
Universally Composable NIZKs: Circuit-Succinct,
Non-Malleable and CRS-Updatable

Behzad Abdolmaleki1, Noemi Glaeser1,2, Sebastian Ramacher3, and Daniel
Slamanig3

1 Max Planck Institute for Security and Privacy, Bochum, Germany
abdolmaleki.behzad.ir@gmail.com

2 University of Maryland, College Park, USA
nglaeser@umd.edu

3 AIT Austrian Institute of Technology, Vienna, Austria
{sebastian.ramacher, daniel.slamanig}@ait.ac.at

Abstract. Non-interactive zero-knowledge proofs (NIZKs) and in par-
ticular succinct NIZK arguments of knowledge (so called zk-SNARKs)
increasingly see real-world adoption in large and complex systems.
A requirement that turns out to be important for NIZKs is ensuring
non-malleability of proofs, which can be achieved via the property of
simulation extractability (SE). Moreover, many zk-SNARKs require a
trusted setup, i.e., a common reference string (CRS), and in practice
it is desirable to reduce the trust in the CRS generation. Latter can be
achieved via the notions of subversion or updatable CRS. Another impor-
tant property when deployed in large and complex systems is the secure
composition of protocols, e.g., via using the Universal Composability
(UC) framework. Relying on the UC frameworks allows to arbitrarily
and securely compose protocols in a modular way.
In this work, we are interested in whether zk-SNARKs can provide all
these desired properties. This is a tricky task as the UC framework rules
out several natural techniques for such a construction. Our main result
is to show that achieving these properties is indeed possible in a generic
and modular way when slightly relaxing the succinctness properties of
zk-SNARKs to those of a circuit-succinct NIZK which is not witness-
succinct, i.e., by increasing the proof size of the underlying zk-SNARK
by the size of the witness w. We will argue that for various practical ap-
plications of zk-SNARKs this overhead is perfectly tolerable. Our start-
ing point is a framework by Abdolmaleki et al. called Lamassu (ACM
CCS’20) which we extend in several directions. Moreover, we implement
our compiler on top of Sonic (ACM CCS’19) and provide benchmarks as
well as a discussion on the choice of the required primitives.

1 Introduction

Non-Interactive Zero-Knowledge proofs (NIZKs) [GMR85, BFM88] are a fasci-
nating and powerful primitive. They allow a party to prove the validity of an
arbitrary NP statement in a single message (the proof) in a publicly verifiable

way, without revealing anything beyond its validity. Especially NIZKs for certain
classes of algebraic languages [FS87, GS08, JR13] are extensively used in the de-
sign of privacy-preserving systems (such as credentials and digital currencies) as
well as multi-party computation protocols.

Due to their numerous potential applications in privacy-preserving cryptocur-
rencies and blockchains in general, short NIZKs with efficient verification (at the
cost of tolerating a less efficient prover), so called zero-knowledge Succinct Non-
interactive ARguments of Knowledge (zk-SNARKs) [BCCT12], have attracted a
tremendous amount of research within the last decade. Enormous research effort
has been put into developing efficient zk-SNARKs, e.g., [Gro10, Lip12, GGPR13,
PHGR13, Lip13, DFGK14, Gro16, BCR+19, MBKM19, GWC19, CHM+20,
GLS+21], enabling proofs of statements that are not efficiently realizable with
NIZKs for algebraic languages. The development of different types and opti-
mized versions of existing zk-SNARKs is meanwhile exploding and progress
is extremely fast-paced. There is also an increasing interest in composing zk-
SNARKs in a modular way [CFQ19, CFF+21], as well as generalized frameworks
for their construction [RZ21]. Despite their well-known drawback of relying on
assumptions that are non-falsifiable [GW11], zk-SNARKs are attractive in prac-
tice not only due to their (relative) practical efficiency, but more importantly due
to their general-purpose nature. While customized NIZK proofs for application-
specific statements can result in protocols highly optimized for the specific task
at hand, the enormous cryptographic expertise and time required to develop
new protocols for each application severely limits the adoption of modern cryp-
tographic building blocks. In contrast, toolchains around zk-SNARKs enable
non-cryptography experts to easily express a statement to be proven in a famil-
iar programming language and the corresponding implementations are generated
automatically. This is possible due to the vast amount of available tools.4

Desirable properties of zk-SNARKs for secure adoption. Making the
use and adoption of zk-SNARKs in (complex) applications easy from an engi-
neering perspective entails the risk that the security of the entire system breaks
due to the lack of some property provided by the used zk-SNARK. Two such
important but not readily available properties are: i) non-malleability and ii)
composability. Non-malleability means that from a given proof it is neither pos-
sible to obtain another valid proof for the same statement nor a new proof for a
potentially related statement from a given proof. This can be guaranteed via the
strong soundness notion of simulation extractability (SE) [Sah99, Sah01], which
is currently intensively studied for specific zk-SNARKs [GM17, Lip19, BPR20,
BKSV21, GOP+22, GKK+22]. Composability means that a zk-SNARK can be
arbitrarily composed with other cryptographic primitives into more complex sys-
tem while the security properties are still guaranteed to hold. A prominent tool
to achieve this is the universal composability (UC) framework [Can01], which is
very popular for modeling security for blockchain-based systems, e.g., [KMS+16,
AME+21, TMM21, TMM22]. Ideally, it is possible to devise a generic technique
for providing the SE property in the UC framework that works for a large class
4 https://github.com/ventali/awesome-zk#tools

2

https://github.com/ventali/awesome-zk#tools

of (if not all) zk-SNARKs and thereby makes minimal assumptions on the un-
derlying SNARK. As we will discuss soon, this is not straightforward. Even more
so, when taking the following aspect into account.

There is a large class of zk-SNARKs that require a trusted setup, i.e., the gen-
eration of a common reference string (CRS) where the CRS generator is trusted
to delete the trapdoor of the CRS after the setup. Consequently, when devising
a generic technique, it is also desirable that it helps to reduce the required trust.
While this is possible via ceremonies [KMSV21], they are cumbersome in prac-
tice. An alternative approach is to rely on the notion of subversion NIZK [BFS16]
or (zk-)SNARKs [ABLZ17, Fuc18]. Unfortunately, for zk-SNARKs this approach
can only provide guarantees for the prover. A technique that represents a viable
middle ground is the use of an updatable CRS [GKM+18], where everyone can
update a CRS and updates can be verified by anyone. As long as one operation
– the CRS creation or one of its updates – have been performed honestly, the
prover can be sure that zero-knowledge holds in the presence of a malicious CRS
generator and the verifier can be sure that soundness holds. This concept is get-
ting increasingly popular [MBKM19, GWC19, CHM+20, RZ21, CFF+21, Lip22].

Hurdles to overcome. zk-SNARKs that do not require a CRS but have a trans-
parent setup instead, e.g., [BCR+19, Set20], use the Fiat-Shamir (FS) heuris-
tic [FS87] to obtain non-interactivity in the random oracle model (ROM) [BR93].
There are also popular zk-SNARKs that use a CRS and the FS heuristic for
achieving non-interactivity [MBKM19, GWC19, CHM+20]. While [MBKM19,
GWC19, CHM+20] support an updatable CRS, due to the use of FS these
protocols require a rewinding extractor and are thus not compatible with the
UC framework. Moreover, while there are results on SE for certain types of
three-round public-coin interactive arguments [FKMV12], the aforementioned
protocols are multi-round protocols and the study of SE in this setting is ongo-
ing [GKK+22]. It would be possible to switch to alternative transformations that
are straight-line extractable [Fis05, Unr15], but besides incurring a performance
penalty, their application to such protocols has also not been studied for these
types of proofs.

When moving to zk-SNARKs that avoid the use of FS and directly rely
on knowledge assumptions, e.g., [Gro10, Gro16, Lip22], and/or require knowl-
edge assumptions for their CRS update functionality, other issues emerge. The
use of knowledge assumptions is not compatible with the UC framework per
se. Though there is some recent progress into the direction of knowledge as-
sumptions [KKK21] and the use of algebraic adversaries [ABK+21], i.e., the
algebraic group model [FKL18], in UC, the results are still not generically ap-
plicable without restrictions. So the use of knowledge assumptions in UC still
needs to be considered problematic. When it comes to the SE aspect, the popular
zk-SNARK due to Groth [Gro16] only satisfies a weak notion of SE [BKSV21]
or one requires specifically crafted designs [GM17] to achieve SE. In case of
updatability of the CRS, there are either specific designs (or modifications of
existing designs) [GKM+18, Lip19] and only very recently SE has been shown

3

for some popular multi-round protocols that use FS and have an updatable
CRS [GKK+22]. Nevertheless, this still leaves the problem of using knowledge
assumptions for the CRS update functionality and thus no general UC compat-
ibility.

At this point we can conclude that achieving SE in the UC framework and
support for updatable CRS (if required) in the general case is a challenging task
that requires a lot of protocol specific work. Moreover, for some zk-SNARKs the
current state of knowledge does not allow for providing these properties.

Overcoming the hurdles. A central problem that underlies many issues dis-
cussed above is relying on non-black-box extractors, i.e., either rewinding ex-
tractors for FS or the direct use of knowledge assumptions. One well-known
technique to overcome these issues when having a CRS available is to extend
the CRS by a public key, to include an encryption of the witness in the proof
and to extend the original statement to also show that the correct witness is
encrypted [DP92]. This trick can be combined with the classical OR trick to
enable unbounded simulation of proofs [DDO+01] and together this gives the
SE property with a straight-line extractor. This has been previously used in the
C∅C∅-framework [KZM+15] to generically obtain SE-NIZKs from NIZKs that
are secure in the UC framework. Recently in [ARS20] the C∅C∅-framework has
been revisited and tailored to the use with zk-SNARKs. In particular, [ARS20]
uses the non-black-box extractor of the underlying zk-SNARK rather than an
encryption of the witness (and thus keeps the zk-SNARKs succinct as they are,
modulo some small constant overhead) and builds upon a different technique
to support an unbounded simulation of proofs from [DS19]. In [ARS20] it is
then shown that latter technique can be made compatible with updatable CRS
and thus it yields updatable SE-SNARKs generically via a framework called
Lamassu. Unfortunately, the non-black-box extraction approach makes it in-
compatible with the UC framework. So while switching to a black-box extractor
can solve this issue at the cost of increasing the proof size by the size of the en-
crypted witness, there is a problem that remains with respect to updatability of
the CRS. In particular, the used public-key encryption (PKE) scheme also needs
to be compatible with updatability. Recent work [BS21] tries to overcome this
issue by introducing what they call PKE with updatable keys. However, despite
claiming to provide a black-box approach, one critical issue with the approach
in [BS21] is that updatability of the PKE is based on a non-black-box extractor.
In particular, extractability of the PKE with updatable keys relies on a concrete
knowledge assumption and thus makes it incompatible with the UC framework.

So the state of affairs is unsatisfactory and our aim is to provide a generic
approach that is fully black-box and thus circumvents all these problems and
allows to build UC secure SE-NIZKs (with updatable CRS) from zk-SNARKs
generically.

Relaxing the succinctness of zk-SNARKs. In CRS-based NIZK proofs the
proof size is linear in the size of the circuit C computing the NP relation with
either a multiplicative, e.g., [GOS12], or an additive overhead [KNYY19] (latter
are called compact NIZK). Making them more compact either requires to rely

4

on heavy machinery, i.e., iO [SW14] or knowledge assumption [Gro10, Lip12,
GGPR13] as done within zk-SNARKs. The latter allows to obtain so called
circuit- and witness- succinct zk-SNARKs where the typical succinctness re-
quirement is that the proof size is poly(λ, log |C|) with λ being the security pa-
rameter (and this is in fact even independent of the witness). A weaker notion
of the succinctness is called circuit-succinctness [KZM+15, KMS+16] which is a
NIZK with proof size poly(λ, log |C|) + |w|. In other words, the size of the proofs
and verification time are (quasi-)linear in the witness size |w|, but sublinear in
size of the circuit that encodes the language. As discussed above, we aim at con-
structing UC secure SE-NIZKs (with updatable CRS) that are circuit-succinct,
which is an open problem.

On the size of witnesses in practice. As mentioned above, achieving black-
box extraction requires us to additionally encrypt the witness and thus we need
to additionally include the resulting ciphertext in the proofs, incurring an addi-
tive overhead to the proof size. By using a hybrid cryptosystem for this task, e.g.
combining a PKE with a symmetric encryption scheme, the size grows exactly
by the witness-independent part required for the PKE and the length of the
witness w (potentially with some additional small constant overhead from the
symmetric encryption scheme). Consequently, our approach is not suitable for
applications with huge witnesses like scalability solutions in blockchains (e.g.,
ZK-Rollups). However, there are many practical applications where we often
deal with relatively small witnesses. One prominent example is the witnesses of
the Sapling output or Spend circuits from Zcash [HBHW22]. They consist of
group elements from the Jubjub elliptic curve, scalars, and paths in a Merkle
tree. For the Spend circuit the size is bound by 1413 bytes. Moreover, there
are many applications with small to moderate sized witnesses such as SNARK-
based authentication schemes in context of self-sovereign identity [LCOK21] or
anonymous credentials [RWGM22]. Blockchain applications include blockchain-
based e-voting (e.g., the recently launched Vocdoni5 or proofs of assets or swaps
in cryptocurrencies [EKKV22]. Furthermore, the Merkle memberships proofs as
used by Filecoin for proofs of replication6 start from small nodes which serve as
witnesses and thus our techniques also seem applicable in this context.

Concurrent and independent work. In a recent concurrent and independent
work, Ganesh et al. [GKO+22] present an approach that avoids the linear de-
pendency on the size of the witness and obtain witness-succinct UC SNARKs
in the global random oracle model (GROM). The core idea is to replace the
encryption of the witness with a succinct commitment that is straight-line ex-
tractable. While their overall approach is generic, they in particular show that
the KZG polynomial commitment [KZG10] (more precisely the deterministic
variant in [CHM+20]) provides all the required properties. They cleverly use

5 https://docs.vocdoni.io/architecture/protocol/anonymous-voting/zk-
census-proof.html

6 https://trapdoortech.medium.com/filecoin-how-storage-replication-is-
proved-using-zk-snark-8a2a06b1c582

5

https://docs.vocdoni.io/architecture/protocol/anonymous-voting/zk-census-proof.html
https://docs.vocdoni.io/architecture/protocol/anonymous-voting/zk-census-proof.html
https://trapdoortech.medium.com/filecoin-how-storage-replication-is-proved-using-zk-snark-8a2a06b1c582
https://trapdoortech.medium.com/filecoin-how-storage-replication-is-proved-using-zk-snark-8a2a06b1c582

them to encode the witness as the coefficients of the polynomial and combine
it with Fischlin’s approach [Fis05] to obtain straight-line extractability. Unfor-
tunately, Ganesh et al. only discuss the generic compiler and leave (custom)
instantiations for future work. Consequently, it is hard to estimate the concrete
overhead, but we can analyze lower bounds for the prove of the KZG eval algo-
rithm and the witness encoding. For security parameter λ, they require at least
λ elements from G1 and and F for the polynomial commitment evaluation and
λ elements from F for the evaluation of the polynomial. Assuming a security pa-
rameter of 128 bits and consequently a pairing-friendly elliptic curve group G1 of
at least 381 bits and a finite field of at least 256 bits, the constant overhead is at
least 12.5 KB. Our approach in contrast only needs a single call to a PKE and a

Fig. 1. Overview of our approach.

symmetric encryption and the constant overhead is below 0.6 KB (cf. Section 5).
For large witnesses, their approach (ignoring computational costs) will clearly
be superior when it comes to proof size due to being witness-succinct, but for
witnesses up to 10 KB our approach is competitive. Finally, we want to men-
tion that due to the CRS of KZG polynomial commitments, in contrast to our
approach the approach by Ganesh et al. in [GKO+22] does not yield updatable
UC SNARKs.

1.1 Our Contributions

Our contributions can be summarized as follows:

Framework for BB SE updatable succinct NIZK. We present a framework
for black-box (BB) simulation extractable (SE) succinct NIZK with updatable
CRS (see Figure 1). As mentioned above, for achieving BB extractability we
need to relax the succinctness of SNARKs to that of succinct NIZKs [KNYY20]
since we need to encrypt the witness in the proof (which adds Renc). Our start-
ing point is the Lamassu framework [ARS20], which represents a compiler that

6

takes any updatable SNARK and transforms it into an SE updatable SNARK.
Here it is important to mention that Lamassu uses the non-BB extractor pro-
vided by the underlying SNARK and the notion of updatable signatures (US)
for the simulation of proofs. The simulation is enabled by the OR trick [DS19]
based on key-homomorphic signatures (which adds Rsig). They are turned into
US to support an updatable CRS. Also for the extraction from updates of the
US, a non-BB extractor based on a knowledge assumption is required to finally
obtain SE updatable SNARKs. Consequently, we have to overcome the hurdle to
provide BB extraction for the used US as well as the new public key in the CRS
crsenc used for encrypting the witness. Very briefly, our key idea to providing
BB extraction is to use not necessarily succinct but efficient NIZK proofs with-
out a CRS that provide BB extraction for all updates of the CRS elements, i.e.,
crsSNARK of the underlying SNARK, the public key of the US scheme (crssig)
and the public key of the encryption scheme (crsenc). We choose to base them on
Σ-protocols converted to NIZK proofs either using the Fiat-Shamir (FS) [FS87],
the Fischlin [Fis05] or the Unruh [Unr15] approach. While this requires that the
updates of all components are Σ-protocol friendly, this holds true for all the ex-
isting relations in known constructions. Interestingly, by using this approach for
the CRS of the underlying SNARK, we can make the verification of the update
proofs much more efficient and typically the update proofs are also shorter than
the original ones. This improvement also carries over to the original Lamassu
framework in [ARS20] and can be used to improve their CRS update proofs.
We now basically use the same idea for achieving BB extraction for US and the
encryption. For the latter we introduce a novel public-key encryption (PKE)
primitive which we call extractable key-updatable PKE (EKU-PKE) and show
an efficient instantiation.7 We call the resulting framework BB-Lamassu.

Treatment of updatable NIZK in the UC framework. We provide an
explicit treatment of BB-Lamassu in the UC framework. To the best of our
knowledge, there is no treatment of SNARKs/NIZKs with updatable CRS in the
UC framework so far.8 While there are some recent results [KKK21, ABK+21]
pointing to a promising direction of directly analyzing SNARKs in UC, we want
to proceed via a generic approach that does not depend on the underlying
SNARK. Since BB-Lamassu provides BB extraction to achieve SE, following
Groth [Gro06] it is possible to securely instantiate a NIZK ideal functionality
FNIZK. However, so far this ignores the updatable CRS aspect. We recall that in
our update proof of the CRS of the SNARK, the US and the encryption scheme,
we use a FS/Fischlin/Unruh-transformed NIZK. Due to the nature of UC and
our need to extract from proofs, we are prevented from rewinding extractors
(as is the case for FS). Since we never need to extract from proofs of update

7 Note that [BS21] introduced a similar notion of PKE with updatable keys indepen-
dently. However, they are not focusing on BB extraction and thus this is not useful
to us.

8 In an independent work, Kerber et al. [KKK20] defined a functionality for updatable
SRS to perform this secure generation in a distributed manner. But they do not
investigate the UC-security of the whole NIZK construction.

7

correctness of the CRS of the underlying SNARK (we can always simulate using
the OR trick), we can use FS there. But for the other two parts we need to rely
on the Fischlin or Unruh transforms, which provide straight-line extractors. To
formally confirm this intuition, we introduce a new ideal functionality Fup-CRS
for the updatable CRS generation and then prove that BB-Lamassu realizes the
functionality FNIZK in the Fup-CRS-hybrid model.

Implementation and evaluation. In order to demonstrate the applicability of
the BB-Lamassu framework, we provide a detailed analysis of the induced over-
heads. Except for the witness-dependent cost for encrypting the witness (which
is equivalent to the size of the witness), we are able to reduce overheads imposed
by the updatable signature scheme both in storage and runtime compared to
Lamassu. In concrete instantiations, the overheads are 32 bytes for the CRS,
170 bytes for the CRS update, and 256 bytes plus the size of the witness for
the proof. To estimate the runtime costs, we explore possible SNARK-friendly
choices for the symmetric encryption used in a hybrid version of our EKU-PKE.
For witness sizes observed in practical applications such as Zcash, BB-Lamassu
adds well below 10,000 additional constraints.

To give one concrete application of BB-Lamassu, we describe how it can
be applied to Sonic [MBKM19]. Specifically, we discuss modifications to Sonic’s
CRS update to make the update proofs UC-compatible. Thereby, we replace all
the pairing equations with the equivalent amount of discrete logarithm relations
that are proven using a FS/Fischlin/Unruh NIZK, which significantly reduces
the runtime of the CRS update verifier. Additionally, we discuss the overheads
of BB-Lamassu on top of Sonic. For the circuit of a preimage of SHA-256,
which is interesting for Merkle-tree membership proofs, the overhead is a factor
of 1.07. Our evaluation shows that as the circuits get more complex, proving
and verifying the original circuit dominates the overall performance costs and
the overhead converges to the size of the witness.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. Let λ ∈ N be the security pa-
rameter. All adversaries will be stateful. By y ← A(x;ω) we denote the fact that
A, given an input x and random coins ω, outputs y. By x←$ D we denote that
x is sampled according to distribution D or uniformly randomly if D is a set.
Let RND(A) denote the random tape of A, and let ω ←$ RND(A) denote the
random choice of the random coins ω from RND(A).9 We denote by negl(λ) an
arbitrary negligible function. We write a ≈λ b if |a− b| ≤ negl(λ). A bilinear
group generator Pgen(1λ) returns BG = (p,G1,G2,GT , ē), where G1, G2, and
GT are three additive cyclic groups of prime order p, and ē : G1 × G2 → GT is
a non-degenerate efficiently computable bilinear map (pairing).

9 Assuming the given value of λ, a PPT A is able to read only polynomially many (in
security parameter λ) symbols of the random tape.

8

We recall the definitions of key-homomorphic signatures, Schnorr signatures,
NIZKs, Σ-protocols, the Fiat-Shamir, Fischlin and Unruh transforms in Appen-
dices A.1 to A.6.

Black-box constructions. We consider constructions to be black-box if they do
not refer to the code of any cryptographic primitive they use. Instead, they only
depend on the primitives’ input/output behavior. We therefore call extractors
of a NIZK black-box if they do not take the adversary as input.

2.1 Updatable Signatures

We recall the notion of updatable signatures from [ARS20] below include their
relevant properties (updatable correctness, updatable strong key hiding, and
updatable EUF-CMA) Appendix A.7. For the remainder of the paper, let µ be
an efficiently computable map from the private key space (H,+) to the public
key space (E, ·) such that for all csk, csk′ ∈ H, µ(csk+csk′) = µ(csk) ·µ(csk′) and
for all (csk, cpk)← KGen(1λ), cpk = µ(csk) (cf. [ARS20, Def. 3]).

Definition 1 (Updatable signature schemes). An updatable signature scheme
Σ = (KGen,Upk,Vpk,Sign,Verify) is a key-homomorphic [ARS20, Def. 4] signa-
ture scheme consisting of the following PPT algorithms:

KGen(1λ) : Given a security parameter λ, output a signing key csk, a verification
key cpk, a proof ζ, and a message space M.

Upk(cpk) : Given a verification key cpk, output an updated verification key cpkup
with associated secret key updating information upcsk and a proof ζ. The
updated signing key is then cskup := csk+ upcsk.

Vpk(cpk, cpkup, ζ) : Given a verification key cpk, a potentially updated verifica-
tion key cpkup, and a proof ζ, check if cpkup has been updated correctly. When
verifying the original cpk, we write Vpk(cpk, ζ).

Sign(cskup,m) : Given a potentially updated secret key cskup and a message m ∈
M, output a signature σ.

Verify(cpkup,m, σ) : Given a potentially updated public key cpkup, a message m ∈
M and a signature σ, output a bit b ∈ {0, 1}.

Example of Updatable Signatures. [ARS20] gives a Schnorr signature-based
construction which is instantiated in a bilinear group to provide update check-
ability and which uses a knowledge assumption for extraction. For consistency
with the construction of key-updatable public-key encryption (EKU-PKE) in
Section 3, which proves update validity via NIZKs, here we use the same ap-
proach by presenting an instantiation of updatable Schnorr in a prime-order
multiplicative group G with generator g combined with a NIZK. We recall the
the Schnorr signature scheme in Appendix A.2 and here only focus on the algo-
rithms for the key update. Let (P,V) be a simulation-extractable NIZK for the
relation R = {((cpk, cpkup, g), x′) : cpkup = cpk · gx′}.

Upk(cpk) : Set upcsk := x′ ←$ Zp, cpkup := cpk·gx′
, ζup ← P((cpk, cpkup, g), upcpk)

and return (upcsk, cpkup, ζup).

9

Vpk(cpk, cpkup, ζup) : Return V(crs, (cpk, cpkup, g), ζup).

Finally, we present an efficient extractor ExtZ. Note that if Vpk returns 1 on
any input (cpk, cpkup, ζup), by the simulation extractability of the NIZK we have
an extractor that extracts upcsk := x′ from ζup s.t. cskup = csk + upcsk and
cpkup = cpk · gupcsk .

2.2 The Lamassu Compiler

The Lamassu [ARS20] compiler lifts any CRS-based NIZK that is sound (or
knowledge sound) to a non-BB simulation-extractable version. Roughly speak-
ing, Lamassu uses a combination of an updatable EUF-CMA secure signature
scheme Σ and a strongly unforgeable one-time signature (sOTS) scheme ΣOT

(e.g., Groth’s sOTS [Gro06] or a strongly unforgeable variant of Schnorr) to add
the required non-malleability guarantees to the underlying NIZK proof system
Π. It also uses the folklore OR-trick to add simulation soundness. In particular,
during proof generation one computes a signature which certifies the public key
of an sOTS instance using a freshly sampled signing key csk of Σ. Then, one
uses the secret key of the sOTS to sign the parts of the proof which must be
non-malleable. The distinguishing feature is that the signature is provided in
plain and thus one does not need to encrypt it or prove that it verifies with a
verification key in the CRS (e.g., as done in [Gro06]). Consequently, in the OR
part of the proof, the prover only needs to prove that it knows the shift of the
secret key csk (this shift is the trapdoor of the CRS) which adapts signatures
from the freshly sampled cpko to ones valid under the verification key cpk in the
CRS (a technique which was introduced in [DS19]). As it turns out, this feature
lays the foundation to support updatability.

Now, given any language L with NP relation RL, the language obtained via
the compiler is Llamassu s.t.

{
xlamassu := (x, cpk, cpko), wlamassu := (w, csk−csko)

}
∈

RLlamassu
iff:

((x, w) ∈ RL ∨ cpk = cpko · µ(csk− csko)).

The relation associated with Llamassu is designed so that the additional clause
introduced via the OR-trick is the “shift amount” required to shift the signatures
under cpko to signatures under a fixed key cpk in the CRS. A proof for x ∈ L is
easy to compute when given w such that (x, w) ∈ L, and in this case, one does not
need a satisfying second clause in the OR statement but can instead compute
the signatures under newly generated keys. To simulate proofs, however, one can
set up the CRS in a way that csk corresponding to cpk is known, compute the
“shift amount”, and use it as a satisfying witness for the other clause in the OR
statement.

Finally, for Lamassu applied to CRS updatable NIZK proof systems, [ARS20]
show the following:

Theorem 1. Assume that the underlying NIZK (SNARK) scheme satisfies per-
fect completeness, computational zero-knowledge, and computational (knowledge)

10

soundness. Let Σ be a EUF-CMA secure adaptable key-homomorphic signature
scheme, and that the one-time signature scheme ΣOT is strongly unforgeable.
Then, the liffted NIZK construction is a zero-knowledge proof system satisfying
perfect completeness, updatable zero-knowledge, and updatable simulation sound
extractability.

3 Extractable Key-Updatable PKE

Now we introduce extractable key-updatable PKE (EKU-PKE), which are PKE
schemes that allow one to update the keys and provide extractability of key
updates. We will need this primitive to enable encryption of the witness in our
NIZK construction (for simulation extractability) in a way that is compatible
with an updatable CRS.

There are approaches in the literature for key-updatability [PR18, JMM19]
which do not consider extractability. A recent work by Dodis et al. [DKW21]
additionally considers extractability. While this notion is very close to ours,
it does only consider possibly dishonest updates. The security guarantees of a
scheme secure in our notion, however, should hold as long as either the initial
key generation or at least one of the updates is performed honestly. We note
that as done by Groth et al. [GKM+18] for updatable CRS (using Lemma 6),
we model only a single update, as a single adversarial update implies EKU-PKEs
with arbitrarily many updates.

3.1 Definition and Security

We call a PKE scheme UP extractable key-updatable (EKU-PKE) if the key
generation is run by an updatable key generation scheme and the correctness
and black-box extraction properties of the scheme hold for all updated keys that
pass Vpk():

Definition 2 (Updatable key generation). An updatable key generation scheme
UP.KGen = (KGen,Upk,Vpk) consists of the following PPT algorithms:

KGen(1λ) : Given a security parameter λ, it outputs a secret key sk, a public key
pk and a proof ζ.

Upk(pk, (ζi)
n
i=1) : Given a public key pk and update proofs for pk, it outputs an

updated public key pkup with associated secret key updating information upsk
and a proof ζup.

Vpk(pkup, (ζi)
n
i=1) : Given a potentially updated public key pkup and a list of

update proofs ζi, the algorithm outputs a bit b indicating acceptance (b = 1)
or rejection (b = 0).

We note that in general the final skup := sk ⊙ upsk, in which depending on
the scheme the operator ⊙ might represent different operations (e.g., addition,
multiplication). For our instantiation here we use multiplication.

11

Definition 3 ((Perfect) Updatable key correctness). The (perfect) up-
datable key correctness property requires the following three conditions:

(i) for any (sk, pk, ζ)← KGen(1λ): Vpk(pk, ζ) = 1
(ii) for any (sk, pk, ζ)← KGen(1λ) and (pkup, (ζi)

n+1
i=1) such that Vpk(pkup, (ζi)

n+1
i=1) =

1, the distributions of pk and pkup are (perfectly) indistinguishable.
(iii) for any (pk, (ζi)

n
i=1) such that Vpk(pk, (ζi)ni=1) = 1 and (pkup, ζn+1)← Upk(pk,

(ζi)
n
i=1), we have that Vpk(pkup, (ζi)

n+1
i=1) = 1.

Definition 4 (Updatable black-box extraction). An updatable key gener-
ation scheme UP.KGen = (KGen,Upk,Vpk) is black-box extractable if there ex-
ists an efficient extractor Ext such that: for any (sk, pk, ζ) ∈ image(KGen(1λ)),
(upsk, pkup, ζup) ∈ image(Upk(pk, ζ)) where both Vpk(pk, ζ) = 1 and Vpk(pkup,
ζup) = 1 hold, then for skup ← Ext(ζ, pk, ζup, pkup) we have that (skup, pkup, ·) ∈
image(KGen(1λ)).

Security properties. Let UP be a EKU-PKE scheme. We now define key-
updatable IND-CPA security for the public key encryption scheme UP and note
that one can analogously define key-updatable IND-PCA and key-updatable IND-
CCA security:

Expup-cpaUP,A (λ)

(sk, pk, ζ)← UP.KGen(1λ);
((pkup, ζup),m0,m1)← A(pk, ζ); b←$ {0, 1};
r ←$ RND(UP); c∗ ← UP.Enc(pkup,mb; r); b

′ ← A(c∗);
return (b = b′) ∧ UP.Vpk(pkup, {ζ, ζup});

Note that A can also generate the initial pk, which an honest updater Upk
then updates and outputs pkup, upsk, and the proof ζup. Then we require that
Vpk(pk, ζ) = 1.

Definition 5 (Key-updatable IND-CPA). UP is key-updatable IND-CPA secure
if for any PPT adversary A,

Advup-cpaUP,A (λ) := |Pr[Expup-cpaUP,A (λ) = 1]− 1/2| ≈λ 0.

3.2 Instantiation

We present a construction of an EKU-PKE UP over a prime-order group (G, g, p)
based on the ElGamal PKE scheme. Thus, our Setup outputs only publicly
verifiable parameters and does not need to be run by a trusted party. Let ZK be in
the set {FS,Fischlin,Unruh} for the relation R(xZK, wZK) where xZK := (pk′, pk),
wZK := w such that pk′ = pkw. The full construction is as follows:

KGen(1λ) : Given a security parameter λ it outputs a secret key sk, public key
pk := gsk, and its corresponding proof ζ1 := πZK for (pk, g) and witness sk.

Upk(pk, (ζi)
n
i=1) : It outputs an updated public key pkup := pkupsk with asso-

ciated secret key updating information upsk and a proof ζn+1 = πZK that
((pkup, pk), upsk) ∈ R.

12

Vpk(pk, pkup, (ζi)
n
i=1) : Given a verification key pk, a potentially updated veri-

fication key pkup, and the proof ζup it checks if pkup has been updated cor-
rectly by running VZK((pkup, pk), ζup). When verifying the original pk, we
write Vpk(pk, ζ).

Enc(pkup,M; r) : Given potentially updated public key pkup, a message M ∈ G,
and a randomness r it outputs the ciphertext c := (gr,M · pkrup).

Dec(skup, c) : Given potentially updated secret key skup and the ciphertext c, it

outputs the message M := c2/c
skup
1 .

Theorem 2. Let ZK ∈ {FS,Fischlin,Unruh} be a non-interactive proof of knowl-
edge with black-box extraction for the relation R(xZK, wZK) and suppose that the
DDH assumption holds in (G, g, p). Then the above scheme is a extractable key-
updatable PKE.

Proof. Property (i) of updatable key correctness is straightforward by construc-
tion and the completeness of ZK. Similarly, updatable key correctness-(ii) follows
by construction and by soundness of ZK. We reduce updatable key correctness-
(iii) to the soundness of the ZK argument. Let A be the adversary against (iii).
Let B be an adversary against the soundness of ZK with relationR(xZK, wZK) and
language LZK with xZK = (pkup, pk), wZK = upsk such that Vpk(pk, pk′up, ζ ′up) = 1.
B picks pk←$ G. She runs the adversary A(pk) and obtains pk′up with ζ ′up = πZK

such that Vpk(pk, pk′up, ζ
′
up) = 1 and (pk′up, pk) /∈ LZK. Therefore, the reduction

has the same (non-negligible) advantage in the ZK’s soundness game as the A has
in the updatable key correctness-(iii) game. Finally, updatable BB-extractability
follows directly from the BB-extractability of ZK.

We note that in general, the properties of the NIZK extractor directly translate
to the UP extractor, i.e., if ZK provides a straight-line extractor, then UP is also
straight-line extractable.

Additionally, in Lemma 1, we prove that this construction is key-updatable
IND-CPA secure.

Lemma 1. Let (G, g, p) be a prime-order group and suppose the DDH assump-
tion holds. Let ZK ∈ {FS,Fischlin,Unruh} be a non-interactive proof of knowledge
with black-box extraction. Then the above scheme is key-updatable IND-CPA se-
cure.

Proof. We prove IND-CPA security with a sequence of games starting from the
standard IND-CPA game, where the adversary has no control over the key, and
ending with key-updatable IND-CPA, where we have A that is able to update
pk. The detailed games are as follows:

Game1 : This is the original IND-CPA experiment.

Game2 : This game is the same as Game1, but the only difference is that A
receives the proof ζZK related to the well-formedness of the pk as depicted in
Definition 5.

13

Game1 → Game2 : This is straightforward from the zero-knowledge property of
the NIZK and so the two games are indistingushable. Thus we have Pr[Game1] ≤
Pr[Game2] + negl(λ).

Game3 : This game is the same as Game2, but the only difference is that A
updates pk and so she receives the cipher c∗ under the updated pkup as depicted
in Definition 5.

Game2 → Game3 : This is straightforward from property (ii) of updatable key
correctness, which states that if Vpk outputs 1, we have that the public keys
pk and pkup are indistinguishable from each other. This guarantees that c∗

has the same distribution under both pk and the updated pkup. Thus we have
Pr[Game2] ≤ Pr[Game3] + negl(λ).

EKU-PKE for arbitrary message spaces. For encrypting large witnesses, a
EKU-PKE which supports the encryption of large bit strings is required. As the
updatability notions do not require any specific properties on the ciphertexts,
a key-updatable PKE for arbitrary message spaces can be obtained by follow-
ing the hybrid approach [CS03]. Combining an key-updatable IND-CPA-secure
EKU-PKE with an IND-CPA-secure symmetric encryption scheme thus yields a
key-updatable IND-CPA-secure EKU-PKE for arbitrary message spaces.

4 UC-Secure Updatable Circuit-Succinct NIZK

In this section, we present a general framework for UC-secure (circuit-succinct)
NIZKs with a weaker trusted setup based on black-box EKU-PKE defined in Sec-
tion 3. Our focus is the setting of updatable CRS introduced by Groth et
al. [GKM+18]. We recall that in this setting everyone can update a CRS and
besides removing the trust at the prover side, also the trust on the CRS gener-
ator at the verifier side is removed as long either the generation of the CRS or
any of its updates are performed honestly (e.g., by the verifier).

To construct UC-secure NIZKs in the CRS model, Kosba et al. [KZM+15]
proposed a framework that lifts any NIZKs to UC-secure NIZKs in the CRS
model. But UC-secure NIZKs with a reduction in the trusted CRS generation,
e.g., via updatable CRS, is still an open problem. Indeed, to achieve UC-secure
NIZKs in such a setting, one needs to guarantee the simulation extractabil-
ity [Sah99, Sah01]) for the updatable NIZKs in a black-box way.10 Abdolmaleki
et al. [ARS20] proposed the Lamassu framework (cf. Section 2.2) which allows
one to transform an updatable NIZK (SNARK) to a non-black-box SE updat-
able NIZK (SNARK) under some non-falsifiable assumption. More precisely,
with Lamassu, one can obtain non-black-box SE updatable NIZKs (SNARK)

10 Recall that these notions require soundness and knowledge soundness respectively
to hold even if an adversary can see an arbitrary number of simulated proofs which
they can adaptively obtain on statements of their choice.

14

such that both the zero-knowledge and SE proofs are based on non-falsifiable as-
sumptions. It is known that UC-security can not be achieved for a construction
under non-falsifiable assumptions.

In this section, we start from the Lamassu construction [ARS20] and tackle
the aforementioned hurdles to UC-security by converting this framework to a
black-box version. Then, for the first time, we show how one can achieve UC-
secure updatable circuit-succinct NIZKs.

4.1 Black-Box SE Updatable Circuit-Succinct NIZKs

Now, we introduce a framework for black-box SE updatable circuit-succinct
NIZKs building upon and extends the Lamassu compiler [ARS20]. Before de-
scribing the intuition of our construction, we recall some notation and primitives
used in the construction.

– An updatable SNARK or NIZK Π in the CRS model (e.g., Groth et al. [GKM+18])
– A BB-extractable key-updatable public-key encryption UP (cf. Section 3)
– A BB-extractable updatable signature Σ (cf. Section 2.1)
– A BB-extractable non-interactive proof of knowledge (knowledge sound NIZK)

ZK (either FS [FS87], Fischlin [Fis05] or Unruh [Unr15])

Intuition. We can divide our approach into two parts:
From non-BB to BB simulation extractable updatable NIZK. The Lamassu com-
piler [ARS20] adds SE and updatability. In order to satisfy black-box SE, we add
the public key UP.pk of an IND-CPA secure extractable key-updatable PKE UP
(Section 3) to the CRS used for encrypting the witness. This gives us a black-box
SE version of Lamassu compiler.
Adding UC-security. To achieve a UC-secure version of Lamassu, we need to
work with BB extraction. Thus, we replace the updatable signature of the La-
massu compiler with a BB-extractable updatable signature Σ (defined in Sec-
tion 2.1). Then, in order to satisfy BB extraction for the updating procedures
of the underlying CRS and of the public key of UP, we require a non-interactive
proof of knowledge ZK ∈ {FS,Fischlin,Unruh} that the update is correctly done.
This gives us a fully black-box version of the Lamassu compiler.

More precisely, starting from any CRS-based NIZK that is only sound in-
stead of knowledge sound, we transfer it to the updatable setting so that one
can update the CRS (i.e., similar to the technique in [GKM+18] for SNARKs
and [Lip20] for QA-NIZKs). We also give a BB-extractable NIZK (using ZK ∈
{Fischlin,Unruh}) that the update is correctly done. This is in contrast to [GKM+18]
and [Lip20] as well as the Lamassu framework, which reveal some intermediate
shares in both groups G1 and G2 to construct a CRS verification that the up-
date is correctly done under some non-falsifiable assumptions. Now, given any
language L with NP relation RL, the language obtained via the BB-Lamassu
compiler is L′ s.t. {x′ := (x, c, cpk, cpko), w

′ := (w, ω, csk− csko)} ∈ RL′ iff:

c = UP.Enc(pkup, w;ω)∧
((x, w) ∈ RL ∨ cpk = cpko · µ(csk− csk0)).

15

We present the full construction of black-box SE updatable (circuit-succinct)
NIZKs in Fig. 2, where ZK ∈ {FS,Fischlin,Unruh}. Notice that the subverter Z
could be either the algorithm KGencrs or the updater algorithm Ucrs.

Remark 1. For achieving more efficient black-box updatable SE NIZKs in Fig. 2,
we may use ZK = FS instead of Fischlin or Unruh. This construction might be of
independent interest for applications of BB-updatable SE NIZKs, but it is not
UC-friendly due to the use of rewinding in the extraction phase.

Theorem 3. Assume that the underlying NIZK (SNARK) scheme satisfies per-
fect completeness, computational zero-knowledge, and computational (knowledge)
soundness. Let ZK ∈ {FS,Fischlin,Unruh} be non-interactive proofs of knowledge
with BB extraction. Assume the extractable key-updatable encryption scheme UP
with message space M is IND-CPA-secure and perfectly correct. Let Σ be a
EUF-CMA secure adaptable key-homomorphic signature scheme, and that the
one-time signature scheme ΣOT is strongly unforgeable. Then the construction
in Fig. 2 is a zero-knowledge proof system satisfying perfect completeness, up-
datable zero-knowledge, and updatable simulation sound extractability.

Proof. (i: Completeness): This is straight forward from the construction of
BB SE updatable NIZKs (SNARKs) in Fig. 2.
If ((crs, (ζi)

n
i=1), x, w) ← A(1λ) and Vcrs(crs, (ζi)

n
i=1) = 1 ∧ (x, w) ∈ R, then

V(crs, x,P(crs, x, w)) = 1.
(ii: Updatable zero-knowledge): Underlying the (rewinding or straight-line)
extraction property of the ζZK suppose that there exists a PPT malicious sub-
verter Z that takes crs = (crsΠ, cpk, pk) and ζ = (ζZK,Π, ζZK,cpk, ζZK,pk) as
input and outputs crsup = (crsΠ,up, cpkup, pkup) as well as ζup = (ζZK,Π,up,i,
ζZK,cpkup,i, ζZK,pkup,i)

n
i=1 such that Vcrs(crsup, ζup) = 1 and more precisely Vpk(cpkup,

(ζZK,cpkup,i)
n
i=1) = 1 holds with non-negligible probability.

Then, by using the ζZK extractor ExtZK, given the statement x′ of the language
L′ (more precisely, given cpkup of the signature) and the proofs (ζZK,cpkup,i)

n
i=1

as input, outputs cskup. For this case adversary A is the adversary from Fig. 3.
For example for the Fischlin extractor ExtFischlin, given the statement x′ of the
language L′, the proofs (ζFischlin,cpkup,i)

n
i=1, and the list of queries and answers

of QH(Z) (related to the trapdoor extraction in [Fis05, Theorem 2]) as input,
outputs cskup.

To prove updatable zero-knowledge, we use the extractor ExtZK to obtain
the trapdoor cskup and give a simulator Sim (see Fig. 2). Sim first chooses
z ←$ M, ω ←$ RND(Sim), computes c ← UP.Enc(pkup, z;ω), and produces
proofs πSim when provided cskup such that any proof πSim has the same distribu-
tion as a real proof πΠ generated by the witness w.11 Finally Sim can generate lo-
cally (skl, pkl)← Σ.KGen(1λ); (skOT, pkOT)← ΣOT.KGen(1

λ) and then compute
σOT ← ΣOT.Sign(skOT, πΠ||x||c||pkl||σ) such that π = (c, πSim, pkl, σ, pkOT, σOT)

11 Recall that in the OR part of the proof one just needs to prove that one knows the
shift upcsk (which is the trapdoor of the cpkup) to adapt signatures from cpk to ones
valid under verification key cpkup in the CRS.

16

KGencrs(R, auxR)

- (crsΠ, tcΠ, ζZK,Π)← Π.KGen(R, auxR);

- (csk, cpk, ζZK,cpk)← Σ.KGen(1λ);

- (sk, pk, ζZK,pk)← UP.KGen(1λ);crs := (crsΠ, cpk, pk);

- tc := (tcΠ, csk, sk); ζ := (ζZK,Π, ζZK,cpk, ζZK,pk)
- return (crs, tc, ζ);

Ucrs(crs, (ζi)
n
i=1)

- (tcΠ,up, crsΠ,up, ζZK,Π,up)← Π.Ucrs(crsΠ, (ζZK,Π,i)
n
i=1);

- (upcsk, cpkup, ζZK,cpkup)← Σ.Upk(cpk, (ζZK,cpk,i)
n
i=1);

- (upsk, pkup, ζZK,pkup)← UP.Upk(pk, (ζZK,pk,i)
n
i=1);

- ζup := (ζZK,Π,up, ζZK,cpkup , ζZK,pkup);

- return (crsup := (crsΠ,up, cpkup, pkup), ζup);

Vcrs(crs, (ζi)
n
i=1)

- if Π.Vcrs(crsΠ, (ζZK,Π,i)
n
i=1) = 1 ∧

Σ.Vcpk(cpk, (ζZK,cpk,i)
n
i=1) = 1 ∧

UP.Vpk(pk, (ζZK,pk,i)
n
i=1) = 1 then return 1; else return 0;

P(crsup, x, w)

- (skl, pkl)← Σ.KGen(1λ); (skOT, pkOT)← ΣOT.KGen(1
λ);

- ω ←$ Zp; c← UP.Enc(pkup, w;ω);

- πΠ ← Π.P(crsup, (x, c), ((w,⊥),⊥));σ ← Σ.Sign(skl, pkOT);

- σOT ← ΣOT.Sign(skOT, πΠ||x||c||pkl||σ);
- return π := (c, πΠ, pkl, σ, pkOT, σOT);

V(crsup, x, π = (c, πΠ, pkl, σ, pkOT, σOT))

- if Π.V(crsup, x, c, πΠ) = 1 ∧Σ.Verify(pkl, pkOT, σ) = 1∧
ΣOT.Verify(pkOT, πΠ||x||c||pkl||σ, σOT) = 1 then return 1;
else return 1;

Sim(crsup, x, tc)

- (skl, pkl)← Σ.KGen(1λ); (skOT, pkOT)← ΣOT.KGen(1
λ);

- ω, z ←$ Zp; c← UP.Enc(pkup, z;ω);

- πSim ← Π.Sim(crsup, ((z,⊥), cskup), (x, c));
- σ ← Σ.Sign(skl, pkOT);

- σOT ← ΣOT.Sign(skOT, πSim||x||c||pkl||σ);
- return π := (c, πSim, pkl, σ, pkOT, σOT).

Ext(skup, c, crs, crsup, (ζi)
n
i=1)

- if UP.Vpk(pk, (ζZK,pk,i)
n
i=1) = 0 then return 0;

else return w← UP.Dec(skup, c).

Fig. 2. BB-Lamassu: generic black-box SE updatable (succinct) NIZKs. Changes to
Lamassu are indicated with grey boxes.

17

A(crs = (crsΠ, cpk, pk), ζ = (ζZK,Π, ζZK,cpk, ζZK,pk))

(crsup, ζup)← Z(crs, ζ);

ExtZK(cpk, (ζZK,cpkup,i)
n
i=1, QH(Z))

return cskup.

Fig. 3. Extractor and the constructed adversary A from the updatable ZK proof.

has the same distribution as a real proof π = (c, πΠ, pkl, σ, pkOT, σOT). Note that
πSim is the simulated proof and πΠ is the real proof in the original updatable
NIZK.
(iii: Black-box updatable (strong) simulation extractability): For the
sake of simplicity, let the malicious subverter Z make only a single update after
an honest setup, or let Z generate the CRS, after which point we have only a
single update by an honest updater.

Recall that based on the (rewinding or straight-line) extraction property of
the ZK ∈ {FS,Fischlin,Unruh} protocol used in the CRS updates, it is possible
to extract the adversary’s contribution to the trapdoors csk and sk when the
adversary generates the CRS itself. To collapse chains of honest updates into a
single honest setup (resp. update) it is convenient that the trapdoor contributions
of the setup and update commute in our scheme.

Our proof is based on the non-BB SE proof in [DS19] where we replace the
underlying NIZK with an updatable NIZK (SNARK) but in a black-box man-
ner. We use simulation the trapdoors of the EUF-CMA secure adaptable key-
homomorphic signature scheme to simulate proofs. Based on the updatability
property, ifA outputs crsup = (crsΠ,up, cpkup, pkup) and (ζZK,Π,up, ζZK,cpkup , ζZK,pkup)
such that Vcrs(crsup, ζup) = 1 then by the straight-line or rewinding extrac-
tion of the ZK proofs for the EKU-PKE scheme and the updatable signature
scheme, there exists a PPT extractor ExtZK which, given cpkup, pkup, and the
proofs (ζZK,pkup , ζZK,cpkup), outputs (skup, cskup). For example, for the case of the
straight-line extraction of Fischlin, there exists a PPT extractor ExtFischlin which,
given cpkup, pkup, the proofs (ζFischlin,pkup , ζFischlin,cpkup), and the list of queries and
answers of QH(A), outputs (skup, cskup).

We note that the SE adversary A in the updatable setting, besides seeing a
pair (crs, π), may even have already updated the crs. Thus, here A has more
power than the standard SE adversary in [DS19]. To make the proof more precise,
we use the malicious updater Z for updating the crs and the adversary A against
the SE property. Note that Z and A can communicate with each other.

We recall the experiment for updatable SE in Fig. 4 and we highlight changes
by pointing to the line numbers in the experiment or the oracle, where the ZK
proof could be either FS, Fischlin, or Unruh.

Game1 : This is the original experiment in Fig. 4.

Game2 : This game is the same as Game1, but the only difference is that Z
updates the crs.

18

Expbb-up-se(A, λ)

1 : (crs = (crsΠ, cpk, pk), (ζi)
n
i=1 , auxZ)← Z(1λ);

2 : (crsup, ζup)← Ucrs(crs, (ζi)
n
i=1);

3 : if Vcrs(crs, (ζi)
n
i=1) = 0 then return 0

4 : cskup ← ExtZK(cpkup, ζZK,cpkup , QH(Z));

5 : (x, π)← AO(crsup,tc,·)(crs, crsup, auxZ);
6 : Parse π := (c, πΠ, pkl, σ, pkOT, σOT);

7 : skup ← ExtZK(pkup, ζZK,pkup , QH(Z));

8 : w← UP.Dec(skup, c);

9 : if (x, π) ̸∈ Q ∧ V(crsup, x, π) = 1 ∧ (x, w) ̸∈ R return 1.

10 : else return 0.

O(crsup, tc, x)

1 : (skl, pkl)← Σ.KGen(1λ); (skOT, pkOT)← ΣOT.KGen(1
λ
);

2 : ω, z ←$ Zp; c← UP.Enc(pkup, z, ω);

3 : πSim ← Π.Sim(crsup, x, c, (z,⊥); tccpkup); σ ← Σ.Sign(skl, pkOT);

4 : σOT ← ΣOT.Sign(skOT, πSim||x||c||pkl||σ);
5 : π := (c, πΠ, pkl, σ, pkOT, σOT);

6 : Q := Q ∪ {(x, π)}; T := T ∪ {pkOT};
7 : return π;

Fig. 4. Experiment Expbb-up-se(A, λ) for black-box SE updatable NIZKs.

Exp: Line 1: (crsΠ, tcΠ, ζZK,Π)← Π.KGen(1λ); (csk, cpk, ζsk,cpk)← Σ.KGen(1λ);
(sk, pk, ζZK,pk) ← UP.KGen(1λ); crs := (crsΠ, cpk, pk), tc := (tcΠ, csk, sk),
ζ := (ζsk,Π, ζsk,cpk, ζsk,pk); return (crs, ζ);

Exp: Line 2: (crsup, ζup, auxZ)← Z(1λ, crs, (ζi)
n
i=1);

Game1 → Game2 : This is straightforward from the property of the updating
procedure that if Vcrs output 1, then there is an extractor that extracts skup
and cskup (i.e., the straight-line trapdoor extraction of Fischlin for updatable
pk and cpk, that it is possible to extract them when the adversary updates
an honest CRS) and the zero-knowledge property of the NIZK. Thus, we have
Pr[Game0] ≤ Pr[Game1] + negl(λ).

Game3 : This game is the same as Game2, but ∆ ←$ H is replaced in cpk =
µ(∆) · pko.

Exp: Line 1: ∆←$ H;
Exp: Line 2: crs := (crsΠ, cpk · µ(∆), pk), tc := (tcΠ, csk, sk);

Winning condition: Let Q be the set of (x, π) pairs, let T be the set of
verification keys generated by the oracle O. The game outputs 1 iff: (x, π) ̸∈
Q ∧ V(crsup, x, π) = 1 ∧ pkOT ̸∈ T ∧ cpk · µ(∆) = pko · µ(∆) · µ(csk− sko).

Game2 → Game3 : This follows from [ARS20, Theorem 3] and the adaptable
and updatable EUF-CMA property of Σ.

19

4.2 From Black-Box SE Updatable NIZKs to UC-Secure Updatable
NIZKs

The notion of simulation sound extractability (SE) is roughly speaking equiv-
alent to UC-secure (succinct) NIZKs. We now elaborate on the relation be-
tween SE NIZKs and UC-Secure NIZKs. Groth [Gro06] showed that the notion
of SE can be used to instantiate a NIZK ideal functionality FNIZK. More pre-
cisely, Groth [Gro06] defined two separated ideal functionalities FCRS and FNIZK

(see Figs. 5 and 6).

– CRS: On input (start, sid) run crs ← KGen(1λ). Send (CRS, sid, crs) to all
parties and halt.

Fig. 5. The ideal UC functionality Fcrs for UC NIZK common reference string gener-
ation [Gro06].

– Proof: On input (prove, sid, x, w) from party P ignore if (x, w) /∈ R. Send
(prove, x) to Simuc and wait for answer (proof, π). Upon receiving the answer
store (x, π) and send (proof, sid, π) to P .

– Verification: On input (verify, sid, x, π) from V check whether (x, π) is stored.
If not send (verify, x, π) to Simuc and wait for an answer (witness, w).
Upon receiving the answer, check whether (x, w) ∈ R and in that case, store
(x, π). If (x, π) has been stored return (verification, sid, 1) to V, else return
(verification, sid, 0) to V.

Fig. 6. The ideal UC functionality FNIZK, parameterized by relation R, interacts with
adversary Simuc and parties P1, . . . , Pn [Gro06].

Similarly, Kosba et al. [KZM+15] show that a weak SE secure NIZK can be
used to realize a weaker version of the ideal functionality called Fweak-NIZK. The
main difference between the weaker and the stronger version is that the weaker
version may permit an adversary to maul an existing proof to a new proof, but
for the same statement. Both versions prevent the adversary from mauling a
proof to a related statement. Depending on the application, sometimes the weak
SE notion suffices in protocol design.

As our framework in Fig. 2 for black-box updatable (strong) SE NIZKs is
not in the conventional CRS model but the updatable CRS model, first, we need
to define a new ideal functionality Fup-CRS for the updatable CRS generation
in Fig. 7. We employ the ideal functionality FNIZK [Gro06] for the ideal function-
ality for the proof of a correct update. Finally, in Theorem 4 we prove that our
framework in Fig. 2 for black-box updatable (strong) SE NIZKs realizes FNIZK

20

– CRS: On input (start, sid, tc) from party P ignore if tc = ⊥. Generate a crs

and do as follows:
• If P is uncorrupted then send (start, crs) to Simuc and wait for answer

(proofCRS, ζ).
• If P is corrupted then send (start, crs, tc) to Simuc and wait for answer

(proofCRS, ζ).
Upon receiving the answer store (sid, crs, ζ) in Qcrs and send
(proofCRS, sid, crs, ζ) to P .

– upCRS: On input (upCRS, sid, crs, tcup) from party P ignore if (sid, crs) /∈ Qcrs

or tc = ⊥. Generate crsup and do as follows:
• If P is uncorrupted then send (upCRS, crs, crsup) to Simuc and wait for

answer (proofCRS, ζup).
• If P is corrupted then send (upCRS, crs, crsup, tc) to Simuc and wait for

answer (proofCRS, ζup).
Upon receiving the answer store (sid, crs, crsup, ζup) in Qcrs and send
(proofCRS, sid, crsup, ζup) to P .

– verCRS: On input (checkCRS, sid, crs, crsup, ζup) from P check whether
(sid, crs, crsup, ζup) is stored in Qcrs. If not send (checkCRS, crs, crsup, ζup) to
Simuc and wait for an answer (trapdoor, tcup). Upon receiving the answer,
check whether Vcrs(1λ, crsup, ζ := (crs, tcup)) = 1 and in that case, store
(crs, crsup, ζup). If (crs, crsup, ζup) has been stored return (verCRS, sid, 1) to P ,
else return (verCRS, sid, 0) to P .

Fig. 7. The ideal UC functionality Fup-CRS for UC updatable CRS generation of NIZKs,
interacts with adversary Simuc and parties.

in the Fup-CRS model. We note that, due to the fact that the rewinding tech-
nique (in the extraction phase in FS) is not allowed in the UC model [Can01],
we assume that ZK ∈ {Fischlin,Unruh} for the instantiation of the ZK proof.

Theorem 4. For ZK ∈ {Fischlin,Unruh}, the protocol in Fig. 2 securely realizes
FNIZK in the Fup-CRS-hybrid model.

Proof. Let A be a non-uniform polynomial time adversary. We describe an ideal
adversary Simuc so no non-uniform polynomial time environment can distin-
guish whether it is running in the Fup-CRS-hybrid model with parties P1, . . . , Pn

and adversary A or in the ideal process with FNIZK, Simuc and dummy parties
P̂1, . . . , P̂n.

Simuc starts by invoking a copy of A. It will run a simulated interaction of
A, the parties and the environment. In particular, whenever the simulated A
communicates with the environment, Simuc just passes this information along.
And whenever A corrupts a party Pi, Simuc corrupts the corresponding dummy
party P̂i.
Simulating uncorrupted initial CRS generator in Fup-CRS. Suppose Simuc

receives (start, crs) from Fup-CRS. This means that some dummy party P̂ re-
ceived input (start, sid, tc), where tc ̸= ⊥. We must simulate the output a real

21

party (updater) P would make, however. We create ζup ← SimZK(crs) and return
(proofCRS, ζup) to Fup-CRS. Fup-CRS subsequently sends (proofCRS, sid, crs, ζ) to
P̂ and we deliver this message so it gets output to the environment.
Simulating uncorrupted updater P in Fup-CRS: Suppose Simuc receives
(upCRS, sid, crs, crsup) from Fup-CRS. This means that some dummy party P̂
received input (upCRS, sid, crs, tcup), where (sid, crs) ∈ Qcrs and tc ̸= ⊥. We
must simulate the output a real party (updater) P would make, however. We
create ζup ← SimZK(crs, crsup) and return (proofCRS, ζup) to Fup-CRS. The func-
tionality Fup-CRS subsequently sends (proofCRS, sid, crsup, ζup) to P̂ and we de-
liver this message so it gets output to the environment.
Simulating uncorrupted updating checker P in Fup-CRS: Suppose Simuc

receives (checkCRS, crs, crsup, ζup) from Fup-CRS. This means an honest dummy
party updating checker P̂ has received (checkCRS, sid, crs, crsup, ζup) from the
environment. Simuc checks the proof, b← Vcrs(crs, crsup, ζup). If invalid, it sends
(trapdoor, no tcup) to Fup-CRS and delivers the consequent message (verCRS,

sid, 0) to dummy party updating checker P̂ that outputs this rejection to the
environment. Otherwise, if the updating argument is valid we must try to ex-
tract a trapdoor tcup. If (crs, crsup) has ever been proved by an honest updater
that was later corrupted, we will know the tcup and do not need to run the
following extraction procedure. If the trapdoor is not known already Simuc lets
tcup ← ExtZK(crs, ζZK)). If crs, crsup, and tcup are not consistent (tcup is in-
valid), it sets tcup = no tcup. It sends (trapdoor, tcup) to Fup-CRS. It delivers
the resulting output message to the updating checker P̂ that outputs it to the
environment. We will later argue that the probability of the proof being valid,
yet us not being able to supply a good tcup to Fup-CRS is negligible. That means
with overwhelming probability we input a valid trapdoor tcup to Fup-CRS when
ζup is an acceptable UC NIZK argument for (crs, crsup).
Simulating corruption in Fup-CRS: Suppose a simulated party Pi is corrupted
by A. Then we have to simulate the transcript of Pi. We start by corrupting P̂i

thereby learning all UC proofs it has verified. It is straightforward to simulate
Pi’s internal tapes when running these verification processes. We also learn all
updating (crs, crsup) that it has proved together with the corresponding trap-
door tcup. Recall that the UC NIZK arguments ζup have been provided by Simuc.
Since we erased all other data, we can therefore simulate the tape of Pi.
Simulating uncorrupted prover in FNIZK: Suppose Simuc receives (prove, x)
from FNIZK. This means that some dummy party P̂ received input (prove, sid, x, w),
where (x, w) ∈ R. We must simulate the output a real party P would make,
however, we may not know w. We create π ← Sim(crsup, x, tcup) and return
(proof, π) to FNIZK. FNIZK subsequently sends (proof, sid, π) to P̂ and we de-
liver this message so it gets output to the environment.
Simulating uncorrupted verifiers: Suppose Simuc receives the message (
verify, x, π) from FNIZK. This means an honest dummy party V̂ has received
(verify, sid, x, π) from the environment. Simuc checks the proof, b← V(crsup, x, π).
If invalid, it sends (witness, no witness) to FNIZK and delivers the message

22

(verification, sid, 0) to V̂ that outputs this rejection to the environment. Oth-
erwise, if the UC NIZK argument is valid we must try to extract a witness w.
If x has ever been proved by an honest prover that was later corrupted, we will
know the witness and do not need to run the following extraction procedure. If
the witness is not known already Simuc lets w ← UP.Dec(tcup, c). If (x, w) ∈ R
it sets w = no witness. It sends (witness, w) to FNIZK. It delivers the resulting
output message to V̂ that outputs it to the environment. We will later argue
that the probability of the proof being valid, yet us not being able to supply a
good witness to FNIZK is negligible. That means with overwhelming probability
we input a valid witness w to FNIZK when π is an acceptable UC NIZK argument
for x.
Simulating corruption: Assume a simulated party Pi is corrupted by A. Then
we have to simulate the transcript of Pi. We start by corrupting P̂i thereby learn-
ing all UC NIZK arguments it has verified. It is straightforward to simulate Pi’s
internal tapes when running these verification processes. We also learn all state-
ments x that it has proved together with the corresponding witnesses w. Recall,
the UC NIZK arguments π have been provided by Simuc. Since we erased all
other data, we can therefore simulate the tape of Pi.
Hybrids. We argue that no environment can distinguish between the adversary
A running with parties executing the UC NIZK protocol in the Fup-CRS-hybrid
model and the ideal adversary Simuc running in the FNIZK-hybrid model with
dummy parties. In order to do so we define several hybrid experiments and show
that the environment cannot distinguish between any of them.
H0: This is the Fup-CRS-hybrid model running with adversary A and parties
P1, . . . , Pn.
H1: We modify H0 by running (crs, tc, ζ) ← KGen(1λ)12 and given crs and
crsup, creating the proofs of uncorrupted updaters as ζup ← SimZK(crs, crsup)
and the proofs of uncorrupted provers as π ← Sim(crsup, x, tcup). By the zero-
knowledge property the adversary this experiment is indistinguishable from H0.
H2: Consider the case where an honest party updating checker P and hon-
est party V receive (checkCRS, sid, crs, crsup, ζup) and (verify, sid, x, π) respec-
tively. Suppose ζup and π are indeed an acceptable UC NIZK proofs and ζup
and π are not in the simulated. We run tcup ← ExtZK(crs, ζZK) and w ←
UP.Dec(c, skup).

If tcup is invalid and (w, x) /∈ R, give up in the simulation. By the SE property
there is negligible probability that we will ever give up, so H2 is indistinguishable
from H1.
H3: This is the ideal process running with Fup-CRS, Simuc, and FNIZK. Inspection
shows that in process H2 and H3 we are computing the different parts of the
protocol in the same way. H2 and H3 are therefore perfectly indistinguishable to
the environment.

12 Without loss of generality, let us assume that the initial crs is honestly generated
and then the updating procedure can be possibly maliciously done.

23

5 Evaluation and Instantiation

We split the evaluation into multiple parts. First we consider the costs for the
CRS updates, the costs of the witness encryption and compare our framework
to Lamassu. Finally, in Section 5.2 we apply BB-Lamassu to Sonic and present
the results of our benchmarks.

5.1 Overheads

Costs of the CRS update. For the CRS update costs, we do not consider
the SNARK specific overhead of the update proofs for the updatable CRS of
the underlying SNARK. We will later discuss this with Sonic as an example.
Observe that in comparison to Lamassu, the CRS of BB-Lamassu is extended
with an UP public key which is updated in the CRS update. Consequently, the
proof of the CRS update is extended with a proof for the UP public key update.
For our UP from Section 3, this proof is respect to the statement pk′up = pkup ·gx
which can be proven with a simple Σ-protocol.

Note that if the Fiat-Shamir, Fischlin or the Unruh transform is applied to
such a Σ-protocol, we are able to omit the commitment as it can be recomputed
from challenge and response. Therefore, the proof consists of 2 Zp elements for
FS and 2s Zp elements for Fischlin. The choice of s influences both the size and
the runtime of the prover. The smaller s, the smaller the proof, but the harder it
is for the prover to find suitable challenge-response pairs. For Unruh, we can pick
t = 1 since the Σ-protocol has a negligible soundness error and M = 2 since it
is 2-special sound. Therefore, the proofs consist of 5 Zp elements. Consequently,
except for the case s = 2, Fischlin always produces the largest proofs. When
instantiating G with an order of ≈ 256 bits, we obtain proofs of 170 bytes with
Unruh. Compared to the 64 bytes for FS, achieving UC-compatible extraction
with our technique only incurs a small overhead.
Costs of encrypting the witness. For the costs of proving consistency of the
encryption of the witness, we can focus on the number of constraints induced
by the statements as cost metric. As this metric depends on the choice of the
involved groups, we choose the involved groups to be SNARK-friendly such as
Jubjub and can thus lift the number of constraints from [HBHW22] for the
evaluation. We split the analysis of encryption with UP into the ElGamal as well
as the symmetric encryption part. For UP, we need to prove c1 = gr∧c2 = M·pkrup
for witnesses M and r. Statements of the form y = h · gw for a witness w with
respect to Jubjub curve can be expressed with 756 constraints. Proving that w is
in the correct range costs another 252 constraints and that h is a group element
costs 4 constraints. Hence, we require at most 1768 constraints.

Selecting a symmetric encryption scheme is more involved. The straightfor-
ward choice is AES with some mode of operation. Since a mode supporting
parallel encryption is preferable as they allow for shallower circuits, we focus on
counter (CTR) mode. All other modes require the same number or more AES
evaluations. A single AES evaluation is expensive [KPS18], hence choosing one
of the low multiplicative complexity block ciphers may be more desirable. While

24

Table 1. Number of constraints required for symmetric-key encryption for witness of
sizes 1 KB and 32 KB.

Symmetric primitive Mode # of constraints for
1 KB 32 KB

AES128 CTR 748,694 23,878,166
AES256 (estimated) CTR 1,048,224 33,431,072

Poseidon-(1536, 2, 10, 114) Sponge 4,020 103,716
LowMC-(1602, 256, 1, 1484) Sponge 29,680 721,224
GMiMC-(256, 32, 564) CTR 1,128 36,096
GMiMC-(256, 32, 564) Sponge 4,512 41,736
Vision-(127, 14, 10) Sponge 12,600 292,600

some of those primitives have only been optimized for the use of keyless permuta-
tions to construct hashes in the context of SNARKs, Sponge-based construction
with a keyless permutation yield a secure stream cipher [BDPV12].

Table 1 depicts the number of constraints for symmetric primitives and wit-
ness sizes of 1 and 32 KiB, respectively. As symmetric primitives we consider
GMiMC-(N, t,R) with a collapsing round function [AGP+19], Poseidon-(N, t,
Rf , Rp) with x 7→ x5 as SBox [GKR+21], Vision-(N, t,R) [AAB+20], and
LowMC-(N, k,m,R) [ARS+15], where N denotes the block size, t the num-
ber of branches, R the number of rounds, Rf and Rp the number of full and
partial rounds, k the key size and m the number of Sboxes. The numbers for
AES256 are extrapolated from those of AES128 [KPS18]. The Sponge construc-
tions are all instantiated with a capacity of ≈ 512 bits. All keys are chosen to
have 256 bits and nonces have 96 bits. Overall, Table 1 shows that also moder-
ately sized witness can be handled efficiently.
Comparison with Lamassu. We recall from the evaluation of Lamassu [ARS20],
that the transformation from an updatable zk-SNARK to an updatable SE zk-
SNARK comes with an overhead that is bounded by ≈ 32 bytes for the CRS
and ≈ 256 bytes for the proofs independent of the concrete circuits. In contrast
to Lamassu, the proofs for the validity of the CRS update need to be extended
for the corresponding proof of the updatable signature scheme. As above for UP,
this requires at most 170 bytes using Unruh.

5.2 Black-Box SE Version of Sonic

Finally, as an example of our generic black-box SE updatable (succinct) NIZKs,
we provide a black-box SE version of Sonic [MBKM19]. While updatable struc-
tured reference strings (uSRSs)13 are modeled in [MBKM19], this is done in a
13 An SRS is a CRS created by sampling from some complex distribution, often involv-

ing a sampling algorithm with internal randomness that must not be revealed, since
it would create a trapdoor that enables creation of convincing proofs for false state-
ments. The SRS may be non-universal (depend on the specific relation) or universal
(independent of the relation) [MBKM19].

25

Table 2. Runtime of our BB SE succinct NIZK compared to the non-BB SE zk-SNARK
obtained via Lamassu [ARS20] and the base non-SE zk-SNARK Sonic [MBKM19].

Input size
(bits) Scheme Prove (s) Verify (s) Helped Verify

(ms)

Pedersen hash (average over 20 iterations)

48 Sonic 0.371 0.00123 0.844
Lamassu 0.661 0.00282 0.816
This work 5.758 (15.52×) 0.0226 (18.37×) 0.719

384 Sonic 1.610 0.00649 0.843
Lamassu 1.938 0.00804 0.821
This work 6.592 (4.09×) 0.0226 (3.48×) 0.817

SHA-256 (average over 10 iterations)

512 Sonic 47.736 0.457 1.30
Lamassu 49.400 0.455 -0.111
This work 56.729 (1.18×) 0.490 (1.07×) 0.347

1024 Sonic 76.899 0.727 1.67
Lamassu 79.517 0.734 -0.444
This work 89.510 (1.16×) 0.770 (1.06×) 1.42

2048 Sonic 126.918 1.272 0.822
Lamassu 126.597 1.277 0.0132
This work 155.982 (1.23×) 1.349 (1.06×) 0.666

non black-box way and we model their security in the setting of black-box SE.
Here, a uSRS is a reference string with an underlying trapdoor tcΠ which has
had a structure function SRS imposed on it. SRS(tcΠ) is the reference string
itself, while tcΠ is the trapdoor.

SRS of Sonic Given generators g ∈ G1, h ∈ G2 and a depth parameter d ∈ Zp,
the SRS has a trapdoor of tcΠ := (α, χ) ∈ Z∗2p . The corresponding structure
function is defined as:

SRS(tcΠ) =
(
{gχ

i

, hχ
i

, hαχ
i

}i=d
i=−d, {gαχ

i

}i=d
i=−d,i̸=0

)
We omit the ē(g, hα) term presented in Sonic, as this can be computed from the
rest of the uSRS and is therefore immaterial to the update procedure.

Black-box SE Sonic As we discussed in Section 4.1, in order to add the black-
box SE property to the Sonic scheme, we start with the updating procedure on
the uSRS of Sonic and give a non-interactive proof of knowledge with black-box

26

Fig. 8. Runtimes of the Prove and Verify algorithms of our BB SE succinct NIZK
compared to the non-BB SE zk-SNARK obtained via Lamassu [ARS20] and the base
non-SE zk-SNARK Sonic [MBKM19]. In the lower part we plot the overhead of our
transformation to add BB SE, which decreases as the witness size increases.

extraction that the update is correctly done.14 We present the changes to the
uSRS and the update procedure in Appendix B. With these changes we then
obtain the following result directly from Theorem 3:

Corollary 1. Assume that the Sonic scheme satisfies perfect completeness, com-
putational zero-knowledge, and computational (knowledge) soundness. Let ZK ∈
{FS,Fischlin,Unruh} be a non-interactive proof of knowledge with black-box ex-
tractors, UP be the extractable key-updatable ElGamal encryption scheme, and
Σ be the updatable Schnorr signature scheme. Then the black-box SE Sonic is
a zero-knowledge proof system satisfying perfect completeness, updatable zero-
knowledge, and updatable simulation sound extractability.

Implementation We have implemented BB-Lamassu as well as Lamassu [ARS20]
in Rust15 on top of Sonic16 with the updatable signature scheme from Section 2.1

14 The update in [MBKM19] reveals some intermediate shares in both source groups in
order to construct a SRS verification that the update is correctly done and then uses
a non-falsifiable assumption to extract the updated secret key, thus, is not black-box.

15 https://github.com/nglaeser/sonic-ucse/
16 https://github.com/ebfull/sonic

27

https://github.com/nglaeser/sonic-ucse/
https://github.com/ebfull/sonic

and the key-updatable public key encryption scheme from Section 3 (both in-
stantiated over the Jubjub curve), and Schnorr signatures as sOTS. The required
OR constraint of the transformation, which is of the form h′ = h∨ c′ = c, is rep-
resented in Sonic’s constraint system as the linear constraint (h′−h)(c′−c) = 0.

We report in Table 2 times for proving and verifying knowledge of a hash
preimage and illustrate them in Figure 8. Averages are taken over 20 iterations for
Pedersen and 10 for SHA-256. As in [MBKM19], “Helped Verify” is the marginal
cost of verifying an additional proof when proofs are aggregated. This number
equals the cost of batch-verifying n proofs minus the cost to verify 1, divided
by n− 1 (where n is the number of iterations). This number generally decreases
as the witness size increases, but with some fluctuations which are due to noise
since the marginal costs are very small (on the order of hundreds of µs). The
benchmarks were taken on an Intel Xeon 3.8 GHz quad-core CPU with 64 GB
RAM.

Figure 8 shows the overhead of adding black-box SE to Sonic. Note that
the circuit for the Pedersen hash using the Jubjub curve is only a few hundred
contraints. For larger circuits, such as SHA-256 or even Pedersen hash with larger
inputs, the overhead of BB-Lamassu, which is on the order of the witness size,
decreases relative to the cost of processing the original circuit with Sonic.

6 Conclusion

In this work, we present a generic construction of UC secure NIZKs with an
updatable CRS and circuit-succinct proofs, which has been an open problem.
While our construction induces some overhead in the prover and verifier runtime,
the evaluation demonstrates that the costs are dominated by the original circuit
for moderately sized witnesses or large circuits. In such regimes our construction
can be considered entirely practical.

Acknowledgements. We thank Sean Bowe and Michael Rosenberg for helpful
feedback on the implementation. This work was in part funded by the European
Union’s Horizon 2020 research and innovation programme under grant agreement
n◦871473 (Kraken) and n◦890456 (SlotMachine), and by the Austrian Sci-
ence Fund (FWF) and netidee SCIENCE under grant agreement P31621-N38
(Profet). This material is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship Program under Grant No. DGE
1840340. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation. This work was also supported by the
German Federal Ministry of Education and Research BMBF (grant 16KISK038,
project 6GEM).

References
AAB+20. Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and

Alan Szepieniec. Design of symmetric-key primitives for advanced cryp-

28

tographic protocols. IACR Trans. Symm. Cryptol., 2020(3):1–45, 2020.
doi:10.13154/tosc.v2020.i3.1-45.

ABK+21. Michel Abdalla, Manuel Barbosa, Jonathan Katz, Julian Loss, and Jiayu
Xu. Algebraic adversaries in the universal composability framework. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III,
volume 13092 of LNCS, pages 311–341. Springer, Heidelberg, December
2021. doi:10.1007/978-3-030-92078-4_11.

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33.
Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70700-
6_1.

AGP+19. Martin R. Albrecht, Lorenzo Grassi, Léo Perrin, Sebastian Ramacher,
Christian Rechberger, Dragos Rotaru, Arnab Roy, and Markus Schofneg-
ger. Feistel structures for MPC, and more. In Kazue Sako, Steve Schnei-
der, and Peter Y. A. Ryan, editors, ESORICS 2019, Part II, volume
11736 of LNCS, pages 151–171. Springer, Heidelberg, September 2019.
doi:10.1007/978-3-030-29962-0_8.

AME+21. Lukas Aumayr, Matteo Maffei, Oguzhan Ersoy, Andreas Erwig, Sebas-
tian Faust, Siavash Riahi, Kristina Hostáková, and Pedro Moreno-Sanchez.
Bitcoin-compatible virtual channels. In 2021 IEEE Symposium on Secu-
rity and Privacy, pages 901–918. IEEE Computer Society Press, May 2021.
doi:10.1109/SP40001.2021.00097.

ARS+15. Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge
Tiessen, and Michael Zohner. Ciphers for MPC and FHE. In Elis-
abeth Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part I,
volume 9056 of LNCS, pages 430–454. Springer, Heidelberg, April 2015.
doi:10.1007/978-3-662-46800-5_17.

ARS20. Behzad Abdolmaleki, Sebastian Ramacher, and Daniel Slamanig. Lift-and-
shift: Obtaining simulation extractable subversion and updatable SNARKs
generically. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni
Vigna, editors, ACM CCS 2020, pages 1987–2005. ACM Press, November
2020. doi:10.1145/3372297.3417228.

BCCT12. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. From
extractable collision resistance to succinct non-interactive arguments of
knowledge, and back again. In Shafi Goldwasser, editor, ITCS 2012, pages
326–349. ACM, January 2012. doi:10.1145/2090236.2090263.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019. doi:10.1007/978-3-030-17653-2_4.

BDPV12. Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Duplexing the sponge: Single-pass authenticated encryption and other
applications. In Ali Miri and Serge Vaudenay, editors, SAC 2011, vol-
ume 7118 of LNCS, pages 320–337. Springer, Heidelberg, August 2012.
doi:10.1007/978-3-642-28496-0_19.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103–112. ACM Press, May 1988. doi:10.1145/62212.62222.

29

https://doi.org/10.13154/tosc.v2020.i3.1-45
https://doi.org/10.1007/978-3-030-92078-4_11
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-030-29962-0_8
https://doi.org/10.1109/SP40001.2021.00097
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1145/3372297.3417228
https://doi.org/10.1145/2090236.2090263
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1145/62212.62222

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 777–804. Springer, Heidelberg, December 2016. doi:
10.1007/978-3-662-53890-6_26.

BKSV21. Karim Baghery, Markulf Kohlweiss, Janno Siim, and Mikhail Volkhov. An-
other look at extraction and randomization of groth’s zk-snark. In Financial
Cryptography (1), volume 12674 of LNCS, pages 457–475. Springer, 2021.

BPR20. Karim Baghery, Zaira Pindado, and Carla Ràfols. Simulation extractable
versions of groth’s zk-snark revisited. In CANS, volume 12579 of LNCS,
pages 453–461. Springer, 2020.

BPW12. David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove
yourself: Pitfalls of the Fiat-Shamir heuristic and applications to Helios.
In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume
7658 of LNCS, pages 626–643. Springer, Heidelberg, December 2012. doi:
10.1007/978-3-642-34961-4_38.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, edi-
tors, ACM CCS 93, pages 62–73. ACM Press, November 1993. doi:
10.1145/168588.168596.

BS21. Karim Baghery and Mahdi Sedaghat. Tiramisu: Black-box simulation ex-
tractable nizks in the updatable CRS model. In CANS, volume 13099 of
LNCS, pages 531–551. Springer, 2021.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001. doi:10.1109/SFCS.2001.959888.

CFF+21. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and
Hadrián Rodríguez. Lunar: A toolbox for more efficient universal and
updatable zkSNARKs and commit-and-prove extensions. In Mehdi Ti-
bouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part III, vol-
ume 13092 of LNCS, pages 3–33. Springer, Heidelberg, December 2021.
doi:10.1007/978-3-030-92078-4_1.

CFQ19. Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modu-
lar design and composition of succinct zero-knowledge proofs. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, ed-
itors, ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.
doi:10.1145/3319535.3339820.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In Anne Canteaut and Yuval Ishai, edi-
tors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_26.

CS03. Ronald Cramer and Victor Shoup. Design and analysis of practical public-
key encryption schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

DDO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Per-
siano, and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kil-
ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer,
Heidelberg, August 2001. doi:10.1007/3-540-44647-8_33.

30

https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1007/978-3-030-92078-4_1
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/3-540-44647-8_33

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
Square span programs with applications to succinct NIZK arguments. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, vol-
ume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December 2014.
doi:10.1007/978-3-662-45611-8_28.

DKW21. Yevgeniy Dodis, Harish Karthikeyan, and Daniel Wichs. Updatable public
key encryption in the standard model. In Kobbi Nissim and Brent Wa-
ters, editors, TCC 2021, Part III, volume 13044 of LNCS, pages 254–285.
Springer, Heidelberg, November 2021. doi:10.1007/978-3-030-90456-
2_9.

DP92. Alfredo De Santis and Giuseppe Persiano. Zero-knowledge proofs of knowl-
edge without interaction (extended abstract). In 33rd FOCS, pages 427–
436. IEEE Computer Society Press, October 1992. doi:10.1109/SFCS.
1992.267809.

DS19. David Derler and Daniel Slamanig. Key-homomorphic signatures: defini-
tions and applications to multiparty signatures and non-interactive zero-
knowledge. Des. Codes Cryptogr., 87(6):1373–1413, 2019.

EKKV22. Felix Engelmann, Thomas Kerber, Markulf Kohlweiss, and Mikhail
Volkhov. Zswap: zk-snark based non-interactive multi-asset swaps. Proc.
Priv. Enhancing Technol., 2022(4):507–527, 2022. doi:10.56553/popets-
2022-0120.

Fis05. Marc Fischlin. Communication-efficient non-interactive proofs of knowl-
edge with online extractors. In Victor Shoup, editor, CRYPTO 2005, vol-
ume 3621 of LNCS, pages 152–168. Springer, Heidelberg, August 2005.
doi:10.1007/11535218_10.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

FKMV12. Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele
Venturi. On the non-malleability of the Fiat-Shamir transform. In
Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT 2012, vol-
ume 7668 of LNCS, pages 60–79. Springer, Heidelberg, December 2012.
doi:10.1007/978-3-642-34931-7_5.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. doi:10.1007/3-540-47721-7_12.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Ab-
dalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of
LNCS, pages 315–347. Springer, Heidelberg, March 2018. doi:10.1007/
978-3-319-76578-5_11.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. doi:
10.1007/978-3-642-38348-9_37.

GKK+22. Chaya Ganesh, Hamidreza Khoshakhlagh, Markulf Kohlweiss, Anca Nit-
ulescu, and Michal Zajac. What makes fiat-shamir zksnarks (updatable
SRS) simulation extractable? In Clemente Galdi and Stanislaw Jarecki,

31

https://doi.org/10.1007/978-3-662-45611-8_28
https://doi.org/10.1007/978-3-030-90456-2_9
https://doi.org/10.1007/978-3-030-90456-2_9
https://doi.org/10.1109/SFCS.1992.267809
https://doi.org/10.1109/SFCS.1992.267809
https://doi.org/10.56553/popets-2022-0120
https://doi.org/10.56553/popets-2022-0120
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37

editors, Security and Cryptography for Networks - 13th International Con-
ference, SCN 2022, Amalfi, Italy, September 12-14, 2022, Proceedings, vol-
ume 13409 of Lecture Notes in Computer Science, pages 735–760. Springer,
2022.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applications
to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96878-0_24.

GKO+22. Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi, Akira
Takahashi, and Daniel Tschudi. Witness-succinct universally-composable
snarks. IACR Cryptol. ePrint Arch., page 1618, 2022. URL: https://
eprint.iacr.org/2022/1618.

GKR+21. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A new hash function for zero-
knowledge proof systems. In Michael Bailey and Rachel Greenstadt, edi-
tors, USENIX Security 2021, pages 519–535. USENIX Association, August
2021.

GLS+21. Alexander Golovnev, Jonathan Lee, Srinath Setty, Justin Thaler, and
Riad S. Wahby. Brakedown: Linear-time and post-quantum SNARKs
for R1CS. Cryptology ePrint Archive, Report 2021/1043, 2021. https:
//eprint.iacr.org/2021/1043.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures of
knowledge from simulation-extractable SNARKs. In Jonathan Katz and
Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of LNCS,
pages 581–612. Springer, Heidelberg, August 2017. doi:10.1007/978-3-
319-63715-0_20.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985. doi:10.1145/22145.22178.

GOP+22. Chaya Ganesh, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and
Daniel Tschudi. Fiat-shamir bulletproofs are non-malleable (in the al-
gebraic group model). In Orr Dunkelman and Stefan Dziembowski, edi-
tors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 397–426.
Springer, Heidelberg, May / June 2022. doi:10.1007/978-3-031-07085-
3_14.

GOS12. Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for nonin-
teractive zero-knowledge. Journal of ACM, pages 1–11, 2012.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Hei-
delberg, December 2006. doi:10.1007/11935230_29.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge arguments.
In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS, pages
321–340. Springer, Heidelberg, December 2010. doi:10.1007/978-3-642-
17373-8_19.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016. doi:10.1007/978-3-662-49896-5_11.

32

https://doi.org/10.1007/978-3-319-96878-0_24
https://eprint.iacr.org/2022/1618
https://eprint.iacr.org/2022/1618
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2021/1043
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1007/978-3-319-63715-0_20
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/978-3-031-07085-3_14
https://doi.org/10.1007/978-3-031-07085-3_14
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008. doi:10.
1007/978-3-540-78967-3_24.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.
doi:10.1145/1993636.1993651.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

HBHW22. Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
protocol specification: Version 2022.2.18 [nu5 proposal], 2022.

JMM19. Daniel Jost, Ueli Maurer, and Marta Mularczyk. Efficient ratcheting:
Almost-optimal guarantees for secure messaging. In Yuval Ishai and Vin-
cent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS,
pages 159–188. Springer, Heidelberg, May 2019. doi:10.1007/978-3-030-
17653-2_6.

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs
for linear subspaces. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer, Hei-
delberg, December 2013. doi:10.1007/978-3-642-42033-7_1.

KKK20. Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Mining for pri-
vacy: How to bootstrap a snarky blockchain. Cryptology ePrint Archive,
Report 2020/401, 2020.

KKK21. Thomas Kerber, Aggelos Kiayias, and Markulf Kohlweiss. Composition
with knowledge assumptions. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 364–393, Vir-
tual Event, August 2021. Springer, Heidelberg. doi:10.1007/978-3-030-
84259-8_13.

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE Symposium on Security and
Privacy, pages 839–858. IEEE Computer Society Press, May 2016. doi:
10.1109/SP.2016.55.

KMSV21. Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail Volkhov. Snarky
ceremonies. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part III, volume 13092 of LNCS, pages 98–127. Springer,
Heidelberg, December 2021. doi:10.1007/978-3-030-92078-4_4.

KNYY19. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Exploring constructions of compact NIZKs from various as-
sumptions. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 639–669. Springer,
Heidelberg, August 2019. doi:10.1007/978-3-030-26954-8_21.

KNYY20. Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Ya-
makawa. Compact NIZKs from standard assumptions on bilinear maps.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 379–409. Springer, Heidelberg, May 2020.
doi:10.1007/978-3-030-45727-3_13.

33

https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1145/1993636.1993651
https://eprint.iacr.org/2019/953
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-642-42033-7_1
https://doi.org/10.1007/978-3-030-84259-8_13
https://doi.org/10.1007/978-3-030-84259-8_13
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1109/SP.2016.55
https://doi.org/10.1007/978-3-030-92078-4_4
https://doi.org/10.1007/978-3-030-26954-8_21
https://doi.org/10.1007/978-3-030-45727-3_13

KPS18. Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A
framework for efficient verifiable computation. In 2018 IEEE Symposium
on Security and Privacy, pages 944–961. IEEE Computer Society Press,
May 2018. doi:10.1109/SP.2018.00018.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer,
Heidelberg, December 2010. doi:10.1007/978-3-642-17373-8_11.

KZM+15. Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Char-
alampos Papamanthou, Rafael Pass, abhi shelat, and Elaine Shi. C∅c∅:
A framework for building composable zero-knowledge proofs. Cryptology
ePrint Archive, Report 2015/1093, 2015. https://eprint.iacr.org/2015/
1093.

LCOK21. Jeonghyuk Lee, Jaekyung Choi, Hyunok Oh, and Jihye Kim. Privacy-
preserving identity management system. IACR Cryptol. ePrint Arch., page
1459, 2021. URL: https://eprint.iacr.org/2021/1459.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012. doi:10.1007/978-3-642-28914-9_10.

Lip13. Helger Lipmaa. Succinct non-interactive zero knowledge arguments from
span programs and linear error-correcting codes. In Kazue Sako and Palash
Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of LNCS, pages
41–60. Springer, Heidelberg, December 2013. doi:10.1007/978-3-642-
42033-7_3.

Lip19. Helger Lipmaa. Simulation-extractable snarks revisited. Cryptology ePrint
Archive, Report 2019/612, 2019. https://eprint.iacr.org/2019/612.

Lip20. Helger Lipmaa. Key-and-argument-updatable QA-NIZKs. In Clemente
Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS,
pages 645–669. Springer, Heidelberg, September 2020. doi:10.1007/978-
3-030-57990-6_32.

Lip22. Helger Lipmaa. A unified framework for non-universal snarks. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, Public-Key Cryp-
tography - PKC 2022 - 25th IACR International Conference on Practice
and Theory of Public-Key Cryptography, Virtual Event, March 8-11, 2022,
Proceedings, Part I, volume 13177 of Lecture Notes in Computer Science,
pages 553–583. Springer, 2022. doi:10.1007/978-3-030-97121-2_20.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128.
ACM Press, November 2019. doi:10.1145/3319535.3339817.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, pages 238–252. IEEE Computer Society Press, May
2013. doi:10.1109/SP.2013.47.

PR18. Bertram Poettering and Paul Rösler. Towards bidirectional ratcheted
key exchange. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 3–32. Springer, Hei-
delberg, August 2018. doi:10.1007/978-3-319-96884-1_1.

34

https://doi.org/10.1109/SP.2018.00018
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2021/1459
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-42033-7_3
https://doi.org/10.1007/978-3-642-42033-7_3
https://eprint.iacr.org/2019/612
https://doi.org/10.1007/978-3-030-57990-6_32
https://doi.org/10.1007/978-3-030-57990-6_32
https://doi.org/10.1007/978-3-030-97121-2_20
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-319-96884-1_1

PS96. David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In Ueli M. Maurer, editor, EUROCRYPT’96, volume 1070 of
LNCS, pages 387–398. Springer, Heidelberg, May 1996. doi:10.1007/3-
540-68339-9_33.

RWGM22. Michael Rosenberg, Jacob White, Christina Garman, and Ian Miers.
zk-creds: Flexible anonymous credentials from zksnarks and existing iden-
tity infrastructure. Cryptology ePrint Archive, Paper 2022/878, 2022.
https://eprint.iacr.org/2022/878. URL: https://eprint.iacr.org/
2022/878.

RZ21. Carla Ràfols and Arantxa Zapico. An algebraic framework for univer-
sal and updatable SNARKs. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–804, Vir-
tual Event, August 2021. Springer, Heidelberg. doi:10.1007/978-3-030-
84242-0_27.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer
Society Press, October 1999. doi:10.1109/SFFCS.1999.814628.

Sah01. Amit Sahai. Simulation-sound non-interactive zero knowledge. Technical
report, IBM RESEARCH REPORT RZ 3076, 2001.

Sch90. Claus-Peter Schnorr. Efficient identification and signatures for smart cards.
In Gilles Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 239–
252. Springer, Heidelberg, August 1990. doi:10.1007/0-387-34805-0_22.

Set20. Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs with-
out trusted setup. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 704–737. Springer,
Heidelberg, August 2020. doi:10.1007/978-3-030-56877-1_25.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfus-
cation: deniable encryption, and more. In David B. Shmoys, editor,
46th ACM STOC, pages 475–484. ACM Press, May / June 2014. doi:
10.1145/2591796.2591825.

TMM21. Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. A2L: Anonymous
atomic locks for scalability in payment channel hubs. In 2021 IEEE Sym-
posium on Security and Privacy, pages 1834–1851. IEEE Computer Society
Press, May 2021. doi:10.1109/SP40001.2021.00111.

TMM22. Sri Aravinda Krishnan Thyagarajan, Giulio Malavolta, and Pedro Moreno-
Sanchez. Universal atomic swaps: Secure exchange of coins across all block-
chains. In IEEE S&P, pages 1299–1316. IEEE, 2022.

Unr15. Dominique Unruh. Non-interactive zero-knowledge proofs in the quantum
random oracle model. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 755–784. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_25.

A Omitted Definitions and Primitives

A.1 Key-Homomorphic Signatures

We recall the definition of key-homomorphic signatures as introduced in [DS19].
Parts of this section are taken verbatim from [ARS20]. Let Σ = (KGen,Sign,Verify)
be a signature scheme and the secret and public key elements live in groups

35

https://doi.org/10.1007/3-540-68339-9_33
https://doi.org/10.1007/3-540-68339-9_33
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/878
https://eprint.iacr.org/2022/878
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1109/SFFCS.1999.814628
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1145/2591796.2591825
https://doi.org/10.1109/SP40001.2021.00111
https://doi.org/10.1007/978-3-662-46803-6_25

(H,+) and (E, ·), respectively. For these two groups it is required that group
operations, inversions, membership testing as well as sampling from the uniform
distribution are efficient.

Definition 6 (Secret Key to Public Key Homomorphism). A signature
scheme Σ provides a secret key to public key homomorphism, if there exists an
efficiently computable map µ : H → E such that for all sk, sk′ ∈ H it holds that
µ(sk+ sk′) = µ(sk) ·µ(sk′), and for all (sk, pk)← KGen, it holds that pk = µ(sk).

In the discrete logarithm setting, it is usually the case sk ← Zp and pk = gsk

with g being the generator of some group G of prime order p, e.g., for ECDSA
or Schnorr signatures (cf. [DS19]).

Definition 7 (Key-Homomorphic Signatures). A signature scheme is called
key-homomorphic, if it provides a secret key to public key homomorphism and
an additional PPT algorithm Adapt, defined as:

Adapt(pk,m, σ,∆) : Given a public key pk, a message m, a signature σ, and a
shift amount ∆ outputs a public key pk′ and a signature σ′,

such that for all ∆ ∈ H and all (pk, sk) ← KGen(1λ), all messages m ∈ M and
all σ ← Sign(sk,m) and (pk′, σ′)← Adapt(pk,m, σ,∆) it holds that

Pr[Verify(pk′,m, σ′) = 1] = 1 ∧ pk′ = µ(∆) · pk.

The following notion covers whether adapted signatures look like freshly gen-
erated signatures, where we do not need the strongest notion in [DS19], which
requires this to hold even if the initial signature used in Adapt is known.

Definition 8 (Adaptability of Signatures). A key-homomorphic signature
scheme provides adaptability of signatures, if for every λ ∈ N and every message
m ∈M, it holds that

[(sk, pk),Adapt(pk,m,Sign(sk,m), ∆)],

where (sk, pk)← KGen(1λ), ∆← H, and

[(sk, µ(sk)), (µ(sk) · µ(∆),Sign(sk+∆,m))],

where sk← H, ∆← H, are identically distributed.

A.2 Schnorr Signatures

We recall the Schnorr signature scheme [Sch90] together with the Adapt algo-
rithm and a common setup.

Definition 9. The Schnorr signature scheme Σ = (Pgen,KGen,Sign,Verify,Adapt)
consists of the following PPT algorithms:

PGen(1λ) : Given a security parameter λ, it outputs a prime order group (G, g, p)←
GGen(1λ) and a hash function H ←$ {Hk}k∈K.

36

KGen(PP = ((G, g, p), H)) : Given public parameters PP, it ouputs a secret key
sk←$ Zp and public key pk← gsk.

Sign(sk,M) : Given a secret key sk and a message M ∈ {0, 1}∗, it samples r ←$

Zp, computes R← gr, c← H(R∥m), y ← r+ sk · c, and outputs a signature
σ ← (c, y).

Verify(pk,M, σ = (c, y)) : Given a public key pk, a message M, and a signature
σ, it outputs 1 if c = H(pk−cgy,M) and 0 otherwise.

Adapt(pk,M, σ = (c, y), ∆) : Given a public key pk, a message M, a signature σ,
and a key update ∆ ∈ Zp, it computes pk′ ← pk · g∆, y′ ← y + c · ∆, and
outputs σ′ = (c, y′).

The signature scheme is EUF-CMA secure in the random oracle model (ROM) un-
der the DLP in G [PS96] and satisfies the signature adaption notion of [ARS20].

A.3 Non-Interactive Zero-Knowledge

Let RGen be a relation generator such that RGen(1λ) returns a polynomial-
time decidable binary relation R = {(x, w)}. Here, x is the statement and w

is the witness. We assume that λ is explicitly deducible from the description
of R. Let LR = {x : ∃w, (x, w) ∈ R} be an NP-language. Non-interactive zero-
knowledge (NIZK) proofs and arguments in the CRS model consist of algorithms
(KGencrs,P,V,Sim), and satisfy the following properties: completeness (for all
common reference strings crs generated by KGencrs and (x, w) ∈ R, we have
that V(crs, x,P(crs, x, w)) = 1), zero-knowledge (there exists a simulator Sim
that outputs a simulated proof such that an adversary cannot distinguish it from
proofs computed by P(crs, x, w)), soundness (an adversary cannot output a proof
π and an instance x ̸∈ LR such that V(crs, x, π) = 1). Moreover, knowledge
soundness steps further and says that for any prover generating a valid proof
there is an extractor Ext that can extract a valid witness.

We adopt the (SE) X-NIZK definitions from [Gro16, GKM+18, ARS20]
where X ∈ {trusted, updatable}. In other words, besides considering the stan-
dard setting with a trusted CRS generation, we also capture the updatable CRS
setting. Trusted means generated by a trusted third party, or even a more general
MPC protocol, and, updatable means that an adversary can adaptively gener-
ate sequences of CRSs and arbitrarily interleave its own malicious updates into
them. The only constraints on the final CRS are that it is well formed and that
at least one honest participant has contributed to it by providing an update (or
the initial creation).

In the following we provide a formal definition of X-NIZK.
A X-NIZK Π = (KGen,Ucrs,Vcrs,P,V) for R consists of the following PPT

algorithms (it contains Ucrs and Vcrs when X = update):

KGencrs(R) : On input R ∈ image(RGen(1λ)), outputs CRS crs, a trapdoor tc,
and a proof ζ.17

17 If X = trusted, then ζ = ⊥ and we may omit it.

37

Ucrs(crs, ζ) : On input (crs, ζ) outputs (uptc, crsup, ζup) where uptc and crsup
are the update trapdoor and the updated CRS respectively, and ζup is a
proof for the correctness of the updating procedure.

Vcrs(crs, ζ) : On input (crs, ζ), returns either 0 (the CRS is ill-formed) or 1
(the CRS is well-formed).

P(crs, x, w) : On input (crs, x, w), where (x, w) ∈ R, output a proof π.
V(crs, x, π) : On input (crs, x, π), returns either 0 (reject) or 1 (accept).
Sim(crs, tc, x) : On input (R, auxR, crs, tc, x), outputs a simulated proof π.

For the updatable setting it takes tcup := tc ⊙ uptc where ⊙ depending
on the scheme the operator might be different operations (like addition,
multiplication).

Definition 10. Let Π = (KGencrs,Ucrs,Vcrs,P,V) be a non-interactive argu-
ment for the relation R. Then the argument Π is X-secure for X ∈ {trusted,
updatable}, if it satisfies the following properties:

X-Completeness. Π is complete for RGen, if for all λ, (x, w) ∈ R, and PPT
algorithms A,

Pr

R ← RGen(1λ), (crs, tc, ζ)← A(R),
1← Vcrs(crs, ζ) :

V(crs, x,P(R, auxR, crs, x, w)) = 1

 = 1.

Where ζ is a proof for the correctness of the generation (or updating) of the
CRS. If X = trusted then A is KGencrs and ζ = ⊥ and A is adversary A
otherwise.

X-BB simulation extractability. For X = trusted, Π is BB simulation ex-
tractable for RGen, if for every PPT A, there exists a PPT extractor Ext,

Pr



R ← RGen(1λ),

(crs, tc := (tcsim, tcext))← KGencrs(R),
(x, π)← AO(·)(R, crs),
w← Ext(R, crs; tcext) :
(x, π) ̸∈ Q ∧ (x, w) ̸∈ R ∧
V(crs, x, π) = 1


≈λ 0.

Here, O(x) returns π := Sim(crs, tcsim, x) and keeps track of all queries and
the result, (x, π), via Q. For X = updatable, Π is BB simulation extractable
for RGen, if for every PPT A and any subverter Z, there exists a PPT

38

extractor Ext,

Pr



R ← RGen(1λ),

(crs, tc := (tcsim, tcext)), ζ)← KGencrs(R),
ωZ ←$ RND(Z), (crsup,

ζup, auxZ)← Z(crs, (ζi)
n
i=1 , ωZ),

if Vcrs(crsup, ζup) = 0 then return 0,

(x, π)← AO(·)(R, crsup, crs, auxZ),
w← Ext(R, crsup, crs; tcext) :
(x, π) ̸∈ Q ∧ (x, w) ̸∈ R ∧
V(crsup, x, π) = 1


≈λ 0.

Here RND(Z) = RND(A) and (ζi)
n
i=1 for n ∈ N is a number proofs for the

correctness of the updating procedure. The oracle O(.) represents two oracles
O1(.) and O2(.) which return π := Sim(crs, tcsim, x) and π := Sim(crsup,
tcup,sim, x) respectively. O(.) keeps track of all queried (x, π) via Q. Note
that Z can also first generate crs and then an honest updater updates it and
outputs crsup. In the latter case, O(.) = O2(.).

Remark 2. We note that what we call simulation extractability is often called
strong simulation extractability in the literature. Sometimes one encounters
a relaxed form called weak simulation extractable, which only requires x ̸∈ Q
in the winning condition. We will make it explicit when we talk about this
weak form.

X-Zero-knowledge. For X = trusted, Π is statistically unbounded ZK for
RGen [Gro06], if for all R ∈ image(RGen(1λ)), and all computationally un-
bounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr
[
(crs, tc)← KGencrs(R) : AOb(·,·)(R, crs) = 1

]
.

Here, oracle O0(x, w) returns ⊥ (reject) if (x, w) ̸∈ R, and otherwise it re-
turns P(crs, x, w). Similarly, O1(x, w) returns ⊥ (reject) if (x, w) ̸∈ R, and
otherwise it returns Sim(crs, tc, x). Π is perfectly unbounded ZK for RGen
if we require εunb0 = εunb1 .
Notice that for the updatable ZK property, one needs to assume that at least
one of the (possibly malicious) updaters does not communicate to the others.
This guarantees ZK property, if all updataers are malicious (i.e. let assume
the split adversarial model in a way that the updating is done by two adver-
tisers A1 and A2 but they do not share their secret values (tc1 and tc2) to
each other), as none of them has access to whole CRS trapdoor tc (contain-
ing both tc1 and tc2).18

18 Or with a bit stronger assumption that the split adversarial model, one may simply
assume that one of the updating is honestly done.

39

For X = updatable, Π is statistically unbounded X-ZK for RGen [GKM+18],
if for any PPT Z there exists a PPT Ext, such that for all R ∈ im(RGen(1λ)),
and computationally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr

ωZ ←$ RND(Z), (crs, ζ, auxZ)← Z(R, ωZ),

tc← Ext(R, aux, crs) :
Vcrs(crs, ζ) = 1 ∧ AOb(·,·)(R, crs, auxZ) = 1

.

Here RND(Z) = RND(A), the oracle O0(x, w) returns ⊥ (reject) if (x, w) ̸∈ R,
and otherwise it returns P(crs, x, w). Similarly, O1(x, w) returns ⊥ (reject)
if (x, w) ̸∈ R, and otherwise it returns Sim(crs, tc, x). Π is perfectly un-
bounded X-ZK for RGen if one requires that εunb0 = εunb1 .

We note that depending the BB-extraction technique (like rewinding or straight-
line extraction) aux is some auxilary information.

A.4 Σ-Protocols

A Σ-protocol for language L is an interactive three move protocol between a
prover and a verifier, where the prover proves knowledge of a witness w to (x, w) ∈
RL. They are defined as follows:

Definition 11. A Σ-protocol for language L is an interactive three-move pro-
tocol between a PPT prover P = (Commit,Prove) and a PPT verifier V =
(Challenge,Verify), where P makes the first move and transcripts are of the form
(com, ch, resp) ∈ COM× CH× R. They satisfy the following properties:

Completeness: A Σ-protocol is complete, if for all security parameters λ, and
for all (x, w) ∈ RL, it holds that

Pr [⟨P (x, w) ,V (x)⟩ = 1] = 1.

s-Special Soundness: A Σ-protocol s-is special sound, if there exists a PPT
extractor Ext so that for all x, and for all sets of accepting transcripts
{(com, chi, respi)}i∈[s] with respect to x where chi ̸= chj for i ̸= j, gener-
ated by any PPT algorithm, it holds that

Pr

[
w← Ext

(
x, {(com, chi, respi)}i∈[s]

)
:

(x, w) ∈ RL

]
≥ 1− ε(λ).

Special Honest-Verifier Zero-Knowledge: A Σ-protocol is special honest-
verifier zero-knowledge, if there exists a PPT simulator Sim so that for every
x ∈ L and every challenge ch ∈ CH, it holds that a transcript (com, ch, resp),
where (com, resp) ← Sim(x, ch) is indistinguishable from a transcript result-
ing from an honest execution of the protocol.

40

A.5 Fiat-Shamir Transformation

Given Σ-protocol for language L, one can obtain a NIZK by applying the Fiat-
Shamir transform [FS87]. Essentially, the transform removes the interaction be-
tween the prover and the verifier by using a hash function H (modelled as a
random oracle) to obtain the challenge. That is, the algorithm Challenge obtains
the challenge as H(com, x). We formally recall this stronger variant of the Fiat-
Shamir transform [FKMV12, BPW12]. The original variant of the transform
does not include x in the challenge generation.

Definition 12 (FS transform). Let (PΣ ,VΣ) be Σ-protocol for relation R and
H a random oracle mapping to CH. Define a NIZK for relation R in the random
oracle model as follows:

PFS(x, w) : Start PΣ on (x, w), obtain the commitment com, answer with ch ←
H(com, x). Obtain resp and return π ← (com, resp).

VFS(x, π) : Parse π as (com, resp). Start VΣ on x and send com as first message
to the verifier. When VΣ outputs ch, reply with resp and output 1 if VΣ

accepts and 0 otherwise.

For that transform, we require the min-entropy µ of the commitment com to
be such that 2−µ is negligible in the security parameter λ. Furthermore, its
challenge space CH needs to exponentially large in the security parameter, which
can always be achived by parallel repetition of the protocol.

A.6 Non-Interactive Proofs of Knowledge with Straight-line
Extractors

Fischlin [Fis05] showed how to turn three-move proofs of knowledge into non-
interactive ones in the random oracle model. Unlike the classical Fiat-Shamir
transformation, Fischlin’s construction (Fischlin) supports a straight-line extrac-
tor which outputs the witness from such a non-interactive proof instantaneously,
without having to rewind or fork. Additionally, the communication complexity
of Fischlin’s construction is significantly lower than for previous proofs with
straight-line extractors. In the following we recall Fischlin construction.

The starting point for Fischlin is a Σ-protocol with logarithmic challenge
length ℓ. Note that such proofs can be easily constructed from proofs with smaller
challenge length d by combining ℓ/d parallel executions. Fischlin consists of s rep-
etitions of the base protocol, where in each repetition i, the prover is allowed to
search through challenges and responses to find a tuple (x, com, i, ch, resp) whose
b least significant bits of the hash are 0⃗b for a small b. Alternatively, let H only
have b output bits which can always be achieved by cutting off the leading bits.
Instead of demanding that all s hash values equal 0⃗b, it gives the honest prover
more flexibility and let the verifier also accept proofs (comi, chi, respi)

s
i=1 such

that the sum of the s hash values H(x, ⃗com, i, chi, respi) (viewed as natural num-
bers) does not exceed some parameter S. With this we can bound the prover’s
number of trials in each execution by 2t for another parameter t, slightly larger
than b, and guarantee that the prover terminates in strict polynomial time.

41

Definition 13 (Fischlin construction [Fis05]). Let (PΣ ,VΣ) be a Σ-protocol
with challenges of ℓ = ℓ(k) = O(log k) bits for relation R. Define the parameters
b, s, S, t (as functions of k) for the number of test bits, repetitions, maximum
sum and trial bits such that bs = ω(log k), 2t−b = ω(log k), b, s, t = O(log k),
S = O(s) and b ≤ t ≤ ℓ. Define the following non-interactive proof system for
relation R in the random oracle model, where the random oracle maps to b bits.

P(x, w) : First run the prover PΣ on (x, w) in s independent repetitions to obtain
s commitments ⃗com = (com1, · · · , coms). Then P does the following for each
repetition i: for each chij = 0, 1, · · · , 2t − 1 (viewed as t-bit strings) it lets
PΣ compute the final responses respij = respij(chij), until it finds the first
one such that H(x, ⃗com, i, chij , respij) = 0⃗b; if no such tuple is found then
P picks the first one for which the hash value is minimal among all 2t hash
values. The prover finally outputs π = (comi, chij , respij)

s
i=1.

V(x, π) : Accepts if and only if VΣ accepts x with (comi, chi, respi) for each i =
1, · · · , s, and if

∑s
i=1 H(x, ⃗com, i, chi, respi) ≤ S.

Fischlin has a small completeness error. For deterministic verifiers this error can
be removed by standard techniques, e.g., by letting the prover check on behalf
of the verifier that the proof is valid before outputting it.

Theorem 5 ([Fis05]). Let (PΣ ,VΣ) be a Σ protocol for relation R. Then
the scheme Fischlin is a non-interactive zero-knowledge proof of knowledge for
relation R (in the random oracle model) with a straight-line extractor.

Unruh [Unr15] adapted Fischlin’s strategy to obtain simulation-extractable
NIZKs in the quantum ROM (QROM) that provide a straight-line extractor
and avoid the completeness error. At a high level, Unruh’s transform works as
follows: Given a s-special-sound Σ-protocol, integers t and M ≥ s, a statement
x and a random permutation G, the prover will repeat the first phase of the
Σ-protocol t times. For each of the t runs, it produces proofs to M different
randomly selected challenges. The prover applies G to each of the so-obtained
responses. The prover then selects the responses to publish for each round of the
Σ-protocol by querying the random oracle on the statement, all commitments,
all challenges and all permuted responses. We formally define it below.

Definition 14 (Unruh transform). Let (PΣ ,VΣ) be s-special sound Σ-protocol
for relation R and H a random oracle mapping to [M]t and G be permutation
of Σ’s response space. Define a NIZK for relation R in the random oracle model
as follows:

PUnruh(x, w) : 1. For i ∈ [t]: Start PΣ on (x, w) and obtain commitment comi.
Then, for j ∈ [M], set chi,j ←$ CH \ {chi,1, . . . , chi,j−1} and obtain
response respi,j for challenge chi,j. Set c⃗hi ← (chi,j)j∈[M]

2. For i, j ∈ [t]× [M], set gi,j ← G(respi,j). Set g⃗j ← (gi,j)j∈[M]

3. Let (J1, . . . , Jt)← H((comi)i∈[t], (c⃗hi)i∈[t], (g⃗i)i∈[t]).
4. Return π ← ((comi)i∈[t], (c⃗hi)i∈[t], (g⃗i)i∈[t], (respi,Ji

)i∈[t]).

42

VUnruh(x, π) : Parse π as

((comi)i∈[t], (c⃗hi)i∈[t], (g⃗i)i∈[t], (respi)i∈[t]).

1. Let (J1, . . . , Jt)← H((comi)i∈[t], (c⃗hi)i∈[t], (g⃗i)i∈[t]).
2. For i ∈ [t] check that all chi,1, . . . , chi,M are pairwise distinct.
3. For i ∈ [t] check whether VΣ accepts the proof with respect to x, commit-

ment comi, challenge chi,Ji
and response respi.

4. For i ∈ [t] check gi,Ji
= G(respi).

5. Output 1 if all checks succeeded and 0 otherwise.

Theorem 6 ([Unr15]). Let (PΣ ,VΣ) be a Σ-protocol for relation R. Then the
scheme Unruh is a non-interactive zero-knowledge proof of knowledge for relation
R (in the random oracle model) with a straight-line extractor.

In general, the overhead of Unruh is t ·M for the prover and in the proof size.
The verifier, however, has to invoke the verifier of the Σ-protocol only t times.

A.7 Properties of Updatable Signatures

Definition 15 (Updatable correctness). A signature scheme Σ is updatable
correct, if for all m ∈ M, all (csk, cpk, ζ) ← KGen(1λ) and (upcsk, cpkup, ζup) ←
Upk(cpk) such that Vpk(cpk, cpkup, ζup) = 1, we have Verify(cpk,m,Sign(csk,m)) =
1 and Verify(cpkup,m,Sign(csk + upcsk,m)) = 1.

Definition 16 (Updatable strong key hiding). For all (csk, cpk)← KGen(1λ)
and (upcsk, cpkup, ζup) ← Upk(cpk), it holds that (csk, cpk) ≈λ (cskup, cpkup) ∈
KGen(1λ) (where cskup := csk + upcsk) if one of the following settings holds:

– cpk was honestly generated and the key update verifies, i.e., (csk, cpk) ←
KGen(1λ) and Vpk(cpk, cpkup, ζup) = 1; or

– cpk verifies and the key update was honest, i.e., Vpk(cpk, ζ) = 1 and (upcsk,
cpkup, ζup)← Upk(cpk).

Definition 17 (Updatable EUF-CMA). A signature scheme Σ is updatable
EUF-CMA secure, if, for any PPT subverter Z, there exists a PPT extractor ExtZ
s.t. for all PPT adversaries A

Pr



(csk, cpk, ζ)← KGen(1λ),
(cpkup, ζup, auxZ)← Z(cpk),

upcsk ← ExtZ(cpkup),
(m⋆, σ⋆)← AO(cpkup, auxZ) :
Vpk(cpk, cpkup, ζup) = 1 ∧
cpkup = cpk · µ(upsk) ∧

m⋆ /∈ QSign ∧ Verify(cpkup,m
⋆, σ⋆) = 1


≈λ 0,

where O = Sign(csk, ·),Sign(csk + upcsk, ·), the environment keeps track of the
queries to the signing oracle via QSign. Note that Z can also generate the initial
cpk, which an honest updater Upk then updates, outputting cpkup, upcsk, and the
proof ζup. Then we require that Vpk(cpk, ζ) = 1 and we extract csk by running
ExtZ on cpk.

43

Remark 3. The above definition of updatable EUF-CMA is adapted to black-box
extractors, whereas the definition given in [ARS20] is with respect to non-black-
box extractors.

B Black-box SE Version of Sonic

In order to satisfy black-box SE, we first add the public key UP.pk of the IND-
CPA secure extractable key-updatable PKE UP in the SRS and give a simulation-
extractable NIZK with black-box extraction (such as FS, Fischlin, and Unruh)
that the update is correctly done. Then, following the framework presented in
Section 4.1, we use a combination of an updatable EUF-CMA secure updatable
signature scheme Σ with BB extraction and a strongly unforgeable one-time
signature (sOTS) scheme ΣOT to add the required non-malleability guarantees
to Sonic together with the folklore OR-trick to enable simulation of proofs. The
final SRS contains Sonic’s original SRS, the public key UP.pk of the updatable
IND-CPA secure extractable key-updatable PKE UP, and the public key cpk of
the updatable EUF-CMA secure updatable signature scheme Σ.

Assume Sonic [MBKM19] with the SRS as in Section 5.2, the extractable
key-updatable ElGamal encryption scheme from Section 3 with the public key
pk = gsk and the secret key sk, and the updatable Schnorr signatures with BB
extraction from Section 2.1 with the public key cpk = gcsk and the signing key
csk. Then, we describe the SRS update-proof procedure of the black-box SE
Sonic as follows:
– Choose uptc := (upα, upχ)←$ Z∗2p and compute srsup :=(

{(gχ
i

)up
i
χ , (hχ

i

)up
i
χ , (hαχ

i

)upαupiχ}i=d
i=−d,

{(gαχ
i

)upαupiχ}i=d
i=−d,i ̸=0

)
together with a proof ζZK,Π,up that this computation is correctly done, where
ZK ∈ {FS,Fischlin,Unruh}. More precisely, the proof ζZK,Π,up is for the lan-
guage L1 :=srsup

∣∣∣∣∣∣
∃(upχ, upα) ∈ Z∗2p : srsup =(

{srsup
i
χ

1 , srs
upαupiχ
2 }i=d

i=−d, {srs
upαupiχ
3 }i=d

i=−d,i̸=0

)
where srs1 = (gχ

i

, hχ
i

), srs2 = hαχ
i

, and srs3 = gαχ
i

.
– Choose upsk ←$ Z∗p and compute pkup := pkupsk = (gsk)upsk together with a

proof ζZK,pk,up that this computation is correctly done. More precisely, the
proof ζZK,pk,up is for the language

L2 := {pkup|∃upsk ∈ Z∗p s.t pkup = pkuppk}.

– Choose upcsk ←$ Z∗p, compute cpkup := cpkupcpk = (gcsk)upcsk together with a
proof ζZK,cpk,up such that this computation was correctly done. More precisely,
the proof ζZK,cpk,up is computed for the language

L3 := {cpkup|∃upcsk ∈ Z∗p s.t cpkup = cpkupcsk}.

44

	Universally Composable NIZKs: Circuit-Succinct, Non-Malleable and CRS-Updatable

