.available() > 0) {
Serial .readBytes (incomingBytes ,
delay (100);
for (int i =
key[i] =

48);

0; 1< 32; i++) {
incomingBytes[i];

for (int i = 32; i < 48; i++) {
plaintext[i — 32] = incomingBytes[i];

delay (100);
esp_aes_context aes;
esp-aes_init(&aes);
esp-aes_setkey (&aes,
digitalWrite (4, HIGH) ;
// Start AES-256
esp-aes_crypt_ecb(&aes, ESP_AES_ENCRYPT,
plaintext , ciphered_data);
digitalWrite (4, LOW); // Trigger = 0
esp-aes_free(&aes);
delay (100);
for (int i =
char st[3];
sprintf (st, "%02x”,
Serial . print(str);
}
}

key, 256);
// Trigger = 1

0; i < 16; i++) {

(int)ciphered_data[i]);

}
Listing 6: Calling AES-256

4.3 Side-Channel Analysis

In order to evaluate the AES accelerator called in List. 6
against CPA attacks, 400K traces were collected during the
execution of the AES under the variation of the plaintext P
and the key K as shown in Fig. 20. To improve the statistical
analysis, power traces were aligned using cross-correlation,
as shown in Fig. 21(a).

60

40

20

-20

-40

-60

10000 15000 20000 25000 30000

Sample Number

0 5000

Figure 20: Power traces during the execution of List. 6 (50
traces without alignment)

4.4 Locating the AES encryption

According to Espressif’s specification [13], the AES encryp-
tion takes 15 cycles for 256 bits key. Running at 160MHz,
we hence expect the encryption time to be close to 93ns.
Sampling to the maximal frequency of the used oscilloscope
scope (6.25GS/s) would hence imply that slightly more than
585 points are measured during the running time of the
whole AES.

To measure the amount of data leakage in the traces, we
computed the signal-to-noise ratio (SNR), whose computa-
tion is given in Eq. 3. We calculated the SNR for the val-
ues of P, K, the ciphertext C, and S-box output, in order to
locate the AES precisely before performing the CPA attack.
Fig. 21(a) shows a sample of aligned traces, Fig. 21(b) shows
the SNR for K (in blue), P (in red) and C (in yellow), and
Fig. 21(c) presents the SNR of the S-boxes related to the first
two rounds.

We can conclude that the 32 bytes of K are manipulated
at the beginning, P bytes are then loaded and finally, C bytes
are stored. This scenario is matched with the code shown in
List. 7 [9]. After locating the leakage of the first two rounds
and the leakage of C, the AES can be located easily: it starts
from the leakage of the first two rounds, and ends with the
leakage of C (the yellow zone on the trace).

int esp-aes_crypt_ecb(esp-aes_context #ctx, int
mode, const unsigned char input[16], unsigned
char output[16])

esp-aes_acquire_hardware () ;

// Load Key bytes
esp-aes_setkey_hardware (ctx , mode) ;

/!l Load P and execute the AES encryption
ets_aes_crypt(input, output);
esp-aes_release_hardware () ;

return O;

Listing 7: Execution of the hardware AES

4.5 AES Attack

After identifying the AES leakage, we tested our setup in an
attack context. 70K traces were acquired with a fixed key K
(supposed unknown) and variable plaintexts P, as shown in
Fig. 22 using better acquisition vertical resolution. AES-256
relies on a 256-bits key, and hence requires the knowledge
of two round keys. Therefore, CPA was performed on the
first two rounds. The leakage models for first round round
and second round round; are defined in Eq. 4 and Eq. 5, re-
spectively. The rank of the correct key is used as a success
metric for the attack. It is computed in function of the num-
ber of traces. After performing the success rate of all the
keys using the previous leakage models, all the 32 bytes of
the AES-256 key are recovered within 60K traces as shown
in Fig. 23.

60
40
20
0
-20
—-40
—-60
0 5000 10000 15000 20000
(a) 50 traces after alignment
0.3 —— SNRIP]
—— SNRIK]
0.4/ SNRIC]
0.3
0.2
01 f \
0.0 it - -
0 5000 10000 15000 20000
(b) SNR of P, K, and C
0.0035: —— SNR[Sbox round 0]
—— SNR[Sbox round 1]
0.0030-
0.0025-
0.0020-
0.0015
0.0010
0.0005-
0 5000 10000 15000 20000

(c) SNR of the first and second rounds

Figure 21: AES leakage detection

Model,gynq, i) = HW (Sbox[P[i] © guess]) %)

Model,yyna, [i) = HW (Sbox[State, [i] @ guess]) © Sbox[P[i| ® K[i]])
®)

where HW is the Hamming Weight.

10

100

50

=50

-100

1000 1500 2000 2500

Sample Number

0 500

Figure 22: Zoom on the AES execution

32 bytes Key ranks
=
o
=)

30 40 60 70

NB traces x1000

20
Figure 23: 32 bytes Key ranks

4.6 Discussion

In this section, we presented a detailed SCA on the AES ac-
celerator of ESP32-V3. It shows that the hardware AES core
integrated in ESP32-V3 is not resistant against SC attacks.
An attacker can extract the whole AES-256 key using only
60K power traces.

5 Breaking Firmware Encryption of ESP32-
V3 by SCAs

In this section, we present a detailed side-channel analysis
of the flash encryption mechanism deployed in ESP32-V3.
This is achieved by targeting the power up of ESP32-V3 in
order to locate the firmware decryption.

5.1 Power Up During Flash Encryption

After burning the encryption key, the flash encryption feature
was activated as shown in List. 3. We looked at the power
consumption of the chip during the power up. In addition,

Flash communication 1 Flash communication 2

L

Figure 24: Power up during flash encryption

Algorithm 2: Traces measurement sequence
Data: N = NB traces = 50000
i=0;
while True do
FlashData = Random(32);
EraseFlash();
WriteFlash(FlashData,address = 0x1000);
ChipRestart();
CaptureTrace();
i+=1;
if (i == N) then
L break;

we monitored the SPI clock signal of the external flash to
find where flash data are manipulated as shown in Fig. 24.

According to the reference manual [13], data are loaded
from the flash as 32 bytes block which are decrypted using
the same key in case of activating the flash encryption. From
Fig. 24, there are two zones where the flash data is manip-
ulated (flash communication 1 and flash communication 2).
Therefore, the firmware decryption should be located in zone
A or zone B.

During the power up, the ROM bootloader loads the
firmware bootloader which is stored at address 0x1000 as
shown in [14]. Hence, the first 32 bytes stored at 0x1000
should be manipulated during flash communication 1 or
flash communication 2. To locate the manipulation of the
firmware bootloader data, we collected traces during the two
zones under the scenario shown in Algorithm 2. After col-
lecting 50K traces, we performed the SNR of the first 32
bytes stored at 0x1000, on the two zones (flash communica-
tion 1 and flash communication 2) to identify which zone is
relevant.

Fig. 25 shows the SNR of the first 32 bytes stored at ad-
dress 0x1000 on flash communication 1 zone. We can ob-
serve that the SNR is very low, and that no point of interest
can be identified in this zone. In addition, by spying on the
SPI interface during this period, we found that the flash ID

11

0 20000

40000 60000 80000 100000

Time samples

(a) Power trace on zone A

0.017
0.016

"“P ”“ M lﬁ MM 4‘\|‘|/1W il wwi\ b ’*Wn* i
\ ! Hi‘ W “ WW M b \‘ “4” WM Mu 1 ’

0 il il ikl

\‘ “ i “‘ H““‘ -i“‘ “i"“ "““H\‘ Hf“

0.015
0.014
0.013

0.012

0.011 o
0.010 ! ‘

0 20000 40000 60000

Time samples
(b) SNR of the first 32 bytes on zone A

80000 100000

Figure 25: Leakage detection during zone A

is communicated during this time. However, the SNR on the
second zone (flash communication 2) is very high as shown
in Fig. 26 and it highlights 32 different leakages related to
the first 32 bytes stored at address 0x1000. Therefore, the
AES decryption should be located around Zone B (after the
manipulation of the bootloader data).

5.2 AES Encryption

After being more confident regarding the zone of the AES
decryption, we captured 100K traces with better vertical res-
olution around zone B after the flash read. As we know the
eFuse BLK1 and the tweak value at address 0x1000, we per-
formed the SNR on the Ciphertext (C) of the first 16 bytes
(CO) and the last 16 bytes (C1). In Fig. 27 that shows the
SNR of CO and C1, there are some peaks resulting from the
leakage of CO and C1 bytes. The leakage of C1 bytes can
tell that the AES-256 decryption of the last 16 bytes is exe-
cuted before the leakage of the first C1 bytes (before the time
sample 1750).

Because of the flash limitation of writing and erasing, we
changed the flash and collected another 100K traces around
the zone where we suspect the AES-256 decryption is per-
formed. We observed the CPA results by monitoring the

100

50

=50

-100

0 25000 50000 75000 100000 125000 150000 175000 200000
Time samples

(a) Power trace during zone B

25
20
15

10

o W"‘ j W“WM M ALl .

0 25000 50000 75000 100000 125000 150000 175000 200000
Time samples

(b) SNR of the first 32 bytes during zone B

wv

Figure 26: Leakage detection during zone B

correlation scores of all the keys including the correct key.
Fig. 28 shows an example of attacking Key[3] by CPA. It
shows the correlation scores of all the estimated keys includ-
ing the correct key[3] in green. It is clear that the correct key
has maximum peaks during the yellow zones.

5.3 Flash Emulator

The initial ESP32 testing circuit had a GD25Q32C inte-
grated circuit as the external flash memory. According to the
datasheet, this circuit guarantees 100K program/erase cycles.
Going beyond is not recommended, and we indeed got flash
memory corruption quickly after this limit was reached. This
limits the number of traces with different flash memory con-
tent, that can be acquired for a SC attack, and replacing the
circuit may hardly be possible as a different circuit may have
slightly different timing or power behavior.

To leverage this flash write limit for the SC traces acquisi-
tions, we decided to replace the external flash memory device
with a flash memory emulation. During the SC acquisition,
the ESP32-V3 chip starts by sending to the flash memory
the Release from Deep Power-Down or High Performance
Mode and Read Device ID command (0xab000000). This

12

100

50

-50 Lkt ddedibid

~100 MUY

0 1000 2000 3000

Time samples

4000 5000

(a) A sample trace after Zone B

0.018
0.016
0.014
0.012
0.010
0.008
0.006
0.004
0.002

0 1000 2000 3000

Time samples
(b) SNR of CO bytes after zone B

4000

5000

0.0055

0.0050

0.0045

0.0040

0.0035

A M '
L i Hqt"\h“h),“\.”.”

\‘ H, e Hﬁ.“

0.0030 | ‘« i ‘ ’
0.0025 ”“Q,y ”w Pff~ﬂ 4“"

0.0020

0 1000 2000 3000

Time samples
(c) SNR of C1 bytes after zone B

4000 5000

Figure 27: SNR on C0 and Cl1

command is acknowledged by the circuit with a 0x15 byte
response.

The MCU then sends the Read Data Bytes command to
read the content of the memory at address 0x1000 (com-
mand bytes: 0x03001000). The flash memory responds by
sending the 32 bytes of data stored at the requested address.
The MCU decrypts this block as soon as received. The MCU
then read more blocks from the flash memory, which are not
relevant for the attack.

That is, the communication between the MCU and the

10-

0 w IH

-10

MMMWWMWMM

750 1000 1250 1500 1750 2000
Time samples

-20

(a) A sample trace after Zone B

0.015
—— correct key[3]
0.010
0.005
0.000

—0.005

-0.010

0 250 500 750 1000 1250 1500 1750 2000

Time samples

(b) Correlation of the correct third key byte compared to other estimations

Figure 28: Correlation score of the correct K[3]

flash memory can be predicted before booting, and it is
easy to write a small flash emulator which will return a pre-
programmed response. We implemented this directly into
the Scaffold board FPGA by modifying the original VHDL
architecture to add a custom SPI slave module. This is de-
signed as a simple shift register synchronized to the SPI mas-
ter clock and chip select signals. Flash content data is loaded
into the shift register through Scaffold API, which is faster
than erasing and programming a real Flash device, thus al-
lowing capturing traces at faster rate.

Furthermore, it happens that our SPI flash emulation has
smaller response data jitter than the initial GD25Q32C flash
memory. We found received data blocks are decrypted by
the ESP32-V3 right after the last SPI bit is transmitted, and
as a result, the SPI communication bus has an important in-
fluence on the power consumption of the ESP32-V3. Reduc-
ing the communication jitter by replacing the Flash memory
with our Flash emulation reduced significantly the number
of traces required to recover the flash encryption key with
the SCA.

13

100

50

=50

-100

0 2000 4000 6000

Time samples

8000 10000 12000

(a) Sample of non aligned 100 traces

100

50

-50

-100

0 200 400 600 800

Time samples

1000 1200 1400

(b) Sample of 100 traces after alignment

Figure 29: Power measurements in case of the flash emulator

5.4 Attacking Firmware Encryption Using
Flash Emulator

Besides the flash encryption, we activated all the security
features of the chip, which are: secure boot (V1 and V2),
flash encryption, and UART-disable. The common point be-
tween all the cases is that the bootloader which is stored at
address 0x1000 is manipulated at the beginning during the
power up. Regarding the UART-disable countermeasure, it
doesn’t have any impact since the device will read and de-
crypt the external flash memory whatever the UART disable
setting is. We registered 2M traces during the power up.
Fig. 29 shows the power traces in case of not using the ex-
ternal flash and replacing it with the Scaffold FPGA shift
register. We concentrated on the grey zone where the AES-
256 decryption is performed. In order to improve the SCA
efficiency, traces were aligned by cross-correlation as shown
in Fig. 29.

We tried several leakage models for attacking the first and
the second round of the AES-256 by CPA. We found that us-
ing the same leakage models as in the previous section (Eq. 4
and Eq. 5), has given the best key ranks compared to other
leakage models. Our success metric (key rank) indicates that
with 300K traces, all the key bytes except k[0], are recov-

250

200

150

100

50

32 bytes key ranks

0.00 0.25 0.50 0.75 1.00
NB traces x1e6

1.25 150 1.75 2.00

Figure 30: 32 bytes key ranks

ered as shown in Fig. 30. K[0] can be recovered either using
more side-channel traces or through a brute-force. Note that
the side-channel literature have proposed so-called Key Enu-
meration Algorithm methods [24] to efficiently solve such
occurrences. These methods might be used to even further
reduce the number of required traces. After attacking the
decryption key, it should be XORed with the tweak value
generated from the offset 0x1000 (which is a known value),
in order to obtain the eFuses BLK1. We can see that the
power traces shown in Fig. 29 are different from the case of
the hardware AES accelerator shown in Fig. 22. In addition,
more traces were needed for the firmware encryption case in
order to attack all the keys. As a result, we can estimate that
the two hardware solutions are different.

5.5 Discussion

This section detailed the SCA of the flash encryption mecha-
nism deployed in ESP32-V3. It proves that this security fea-
ture is not protected against SCAs. An attacker can dump the
eFuse BLK1 which is responsible for flash encryption after
collecting 300K traces during the power up. As a result, all
the external flash content (firmware including the IP and the
sensitive user data) can be decrypted. Hence, firmwares of
ESP32-V3 protected by the encryption mechanism can fall
into the hands of attackers or competitors.

6 Practical example

Blockstream Jade [4] is a hardware wallet dedicated to se-
curing cryptocurrencies and its transactions. It supports Bit-
coin and its leading sidechains. This hardware wallet is an
open-source and open-hardware project [5]. Fig. 31 and
Fig. 32 show the Jade wallet before and after opening its
plastic package, respectively. The wallet has ESP32-V3 (in
red) as the main microcontroller and an external flash mem-
ory (in yellow) to store the encrypted firmware. It doesn’t

14

Figure 31: Jade wallet be-
fore opening the package

Figure 32: Jade wallet after
opening the package

7010h: 27 E6 F3 D4 43 F1 95 38 79 CF E3 4C
7020h: 38 7C 28 AC 1D 9E CE D5 EB F2 9A 3F
7030h: 6C 7E 30 FF B9 CA 09 1C BA EE D6 BE
7040h: 20 OC 87 BC C1 E2 F7 66 BF F3 82 E9 BF BF 89 61
7050h: DE 56 OE C4 D1 16 E2 71 9A AA BE D7 29 AS E5 2B
7060h: C8 CO D3 AF 50 4E E1 21 6E 7E 21 F2 EB F5 DB 91
7070h: 86 AE A0 DO 86 D4 D3 C4 4C 3A B7 D1 70 5E 69 82
7080h: 3A DB 1B A7 64 7D 81 EA 15 12 E3 CO B2 2F 38 BO
7090h: 17 7E 61 FB 99 70 99 4E 6D B2 61 32 8E EF CF 93
70A0h: 50 43 44 FE 2A B4 27 65 F5 EA F1 C9 A2 8F 05 3D
70BOh: E4 Cé 8E A1 B4 81 EB 7F DB EA (8 45 B3 1D (8 A8
70C0h: 4E 3D E7 BE 61 9E 30 1E 13 CD 62 2A F2 94 85 2F

D9 4B BB &F
95 OF CE E8
EA BD 46 8B

'200CA8yIELUK: 0
8| (-~.zi08as7-.1e
1~0§E. . ° I0Z&%F ¢

CHeAd:f. 0.6 0%a
BV, AN, 8q32%x)¥a+
EAG PNE!n~!0880"
i@ BTOOAL: -Apri,
:0.5dy.&..3A/8"°
.~al™p™hm2a2Zi1~
PCDp* " " edéfEC. .=
agZ; . e.08EE* .E™
N=¢¥%az0..Ib*o"../

(a) Encrypted firmware

7010h: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...uvvvvvwnnnnss
7020h: AA 50 01 00 00 DO 00 00 00 20 00 Q0 6F 74 61 64 3P...P... ..otad
7030h: 61 74 €1 00 00 00 00 00 00 00 00 00 O1
7040h: AA 50 01 01 00 FO 00 00 00 10 00 Q0 70
7050h: 69 6E €9 74 00 00 00 00 00 00 00 00 O1
7060h: AA 50 00 10 00 00 01 00 00 70 17 00 &F
7070h: 30 00 0O 00 0O 00 00 00 00 00 0O 0O OO0
7080h: AA 50 00 11 00 00 19 00 00 70 17 00 &F
7090h: 31 00 00 00 00 00 00 00 00 00 0O 0O OO0
70ACh: AA 50 01 04 00 70 30 00 00 10 00 00 &E
70BCh: 6B &5 79 00 00 00 00 00 00 00 0O 0D O1
70C0h: | EB EB FF FF|FF FF FF FF FF FF FF FF|FF

(b) Decrypted firmware

Figure 33: Jade’s firmware before and after decryption

store the user PIN in the external flash. The PIN verification
is performed remotely on the Blockstream’s server. How-
ever, the external flash contains the user’s private and public
keys to communicate with this server. Therefore, decrypting
the encrypted firmware stored in the external flash leads to
clone the wallet and raises the risk of injecting a backdoor to
perform transactions to substituted addresses, which can be
called as an evil maid attack.

As a practical application to the proposed SCA on the
firmware encryption, we applied this attack on the case of
Jade. First, we dumped the encrypted firmware from the ex-
ternal flash using Scaffold. Then, we removed the ESP32-V3
from the PCB of Jade and soldered it on the PCB shown in
Fig. 8. We collected 300K traces for attacking all the keys
except K[0] which was brute-forced. Finally, we succeeded
to decrypt the Jade’s encrypted firmware, which is stored in

the external flash. Fig. 33 shows the firmware stored in the
external flash before and after the decryption using the at-
tacked key.

7 Acknowledgment

The authors would like to thank Espressif for their fast and
positive reply regarding the two attacks highlighted in this
paper (hardware AES accelerator and firmware encryption).
We reported the two attacks to them in October 2021. They
awarded the authors two bounties for the two attacks.

8 Conclusion

In this paper, we presented a deep hardware security evalu-
ation for ESP32-V3. First, we used EMFI in order to attack
the firmware encryption key stored in the eFuses. We dis-
covered that this chip version is patched against FI attacks
by adding verification blocks on the bootloader level. There-
fore, we changed the attack path from FI to SC. We evaluated
the hardware AES accelerator of the chip against SCAs. Af-
ter using a high end oscilloscope with 6.25GS/s and careful
alignment, it was broken by collecting only 60K traces. As
a next step, we showed another SC analysis for the firmware
decryption mechanism. After locating this process during
the power up and using a flash emulator, we demonstrated
that the full 256-bit AES firmware encryption key, which is
stored in the eFuses, can be recovered by SCAs using 300K
power measurements. Finally, we applied this attack practi-
cally on Jade hardware wallet [4].

References

[1] ABDELLATIF, K. M., AND HERIVEAUX, O. Silicon-
toaster: a cheap and programmable em injector for ex-
tracting secrets. 35-40.

[2] BHASIN, S., DANGER, J.-L., GUILLEY, S., AND

NAJM, Z. Nicv: normalized inter-class variance for de-

tection of side-channel leakage. In 2014 International

Symposium on Electromagnetic Compatibility, Tokyo

(2014), IEEE, pp. 310-313.

[3] BiHAM, E., AND SHAMIR, A. Differential fault analy-

sis of secret key cryptosystems. In Annual international

cryptology conference (1997), Springer, pp. 513-525.

BLOCKSTREAM. Jade wallet.

//blockstream. com/jade/.

(4] https:

[5] BLOCKSTREAM. OPen Source of Jade wallet. https:

//github.com/Blockstream/Jade.

15

[6] BRIER, E., CLAVIER, C., AND OLIVIER, F. Corre-
lation power analysis with a leakage model. In Inter-
national workshop on cryptographic hardware and em-
bedded systems (2004), Springer, pp. 16-29.

[7] CHARI, S., RAO, J. R., AND ROHATGI, P. Template
Attacks. In International Workshop on Cryptographic
Hardware and Embedded Systems (2002), Springer,

pp. 13-28.

[8] DEHBAOUI, A., DUTERTRE, J.-M., ROBISSON, B.,
AND TRIA, A. Electromagnetic Transient Faults Injec-
tion on a Hardware and a Software Implementations of
AES. In 2012 Workshop on Fault Diagnosis and Toler-

ance in Cryptography (2012), IEEE, pp. 7-15.

[9] ESPRESSIF. AES.c. https://github.com/pycom/
esp-idf-2.0/blob/master/components/esp32/

hwcrypto/aes.c.

EsSPRESSIF. ESP-IDF.
espressif/esp-idf.

[10] https://github.com/

[11] ESPRESSIF. ESP32 Architecture.

net/#Features/.

http://esp32.

[12] ESPRESSIF. ESP32 Fault Injection Vulnerability - Im-
pact Analysis. https://www.espressif.com/en/

news/ESP32_FIA_Analysis/.

[13] ESPRESSIF. ESP32 Technical Reference Manual.
https://www.espressif.com/sites/default/
files/documentation/esp32_technical_

reference_manual_en.pdf.

[14] ESPRESSIF. Flash Encryption. https://docs.
espressif.com/projects/esp-idf/en/latest/

esp32/security/flash-encryption.html.

[15] EsPTOOL. Flash Encryption. https://github.com/
espressif/esptool/blob/master/espsecure.

py/.

[16] GILBERT GOODWILL, B. J., JAFFE, J., ROHATGI, P.,
ET AL. A testing methodology for side-channel resis-
tance validation. In NIST non-invasive attack testing

workshop (2011), vol. 7, pp. 115-136.

[17] HERIVEAUX, O. Scaffold. https://github.com/

Ledger-Donjon/scaffold?files=1/.

[18] KOCHER, P., JAFFE, J., AND JUN, B. Differential
power analysis. In Annual international cryptology

conference (1999), Springer, pp. 388-397.

[19] KOCHER, P. C. Timing attacks on implementations of
diffie-hellman, rsa, dss, and other systems. In Annual
International Cryptology Conference (1996), Springer,

pp. 104-113.

[20] LIMITEDRESULTS. Pwn the ESP32 Forever: Flash
Encryption and Sec. Boot Keys Extraction. https:
//limitedresults.com/2019/11/.

[21] O’FLYNN, C. Fault Injection using Crowbars on Em-
bedded Systems. IACR Cryptol. ePrint Arch. 2016

(2016), 810.

[22] RAELIZE. Pwn the ESP32 Forever: Flash
Encryption and Sec. Boot Keys Extrac-
tion. https://raelize.com/blog/

espressif-systems-esp32-bypassing-sb-using-emfi/.

[23] SKOROBOGATOV, S. P., AND ANDERSON, R. J. Op-
tical Fault Induction Attacks. In International work-
shop on cryptographic hardware and embedded sys-
tems (2002), Springer, pp. 2—12.

[24] VEYRAT-CHARVILLON, N., GERARD, B., RE-
NAULD, M., AND STANDAERT, F.-X. An opti-
mal key enumeration algorithm and its application
to side-channel attacks. In International Conference
on Selected Areas in Cryptography (2012), Springer,
pp. 390-406.

16

