
Portunus: Re-imagining Access Control in Distributed Systems

Watson Ladd
Akamai Technologies ∗

Marloes Venema
University of Wuppertal
and Radboud University

Tanya Verma
Cloudflare

Abstract

TLS termination, which is essential to network and security
infrastructure providers, is an extremely latency sensitive
operation that benefits from access to sensitive key material
close to the edge. However, increasing regulatory concerns
prompt customers to demand sophisticated controls on where
their keys may be accessed. While traditional access-control
solutions rely on a highly available centralized process to
enforce access, the round-trip latency and decreased fault
tolerance make this approach unappealing. Furthermore, the
desired level of customer control is at odds with customizing
the distribution process for each key.

To solve this dilemma, we have designed and implemented
Portunus, a cryptographic storage and access control system
built using a variant of public-key cryptography called attribute-
based encryption (ABE). Using Portunus, TLS keys are pro-
tected using ABE under a policy chosen by the customer. Each
server is issued unique ABE keys based on its attributes, allow-
ing it to decrypt only the TLS keys for which it satisfies the
policy. Thus, the encrypted keys can be stored at the edge, with
access control enforced passively through ABE. If a server
receives a TLS connection but is not authorized to decrypt the
necessary TLS key, the request is forwarded directly to the near-
est authorized server, further avoiding the need for a centralized
coordinator. In comparison, a trivial instantiation of this system
using standard public-key cryptography might wrap each TLS
key with the key of every authorized data center. This strategy,
however, multiplies the storage overhead by the number of data
centers. We have deployed Portunus on Cloudflare’s global
network of over 400 data centers. Our measurements indicate
that we can handle millions of requests per second globally,
making it one of the largest deployments of ABE.

1 Introduction

Globally distributed infrastructure providers, particularly
content delivery networks (CDNs), perform TLS termination
on behalf of their clients in order to improve performance and

protect client web properties against attacks. To handle this
TLS termination, providers must have a method of securing
their clients’ private signing keys, as well as distributing keys
to the edge servers that handle user traffic in order to keep
handshake latency low.

Infrastructure providers that operate at scale, however,
operate a network of data centers that span a wide range of
countries, hardware, localized legal and compliance domains,
and degrees of control over data center environment. What
one customer needs from a server to trust it with their key does
not match what another needs. Centralized methods of key
management or access control [37] force an extra round-trip
to complete requests, creating high latency overheads and
reducing reliability. Using standard public-key encryption
produces a key management problem as well as forces every
customer key to be encrypted many times, expanding the
volume of data to handle. It also introduces operational issues
as keys must be re-encrypted as servers are added.

Because storage space in a global key store is expensive,
we looked for a more direct way to solve these access-control
issues through cryptography, without imposing the overheads
of a centralized service or the space expansion and key manage-
ment and operational issues of a naive cryptographic approach.

Cloudflare’s first attempt at a solution leveraged a combina-
tion of identity-based encryption [11,46] and broadcast encryp-
tion [23] to storing customer private keys [47]. Unfortunately,
the tailor-made cryptographic protection mechanism we built
created barriers: it had an inflexible set of applicable access
restrictions, consisting of an allowed or excluded list of regions.
As new data centers were added, they were not able to decrypt
old keys because of this inflexibility and, thus, did not improve
the performance of the system as much as expected. In addition,
we learned that changing the assignment of attributes incurred
a high management overhead, which limited our ability to dy-
namically react to varying customer and compliance needs.

Spurred by these restrictions, we overhauled much of the
internals of this solution and created Portunus. Underlying
Portunus is ciphertext-policy attribute-based encryption
(CP-ABE) [9], which can implement fine-grained access

1

control on a cryptographic level. ABE was first proposed by
Sahai and Waters [42] as a type of public-key encryption in
which the keys and ciphertexts are associated with attributes
instead of individual users. Concretely, CP-ABE links the
secret keys to the attribute set of the key holders, and the
ciphertexts to access policies that govern which key holders
can decrypt them. Those policies are determined by the
encryptor, who can therefore manage access to their data in
the spirit of attribute-based access control (ABAC) [34].

We have adopted Portunus at scale. Using Portunus, TLS
keys are encrypted using an X25519 key that serves as a data
encryption key, which we call the policy key. This policy key
is further encrypted using ABE under a policy chosen by the
customer. Both the encrypted customer keys and policy keys
are stored in Quicksilver. Each edge machine has attributes
determined by a database mapping its core cryptographic
identity to a set of attributes, e.g., country and region. Edge
machines are issued unique ABE secret keys by a central
certificate authority, allowing them to decrypt only the policy
keys that they are authorized to access based on their attributes.
Thus, both the encrypted customer keys and policy keys can
be stored at the edge, with access control enforced passively
through ABE. If a server receives a TLS connection but is
not authorized to decrypt the necessary TLS key, the request
is forwarded directly to the nearest authorized server, further
avoiding the need for a centralized coordinator. As new
machines are added, they automatically have access to the
keys to which they are permitted by the policy.

While decryption in ABE is more computationally expen-
sive than its equivalent in traditional public key cryptography,
we are able to significantly mitigate its impact through session
resumption and caching decrypted policy keys. Another
ancillary benefit to using ABE is that each machine’s attribute
secret key is unique, reducing the risk of immediate global
compromise that arises from sharing the same decryption key
between every machine.

Adopting CP-ABE as a storage layer solution means that
all nodes share the same data, simplifying the distribution
process. It also makes it easy for newly added nodes to take
up the burden of satisfying requests. Furthermore there are
no centralized components whose failure would lead to breaks
in the availability of the system. Cryptographically enforced
access control is inherently less coupled and more fault
tolerant than a centralized system would be.

Our core contributions are:

1. Portunus, a real-world deployment of an ABE-based
access control system for key management. Al-
though several works have shown interest in using
ABE [21, 22, 29, 43], few have resulted in large-scale
real-world deployments.

2. A discussion of the practical costs and benefits of such
a scheme, concluding that it is effective in solving
distributed access control

3. Lessons learned for future use of CP-ABE by engineers
and for future ABE researchers about how ABE works
in the real world

2 Requirements

In the design process for Portunus, we informally identified a
series of requirements arising from customer needs as well as
internal engineering demands and the experience of operating
the historic system, Geo Key Manager.

• Low computational overhead: As TLS handshakes can
happen at extremely high volumes for legitimate reasons,
it is essential that we not add significant computational
overhead to the process of responding. Historically,
such floods have caused significant incidents where data
centers were unable to process handshakes fast enough
due to unscalable networking logic.

• Rotation capable: It should be easy to rotate keys used
in the system. A rotation ensures that newly-uploaded
certificate keys are not decryptable by machines that have
not been updated with new key material.

• Recovery from strong attackers: We assume an attacker
that is capable of compromising multiple edge machines
and reading the database of certificates. We would like
this attacker to be unable to continue impersonating sites
after their access is removed, unless the site’s certificate
was decryptable on the machines they compromised. We
also want subsequent certificates not to be decryptable
by the attacker after key rotation.

• Flexible attributes: Historically, the set of attributes cus-
tomers want has changed from what was envisioned, such
as when a new compliance standard is introduced. Ac-
commodating these changes in the prior system, Geo Key
Manager, took considerable work. Furthermore, Geo Key
Manager could not quickly respond to needs to remove
TLS termination from certain machines or data centers.

• Flexible policies: From experience, we know that
customers and internal services would need a wide range
of policies. Even if the eventual product did not expose
the full expressiveness, the future developments would
be difficult to anticipate.

• Limited storage: Quicksilver, Cloudflare’s configuration
management system [39], has limited space due to its
fast replication strategy that duplicates all data across all
machines globally. To preserve fault tolerance and the
ability to serve requests quickly from all machines, our
system needs to be cognizant of its storage overhead.

• Uniformity of data: Quicksilver depends on a homo-
geneous tree method of replication: data centers around

2

the world are organized into a tree and writes at the root
are replicated downward. As a response to server failure,
the tree is reorganized: such reorganization requires all
nodes in the tree to be accessing the new data. This means
that each edge machine has the same view of the entire
Quicksilver dataset.

3 Cryptographic Building Blocks

3.1 Policy Specification Language
In Portunus, the set of attributes assigned to data centers is
an injective map from labels to values, both represented as
strings, e.g., country: Japan. The policies that are enforced
on the wrapped private keys are non-monotone Boolean
formulas (consisting of AND, OR and NOT operators) over
statements that demand that a label has a value, or that it
does not have a certain value, e.g., country: Japan or
country: not Japan. Table 1 shows some example policies
and corresponding semantics.

For the negations (i.e., NOT operators), we put the NOT
operator on the attribute value rather than on the entire
attribute. This means that, to satisfy a negation, e.g., country:
not Japan, the attribute set must have an attribute with the
same label, i.e., country, and it must differ from the value i.e.,
Japan. In contrast, many schemes put the NOT on the entire
attribute, e.g., not country: Japan [36]. In these schemes,
the attribute set satisfies the negation if it does not contain
the attribute country: Japan. However, the problem with
this type of negation is that attribute sets that do not have any
attributes with this label trivially satisfy this negation. This
is especially problematic when new labels are added. Then,
all previously issued keys automatically satisfy the negation,
regardless of whether they may have the negated value or not.

To express and represent policies, we implement a simple
language that parses strings from the API and converts it into
the structures that are consumed by the ABE scheme 3.2.7.
This means the front end of our policy language is composed
of Boolean expressions as strings, such as country: JP
or (not region: EU), while the back end is a monotonic
Boolean circuit consisting of wires and gates.

Monotonic Boolean circuits only include AND and OR
gates. In order to handle NOT gates, we assign positive or
negative values to the wires. Every NOT gate can be placed
directly on a wire because of De Morgan’s Law, which allows
the conversion of a formula like not (X and Y) into not X
or not Y, and similarly for disjunction.

3.2 Attribute-Based Encryption
Attribute-based encryption (ABE) is a variant of public-key
cryptography in which the key pairs are associated with at-
tributes rather than individual users [42]. Unlike traditional
public-key encryption, ABE allows users to enforce a more

fine-grained access control to the encrypted data [2, 9, 25, 38,
52]. There are two variants of ABE: key-policy ABE (KP-
ABE) [25], and ciphertext-policy ABE (CP-ABE) [9].

3.2.1 Key-Policy ABE (KP-ABE)

In KP-ABE, users’ secret keys are generated based on an
access policy that defines the privileges scope of the concerned
user, and data are encrypted over a set of attributes. For
example, consider a military setting. A confidential document
about nukes is encrypted under the attributes type: nuclear,
clearance: top-secret. Then a user with a key defined
over the access policy (type: nuclear or type: laser)
and clearance: top-secret can decrypt the document,
but a user with a key clearance: top-secret cannot.

3.2.2 Ciphertext-Policy ABE (CP-ABE)

In CP-ABE, encrypting users specify access policies that
determine who is allowed to decrypt the data. Users’ secret
keys are generated over a set of attributes. For example,
consider a hospital setting in which a doctor has attributes
role: doctor and region: US, while a nurse has attributes
role: nurse and region: EU. A document encrypted under
the policy role: doctor or region: EU can be decrypted
by both the doctor and nurse.

We restrict our discussion to CP-ABE in this paper, because
it is a more natural fit to the desired semantics of Portunus:
our fleet of servers have natural attributes like location and
compliance standards, and our customers choose their policies.
We give a formal definition of CP-ABE below.

3.2.3 Formal Definition of CP-ABE

A ciphertext-policy ABE (CP-ABE) scheme consists of four
algorithms [9]:

• Setup(λ) → (MPK,MSK): The setup takes as input a
security parameter λ, it outputs the master public-secret
key pair (MPK,MSK).

• KeyGen(MSK,S)→ SKS: The key generation takes as
input a set of attributes S and the master secret key MSK,
and outputs a secret key SKS.

• Encrypt(MPK,A,M)→ CTA: The encryption takes as
input a plaintext message M, an access policy A and the
master public key MPK. It outputs a ciphertext CTA.

• Decrypt(SKS,CTA)→M′: The decryption takes as input
the ciphertext CTA that was encrypted under an access
policy A, and a secret key SKS associated with a set of
attributes S. It succeeds and outputs the plaintext message
M′ if S satisfies A. Otherwise, it aborts.

A scheme is called correct if decryption of a ciphertext with
secret key yields the original plaintext message.

3

Table 1: Example Policies and Semantics

Example Policy Semantics

country: US or region: EU Decrypt only in US or European Union
NOT (country: RU or country: US) Don’t decrypt in Russia and US
country: US and security: high Decrypt only in US data centers with a high level of security

3.2.4 Collusion Resistance

The security models for ABE schemes consider their secu-
rity against chosen-plaintext (CPA) and chosen-ciphertext
attacks (CCA), as well as their collusion resistance. Infor-
mally, collusion resistance ensures that multiple users with
secret keys cannot join forces and decrypt a ciphertext that
they could not decrypt individually. For example, a cipher-
text encrypted under the policy role: doctor and region:
EU cannot be decrypted by a user with the attributes role:
doctor and region: US, and another user with the attributes
role: nurse and region: EU. To capture this type of secu-
rity, the security models allow the attacker to request multiple
secret keys for attributes that are not authorized to decrypt the
challenge ciphertext. Furthermore, the models capture security
against chosen-plaintext attacks or chosen-ciphertext attacks.
We define these security models more formally in Appendix A.

3.2.5 Pairing-Based ABE

A popular type of ABE is pairing-based ABE, because it is
efficient and can support many desirable properties [52]. A
pairing—also known as a bilinear map—is a map e : G1 ×
G2→GT defined over three groupsG1,G2 andGT of prime or-
der p with generators g1∈G1,g2∈G2 such that (i) e(ga

1,g
b
2)=

e(g1,g2)
ab for all a,b∈Zp (bilinearity), (ii) e(g1,g2) is not the

identity in GT (non-degeneracy) and (iii) e is efficiently com-
putable. Note that Zp denotes the ring of integers modulo p.

Intuitively, pairings are used to ensure that we can achieve
security guarantees for both the keys and the ciphertexts. We
need those guarantees, because we require ABE schemes to be
secure against collusion, meaning that users should not able
to combine their keys and obtain better decryption powers. In
contrast, traditional public-key encryption typically only pro-
vides security guarantees for the ciphertexts. Therefore, we can
use discrete-log based assumptions such as the Diffie-Hellman
assumption [19] to create secure encryption schemes such
as the ElGamal encryption scheme [24]. In such encryption
schemes, the public key and ciphertext typically live in a group
in which the discrete-log problem is believed to be hard, while
the associated secret key is an integer. By exponentiating a part
of the ciphertext with the secret key, we can obtain the message.
To ensure that we can achieve similar security assumptions for
the keys in ABE, we also place the keys in a group in which the
discrete-log problem is believed to be hard. To recover the mes-
sage, we perform a pairing operation instead of exponentiating,

which can be seen as an exponentiation with a “hidden” integer.
Most ABE implementations rely on open-source li-

braries for the pairing-based arithmetic, e.g., MIRACL [44],
RELIC [3] or our own library, CIRCL [17]. In this way, ABE
can be implemented in a highly optimized fashion without re-
quiring all the details about the inner workings of pairings. Fur-
thermore, using pairings in a black-box way also allows us to ef-
ficiently update the underlying pairing-friendly curves, should
the old ones be broken or more efficient ones be found [18].

3.2.6 The TKN20 Scheme

We are using a fully CCA-secure hybrid encryption scheme
based on the scheme by Tomida, Kawahara and Nishimaki
(TKN20) [48–50]. We have open-sourced this code as part
of our cryptographic library, CIRCL [17].

The reason why we chose the TKN20 scheme is because
it is currently the only ABE scheme that has a full description
and satisfies the following properties simultaneously [52]:

1. Expressivity: support for AND, OR and NOT operators.
Many schemes exist that support monotone formulas,
i.e., formulas with AND and OR only. Few of these also
support NOT operators1.

2. (Almost) completely unbounded: any string can be
used as an attribute, and there are no bounds on the
policy lengths and attribute sets. Note, however, that it is
bounded in the number of label occurrences in the secret
key, i.e., each label may occur only once.

3. Multi-use of attributes: support for repeated use of the
same attribute in a Boolean formula.

4. Strong security guarantees: full security against
chosen-plaintext attacks under standard assumptions2.

3.2.7 Representation of Monotone Access Policies

In the mathematical description of the scheme, the (monotone)
access policies are represented as linear secret-sharing scheme
(LSSS) matrices [26]. In such matrices, the rows of the
matrix are associated with the attributes used in the policy. To

1In ABE, NOT operators can be supported in three ways [4]. TKN20 (and
thus, our scheme) supports the most efficient variant proposed by Okamoto
and Takashima [35]. This variant requires that the attribute set uses each label
at most once.

2We do, however, require the use of the random oracle model [7]

4

determine whether a set of attributes S satisfies the policy, the
subset of rows associated with the attributes that also occur
in the set can be considered. If the vector (1,0,...,0) is in the
span of those rows, then the set satisfies the policy matrix.

More formally, an access policy can be represented as a
pair A=(A,ρ) such that A∈Zn1×n2

p is an LSSS matrix, where
n1,n2 ∈N, and ρ is a function that maps its rows to attribute
values. Then, for some vector with randomly generated entries
v=(s,v2,...,vn2)∈Z

n2
p , the i-th share of secret s generated by

this matrix is λi =Aiv⊺=Ai,1s+∑ j∈{2,...,n2}Ai, jv j, where Ai
denotes the i-th row of A. In particular, if S satisfies A, then
there exist a set of rows ϒ = {i ∈ {1, ...,n1} | ρ(i) ∈ S} and
coefficients εi∈Zp for all i∈ϒ such that ∑i∈ϒεiAi=(1,0,...,0),
and by extension ∑i∈ϒεiλi=s, holds.

An efficient method to convert a Boolean formula to an
LSSS-matrix representation is the one proposed by Lewko
and Waters [33]. For example, the policy role: doctor
and region: EU is represented as the pair (A, ρ) where

A =

(
1 1
0 −1

)
and ρ maps the first row to doctor and the

second row to EU. The vector (1,0) can only be recovered from
both rows, i.e., by adding them. Note that this algorithm yields
the same shares of the secret s as the secret-sharing algorithm
in the TKN20 paper.

3.2.8 Representing NOTs and Labels

To represent NOT operators and labels in the policy,
we define two additional maps, ρ and ρlab. The map
ρ : {1,...,n1}→{0,1}maps the rows of the matrix (which each
correspond to an attribute in the policy) to 0 if the attribute is not
negated, and to 1 if the attribute is negated, e.g., not region:
EU. The map ρlab : {1,...,n1}→{0,1}∗ maps the rows of the
matrix to labels (represented as strings), e.g., region.

3.2.9 High-Level Overview of the TKN20 Scheme

Before we give a description of a simplified version of the
TKN20 scheme, we first give an overview of the scheme. By
doing this, we aim to demystify the many components of the
scheme and highlight the techniques used to construct it.

First, we consider the general form of the scheme’s master
public key, the secret keys and the ciphertexts. In general,
the ciphertext consists of one element in GT that hides the
message, i.e., M ·As, where A=e(g1,g2)

α is part of the public
key, and further, elements in G1 and G2. The secret keys
consists of elements in G1 and G2, where at least one contains
α “in the exponent”, e.g., gα+rb

1 . To decrypt, the appropriate
key and ciphertext components need to be paired (with e) to
recover As=e(g1,g2)

αs, and thus, the message M.
To embed the attribute sets and policies in the secret keys

and ciphertexts, we use appropriate representations of these
in G1 and G2. To represent the policies, we use the shares λi
generated with the matrix representation in Section 3.2.7. In

the scheme, these shares occur as Bλi in the ciphertext, where
B is part of the master public key. To represent the attribute
label-value pairs, we use two techniques: the hash-based [26]
and the polynomial-based [10] approaches. The hash-based
approach simply takes as input the attribute string, e.g., role:
doctor, and hashes it directly into G1 or G2. The polynomial-
based approach takes as input the string and first hashes it
to an element x in Zp, and then maps it into G1 or G2 with
an implicit polynomial, e.g., B0 · Bx

1 = gb0+xb1
1 . In TKN20,

these two approaches are combined: a hash is used to map the
attribute-label string directly into the groupG1, and the implicit
polynomial is used to map the attribute-value string into the
group. More specifically, this combination computes H0(lab)·
H1(lab)x, where lab denotes the label, e.g.,role, and x denotes
the representation of the associated value, e.g., doctor, in Zp.

The reason why TKN20 maps the attribute values into
the group using the polynomial-based approach is that it can
support NOT operators. To support these, TKN20 uses the
high-level approach introduced by Ostrovsky et al. [36], which
exploits the structure of the polynomial-based map. Roughly,
this approach uses the fact that two distinct points on a
1-degree polynomial can be used to reconstruct the polynomial
with Lagrange interpolation3. More concretely, this means
that the secret can be reconstructed if the attribute value in the
key does not match the attribute value in the ciphertext, i.e.,
when they represent two distinct points on the polynomial.

3.2.10 Simplified Description of the TKN20 Scheme

We provide a simplified version of the scheme below, and
explain then how the real version of the scheme—which can
be found in the TKN20 paper [49, 50]—can be constructed
from the simplified version.

• Setup(λ) → (MPK, MSK): The setup outputs the
master public-secret key pair (MPK, MSK), where
Hi : {0,1}∗→G1 with i∈{0,1} are two hash functions
(modeled as random oracles), MSK=(α,b), and

MPK=(p,G1,G2,GT ,e,g1,g2,H0,H1,

A=e(g1,g2)
α,B=gb

1).

• KeyGen(MSK, (S,ψlab)) → SKS: On input a set of at-
tribute values S and the associated labeling map ψlab : S→
{0,1}∗, which maps the attributes in the set S to labels
(represented as strings), it outputs the secret key SKS as

SKS=(S,K1=gα+rb
1 ,K2=gr

2,

{K3,att=(H0(ψlab(att))·H1(ψlab(att))xatt)r}att∈S),

where r∈RZp is a randomly generated element in Zp and
xatt denotes the representation of att in Zp.

3This approach is also used in Shamir’s secret sharing scheme [45].

5

• Encrypt(MPK,A,M)→CTA: On input a plaintext mes-
sage M∈GT and an access policy A=(A,ρ,ρlab,ρ,τ)—
where τ : {1,...,n1}→{1,...,m} is a function that maps
each row that is associated with the same label to a
different integer in {1,...,m}, with m being the maximum
number of times that a label occurs in the policy—it
outputs a ciphertext CTA as

CTA=(A,C=M ·As,C1=gs
2,
{

C2,l =gsl
2

}
l∈{1,...,m},{

C3, j =Bλ j ·(H0(ρlab(j))·H1(ρlab(j))xρ(j))sτ(j)
}

j∈χ0
,{

C3, j =B−λ j ·H0(ρlab(j))sτ(j) ,

C4, j =Bxρ(j)λ j ·H1(ρlab(j))sτ(j)
}

j∈χ1
),

where s,s1,...,sm,v2,...,vn2 ∈RZp are randomly generated
elements in Zp, λ j = A j,1s + ∑k∈{2,...,n2} A j,kvk, and
χi={ j∈{1,...,n1}|ρ(j)= i} for i∈{0,1}.

• Decrypt(SKS,CTA)→M′: On input the ciphertext CTA,
and a secret key SKS, it first checks whether S satisfies
the A. If not, then it aborts. Otherwise, it computes the
message by first determining ϒ0 = { j ∈ χ0 | ρ(j) ∈ S},
ϒ1 = { j∈ χ1 | ρ(j) /∈ S∧ρlab(j)∈ψlab(S)}, ϒ=ϒ0∪ϒ1
and {ε j} j∈ϒ such that ∑ j∈ϒ ε jA j = (1, 0, ..., 0), then
computing

e(g1,g2)
αs=e(K1,C1)

·

(
∏
j∈ϒ0

(
e(K3,ρ(j),C2,τ(j))/e(C3, j,K2)

)
·∏

j∈ϒ1

(
e(K3,ρ(j),C2,τ(j))/e(C

y j
3, j ·C4, j,K2)

1
x
ρ(j)−y j

))
,

where y j = x
ψ
−1
lab(ρlab(j)). Then, M =C/e(g1,g2)

αs. Note
that this can be computed more efficiently by using the
bilinearity property.

3.2.11 Description of the Fully Secure Variant

The structure of the actual TKN20 scheme [49] is much more
advanced. This is because the scheme is fully secure under
well-studied assumptions, in particular, a variant of the matrix
decisional Diffie-Hellman assumption [20]. This assumption
is closely related to the decisional Diffie-Hellman assump-
tion [19, 20]. The main technique that is used to achieve this
level of security is the dual-system encryption technique [55].
Currently, the most advanced and efficient techniques [15, 32]
in this paradigm use matrix structures “in the exponent”, e.g.,
mapping the key component K1 = gα+rb

1 to ga+Wr
1 , where a

and r are vectors of length 3 and W is a (3×3)-matrix [32].

3.2.12 Support for Wildcards

To support CCA-security more efficiently than e.g., [57], we
use wildcards in the secret keys (as also proposed in the journal
version of TKN20, i.e., [50]). A wildcard is represented by an
asterisk ∗, e.g., region: *, and means that all values for the as-
sociated label are accepted, e.g.,region: EU. In other words, it
always matches any occurrence of an attribute with the same la-
bel in the policy. The keys for asterisks have the following form:

(K3,1,att,K3,2,att)=(H0(ψlab(att))r,H1(ψlab(att))r).

Tomida et al. [50] show that the variant of the scheme using
wildcards is provably fully secure as well. Note that we use
this functionality only to achieve CCA-security, because this
functionality seems less intuitive to use for other purposes. In
particular, handing out a wildcarded attribute for some label
gives the user much power: it always satisfies any occurrence
of that specific attribute label in the policy, regardless of what
the policy dictates that the user should have.

3.2.13 Key Encapsulation and Symmetric Encryption

We use the TKN20 scheme to encapsulate a symmetric key
to be used to encrypt the data, and use a one-time secure
symmetric encryption scheme to encapsulate the data. More
accurately, we first derive a symmetric key from the ABE
ciphertext. In particular, instead of encrypting some message
M∈GT , we directly derive the symmetric key from e(g1,g2)

αs

by applying a key derivation function [16]. Because e(g1,g2)
αs

is indistinguishable from a random element in GT , the derived
key is also indistinguishable from a random key [28,30]. Then,
we use this random key to symmetrically encrypt the data. For
this, we use a symmetric encryption scheme that is one-time
secure, which means that no attackers can distinguish between
the encryptions of any two messages (see Appendix B for a
more formal definition). This “hybrid encryption” variant—
where we use ABE to encapsulate a key and symmetric
encryption to encapsulate the data—is provably secure against
chosen-plaintext attacks, see e.g., [31, §A]. To encrypt symmet-
rically, we use the same approach as Boneh and Katz [12]. We
use a pseudo-random generator to generate a key stream that
has the same length as the message, and XOR it to the message.
In Portunus, we use an extendable output function to generate a
sufficiently-long key stream, i.e., BLAKE2b [41], which is be-
lieved to be indistinguishable from pseudo-random generator.

3.2.14 CCA-Security via the BK-Transform

Finally, to achieve CCA-security, we apply the Boneh-Katz
transform [12]. With this transform, we combine the hybrid
encryption scheme with a message authentication code (MAC)
function and a special commitment scheme4, for which formal

4Boneh and Katz [12] call this an “encapsulation” scheme, but to
distinguish it more clearly from key and data encapsulation, we call it “special
commitment scheme” in this paper.

6

definitions and security models can be found in Appendix
B. Informally, the special commitment scheme that we use
consists of two independent hash functions. The first hash
is used to generate a public commitment to a secret random
value, and the second hash uses the secret random value to
derive a key K′. Subsequently, this secret random value is
included in the encryption of the message with the hybrid
encryption scheme. We compute a MAC with the key K′ over
the resulting ciphertext to ensure authenticity of the ciphertext.
Furthermore, the public commitment to the secret random
value is included in the access policy with an AND operator
applied to the original policy, and also in plain in the resulting
ciphertext. To decrypt, one first recovers the message and
secret random value by decrypting the ciphertext. Then, one
verifies whether the public commitment is equal to the hash
over the secret random value, and then if the MAC verifies cor-
rectly given the key derived from the secret random value. We
give a full description of the CCA-secure construction (using
the simplified version of TKN20) in Appendix C. It follows
from [12] and [53] that this construction is CCA-secure.

3.3 API and Implementation

Listing 1: Example usage of the ABE library API
mas te rPub l i cKey , m a s t e r S e c r e t K e y := Se tup ()
p o l i c y := P o l i c y {}
p o l i c y . F r o m S t r i n g (" c o u n t r y : US or r e g i o n : EU")
c i p h e r t e x t := m a s t e r P u b l i c K e y

. E n c r y p t (p o l i c y , [] b y t e (" s e c r e t "))
a t t r i b u t e s P a r i s D C := A t t r i b u t e s {}
a t t r i b u t e s P a r i s D C . FromMap (map [

s t r i n g] s t r i n g {" c o u n t r y " : "FR " , " r e g i o n " : "EU"}
a t t r i b u t e S e c r e t K e y P a r i s D C

:= m a s t e r S e c r e t K e y . KeyGen (a t t r i b u t e s P a r i s D C)
p l a i n t e x t :=

a t t r i b u t e S e c r e t K e y P a r i s D C . Dec ryp t (c i p h e r t e x t)
a s s e r t E q u a l s (p l a i n t e x t , " s e c r e t ")

We implemented our scheme as part of the CIRCL library [17]
in Go. The particular instantiation of the pairing-friendly
groups G1,G2 and GT that our implementation uses is the
BLS12-381 curve [6, 13]. Our implementation uses the fast
subgroup checks via Bowe’s method [14], which allow us to
check whether any given point is in the group, e.g., G1. We
have also optimized the arithmetic through judicious choice
of representation.

4 Design

Armed with the above scheme, we now must construct
services to encrypt customer keys, and make them available
to those who should have them. Cloudflare logically has four
components. The first is a set of edge machines located in
geographically spread and distant data centers. These edge ma-
chines run a homogeneous mixture of services that terminate

TLS and serve HTTP. The actual signing of TLS handshakes
takes place in a system called Gokeyless in all relevant cases.

The second component is a centralized set of services in the
control-plane responsible for the API that customers interact
with to configure their website. One of these services, the
certificate manager, handles all configuration relating to TLS.

The third component is a small number of very tightly
controlled machines that handle certificate issuance for
internal certificates. All machines at Cloudflare have a
machine identity based on RSA keys: our key issuance service
uses that identity to determine the attributes a machine shall
have. We call this service the Certificate Authority (CA).

The fourth component is a globally synchronized key-value
store, Quicksilver. This is a global gossip tree for customer
configurations, such as certificates, that is designed to ensure
extremely fast replication, at the cost of constrained bandwidth
and storage. Every edge machine stores a local copy of the
data in Quicksilver.

4.1 Encrypting Customer Keys

When a customer uploads a certificate and the associated
private signing key to Cloudflare, and indicates it is to be
protected under an access policy, the certificate manager in
the control-plane takes the private key and encrypts it with the
required policy.

However, the customer’s private key is not encrypted with
the ABE master public key directly. Rather it is encrypted
with an X25519 key pair, the private key of which is encrypted
under the ABE scheme. These key pairs are indexed by the
policy and the epoch they are under.

At any time, there may be several of these key pairs, called
policy keys, present in the database for a given policy. The
certificate manager will use the most recent one for encryption.
This permits gradual rotation of the key pairs.

Note that the only encryption happening in Portunus is done
by the certificate manager.

Table 4 in Appendix D provides a summary of the various
keys.

4.2 Accessing Customer Keys

On receipt of a connection to a site, such as
alice.example.com, Gokeyless carries out a lookup
for the certificate in Quicksilver. If that certificate has a key
protected by Portunus, the metadata for that certificate will
have a pointer to the relevant policy key together with a
ciphertext that decrypts to the private key.

Gokeyless then loads the policy key and determines if it
is decryptable by the machine. If not, it consults a table that
maps each policy to a list of satisfying data centers to find a
neighboring one, and forwards the request there. Gokeyless on
this machine then decrypts the policy key and uses the result to

7

Encrypt Customer Key

Core Data Center

Master Key

TLS Certificate 
Upload

Quicksilver 
 (Embeddable

KV store)

Quicksilver
Distribution

Across
Network

Policy
Region: EU

In all data

centers

Copy of Quicksilver
containing customer’s
TLS key encrypted
under a policy

Attribute Secret
Key used for
Decryption

Figure 1: Encryption under a policy

Web User

HTTPS 
Request

Cloudflare Data Center

TLS Termination Service
Quicksilver

Decrypt with
Attribute key

Customer private key

Ciphertext

Forward if can’t
decrypt

Cloudflare Data Center

TLS Termination Service
Quicksilver

Decrypt with
Attribute key

Customer private key

Ciphertext

Figure 2: Decryption

decrypt the certificate’s private key, performing the signature
and completing the TLS handshake.

The decrypted policy keys are cached in memory, so the
computationally burdensome ABE decryption only happens
once for commonly used policies. This is an important
optimization to avoid excessive CPU consumption during
attack scenarios when many handshakes are arriving.

4.3 Key Distribution

The certificate authority (CA) holds the ABE master secret key.
It also has access to the unique cryptographic identity for every
machine in the fleet, as well as a map of machines to attributes.
This map is largely synchronized with the machine’s own view.
Key issuance for the machine’s attribute-based secret key is
managed by the service configuration management system,
Salt [1]. Salt uses the RSA identity key of the machine to
authenticate to the CA, which generates the machine’s attribute
secret key using the master secret key and the attributes of the
machine. The map of machines to attributes is configured in
the same database that drives machine identity for Salt.

4.4 Key Rotation

Over time, it is necessary to change the key material in the
system so that an attacker who has access to old key material
can no longer decrypt newly uploaded customer TLS private
keys. However, the lifetime of a customer certificate can
extend beyond a rotation period and it must be possible to
continue to decrypt the customer TLS key for that duration.

The certificate authority generates a new generation of
the master key pair. To preserve the ability to decrypt old
TLS private keys, the CA re-encrypts the existing policy keys
on behalf of the certificate manager. During this process,
machines will have both the old and new generation of the
attribute secret key, ensuring that availability is not impacted
as the old key material is phased out.

Newly uploaded certificate private keys are encrypted under
the same policy key. This means that an attacker who has
access to a policy key can continue to to decrypt new TLS
keys, but it is possible to generate new policy keys for a policy.
This does however guard against an attacker who obtains the
attribute secret keys for a machine from being able to access
TLS keys post-rotation via access to Quicksilver.

4.5 Attribute Changes
From time to time, the attributes associated with a set of data
centers may change. Introducing new labels that have not been
used by existing policies is straightforward, since the set of
data centers that can decrypt a given TLS private key remains
unchanged. However, when the attributes of the data centers
that can decrypt a key are changing, certain changes need to be
made to ensure that the system remains functional [4, 52]. To
explain what needs to be changed, we split the act of “changing
an attribute” in two steps: the removal of the old label and
value and the re-addition of the label with the new value.
First, removing the old attribute means that the associated
data centers lose some decryption capabilities, because they
do not satisfy the policies that required the presence of this
label anymore. Note that the removal does not increase the

8

decryption capabilities yet, because to satisfy a negated
attribute, the set of attributes of the data center must have an
attribute with the same label, regardless of the value. Adding
a new label can only increase the number of policies satisfied,
because of the semantics of negation.

Carrying out this transition requires three steps. First, the
affected label is removed from the forwarding information for
the affected data center, so that other data centers stop sending
requests that require its presence. Second, the key is re-issued
with the new attribute. Third, the new attribute is re-added
to the forwarding information so the requests are handled
by the data center again. The data center affected is able to
handle end-user requests as usual: those requests that cannot
be satisfied locally are forwarded to other data centers that can
satisfy them, whose forwarding information is not affected by
the transition. This process can be difficult to carry out at scale
and requires careful planning and should be done in stages.
Lastly, a key rotation is required to ensure that any retained
copies of the older key are not used.

4.6 Networking and Resiliency

One of the motivations for the introduction of Portunus was
a series of incidents in which the underlying RPC protocol
permitting Gokeyless to forward requests to remote centers
was proved insufficient, as well as highlighting the inflexibility
of past approaches to key distribution.

Gokeyless primarily uses a custom binary protocol designed
for simple clients in languages such as C. The protocol
is a simple request-response protocol: requests have IDs
permitting responses to come out of order, and packets are
tagged length-value pairs. Because maintaining connections
to all other machines is expensive and unnecessary, machines
within one data center will elect among themselves a machine
to forward requests to foreign data centers. This reduces the
number of TCP connections being used.

To enable this, the built-in net/rpc package is used with
a custom encoder built on top of the binary protocol to enable
the Geo Key Manager functionality. Unfortunately, this
library has an internal lock taken by a request and that is not
released until the response is read. Until we had tracing the
impact of this lock on performance was difficult to see, since
many forwarded requests did not encounter this behavior.
Once tracing was added, the lock was quickly visible and the
integration with the net/rpc package changed to avoid it.

There is no sophisticated client-side load balancing:
requests are forwarded to the closest satisfying data center,
which on arrival leverage a network layer load balancer [56]
to determine an appropriate machine to handle the connection.
Since the computational load of handling a request forwarded
for Portunus is merely an X25519 decryption and an
RSA/ECDSA signature, even high levels of request volume
have not led to failures due to load balancing issues.

Resiliency of the Cloudflare network is negatively impacted

for customers who apply overly restrictive policies. It is possi-
ble for data centers to be taken offline or become overwhelmed
for a variety of reasons, particularly in the case of low capacity
data centers. If all data centers a customers key is decryptable
in are offline, then the customer’s website will be rendered inac-
cessible. To prevent this from happening, we require customer
keys be decryptable in at least two large-capacity data centers.

4.7 Monitoring and Alerting
We have component-level metrics of decryptions, proxying
and performance. We also have probes that measure test site up-
times by policy, and we have alerts when decryption failures hit
a certain threshold. We have also integrated distributed tracing
across Gokeyless: this has proven invaluable in finding sources
of tail latency. Furthermore, to detect accidental or malicious
usage of expired key generations and have end-to-end visibility
into the status of key rotation, we have logging and metrics for
key generation held and used in each part of the system.

5 Evaluation

While Portunus was launched to customers this year (2022),
the older version of the system based on similar principles
(Geo Key Manager) has been in production since 2017. Over
the years, the number of customers and end-users relying
on this product has steadily increased. This section is an
evaluation of the various components of Portunus.

In a sample week in December 2022, Cloudflare was
observed to handle over 8 million TLS requests per second
globally across its fleet of data centers. Of these requests,
over 20% used session resumption, which translates to
approximately 6.5 million signatures per second being served.
100k rps are signatures using Portunus and Geo Key Manager.
As most customers restrict key access to the region where
they typically have the most users, approximately 80% of
these requests are handled locally. The remaining 20% are
forwarded to their closest satisfying neighbor.

5.1 Cryptography
We evaluate our underlying cryptography library against RSA-
2048 and X25519, utilizing Golang libraries crypto/rsa
and x/crypto/nacl/box as reference implementations.
These comparative algorithms were chosen because they are
standard public-key cryptography.

We conduct our measurements on a laptop with an Intel
Core i7-10610U CPU @ 1.80GHz.

We characterize our library’s performance using measures
inspired by ECRYPT [8]. In all comparisons involving ABE,
we set the attribute set size to 50 and consider policy formulas
over 50 attributes. This attribute set size is significantly higher
than necessary for any of Portunus’ applications, as most
policies are typically limited to a combination of geographic

9

Table 2: Space Overheads (bytes)

Secret Public Encrypt Encrypt
Scheme key5 key 23B 10KB

RSA-2048 1190 256 233 3568
X25519 32 32 48 48
Our scheme 33416 3282 19419 19419

Table 3: Operation times (ms)

Scheme Key Gen. Encrypt 23B Decrypt 23B

RSA-2048 117 0.043 1.26
X25519 0.045 0.093 0.046
Our scheme 1796 704 62.4

properties. Nevertheless, it serves as an extreme worst-case
scenario for benchmarking purposes.

Table 2 shows the space consumed by the various operations.
For our system, the ciphertext overhead is of particular concern
since it is replicated on every machine. Unfortunately, this
overhead is significantly larger than in traditional public-key
cryptography. However, the good news is that this overhead is
constant with respect to message length for a given policy size,
and can be reduced by relying on a small handful of policy
keys 4.1 rather than encrypting every customer key using
ABE. It’s also worth considering that the ciphertext in our
system can be decrypted by a group of decryptors, whereas
standard public key cryptography benchmarks only consider
a ciphertext that can be decrypted by a single decryptor.

The size of the attribute secret key is less relevant, as a
single copy is stored per machine. The size of the master
public key is of even less concern, as it is only used by the
certificate manager in core.

Table 3 shows the average time required to perform different
key operations. Key generation refers to the process of
generating attribute secret keys from the master secret key,
which can be performed out-of-band of user handshakes and
is therefore of marginal relevance in this context. Encryption
latency can also largely be ignored, as it is acceptable for
encryption to take a few extra cycles before a certificate is
considered deployed. But once it is deployed, HTTPS requests
to the website should complete quickly.

Since decryption is in the critical path of every request, it is
the most pertinent in this situation. While session resumption
and caching policy keys can amortize the number of ABE
decryptions across TLS handshakes to a small fraction,
improvements to decryption latency will still affect overall
baseline performance. It is therefore important to optimize
the decryption process. We have discussed some of our
optimizations for decryption in Section 3.3.

Figure 3: Uptime by policy, showing v2 having much better
uptime than V1

5.1.1 Request Latency

The overall performance of Portunus includes the impact of
cryptography, networking and geographic location based on
the type of Portunus request: handshakes processed locally,
and those that need to forwarded to a remote data center.

The vast majority of local unwrappings only perform an
X25519 decryption because of policy keys. The remainder
incur the overhead of an ABE decryption. For remote requests,
network latency largely dominates.

5.2 Availability

Figure 3 shows the uptime of our system by policy vs the pre-
vious system. This graph was produced using synthetic probes
spanning every machine across our fleet. It demonstrates that
dynamically selecting all possible machines to decrypt rather
than a pre-determined handful as in our previous release,
produces significant improvements to real-world reliability.

5.3 Analysis

Over the years that we have provided customers with these ge-
ographic limitation capabilities and from our implementation
experience, we have learnt several lessons. As we discussed
both central servers and directly encrypting secrets to the
servers that need them have substantial downsides. Alterna-
tively, modifying Quicksilver’s replication strategy to store
only a subset of the keyset on any given machine would chal-
lenge core design decisions Cloudflare has made over the years,
which assume the entire dataset is replicated on every machine.

This encouraged us to explore cryptographic solutions. Our
first attempt (Geo Key Manager) was back in 2016, when there
were not many ABE schemes efficient and flexible enough to
support our use case. In particular, ABE schemes supporting
negations were rather impractical. Therefore, we initially used
a combination of identity-based encryption and broadcast
encryption to simulate an ABE-like scheme. However, this
scheme was not collusion resistant (Section 3.2.4). Given that
collusion-resistance is a definitional property of considering
a scheme to be a valid ABE scheme, we were eager to switch

10

to a more theoretically satisfying solution once practical ABE
schemes became available.

Once more practical ABE schemes became available,
the difficulty in translating a scheme from an ABE paper to
practice should not be underestimated, as well as selecting
the appropriate scheme. Typically, there are some parameters
that must be chosen, with little indication of the strength of
the various assumptions the parameters create. In addition,
the notation can require a formidable amount of translation,
sometimes concealing significant computational steps.

Our scheme does not support policies with wildcards
of the form country: *, which while not terribly limiting
geographically are limitations in other contexts. It likewise
does not permit an attribute set with multiple values for a
single attribute label, such as {group: fiddlers, group:
percussionists}.

While we performed a number of cryptographic optimiza-
tions 3.3, the implementation certainly has larger overheads
compared to the mature implementations for traditional
cryptographic schemes. We attempted to mitigate some of
these costs by using policy keys 4.1. This is similar to hybrid
encryption, where public key cryptography is used to establish
a shared symmetric key, which then gets used to encrypt data.
The difference here is that the policy keys are not symmetric,
but rather X25519 key pairs, which is an asymmetric scheme
based on elliptic curves. While not as fast as symmetric
schemes like AES, traditional elliptic curve cryptography
is significantly faster than attribute-based encryption. The
advantage here is that the central service doesn’t need access
to secret key material to encrypt customer keys.

It is unclear what post-quantum ABE schemes will have
the combination of performance, implementation simplicity,
and expressivity required by this application. Likewise, the
use of pairing-based cryptography creates some challenges
in acceptance, as decision makers may be unfamiliar with it
and it is not standardized.

We have found that typically the certificates are stored in
regions where many of the users are found. This unsurprising
pattern puts low demands on the remote execution capabilities.
Unfortunately events such as DDoS attacks can add significant
load. Operation under normal conditions is not a guide to
operation under adverse conditions. It required a significant
effort to add in tracing to diagnose and reproduce scaling
issues due to long-held locks.

We are currently working on performing delegated
credentials [5] in combination with the current system. This
will enable us to reduce the additional latency incurred
while forwarding requests to another data center. Delegated
credentials allow short-lived credentials to be issued, so
we can wrap the private keys and delegated credentials
separately for separate data centers. We are also working on
threshold signatures, where a customer’s full private key will
be inaccessible by every server. We can do this by encrypting
the pieces of the private key using Portunus with attributes that

correspond to certain security parameters.
Our adoption of an ABE based scheme instead of the earlier

ad hoc construction lead directly to improvements to reliability
as new data centers automatically contributed to the handling
of remote signatures when able versus the earlier construction
where the lists were largely static.

In short the adoption of Portunus has proved successful in
increasing the reliability and enhancing the functionality of
geographically oriented key management features.

6 Related Work

Portunus is an instantiation of distributed access control using
a relatively under-utilized cryptographic construction.

CP-ABE papers will regularly start with a justification of
their new capabilities based on use in system access control,
e.g., [9, 40, 58] but without more details on the system design.
Additionally, as Venema and Alpár demonstrate [51], there
have been various attacks on some of their constructions
[40, 58], particularly those that do not rely on pairings [27, 59].
Integrating a scheme that is broken into a real-world system
is dangerous, as it allows adversaries to attack that system.

Sieve [54] dives deeper into the details, discussing how key
management, handling ABE overhead, and deletion have to
be addressed in a real system. Furthermore, it was integrated
into real applications as a demonstration.

Excalibur [43] is perhaps the most similar to our work.
They designed and implemented a system for customers to
make data accessible on certain machines, albeit with a less
expressive policy than ours, and integrated it with a cloud
environment Eucalyptus. However, they did not progress
beyond a lab setting and in their chosen application decryption
latency and forwarding requests are not relevant.

7 Conclusion and Future Work

For several months, Portunus has seen real-world usage
protecting customer keys. It has succeeded in supplanting the
capabilities of the legacy system and setting a foundation for fu-
ture product development. This required multiple person-years
of effort by a small team, as well as accepting a fairly novel
scheme as the foundation of its security. This effort brought
about increases in reliability and enhanced performance, as
well as uncovered and solved some longstanding bugs.

References

[1] Salt project documentation. https://docs.
saltproject.io/en/latest/. Accessed: 2022-
10-25.

[2] Joseph A. Akinyele, Matthew W. Pagano, Matthew D.
Green, Christoph U. Lehmann, Zachary N. J. Peterson,

11

https://docs.saltproject.io/en/latest/
https://docs.saltproject.io/en/latest/

and Aviel D. Rubin. Securing electronic medical records
using attribute-based encryption on mobile devices. In
Xuxian Jiang, Amiya Bhattacharya, Partha Dasgupta,
and William Enck, editors, SPSM’11, pages 75–86.
ACM, 2011.

[3] D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby,
and K. Liao. RELIC is an Efficient LIbrary for Cryptogra-
phy. https://github.com/relic-toolkit/relic.

[4] Nuttapong Attrapadung and Junichi Tomida. Unbounded
dynamic predicate compositions in ABE from standard
assumptions. In Shiho Moriai and Huaxiong Wang,
editors, ASIACRYPT, volume 12493 of LNCS, pages
405–436. Springer, 2020.

[5] Richard Barnes, Subodh Iyengar, Nick Sullivan, and Eric
Rescorla. Delegated Credentials for (D)TLS. Internet-
Draft draft-ietf-tls-subcerts-15, Internet Engineering
Task Force, June 2022. Work in Progress.

[6] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott.
Constructing elliptic curves with prescribed embedding
degrees. In Stelvio Cimato, Clemente Galdi, and
Giuseppe Persiano, editors, SCN, volume 2576 of LNCS,
pages 257–267. Springer, 2002.

[7] Mihir Bellare and Phillip Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan,
Ravi S. Sandhu, and Victoria Ashby, editors, CCS, pages
62–73. ACM, 1993.

[8] Daniel J. Bernstein and Tanja Lange. eBACS: ECRYPT
benchmarking of cryptographic systems. https:
//bench.cr.yp.to/results-encrypt.html. Ac-
cessed: 2022-10-25.

[9] John Bethencourt, Amit Sahai, and Brent Waters.
Ciphertext-policy attribute-based encryption. In S&P,
pages 321–334. IEEE, 2007.

[10] Dan Boneh and Xavier Boyen. Efficient selective-id
secure identity-based encryption without random
oracles. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT, volume 3027 of LNCS, pages 223–238.
Springer, 2004.

[11] Dan Boneh and Matthew K. Franklin. Identity-based
encryption from the weil pairing. In Joe Kilian, editor,
CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 213–229. Springer, 2001.

[12] Dan Boneh and Jonathan Katz. Improved efficiency
for cca-secure cryptosystems built using identity-based
encryption. In Alfred Menezes, editor, Topics in Cryptol-
ogy – CT-RSA 2005, pages 87–103, 2005. https://www.
cs.umd.edu/~jkatz/papers/id-cca-mac.pdf.

[13] S. Bowe. BLS12-381: New zk-SNARK ellip-
tic curve construction. https://blog.z.cash/
new-snark-curve/.

[14] Sean Bowe. Faster subgroup checks for bls12-381.
Cryptology ePrint Archive, Paper 2019/814, 2019.
https://eprint.iacr.org/2019/814.

[15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved
dual system ABE in prime-order groups via predicate
encodings. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT, volume 9057 of LNCS, pages
595–624. Springer, 2015.

[16] Lily Chen. Recommendation for key derivation using
pseudorandom functions. Technical Report NIST Spe-
cial Publication (SP) 800-108, Rev. 1, National Institute
of Standards and Technology, Gaithersburg, MD, 2022.

[17] Cloudflare. Cloudflare Interoperable, Reusable
Cryptographic Library. Accessed: 2022-12-14.

[18] Antonio de la Piedra, Marloes Venema, and Greg Alpár.
ABE squared: Accurately benchmarking efficiency of
attribute-based encryption. TCHES, 2022(2):192–239,
2022.

[19] Whitfield Diffie and Martin E. Hellman. New di-
rections in cryptography. IEEE Trans. Inf. Theory,
22(6):644–654, 1976.

[20] Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols,
and Jorge L. Villar. An algebraic framework for
diffie-hellman assumptions. In Ran Canetti and Juan A.
Garay, editors, CRYPTO, volume 8043 of Lecture Notes
in Computer Science, pages 129–147. Springer, 2013.

[21] ETSI. ETSI TS 103 458 (V1.1.1). Technical specifica-
tion, European Telecommunications Standards Institute
(ETSI), 2018.

[22] ETSI. ETSI TS 103 532 (V1.1.1). Technical specifica-
tion, European Telecommunications Standards Institute
(ETSI), 2018.

[23] Amos Fiat and Moni Naor. Broadcast encryption. In
Douglas R. Stinson, editor, CRYPTO, volume 773 of
Lecture Notes in Computer Science, pages 480–491.
Springer, 1993.

[24] Taher El Gamal. A public key cryptosystem and a
signature scheme based on discrete logarithms. In G. R.
Blakley and David Chaum, editors, CRYPTO, volume
196 of LNCS, pages 10–18. Springer, 1984.

[25] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent
Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Ari Juels, Rebecca N.

12

https://github.com/relic-toolkit/relic
https://bench.cr.yp.to/results-encrypt.html
https://bench.cr.yp.to/results-encrypt.html
https://www.cs.umd.edu/~jkatz/papers/id-cca-mac.pdf
https://www.cs.umd.edu/~jkatz/papers/id-cca-mac.pdf
https://blog.z.cash/new-snark-curve/
https://blog.z.cash/new-snark-curve/
https://eprint.iacr.org/2019/814

Wright, and Sabrina De Capitani di Vimercati, editors,
CCS, pages 89–98. ACM, 2006.

[26] Vipul Goyal, Omkant Pandey, Amit Sahai, and
Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data.
Cryptology ePrint Archive, Paper 2006/309, 2006.
https://eprint.iacr.org/2006/309.

[27] Javier Herranz. Attacking pairing-free attribute-based
encryption schemes. IEEE Access, 8:222226–222232,
2020.

[28] Susan Hohenberger and Brent Waters. Online/offline
attribute-based encryption. In Hugo Krawczyk, editor,
PKC, volume 8383 of LNCS, pages 293–310. Springer,
2014.

[29] Seny Kamara and Kristin E. Lauter. Cryptographic
cloud storage. In Radu Sion, Reza Curtmola, Sven
Dietrich, Aggelos Kiayias, Josep M. Miret, Kazue Sako,
and Francesc Sebé, editors, FC, volume 6054 of LNCS,
pages 136–149. Springer, 2010.

[30] Eike Kiltz and Yevgeniy Vahlis. CCA2 secure IBE:
standard model efficiency through authenticated
symmetric encryption. In Tal Malkin, editor, CT-RSA,
volume 4964 of LNCS, pages 221–238. Springer, 2008.

[31] Eike Kiltz and Yevgeniy Vahlis. Cca2 secure ibe: Stan-
dard model efficiency through authenticated symmetric
encryption. Cryptology ePrint Archive, Paper 2008/020,
2008. https://eprint.iacr.org/2008/020.

[32] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively
secure ABE for \mathsf ncˆ1 from k-lin. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT, volume
11476 of LNCS, pages 3–33. Springer, 2019.

[33] Allison Lewko and Brent Waters. Decen-
tralizing attribute-based encryption. Cryp-
tology ePrint Archive, Paper 2010/351, 2010.
https://eprint.iacr.org/2010/351.

[34] Vincent Hu (NIST), David Ferraiolo (NIST),
Richard Kuhn (NIST), Adam Schnitzer (BAH),
Kenneth Sandlin (MITRE), Robert Miller (MITRE),
and Karen Scarfone (Scarfone Cybersecurity).
Guide to attribute based access control (abac)
definition and considerations. Technical report, Na-
tional Institute of Standards and Technology, 2014.
https://doi.org/10.6028/NIST.SP.800-162.

[35] Tatsuaki Okamoto and Katsuyuki Takashima. Fully
secure functional encryption with general relations
from the decisional linear assumption. In Tal Rabin,
editor, CRYPTO, volume 6223 of LNCS, pages 191–208.
Springer, 2010.

[36] Rafail Ostrovsky, Amit Sahai, and Brent Waters.
Attribute-based encryption with non-monotonic access
structures. In Peng Ning, Sabrina De Capitani di Vimer-
cati, and Paul F. Syverson, editors, CCS, pages 195–203.
ACM, 2007.

[37] Ruoming Pang, Ramon Caceres, Mike Burrows, Zhifeng
Chen, Pratik Dave, Nathan Germer, Alexander Golynski,
Kevin Graney, Nina Kang, Lea Kissner, Jeffrey L.
Korn, Abhishek Parmar, Christina D. Richards, and
Mengzhi Wang. Zanzibar: Google’s consistent, global
authorization system. In 2019 USENIX Annual Technical
Conference (USENIX ATC ’19), Renton, WA, 2019.
https://research.google/pubs/pub48190/.

[38] Matthew Pirretti, Patrick Traynor, Patrick D. McDaniel,
and Brent Waters. Secure attribute-based systems. In
Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati, editors, CCS, pages 99–112. ACM, 2006.

[39] Geoffrey Plouviez. Introducing quicksilver:
Configuration distribution at internet scale.
https://blog.cloudflare.com/introducing-quicksilver-
configuration-distribution-at-internet-scale, 2020.
Accessed: 2022-10-25.

[40] Huiling Qian, Jiguo Li, Yichen Zhang, and Jinguang
Han. Privacy-preserving personal health record
using multi-authority attribute-based encryption with
revocation. Int. J. Inf. Secur., 14(6):487–497, nov 2015.

[41] Markku-Juhani O. Saarinen and Jean-Philippe Aumas-
son. The BLAKE2 cryptographic hash and message au-
thentication code (MAC). Technical Report 7693, 2015.
https://www.rfc-editor.org/rfc/rfc7693.

[42] Amit Sahai and Brent Waters. Fuzzy identity-based
encryption. In R. Cramer, editor, EUROCRYPT, volume
3494 of LNCS, pages 457–473. Springer, 2005.

[43] Nuno Santos, Rodrigo Rodrigues, Krishna P. Gummadi,
and Stefan Saroiu. Policy-sealed data: A new abstraction
for building trusted cloud services. In Tadayoshi Kohno,
editor, USENIX Security Symposium, pages 175–188.
USENIX Association, 2012.

[44] Michael Scott. MIRACL cryptographic SDK: Multi-
precision Integer and Rational Arithmetic Cryptographic
Library. https://github.com/miracl/MIRACL,
2003.

[45] Adi Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[46] Adi Shamir. Identity-based cryptosystems and signature
schemes. In G. R. Blakley and David Chaum, editors,
CRYPTO, volume 196 of Lecture Notes in Computer
Science, pages 47–53. Springer, 1984.

13

https://eprint.iacr.org/2006/309
https://eprint.iacr.org/2008/020
https://eprint.iacr.org/2010/351
https://doi.org/10.6028/NIST.SP.800-162
https://research.google/pubs/pub48190/
https://www.rfc-editor.org/rfc/rfc7693
https://github.com/miracl/MIRACL

[47] Nick Sullivan. Geo key manager: How it
works. https://blog.cloudflare.com/
geo-key-manager-how-it-works/, 2017. Ac-
cessed: 2022-10-25.

[48] Junichi Tomida, Yuto Kawahara, and Ryo Nishimaki.
Fast, compact, and expressive attribute-based encryption.
Cryptology ePrint Archive, Paper 2019/966, 2019.
https://eprint.iacr.org/2019/966.

[49] Junichi Tomida, Yuto Kawahara, and Ryo Nishimaki.
Fast, compact, and expressive attribute-based encryption.
In A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas,
editors, PKC, volume 12110 of LNCS, pages 3–33.
Springer, 2020.

[50] Junichi Tomida, Yuto Kawahara, and Ryo Nishimaki.
Fast, compact, and expressive attribute-based encryption.
Des. Codes Cryptogr., 89(11):2577–2626, 2021.

[51] Marloes Venema and Greg Alpár. A bunch of broken
schemes: A simple yet powerful linear approach to
analyzing security of attribute-based encryption. In
Kenneth G. Paterson, editor, CT-RSA, volume 12704 of
LNCS, pages 100–125. Springer, 2021.

[52] Marloes Venema, Greg Alpár, and Jaap-Henk Hoepman.
Systematizing core properties of pairing-based attribute-
based encryption to uncover remaining challenges
in enforcing access control in practice. Des. Codes
Cryptogr., 91(1):165–220, 2023.

[53] Marloes Venema and Leon Botros. Efficient and
generic transformations for chosen-ciphertext secure
predicate encryption. Cryptology ePrint Archive, Paper
2022/1436, 2022.

[54] Frank Wang, James Mickens, Nickolai Zeldovich,
and Vinod Vaikuntanathan. Sieve: Cryptographically
enforced access control for user data in untrusted clouds.
In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 611–626,
Santa Clara, CA, March 2016. USENIX Association.

[55] Brent Waters. Dual system encryption: Realizing fully
secure IBE and HIBE under simple assumptions. In Shai
Halevi, editor, CRYPTO, volume 5677 of LNCS, pages
619–636. Springer, 2009.

[56] David Wragg. Unimog —- cloudflare’s edge
load balancer. https://blog.cloudflare.com/
unimog-cloudflares-edge-load-balancer/,
2020. Accessed: 2022-12-15.

[57] Shota Yamada, Nuttapong Attrapadung, Goichiro
Hanaoka, and Noboru Kunihiro. Generic constructions
for chosen-ciphertext secure attribute based encryption.
In Dario Catalano, Nelly Fazio, Rosario Gennaro, and

Antonio Nicolosi, editors, PKC, volume 6571 of LNCS,
pages 71–89. Springer, 2011.

[58] Kan Yang, Xiaohua Jia, Kui Ren, Bo Zhang, and Ruitao
Xie. DAC-MACS: effective data access control for
multiauthority cloud storage systems. IEEE Trans. Inf.
Forensics Secur., 8(11):1790–1801, 2013.

[59] Xuanxia Yao, Zhi Chen, and Ye Tian. A lightweight
attribute-based encryption scheme for the internet of
things. Future Gener. Comput. Syst., 49:104–112, 2015.

A Security Model for CP-ABE

We define the security game IND-CCA(λ) between challenger
and attacker as follows:

• Setup phase: The challenger runs Setup(λ) to obtain
MPK and MSK, and sends the master public key MPK
to the attacker.

• First query phase: The attacker can make two types of
queries:

– Key query: The attacker queries secret
keys for sets of attributes S, and obtains
SKS←KeyGen(MSK,S) in response.

– Decryption query: The attacker sends a ciphertext
CTA for access policy A and some set S that
satisfies A to the challenger, who returns the
message M ← Decrypt(MPK,SKS,CTA) (where
SKS←KeyGen(MSK,S)).

• Challenge phase: The attacker specifies some access
policy A∗ such that none of the sets S in the first key
query phase satisfies A∗, generates two equal-length
messages M0 and M1, and sends these to the challenger.
The challenger flips a coin, i.e., β ∈R {0,1}, encrypts
Mβ under A∗, i.e., CTA∗←Encrypt(MPK,A∗,Mβ), and
sends the resulting ciphertext CT∗A∗ to the attacker.

• Second query phase: This phase is identical to the first
query phase, with the additional restriction that the at-
tacker cannot query keys for sets of attributes S that satisfy
the policy A∗ or make a decryption query for CT∗A∗ .

• Decision phase: The attacker outputs a guess β′ for β.

The advantage of the attacker is defined as

AdvIND-CCA=

∣∣∣∣Pr[β′=β]− 1
2

∣∣∣∣.
A scheme is fully secure against chosen-ciphertext attacks
if all polynomial-time attackers have at most a negligible
advantage in this security game.

In the model for security against chosen-plaintext attacks,
the attacker is not allowed to make decryption queries in the
first and second query phase—only key queries.

14

https://blog.cloudflare.com/geo-key-manager-how-it-works/
https://blog.cloudflare.com/geo-key-manager-how-it-works/
https://eprint.iacr.org/2019/966
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/
https://blog.cloudflare.com/unimog-cloudflares-edge-load-balancer/

B Other Definitions

B.1 Symmetric Encryption

B.1.1 Formal Definition

We define symmetric encryption as follows. Let λ be
the security parameter. A symmetric encryption scheme
SE=(Enc,Dec), with symmetric key K∈{0,1}λ, is defined as

• EncK(M): On input message M ∈ {0,1}∗, encryption
returns a ciphertext CTsym.

• DecK(CTsym): On input ciphertext CTsym, decryption
returns a message M or an error message⊥.

The scheme is correct if for all keys K ∈ {0,1}λ and all
messages M∈{0,1}∗, we have DecK(EncK(M))=M.

B.1.2 Security Model

For symmetric encryption, we use the same security notion
as in [30], i.e., ciphertext indistinguishability. Informally,
ciphertext indistinguishability ensures that an attacker cannot
distinguish between encryptions of any two messages. More
formally, it is defined as follows. Let λ be a security parameter
and let SE = (Enc,Dec) be a symmetric encryption scheme.
Consider the following game between a challenger and
attacker. The challenger first picks a key K ∈ {0,1}λ. Then,
the attacker specifies two messages M0,M1 and gives these
to the challenger, who flips a coin β ∈R {0,1} and returns
CTsym ← EncK(Mβ) to the attacker. The attacker outputs a
guess β′ for β. Then, SE = (Enc,Dec) has indistinguishable
ciphertexts if for all polynomial-time attackers in the game
above holds that the advantage

∣∣Pr[β′=β]− 1
2

∣∣ is negligible

B.2 MAC Function

B.2.1 Formal Definition

We formally define a MAC function as follows. Let λ be the
security parameter. A message authentication code (MAC)
(MACKMAC ,VrfyKMAC

), where KMAC ∈ {0,1}λ is the MAC
key, is defined by

• MACKMAC(M): On input message M ∈ {0, 1}∗, this
algorithm outputs a tag T.

• VrfyKMAC
(M,T): On input message M and tag T, the

algorithm returns 0 (“reject”) or 1 (“accept”).

The MAC is correct if for all keys KMAC ∈ {0,1}λ and all
messages M∈{0,1}∗ it holds that if T←MACKMAC(M), then
VrfyKMAC

(M,T)=1.

B.2.2 Security Model

For MACs, we use the notion of security against one-time
chosen-message attacks. Let λ be the security parameter, and
let (MACKMAC ,VrfyKMAC

) be a message authentication code.
Consider the following game between challenger and attacker.
The challenger first picks a key KMAC∈{0,1}λ. The attacker
sends a message M to the challenger, who returns a tag T←
MACKMAC(M). Then, the attacker outputs a pair (M′,T′). The
attacker succeeds if (M,T) ̸=(M′,T′) and Vrfy(M′,T′)=1.

B.3 Special Commitment Scheme

B.3.1 Formal Definition

The special commitment scheme that we use is defined as
follows. Let λ be the security parameter.

• ESetup(λ)→pub: Define hashes h1 : {0,1}448→Zp and
h2 : {0,1}448→{0,1}λ, and set pub=(h1,h2).

• ES(λ, pub) → (rand, com, dec): Generate
dec ∈R {0, 1}448, and compute com = h1(dec) and
rand=h2(dec).

• ER(pub,com,dec)→ rand: Generate rand←h2(dec).

The special commitment scheme is correct if
for all (rand, com, dec) ← ES(λ, pub) holds that
ER(pub,com,dec)= rand.

B.3.2 Security Model

A special commitment scheme (ESetup,ES,ER) is secure if
it is hiding and binding.

• Hiding: Consider an attacker and a challenger. Then,
the challenger runs pub ← ESetup(λ) and flips a coin
β ∈R {0, 1}. If β = 0, then C generates a random
rand∈R {0,1}λ, and otherwise, it runs (rand,com,dec)←
ES(λ,pub). It shares (λ,pub,rand,com) with the attacker,
who then outputs a guess β′ for β. The scheme is hiding
if for all such attackers, it holds that the advantage∣∣Pr[β=β′]− 1

2

∣∣ is negligible.

• Binding: Consider an attacker and a challenger. Then,
the challenger runs pub ← ESetup(λ), and shares
(rand,com,dec)← ES(λ,pub) with the attacker. Then,
it is computationally infeasible for the attacker to find
dec′ ̸= dec such that ER(pub,com,dec′) = rand, i.e., for
output dec′ ̸=dec of the attacker, it holds that the success
probability Pr[ER(pub,com,dec′) = rand] is negligible.
The scheme is binding if this holds for all such attackers.

15

C Description of Our CCA-Secure Scheme

We give a simplified description (using the simplified
description of TKN20 in Section 3.2.10) of our CCA-secure
scheme below.

• Setup(λ) → (MPK, MSK): The setup outputs the
master public-secret key pair (MPK, MSK), where
Hi : {0,1}∗→G1 with i∈{0,1} are two hash functions
(modeled as random oracles), KDF : GT → {0, 1}λ

is a key derivation function [16], SE = (Enc,Dec) is
a symmetric encryption scheme, pub are the public
parameters generated with the setup ESetup of a special
commitment scheme, MSK=(α,b), and

MPK=(SE,pub,p,G1,G2,GT ,e,g1,g2,H0,H1,

A=e(g1,g2)
α,B=gb

1).

• KeyGen(MSK, (S,ψlab)) → SKS: On input a set of at-
tribute values S and the associated labeling map ψlab : S→
{0,1}∗, which maps the attributes in the set S to labels
(represented as strings), it outputs the secret key SKS as

SKS=(S,K1=gα+rb
1 ,K2=gr

2,

{K3,att=(H0(ψlab(att))·H1(ψlab(att))xatt)r}att∈S,

K3,CCA=H0(CCA)r,K4,CCA=H1(CCA)r),

where r∈RZp is a randomly generated element in Zp and
xatt denotes the representation of att in Zp.

• Encrypt(MPK, A, M) → CTA: On input a plain-
text message M ∈ {0, 1}∗ and an access policy
A= (A,ρ,ρlab,ρ,τ)—where τ : {1,...,n1} → {1,...,m}
is a function that maps each row that is associated with
the same label to a different integer in {1,...,m}, with m
being the maximum number of times that a label occurs
in the policy—it first extends the policy A to A′ such
that it applies an AND operator to A and the attribute
label-value pair CCA: com (where com is defined as
below), and outputs a ciphertext CT′A′ as

CT′A′=(A,com←h2(dec),C←EncK(dec∥M),CTA′ ,

T=MACK′(A∥com∥C∥CTA′)),

so that

CTA=(C1=gs
2,
{

C2,l =gsl
2

}
l∈{1,...,m},{

C3, j =Bλ j ·(H0(ρlab(j))·H1(ρlab(j))xρ(j))sτ(j)
}

j∈χ0
,{

C3, j =B−λ j ·H0(ρlab(j))sτ(j) ,

C4, j =Bxρ(j)λ j ·H1(ρlab(j))sτ(j)
}

j∈χ1
),

where s,s1,...,sm,v2,...,vn2+1 ∈R Zp are randomly gen-
erated elements in Zp, λ j =A j,1s+∑k∈{2,...,n2+1}A j,kvk,
χi = { j ∈ {1, ..., n1 + 1} | ρ(j) = i} for i ∈ {0, 1},
K←KDF(As), dec∈R {0,1}448 and K′←h1(dec).

• Decrypt(SKS, CTA′) → M′: On input the ciphertext
CTA′ (where A′ is an AND-composition of policy A
and CCA: com), and a secret key SKS, it first checks
whether S satisfies the A. If not, then it aborts. Oth-
erwise, it first determines ϒ0 = { j ∈ χ0 | ρ(j) ∈ S},
ϒ1 = { j∈ χ1 | ρ(j) /∈ S∧ρlab(j)∈ψlab(S)}, ϒ=ϒ0∪ϒ1
and {ε j} j∈ϒ such that ∑ j∈ϒ ε jA j = (1, 0, ..., 0), then
computes e(g1, g2)

αs as in the decryption of TKN20
(Section 3.2.10), where a key can be generated for CCA
: com by computing K3,CCA ·Kxcom

4,CCA, then retrieves:

K←KDF(e(g1,g2)
αs)

dec∥M←DecK(C)

K′←h1(dec),

and verifies:

h2(dec) ?
=com

Vrfy(A∥com∥C∥CTA′ ,T)
?
=1.

If both checks pass, then the decryption returns M, and
if not, it returns an error message.

D Table of Keys

Table 4 summarizes the keys that are used in Portunus.

16

Table 4: Summary of different keys

Key Purpose CA in core Certificate
Manager in
core

Edge machine

Master Public Key Encrypts private policy keys over an
access policy

Generate Read

Master Secret Key Generates secret keys for machines
based on their attributes

Generate,
Read

Machine Secret Key /
Attribute-Based Secret
Key

Decrypts private policy keys stored
in global key-value store, Quicksil-
ver

Generate Read

Customer TLS Private
Key

Performs digital signature necessary
to complete TLS handshake to the
customer’s website

Generate Read (tran-
siently on
upload)

Read

Public Policy Key Encrypts customers’ TLS private
keys

Generate,
Read

Private Policy Key Decrypts customers’ TLS private
keys

Read (tran-
siently during
key rotation)

Generate

Machine Identity Key Authenticates machine to CA to
securely fetch machine secret key

Read Read

17

	Introduction
	Requirements
	Cryptographic Building Blocks
	Policy Specification Language
	Attribute-Based Encryption
	Key-Policy ABE (KP-ABE)
	Ciphertext-Policy ABE (CP-ABE)
	Formal Definition of CP-ABE
	Collusion Resistance
	Pairing-Based ABE
	The TKN20 Scheme
	Representation of Monotone Access Policies
	Representing NOTs and Labels
	High-Level Overview of the TKN20 Scheme
	Simplified Description of the TKN20 Scheme
	Description of the Fully Secure Variant
	Support for Wildcards
	Key Encapsulation and Symmetric Encryption
	CCA-Security via the BK-Transform

	API and Implementation

	Design
	Encrypting Customer Keys
	Accessing Customer Keys
	Key Distribution
	Key Rotation
	Attribute Changes
	Networking and Resiliency
	Monitoring and Alerting

	Evaluation
	Cryptography
	Request Latency

	Availability
	Analysis

	Related Work
	Conclusion and Future Work
	Security Model for CP-ABE
	Other Definitions
	Symmetric Encryption
	Formal Definition
	Security Model

	MAC Function
	Formal Definition
	Security Model

	Special Commitment Scheme
	Formal Definition
	Security Model

	Description of Our CCA-Secure Scheme
	Table of Keys

