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Abstract. At Asiacrypt 2021, Baksi et al.. proposed DEFAULT, the first9

block cipher which provides differential fault attack (DFA) resistance at10

the algorithm level, with 64-bit DFA security. Initially, the cipher em-11

ployed a simple key schedule where a single key was XORed throughout12

the rounds, and the key schedule was updated by incorporating round-13

independent keys in a rotating fashion. However, at Eurocrypt 2022,14

Nageler et al. presented a DFA that compromised the claimed DFA secu-15

rity of DEFAULT, reducing it by up to 20 bits for the simple key schedule16

and allowing for unique key recovery in the case of rotating keys. In this17

work, we present an enhanced differential fault attack (DFA) on the DE-18

FAULT cipher, showcasing its effectiveness in uniquely recovering the en-19

cryption key. We commence by determining the deterministic computa-20

tion of differential trails for up to five rounds. Leveraging these computed21

trails, we apply the DFA to the simple key schedule, injecting faults at22

different rounds and estimating the minimum number of faults required23

for successful key retrieval. Our attack achieves key recovery with mini-24

mal faults compared to previous approaches. Additionally, we extend the25

DFA attack to rotating keys, first recovering equivalent keys with fewer26

faults in the DEFAULT-LAYER, and subsequently applying the DFA sep-27

arately to the DEFAULT-CORE. Furthermore, we propose a generic DFA28

approach for round-independent keys in the DEFAULT cipher. Lastly, we29

introduce a new paradigm of fault attack that combines SFA and DFA for30

any linear structured SBox based cipher, enabling more efficient key re-31

covery in the presence of both rotating and round-independent key con-32

figurations. We call this technique Statistical-Differential Fault Attack33

(SDFA). Our results shed light on the vulnerabilities of the DEFAULT34

cipher and highlight the challenges in achieving robust DFA protection35

for linear structure SBox-based ciphers.36

Keywords: Differential Fault Attack · Statistical Fault Attack · Statistical-37

Differential Fault Attack · DEFAULT · DFA Security38



1 Introduction39

The differential fault attack (DFA) is a powerful physical attack that poses a sig-40

nificant threat to symmetric key cryptography. Introduced in the field of block41

ciphers by Biham and Shamir [BS97], DFA has proven to be capable of compro-42

mising the security of many block ciphers that were previously considered secure43

against classical attacks. While nonce-based encryption schemes can automat-44

ically prevent DFA attacks by incorporating nonces in encryption queries, the45

threat of DFA [SC16,JSP20] still persists in designs with a parallelism degree46

greater than 2. Additionally, DFA [SC15,Jan22,JP22] can pose a significant risk47

to nonce-based designs in the decryption query. In essence, DFA represents a sig-48

nificant challenge for cryptographic implementations whenever an attacker can49

induce physical faults. In response to this threat, the research community has50

focused on proposing countermeasures to enhance the DFA resistance of ciphers.51

Countermeasures against fault injection attacks can be classified into two52

main categories. The first category focuses on preventing faults from occurring53

by utilizing specialized devices. The second category focuses on mitigating the54

impact of faults through redundancy or secure protocols. Countermeasures that55

mitigate the effects of fault injection attacks utilize redundancy for protection.56

These countermeasures can be classified into three categories based on where the57

redundancy is introduced: cipher level (no redundant computation), using a sepa-58

rate dedicated device, and incorporating redundancy in computation (commonly59

achieved through circuit duplication). Additionally, protocol-level techniques can60

also be employed to enhance fault protection.61

Most of the countermeasures against attacks on cryptographic primitives,62

modes of operation, and protocols are focused on implementation-level defenses63

without requiring changes to the underlying cryptographic algorithms or pro-64

tocols themselves. One effective countermeasure against DFA is to introduce65

redundancy into the system so that it can still function even if some faults or66

errors are introduced. Another countermeasure is to use error detection and67

correction codes. These codes can detect when errors or faults have occurred68

and correct them before they affect the output. Recent cryptographic designs69

propose primitives with built-in features to enable protected implementations70

against DFA attacks. For instance, FRIET [SBD+20] and CRAFT [BLMR19] are71

efficient and provide error detection. DEFAULT is a more radical approach, aim-72

ing to prevent DFA attacks through cipher-level design. A brief survey on fault73

attacks and their countermeasures in symmetric key cryptography can be found74

in [BBB+23].75

DEFAULT is a block cipher design proposed by Baksi et al. [BBB+21a] at76

Asiacrypt 2021 that provides protection against DFA attacks at the cipher level.77

The primary component of the DFA protection layer in DEFAULT (called the78

DEFAULT-LAYER) is a weak class of substitution boxes (SBoxes) with linear79

structures, which behave like linear functions in some aspects. The idea be-80

hind the DEFAULT design is that strong non-linear SBoxes are more resistant81

against classical differential attacks (DA), but weaker against DFA attacks. Con-82

versely, weaker non-linear SBoxes are more resistant against DFA attacks but83



weaker against DA. Simply speaking, the DEFAULT cipher is combination of84

DEFAULT-LAYER and DEFAULT-CORE (where rounds are used non-linear struc-85

tured SBoxes). To address this trade-off, DEFAULT maintains the main cipher,86

which is presumed secure against classical attacks, and adds two keyed permu-87

tations as additional layers before and after it. These keyed permutations have88

a unique structure that makes DFA non-trivial on them, resulting in a DFA-89

resistant construction. The linear structures in the SBox of DEFAULT result in90

certain inputs/outputs being differentially equivalent, including the correspond-91

ing keys. As a result, attackers cannot learn more than half of the key bits by92

attacking the SBox layer. The designers claim that using DFA, an adversary93

can only recover 64 bits of out of 128-bit key, leaving a remaining keyspace94

of 264 candidates that is difficult to brute-force. For even more security, the95

design approach can be scaled for a larger master key size. In their initial de-96

sign [BBB+21b], the authorrs first propose the simple key schedule function97

where the master key is used throughout each rounds in the cipher. Then98

in [BBB+21a] the authors update the simple key schedule by recomending to99

use the rotating key schedule function in the cipher to make it more DFA secure100

cipher.101

In [NDE22], the authors initially demonstrate the vulnerability of the sim-102

ple key schedule of the DEFAULT cipher to DFA attacks. They highlight that103

this attack can retrieve more key information than what the cipher’s designers104

claimed, surpassing the 64-bit security level. The authors also present a method105

to retrieve the key in the case of a rotating key schedule by exploiting faults to106

create an equivalent key and then targeting the DEFAULT-CORE to recover the107

actual key. However, their attack on the simple key schedule does not achieve108

unique key recovery even with an increased number of injected faults.109

In this work, we significantly enhance the DFA attack on the DEFAULT cipher,110

improving both the key schedule function and the efficiency of key retrieval. We111

demonstrate that our proposed attack can uniquely and efficiently recover the112

key, requiring fewer injected faults. Additionally, we illustrate that by combining113

information from both differential and statistical fault attacks under the bit-set114

fault model, we can effectively recover the keys in a unique manner. Moreover,115

we extend the applicability of this attack to any linear-structured SBox-based116

DFA protected ciphers, establishing its effectiveness in a broader context.117

1.1 Our Contributions118

In this paper, we make several contributions in the field of fault attacks on119

the DEFAULT cipher. Firstly, we demonstrate the vulnerability of the DEFAULT120

cipher to DFA attacks under bit-flip fault models, specifically targeting the simple121

key schedule. Our approach effectively reduces the key space with a minimal122

number of injected faults, surpassing the performance of previous attacks. To123

achieve this, we propose novel techniques for deterministic trail computation up124

to five rounds by analyzing the ciphertext differences. These techniques enable125

us to filter the intermediate rounds and further reduce the key space.126



Furthermore, we extend our analysis to the simple key schedule and showcase127

the efficiency of our approach in reducing the key space to a unique solution128

with a minimal number of faults. Additionally, we present a general framework129

for computing equivalent keys of the DEFAULT-LAYER cipher. By applying this130

framework, we demonstrate the efficacy of DFA attacks on rotating key schedules131

with significantly fewer injected faults.132

Moreover, we introduce a new attack called the Statistical-Differential Fault133

Attack under the bit-set fault model. This attack efficiently recover the round134

keys of the DEFAULT cipher, even when the keys are independently chosen from135

random sources.136

To summarize our contributions, we provide a brief comparison of the per-137

formance of our improved attacks with previous attacks in Table 1. Overall, our138

work significantly advances the state-of-the-art in fault attacks on the DEFAULT139

cipher and provides effective strategies for key recovery in linear-structured140

SBox-based ciphers.141

Key Schedule Works Attack Strategy Results References

# of Faults Key Space

Simple

Nageler et al.
Enc-Dec IC-DFA 16 239 [NDE22, Section 6.1]

Multi-round IC-DFA 16 220 [NDE22, Section 6.2]

Ours

Second-to-Last Round Attack 32 232 Section 4.1.2

Third-to-Last Round Attack 32 20 Section 4.1.3

Fourth-to-Last Round Attack 16 20 Section 4.1.4

Fifth-to-Last Round Attack 8 20 Section 4.1.5

SDFA [64, 128] 20 Section 5.2

Rotating

Nageler et al.

Generic NK-DFA 1728 + x 20 [NDE22, Section 6.3]

Enc-Dec IC-NK-DFA 288 + x 232 [NDE22, Section 6.3]

Multi-round IC-NK-DFA (84± 15) + x 20 [NDE22, Section 6.3]

Ours

Third-to-Last Round Attack 96 + x 20 Section 4.2.2.1

Fourth-to-Last Round Attack 48 + x 20 Section 4.2.2.2

Fifth-to-Last Round Attack 24 + x 20 Section 4.2.2.3

SDFA [64, 128] 20 Section 5.3

*x represents the number of faults to retrieve the key at the DEFAULT-CORE

Table 1: Differential Fault Attacks on DEFAULT with Different Key Schedules

1.2 Outline of the Paper142

The remaining sections of the paper are organized as follows: Section 2 provides143

a brief overview of the DEFAULT cipher. Section 3 presents the background on144

differential fault attacks and reviews previous attacks on the DEFAULT cipher. In145

Section 4, we introduce our novel techniques for deterministic trail computation146



up to five rounds and demonstrate improved DFA attacks on both the simple and147

rotating key schedules. Additionally, we propose a new attack strategy called148

SDFA under the bit-set fault model for key recovery in the DEFAULT cipher.149

Finally, Section 7 concludes the paper with closing remarks.150

2 Preliminaries151

In this section, we introduce the notations that will be used throughout the152

paper, followed by a description of the DEFAULT cipher.153

2.1 Notations154

The following notations are used throughout the paper.155

– a⊕ b denotes the bit-wise XOR of a and b.156

– + denotes the integer addition.157

– ∪,∩ denotes the set union and intersection respectively.158

– ∆C denotes the ciphertext difference.159

2.2 Description of DEFAULT Cipher160

The DEFAULT cipher [BBB+21a] is a lightweight block cipher with a 128-bit161

state and key size. It is designed to resist DFA attacks by limiting the amount162

of key information that can be learned by an attacker. The cipher incorporates163

two keyed permutations, known as DEFAULT-LAYER, as additional layers before164

and after the main cipher. These layers provide protection against DFA attacks165

and other classical attacks. The DEFAULT cipher consists of two main build-166

ing blocks: DEFAULT-LAYER and DEFAULT-CORE. The DEFAULT-LAYER layer167

protects the cipher from DFA attacks, while the DEFAULT-CORE layer protects168

against classical attacks. The encryption function of the DEFAULT cipher can be169

expressed as Enc = EncDEFAULT-LAYER ◦ EncCORE ◦ EncDEFAULT-LAYER, indicat-170

ing that the encryption process involves applying the DEFAULT-LAYER function171

before and after the DEFAULT-CORE function.172

The DEFAULT cipher employs a total of 80 rounds, with the DEFAULT-LAYER173

function being applied 28 times and the DEFAULT-CORE function being applied174

24 times. Each round function consists of a structured 4-bit SBox layer, a per-175

mutation layer, an add round constant layer, and an add round key layer. The176

DEFAULT-LAYER function utilizes a linear structured SBox, while the DEFAULT-177

CORE function utilizes a non-linear structured 4-bit SBox. In the following sec-178

tions, we will discuss each component of the DEFAULT cipher in detail.179

2.2.1 SBoxes The DEFAULT-LAYER layer of the DEFAULT cipher utilizes a180

4-bit Linear Structured SBox, denoted as S. Table 2a shows the mapping of181

input and output values for this SBox, and it consists of four linear structures:182

0 → 0, 6 → a, 9 → f , and f → 5. The definition of a linear structure can be183



found in Definition 2. Similarly, the DEFAULT-CORE layer uses another SBox,184

denoted as Sc. Table 2b provides the input-output mapping for this SBox. To185

evaluate the differential behavior of S and Sc, the differential distribution tables186

are given in Table 3a and Table 3b respectively.187

Definition 1 (Linear Structure). For F : Fn
2 → Fn

2 , an element a ∈ Fn
2 is188

called a linear structure of F if for some constant c ∈ Fn
2 , F (x)⊕ F (x⊕ a) = c189

holds ∀x ∈ Fn
2 .190

x : 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) : 0 3 7 e d 4 a 9 c f 1 8 b 2 6 5

(a) DEFAULT-LAYER SBox

x : 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sc(x) : 1 9 6 f 7 c 8 2 a e d 0 4 3 b 5

(b) DEFAULT-CORE SBox

Table 2: SBoxes for DEFAULT cipher

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16
1 8 8
2 8 8
3 8 8
4 8 8
5 8 8
6 16
7 8 8
8 8 8
9 16
a 8 8
b 8 8
c 8 8
d 8 8
e 8 8
f 16

(a) DDT of S

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16
1 2 2 2 2 2 2 2 2
2 4 4 4 4
3 2 2 2 2 2 2 2 2
4 4 4 4 4
5 2 2 2 2 2 2 2 2
6 4 4 4 4
7 2 2 2 2 2 2 2 2
8 4 4 4 4
9 2 2 2 2 2 2 2 2
a 4 4 8
b 2 2 2 2 2 2 2 2
c 4 4 4 4
d 2 2 2 2 2 2 2 2
e 4 4 8
f 2 2 2 2 2 2 2 2

(b) DDT of Score

Table 3: DDT of SBoxes used in DEFAULT

2.2.2 Permutation Bits The DEFAULT cipher incorporates the GIFT-128191

permutation in each of its rounds, which is derived from the GIFT cipher [BBC+23].192

In the permutation layer of the GIFT cipher, there are two versions: one with 4193

Quotient-Remainder groups for the 64-bit version, and another with 8 Quotient-194

Remainder groups for the 128-bit version. It is worth noting that these 8 Quotient-195

Remainder groups do not diffuse over themselves for 2 rounds.196



2.2.3 Add Round Constants For DEFAULT cipher, a round constant of197

6-bits are XORed with the indices 23, 19, 15, 11, 7 and 3 respectively at each of198

the rounds. Along with this, the bit index 127 is flipped at each round to modify199

the state bits.200

2.2.4 Add Round Key The round key for GIFT-128 cipher is 128 bits in201

length. In the first preprint version of DEFAULT, a simple key schedule was202

used where all the round keys were the same as the master key for each round.203

However, in a later version, a stronger key schedule was proposed to enhance204

security against DFA attacks. In this updated version, the authors introduced205

an idealized key schedule where each round key is independent of the others.206

Although this idealized scheme requires 28 × 128 key bits to encrypt 128 bits207

of state using the DEFAULT cipher, it is not practical. To address this, the208

authors employed an unkeyed function R to generate four different round keys209

K0, · · · ,K3, where K0 = K and Ki = R4(Ki−1) for i ∈ 1, 2, 3. These four round210

keys are then used periodically for each round to encrypt the plaintext.211

3 DFA on DEFAULT212

In this section, we will provide a brief overview of the design principles behind213

DEFAULT, a type of encryption that is resistant to Differential Fault Analysis214

(DFA) attacks. We will also revisit an attack described in the research paper215

by Maria et al. [NDE22] and examine how it exposes the limitations of using a216

linear structure like SBox to design a cipher-level DFA-protected cipher.217

3.1 Differential Fault Attack218

Differential Fault Attack (DFA) is a type of Differential Cryptanalysis that op-219

erates in the grey-box model. In this attack, the attacker deliberately introduces220

faults during the final stages of the cipher to extract the secret component ef-221

fectively. In contrast, the security of a cipher against Differential Cryptanalysis222

in the black-box model depends on the probability of differential trails (fixed223

input/output difference) being as low as possible. However, in DFA, the attacker224

can introduce differences at the intermediate stages by inducing faults, increasing225

the trail probability for those rounds significantly. As a result, the attacker can226

extract the secret component more efficiently than in Differential Cryptanalysis227

in the black-box model. Finally, eestimating the minimum number of faults is228

crucial in DFA to ensure the attack is both efficient and effective, keeping the229

search complexity within acceptable limits. To protect ciphers from DFA attacks,230

various state-of-the-art countermeasures have been proposed, including the use231

of dedicated devices or shields that prevent any potential sources of faults. Other232

countermeasures include the implicit/explicit detection of duplicated computa-233

tions and mathematical solutions designed to render DFA ineffective or ineffi-234

cient.235



3.2 Linear Structure SBox236

A linear structure SBox is a class of permutations that exhibit some properties237

of linear functions, making them weaker than non-linear permutations in certain238

aspects. Matematically, it is defined as follows.239

Definition 2 (Linear Structure). Let F : Fn
2 → Fn

2 be a permutation. An240

element a ∈ Fn
2 is called a linear structure of F if for some constant c ∈ Fn

2 ,241

F (x)⊕ F (x⊕ a) = c holds ∀x ∈ Fn
2 .242

The SBox S used in DEFAULT-LAYER has four linear structures as L(S) =243

{0, 6, 9, f}. According to the DDT (Table 3a) of S, the non-trivial linear struc-244

tures are 6, 9 and f . Similarly, for the inverse SBox S−1, the set of all linear245

structures of S−1 will be L(S−1) = {0, 5, a, f}.246

Learned Information from S/S−1. Suppose that (x0, x1, x2, x3) and (y0, y1, y2, y3)
are respectively the bit-level input and output of SBox S. Similarly, (y0, y1, y2, y3)
and (x0, x1, x2, x3) are the input and output of S−1. Note that, the output of
S is same as the input to S−1 and vice-versa. Consider a set A of inputs which
satisfy the differential α→ β for the SBox S, i.e., A = {x : S(x)⊕S(x⊕α) = β}.
Then, for any y ∈ L(S), we have,

S(x⊕y)⊕ S(x⊕y ⊕α) = (S(x)⊕S(x⊕y))⊕(S(x⊕α)⊕S(x⊕y⊕α))⊕ (S(x)⊕S(x⊕α))
= β. [As, (S(x)⊕S(x⊕y)) = (S(x⊕α)⊕S(x⊕α⊕ y)).]

This result shows that x ∈ A =⇒ x ⊕ y ∈ A, y ∈ L(S). Thus, for any input247

x ∈ {0, 1, . . . , f}, the attacker cannot uniquely identify which among {x, x⊕6, x⊕248

9, x⊕f} is the actual input to the SBox. Further, this can be partitioned into four249

subsets as {{0, 6, 9, f}, {1, 7, 8, e}, {2, 4, b, d}, {3, 5, a, c}} = {B0,B1,B2,B3}. Sim-250

ilarly, for S−1, the partition will be {{0, 5, a, f}, {1, 4, b, e}, {2, 7, 8, d}, {3, 6, 9, c}} =251

{D0,D1,D2,D3}. The input bit relations of Bi/Di’s of S/S−1 are denoted by252

Beqi /Deq
i and given in Table 4.253

Beq
0 Beq

1 Beq
2 Beq

3 Deq
0 Deq

1 Deq
2 Deq

3

3∑
i=0

xi = 0
3∑

i=0
xi = 0

3∑
i=0

xi = 1
3∑

i=0
xi = 1

3∑
i=0

yi = 0
3∑

i=0
yi = 1

3∑
i=0

yi = 1
3∑

i=0
yi = 0

x0 ⊕ x3 = 0 x0 ⊕ x3 = 1 x0 ⊕ x3 = 0 x0 ⊕ x3 = 1 y0 ⊕ y2 = 0 y0 ⊕ y2 = 1 y0 ⊕ y2 = 0 y0 ⊕ y2 = 1

x1 ⊕ x2 = 0 x1 ⊕ x2 = 1 x1 ⊕ x2 = 1 x1 ⊕ x2 = 0 y1 ⊕ y3 = 0 y1 ⊕ y3 = 0 y1 ⊕ y3 = 1 y1 ⊕ y3 = 1

Table 4: Input Bit Relations of Partition Correspond to S/S−1

For example, consider the SBox S−1 (for encryption) with differential 7→ 2.254

Then, the number of inputs that satisfy 7→ 2 will beD2∪D0 = {0, 5, a, f, 2, 7, 8, d}255

and hence, the attacker can learn the bit relation of this input set D2 ∪ D0 as256

Deq
2 ∩D

eq
0 =⇒ y0⊕y2 = 0. Similarly, if the differential 7→ 4 happens, then the257



attacker can learn the bit relation as Deq
1 ∩ D

eq
3 =⇒ y0 ⊕ y2 = 1. In this way,258

for any differential α → β of S−1, the attacker can learn the bit relation of the259

inputs that satisfy α → β. Conversely, if we consider the SBox S (for decryp-260

tion) with differential γ → δ, the attacker can learn the bit relation from the261

sets Bi, i ∈ {0, 1, 2, 3}. For example, the inputs to satisfy the differential 2 → 7262

will be B2 ∪ B0 and thus, input bit relation will be Beq2 ∩ B
eq
0 =⇒ x0 ⊕ x3 = 0.263

Similarly, for 2→ d, the learned information will be Beq1 ∩B
eq
3 =⇒ x0⊕x3 = 1.264

Consider an encryption query where difference is injected at the last round265

before the SBox operaration. Let (k0, k1, k2, k3) be the key XORed with the266

output of SBox and outputs the ciphertext (ignore the linear layer). Now, for each267

SBox, we are going to combine these learned information for the input/output268

of S/S−1 with the key to learn the corresponding key relation. For example,269

consider the learned information y0 ⊕ y2 = 0 for a given differential 2→ 7 of S270

(7→ 2 for S−1). If c be the non-faulty ciphertext, then we have,271

c0 ⊕ c2 = (y0 ⊕ y2)⊕ (k0 ⊕ k2) =⇒ (k0 ⊕ k2) = (c0 ⊕ c2)⊕ (y0 ⊕ y2) = c0 ⊕ c2.

This relation shows that the attacker can learn the key information from the272

ciphertext relation. In the way, for both encryption and decryption, an attacker273

can learn key informations for each non-zero differential of S/S−1. In Table 5,274

we summarize the key bits information for both enc/decwhich can be learned275

based on the input difference of S/S−1.276

Direction Learned expression

0 1 2 3 4 5 6 7 8 9 a b c d e f

Enc (S−1) 1
3∑

i=0
ki k0⊕k2 k1⊕k3 k0⊕k2 k1⊕k3 1

3∑
i=0

ki

3∑
i=0

ki 1 k1⊕k3 k0⊕k2 k1⊕k3 k0⊕k2

3∑
i=0

ki 1

Dec (S) 1
3∑

i=0
ki k0⊕k3 k1⊕k2

3∑
i=0

ki k1⊕k2 1 k0⊕k3 k0⊕k3 1 k1⊕k2

3∑
i=0

ki k1⊕k2 k0⊕k3

3∑
i=0

ki 1

Table 5: Learned Key-Information when faulting at (S/S−1)

3.3 Designer’s Claim277

In [BBB+21a], Baksi et al. proposed the DEFAULT cipher as a means of achieving278

DFA protection. The main idea behind this design is to allow faults to propa-279

gate through the cipher and produce faulty ciphertexts. However, the amount280

of information an attacker can learn from these ciphertexts is limited, meaning281

that the search complexity required to recover the secret component cannot be282

further reduced, even if additional faults are injected. Suppose an attacker inject283

faults (including bit-faults) in each nibbles before the SBox at the last round of284

the DEFAULT-LAYER. Then, the attacker can only learn two bit information of285

each key nibbles. Mathematically, let Ki = (ki0, k
i
1, k

i
2, k

i
3), i = 0, . . . , 31 denote286

the key nibbles XORed after the SBoxes at the last round of DEFAULT-LAYER.287



For each faults at the nibbles, the attacker can learn an equation rearding the key288

bits in that nibble. Consider the 0th SBox where the attacker inject the difference289

of 2 at the last round. Then, the attacker can learn information of k0 ⊕ k2 = b290

(see Table 5), where b is known if the attacker knows the corresponding faulty291

and non-faulty nibbles. According to the Table 5, the attacker can learn atmost292

two independent equations of involving the bits in the key nibbles, i.e., the key293

nibble space can be reduced from 24 to atmost 22 even though the attacker can294

inject more than two faults at each nibbles.295

The goal of the DEFAULT cipher is to provide a lower bound on the search296

complexity required to retrieve the secret component, thus increasing the diffi-297

culty of a successful DFA attack. According to its designers, the DEFAULT cipher298

can protect against DFA and other fault attacks that rely on differential values299

to deduce information from cipher executions. Its design limits the information300

attackers can obtain from faulty ciphertexts, making it difficult to compromise301

the security and confidentiality of the encrypted data. An interesting observa-302

tion about DFA resistance in SBoxes is that if an SBox has a non-trivial linear303

structure, an attacker cannot guess the actual input even after injecting multiple304

faults. The attacker has to search exhaustively among the set of possible inputs305

to find the actual one. The DEFAULT cipher uses a linear structured SBox for306

DEFAULT-LAYER, which reduces the key space to 264 bits after performing a307

DFA attack. However, this is still impractical for successful attacks, making the308

cipher resistant to DFA attacks.309

3.4 Nageler et al.’s Work310

In their work [NDE22], the authors demonstrated that an attacker could gather311

more key bits than the designer’s claimed level of DFA-security by utilizing infor-312

mation from multiple rounds. In this attack, the attacker chooses a fault model to313

induce single bit-flip faults on the nibble between rounds and uses only difference-314

based evaluation to learn key information. They first show how an attacker can315

combine information from multiple differential fault attacks on the simple key316

schedule to learn more than half of the key bits using two approaches: combin-317

ing information from encryption and decryption, or combining information from318

multiple consecutive rounds. Also, the authors propose a generic attack strategy319

for the strong key schedule used in DEFAULT-LAYER. They identify equivalent320

keys that produce the same permutation and recover a normalized version of the321

correct key, which can be applied to all DEFAULT-like ciphers with linearly struc-322

tured SBoxes. Further, they improved this attack by combining the equivalence323

class of keys with the multi-round attack. In their improvements, the authors324

consider a differential model that predicts fault propagation and provide a strat-325

egy for storing the probability distribution of nibbles round by round. For a326

given fault, the strategy involves taking all possible fault propagations through327

rounds and calculating the probability distribution of each nibble by observing328

all possible differences in a round.329



Encrypt-Decrypt Attack on Simple Key Schedule. In this attack, the attacker330

induces a difference of 2 and 8 in each S-box at the last round of DEFAULT-331

LAYER and respectively learns the key information k0⊕k2 and k0⊕k1⊕k2⊕k3 for332

each nibble of the inversely permuted key. Then, at the final decryption round,333

the attacker induces a difference of 2 in each S-box to learn k0 ⊕ k3. The key is334

recovered by solving these 96 independent equations and iterating the remaining335

232 key candidates. Furthermore, the authors improved the attack by inducing336

16 faults at the fifth-to-last round and were able to retrieve approximately 89 to337

95 bits of the key in 95% of the cases.338

Multi-Round Attack on Simple Key Schedule. In their simple attack, the authors339

injected bit-faults separately at the last three rounds. Specifically, they injected340

two faults in each nibble at the last round, then a single fault in each nibble341

at the second-to-last round, and finally 16 faults at specific bit positions in the342

third-to-last round. As a result, the attacker would need to perform a total of343

112 faults to reduce the keyspace to 216. Furthermore, the authors improved the344

attack by inducing 16 faults at the specific bit positions in the fifth-to-last round345

and were able to reduce the key around 20-bits of the key in 90% of the cases.346

Generic Attack Strategy for Ciphers with Linear Structures. Let us consider a347

one-round DEFAULT-LAYER SBox S and key addition before and after, where348

the output is given by y = S(x ⊕ k0) ⊕ k1, and (k0, k1) ∈ F4
2 × F4

2 . If S is a349

linear structured S-box, then for any , y ∈ L(S)−{0}, we have S(x⊕ (k0⊕y))⊕350

(k1 ⊕ S(y)) = S(x ⊕ k0) ⊕ S(y) ⊕ (k1 ⊕ S(y)) = S(x ⊕ k0) ⊕ k1. This shows351

that the keys (k0, k1) and (k0⊕ y, k1⊕S(y)), y ∈ L(S)−{0} are equivalent, i.e.,352

(k0, k1) ≡ (k0 ⊕ 6, k1 ⊕ a) ≡ (k0 ⊕ 9, k1 ⊕ f) ≡ (k0 ⊕ f, k1 ⊕ 5). These classes353

of equivalent keys can be further re-defined to normalized-keys as (k̄0, k̄1) ∈354

F4
2 ×N ,N = {0, 1, 2, 3}. Since the number of equivalent keys is 22, the key space355

of (k0, k1) can be divided into 26 number of equivalent classes. For DEFAULT-356

LAYER, there are 32 SBoxes with 22 linear structures each and hence, one round357

DEFAULT-LAYER has a linear space of size N = 264 and hence, | L |= 264·(n−1),358

where L denotes the linear space of n − 1 rounds. Let n be the number of359

subkeys used in a cipher, i.e., it has n − 1 number of rounds. For DEFAULT-360

LAYER, n − 1 = 28. Then, the normalized key K̄ = (K̄0, K̄1, . . . , K̄n−1) ∈ Nn
361

can be defined as follows.362

Nn =

{
N ×N × . . .N ×K if n = 28

N ×N × . . .N ×N if n < 28,

, where Kn−1 ∈ K (= F4n
2 ) is the subkey in which no SBoxes are involved there.363

Suppose a cipher has n − 1 rounds with n independent keys used inside it.364

In such ciphers, the general strategy is to inject 64 faults at each round in the365

DEFAULT-LAYER to obtain equivalent keys and then convert them to normal-366

ized keys K̄ ∈ N . Next, faults are injected at the last round DEFAULT-CORE367

before the SBox operation, and the key is recovered uniquely. This is because368

the DEFAULT-CORE uses stronger SBoxes, allowing the attacker to perform DFA369



using the normalized keys K̄ and retrieve the key used between the DEFAULT-370

CORE and DEFAULT-LAYER.371

Encrypt-Decrypt Attack on Rotating Key Schedule. The attack involves obtain-372

ing equivalent keys and injecting faults in both the decryption and encryption of373

DEFAULT-LAYER. The first step for the attacker is to construct the normalized374

key K̄ = (K̄0, K̄1, K̄2, K̄3) by inducing 64 faults in each of the four rounds in375

decryption query. Then, the attacker injects 32 faults just before the SBoxes in376

the encryption to retrieve an additional 32 bits of keys for K3. This reduces the377

key space of K3 to 232, thereby decreasing the brute-force key complexity to 232.378

Multi-Round Attack on Rotating Key Schedule. This attack involves finding the379

equivalence class of keys using a multi-round attack. The simple approach re-380

quires around 384 faults to uniquely recover the key. However, the authors have381

improved the attack, and now it only requires around 84 ± 15 faults to recover382

the key uniquely.383

3.5 Dey et al.’s Work.384

This paper [DPRS21] describes a differential fault attack on the initial version385

of the DEFAULT cipher, which used the master key throughout the rounds. The386

authors showed that an attacker can reduce the key complexity to around 216 by387

injecting 112 faults at the second last round. However, this attack is not effective388

against the modified version of the cipher, which was published at Asiacrypt 2021389

and uses a key scheduling algorithm. They showed that the modification of the390

cipher makes the attack ineffective, as the key scheduling algorithm adds more391

complexity to the key generation process, making it harder to predict the key392

even with the presence of faults.393

4 Ours Improvements on DFA394

In this work, we focus on improving the previously proposed differential fault395

analysis (DFA) attack on the DEFAULT cipher, specifically on both its simple and396

rotating key schedules. To enhance this attack, we first introduce a strategy that397

allows for the deterministic computation of the internal differential path when398

faults are injected up to the fifth-to-last rounds. We demonstrate the effectiveness399

of this method by applying it to the simple key schedule of the DEFAULT cipher400

and showing that an attacker can recover the key if faults are introduced during401

the third or fourth-to-last rounds. Additionally, we improve the DFA attack on402

the rotating key schedule of the DEFAULT cipher. Throughout the paper, we use403

the encryption oracle to inject faults. Overall, our work aims to strengthen the404

security of the DEFAULT cipher against DFA attacks and provide insights on405

how to improve the security of future designs against this type of attack.406



4.1 Attacks on Simple Key Schedule407

In this section, we present our strategy for deterministic computation of the408

differential trail up to five rounds in order to perform efficient DFA attacks. We409

describe how we compute the trail and utilize it to retrieve the key using bit-410

flip faults. Additionally, we analyze the number of faults required to uniquely411

recover the key for different rounds, providing an estimate of the fault complexity412

involved in the attack.413

4.1.1 Faults at the Last Round Based on the information learned from414

Table 5, an attacker can learn two bits of information for each nibble in the last415

round of the DEFAULT-LAYER. One approach to reduce the key space is to inject416

two bit-flip faults at each nibble in the last round before the SBox operation and417

reduce the key nibbles of 22 individually, resulting in a key space reduction to418

264 by inducing 2× 32 = 64 number of bit faults at the last round.419

However, a more efficient strategy is needed to induce faults further from the420

last rounds and deterministically obtain information about the input differences421

of each SBox in the last round. This requires developing a strategy that can de-422

terministically guess the differential path from which the faults are injected. In423

the upcoming subsections, we will demonstrate that it is possible to determinis-424

tically guess the differential path of the DEFAULT-LAYER up to four rounds. By425

inducing around 8 bit faults at the fourth-to-last round, we estimate that the426

key space can be reduced to 264 with greater efficiency than the naive approach.427

4.1.2 Faults at the Second-to-Last Round In this attack scenario, we
assume that bit faults are introduced at each nibble during the second-to-last
round of the DEFAULT-LAYER. As a result, the fault propagation can affect
at most four nibbles in the final round of the DEFAULT-LAYER. The DEFAULT-
LAYER uses the GIFT-128 bit permutation internally, which has a useful property
known as the Quotient-Remainder group structure. At round r, the 32 nibbles
of a DEFAULT state are denoted as Sr

i , i = 0, . . . , 31 and can be grouped into
eight groups Gri = (Sr

4i, S
r
4i+1, S

r
4i+2, S

r
4i+3) for i = 0, . . . , 7. This property states

that any group at round r is permuted to a group of four nibbles at round r+1
through a 16-bit permutation, i.e.,

Gri
16 bit permutation−−−−−−−−−−−−→ (Sr

i , S
r
i+8, S

r
i+16, S

r
i+24), i = 0, . . . , 7.

The structure of the cipher allows for a nibble difference at the input of428

group Gri in the second-to-last round to induce a bit difference in four nib-429

bles Sr+1
i , Sr+1

i+8 , S
r+1
i+16, and Sr+1

i+24 in the last round. This observation enables430

an attacker to deterministically determine the differential path by injecting bit-431

flip faults at the second-to-last round. Moreover, this observation allows for the432

deterministic computation of the differential paths up to four rounds, which433

we will discuss in the next subsections. This is possible because for each non-434

faulty and faulty ciphertext, the last round can be inverted by checking the in-435

put bit-difference at each nibble using the differential distribution table (DDT).436



The internal state difference can then be computed by checking the input bit-437

difference after the second-to-last round’s inverse using the Quotient-Remainder438

group structure.439

Attack Strategey. To attack the cipher in this scenario, a simple approach is to440

inject two bit faults at each nibble in the last round, reducing the keyspace of441

each nibble to 22, i.e., the overall keyspace is thus reduced to 264. Then, inject442

one fault at each nibble in the second-to-last round, reducing the keyspace to443

232. To accomplish this, we first group the 32 nibbles of the state into eight444

groups Gri, each consisting of four nibbles, and consider the combined key space445

of nibble positions i, i+ 8, i+ 16, and i+ 24 for each group Gri.446

For each key in the combined key space of Gri, we invert two rounds by con-447

sidering the equivalent key classes of individual nibble positions at the second-448

to-last round and checking whether they satisfy Gri’s input difference at the449

second-to-last round. By doing this, we can determine the internal state dif-450

ference between the faulty and non-faulty ciphertexts. It’s worth noting that if451

faults are injected in more than one nibble in Gri at the second-to-last round,452

the keyspace for that group can be reduced further, potentially up to 24. Thus,453

the overall keyspace is now reduced to 24·8 = 232 (for 8 groups Gri). Further, we454

can improve this attack by injecting faults upto the fifth-to-last round during455

encryption, which we will describe in the following sections.456

4.1.3 Faults at the Third-to-Last Round In this section, we focus on the457

key space reduction using Difference-based Analysis (DFA) for three rounds of458

the DEFAULT cipher. We introduce a fault before the last three rounds of the459

cipher, specifically at round R25 in DEFAULT-LAYER. Throughout the attack,460

we induce bit faults at the nibbles to generate input differences, and we assume461

that we know the nibble index where the input differences are given. The attack462

consists of two phases. In the initial phase, we inject a bit fault at the input of the463

third-to-last round and determine the trail of three rounds deterministically. To464

achieve this, we compute the input and output differences of every nibble at each465

round, allowing us to trace the propagation of differences through the cipher.466

By carefully analyzing the trail, we can establish a deterministic relationship467

between the input differences and the output differences, enabling us to deduce468

the trail with high confidence. In the second phase, we utilize the computed trail469

to reduce the key space of the cipher. With knowledge of the trail, we can target470

specific nibbles and their corresponding input differences at the last round. By471

exploiting these input differences, we can perform DFA and significantly reduce472

the key space. This reduction is based on the fact that we now have knowledge of473

the correlations between the input-output differences and the key bits, allowing474

us to make informed guesses and narrow down the possible key values.475

Overall, this approach employs Difference-based Analysis (DFA) in two phases:476

firstly, by inducing faults and analyzing input/output differences, we determine477

the trail of three rounds; secondly, we utilize this computed trail to efficiently re-478

duce the key space of the cipher, taking advantage of the established correlations479



between input-output differences and key bits. This method offers a more tar-480

geted and efficient approach to reducing the key space compared to the previous481

approaches discussed earlier.482
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Fig. 1: Fault Propagation for the Three Rounds

Deterministic Trail Finding. We observe that a nibble difference at position Gri483

can activate the four nibbles at positions i, i + 8, i + 16, and i + 24 after one484

round of the DEFAULT cipher. In other words, the nibble differences propagate485

to the groups Gr j
4
, where j = i, i+8, i+16, i+24, in the next round. By inducing486

an input difference at any nibble before the SBox operation in the third-to-last487

round R25 of DEFAULT-LAYER, we can activate the nibbles at positions i, i+8,488

i + 16, and i + 24 in the second-to-last round. Furthermore, the nibble differ-489

ences in the groups Gr j
4
, where j = i, i + 8, i + 16, i + 24, in the second-to-last490

round can activate at most all the even-positioned nibbles in the last round. This491

fault propagation property is illustrated in Figure 1. This property of differen-492

tial propagation allows us to determine the differential trail deterministically493

when an attacker injects bit faults at the third-to-last round. The procedure494

for computing the differential trail is described in Algorithm 1. This algorithm495

takes advantage of the single bit differences in the input of each SBox at the496

last three rounds. By systematically analyzing the propagation of these single497

bit differences, we can construct the differential trail with certainty.498

Key Recovery. For each differential trail, we start by reducing the key space499

of the last round to 22 by comparing the non-faulty and faulty ciphertexts. By500

introducing two different bit differences at each nibble in the last round, we can501

effectively reduce the key space to 22. Next, we focus on each group Gri, where i502



Algorithm 1 Deterministic Computation of Three Rounds Differen-
tial Trail

Input: A list of ciphertext difference L∆C

Output: Lists of input-output differences A25
ID,A26

ID, & A27
ID

1: Initialize L1 ← [ ],A25
ID ← [[ ], [ ]],A26

ID ← [[ ], [ ]],A27
ID ← [[ ], [ ]]

2: L1 = L∆C

3: for j = 0 to 2 do
4: L1 = P−1(L1) ▷ Invert through bit-permutation layer
5: for i = 0 to 31 do ▷ At the round R27−j

6: A27−j
ID [1][i] = L1[i]

7: if ∃ a difference β ∈ {1, 2, 4, 8} ∋ DDT−1(β,L1[i]) ̸= 0 then
8: A27−j

ID [0][i] = β
9: L1[i] = β

10: return the lists A27
ID,A26

ID and A25
ID

ranges from 0 to 7, at the second-to-last round. We combine the key spaces from503

the nibble positions i, i+8, i+16, and i+24 based on the key nibbles of the last504

round. For each combined key, we perform the inverse of one round and check505

the corresponding trail list to determine the resulting differential. At this stage,506

we use the equivalent key nibble obtained from the reduction at the last round.507

If the computed differential matches the observed differential, we consider the508

combined key as a potential key combination. This filtering process is applied to509

each group at the second-to-last round. Finally, we create combined key spaces510

for each even/odd position based on the key reductions at the second-to-last511

round. These correspond to the left/right half of the nibbles at the third-to-last512

round. It is important to note that faults introduced at the first/last fifteen513

nibbles of the third-to-last round can affect almost all the even/odd position514

nibbles in the last round.515

By following this approach, we systematically reduce the key space by consid-516

ering the differential trails and leveraging the relationships between input-output517

differences and key bits at different rounds of the cipher.518

4.1.4 Faults at the Fourth-to-Last Round In this section, we demonstrate519

the deterministic computation of the differential trail and propose an attack that520

requires fewer faults compared to the previous attack on three rounds of the521

DEFAULT cipher. We introduce bit-flip nibble faults at the fourth-to-last round522

of the cipher, specifically at round R24 in DEFAULT-LAYER. These introduced523

bit-flip nibble faults at the fourth-to-last round cause the nibble differences in524

the left half (first 15 nibbles from the LSB) or right half (next 15 nibbles) of the525

fourth-to-last round to propagate to almost all even or odd nibbles, respectively,526

at the second-to-last round. Furthermore, at the last round, the differences in527

even or odd nibbles activate all 32 nibbles in the state. In this attack, we first528

compute the trail deterministically and then based on the computed trail for529

each fault, we recover the key. By exploiting the known correlations between530



input-output differences and key bits, we can significantly reduce the key space531

with a smaller number of injected faults compared to the previous attack.532

Overall, this approach allows for the deterministic computation of the dif-533

ferential trail and presents a more efficient attack on the DEFAULT cipher by534

requiring fewer faults.535

Deterministic Trail Finding. To compute the trail, we first determine the unique536

input-output nibble differences for each SBox at the last round. Once these dif-537

ferences are established, we can utilize Algorithm 1 to compute the trail for the538

remaining three rounds. Assuming that nibble differences arise at all even po-539

sitions in the state at the second-to-last round before the SBox operations, we540

have exactly two active even nibbles in each group Gri at this round. Conse-541

quently, the input nibble difference at each SBox in the last round will no longer542

be a simple bit difference. Therefore, for each output of SBox at the last round,543

there are two possible choices of input differences, which may not be in the form544

of single-bit nibble differences.545

To determine the output difference of SBoxes in Gri at the second-to-last546

round, we exhaustively consider all combined input differences corresponding to547

the positions i, i+8, i+16, and i+24 from the last round. We then check whether,548

after the bit permutation, these differences only go to the even nibble positions549

in Gri, and their corresponding input differences are single-bit differences. This550

strategy allows us to uniquely identify the output difference of SBoxes in Gri at551

the second-to-last round. The process is described in detail in Algorithm 2.552

Key Recovery. In the previous section, we discussed how to compute the unique553

trail from both non-faulty and faulty ciphertexts when faults are injected at the554

fourth-to-last rounds. Once the trail is computed, we can proceed to reduce the555

key space by analyzing the last three rounds, as explained earlier. To achieve556

this, we iterate exhaustively through the entire keyspace at the last round for557

each input-output nibble difference at the fourth-to-last round. We invert the558

intermediate rounds by using the reduced keys at each round and filter out559

incorrect keys. By repeating this process for each input-output nibble difference560

in the last four rounds, we can significantly reduce the key space, approaching561

a nearly unique solution.562

By analyzing the input-output differences and iteratively refining the key563

space through the inversion of intermediate rounds, we can effectively narrow564

down the potential key candidates and approximate the correct key with a high565

level of confidence.566

Experimental Verification. The question in this attack is how many faults are567

required to reduce the key space within practical limits? We estimate that ap-568

proximately 20 bit faults are sufficient to recover the key uniquely.569

4.1.5 Faults at the Fifth-to-Last Round In this section, we discuss how we570

can deterministically compute the differential trail when injecting faults during571



Algorithm 2 Deterministic Computation of Four Rounds Differen-
tial Trail

Input: A list of ciphertext difference L∆C

Output: Lists of input-output differences A24
ID, A25

ID,A26
ID, & A27

ID

1: Initialize L1 ← [ ],A24
ID ← [[ ], [ ]],A25

ID ← [[ ], [ ]],A26
ID ← [[ ], [ ]],A27

ID ←
[[ ], [ ]]

2: L1 = L∆C

3: L1 = P−1(L1) ▷ Invert through bit-permutation layer
4: for i = 0 to 31 do ▷ At the round R27

5: A27
ID[1][i] = L1[i]

6: for i = 0 to 8 do ▷ For each group Gri at R26

7: for (∆0, ∆1, ∆2, ∆3) ∈ S−1(L1[i])× S−1(L1[i+ 8])× S−1(L1[i+ 16])×
S−1(L1[i+ 24]) at round R27 do

8: L1[i] = ∆0,L1[i+ 8] = ∆1,L1[i+ 16] = ∆2,L1[i+ 24] = ∆3

9: L1[j] = 0, j /∈ {i, i+ 8, i+ 16, i+ 24}
10: L1 = P−1(L1)
11: if L1[j] = 0,∀j ∈ {0. . . . , 31} \ {α, α+ 1, α+ 2, α+ 3} then ▷

α← 4 ∗ i
12: if j ∈ {0, 1} then ▷ j = 0/1→ injected faults at the left/right

half of R24

13: if S−1(L1[α+ j]) /∈ S or S−1(L1[α+ j + 2]) /∈ S then ▷
S ← {1, 2, 4, 8}

14: Break the for loop

15: A27
ID[0][i] = ∆0,A27

ID[0][i + 8] = ∆1,A27
ID[0][i + 16] = ∆2,A27

ID[0][i +
24] = ∆3

16: L∆C [i] = ∆0,L∆C [i+ 8] = ∆1,L∆C [i+ 16] = ∆2,L∆C [i+ 24] = ∆3

17: Use Algorithm 1 to compute the unique trail for other three rounds and get
the lists A26

ID,A25
ID and A24

ID

18: return the lists A27
ID,A26

ID,A25
ID and A24

ID

the fifth-to-last round (round R23) in the DEFAULT-LAYER cipher. These faults572

can be injected either in the left half (from nibble positions 0 to 15) or the right573

half (from positions 16 to 31), affecting either all the even nibble positions or574

the odd nibble positions in the state at the third-to-last round. An example of575

fault propagation resulting from a nibble fault in the left half is illustrated in576

Figure 2.577

Furthermore, the differences in even/odd nibbles at the second-to-last round578

activate all the nibbles in the fourth-to-last round and subsequently in the last579

round as well. In this attack scenario, we compute the trail for five rounds580

uniquely and then estimate the number of faults required to recover the key.581

By doing so, we can significantly reduce the key space using a smaller number582

of faults compared to our previous approaches.583



Deterministic Trail Finding. To compute the trail for five rounds when injecting584

faults at the fifth-to-last round, the approach involves inverting two rounds and585

then determining the upper three rounds’ trails based on the possible differences586

at the second-to-last round. The objective is to check if these trails satisfy the587

input difference at the fifth-to-last round. When faults are injected at the left or588

right half during the fifth-to-last round, the nibble differences in each group Gri,589

where i ∈ 0, 1, · · · , 7, in the input to the second-to-last round follow a specific590

pattern. Specifically, they are either 0, 1, 4, 5 or 0, 2, 8, 10 (as shown in Figure 2).591

This nibble difference pattern at the second-to-last round helps filter the592

ciphertext difference and trace it back to the input of the second-to-last round.593

Subsequently, the last three rounds of the computation trail (as described in594

Algorithm 1) are applied to identify the unique differential trail. The process for595

computing the five rounds trail is presented in Algorithm 3.596

Key Recovery. The deterministic computation of the five-round trail enables us597

to reduce the key space by evaluating each round individually based on the ci-598

phertext difference. To recover the key, the initial step is to exhaustively evaluate599

each key nibble at the last round individually, effectively reducing the entire key600

space by up to 32 bits at the last round. Subsequently, we proceed to perform601

key space reduction for each group individually at the second-to-last round. This602

iterative process continues up to the fifth-to-last round, where we repetitively603

analyze and reduce the key space. By applying this method, we progressively nar-604

row down the key space at each round, taking into account the induced faults,605

until we ultimately arrive at a unique solution based on the number of injected606

faults.607

In summary, by analyzing each round and reducing the key space iteratively,608

we can effectively narrow down the potential key candidates based on the induced609

faults in the differential trail computation.610

Experimental Verification. In this attack we have observe that injecting around 8611

bit-flip faults at the fifth-to-last round can reduce the key space almost uniquely.612

4.2 Attacks on Rotating Key Schedule613

In this section, we begin by explaining the computation of an equivalent key for614

the DEFAULT-LAYER layer. We outline the methodology to derive an equivalent615

key based on certain properties of the linear structured SBox S. Using this equiv-616

alent key, we propose a generalized attack that allows for the unique recovery of617

the DEFAULT cipher’s key for different rounds in the presence of injected faults.618

Furthermore, we present a generic attack method that can be applied to retrieve619

the key when the cipher employs multiple round-independent keys.620

4.2.1 Exploiting Equivalent Keys Due to the linear structured SBox, we
know that for any α ∈ L(S) ∃β ∈ L(S−1) such that S(x ⊕ α) = S(x) ⊕
S(α) = S(x) ⊕ β, ∀x ∈ F4

2 . Let us define L(S, S−1) = {(α, β) : S(x ⊕ α) =
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Fig. 2: Three Round Fault Propagation When injected at the Left Half in the
Fifth-to-Last Round

S(x) ⊕ β} = {(0, 0), (6, a), (9, f), (f, 5)}. In another way, we can say that for
any (α, β) ∈ L(S, S−1), Pr[α → β] = 1. Consider a toy cipher consisting of one
DEFAULT-LAYER SBox with a key addition before and after: y = S(x⊕k0)⊕k1,
where k0, k1 ∈ F4

2 . Due to the linear structured SBox, we have for any (α, β) ∈
{(0, 0), (6, a), (9, f), (f, 5)},

y = S(x⊕(k0⊕α))⊕(k1⊕β) = S(x⊕k0)⊕β⊕(k1⊕β) = S(x⊕k0)⊕k1,∀x ∈ F4
2 .

This means that if (k0, k1) be the actual key used in the toy cipher, then for621

any (α, β) ∈ L(S, S−1), (k̂0, k̂1) = (k0⊕α, k1⊕ β) will also be an equivalent key622

of the toy cipher, i.e., the number of equivalent keys of this toy cipher will be623

22. Similarly, any round function of DEFAULT cipher can be think of parallel624

execution of 32 toy ciphers. Let k0 = (k00, k
1
0, . . . , k

31
0 ) and k1 = (k01, k

1
1, . . . , k

31
1 )625

denote the two keys before and after the SBox layer respectively. Then, ∀ lin-626

ear structures (αi, βi), i ∈ {0, 1, . . . , 31}, the number of equivalent keys for the627



Algorithm 3 Deterministic Computation of Five Rounds Differen-
tial Trail

Input: A list of ciphertext difference L∆C

Output: Lists of input-output differences A23
ID,A24

ID, A25
ID,A26

ID, & A27
ID

1: L1 ← [ ],L2 ← [ ],A23
ID ← [[ ],A24

ID ← [[ ], [ ]],A25
ID ← [[ ], [ ]],A26

ID ←
[[ ], [ ]],A27

ID ← [[ ], [ ]]
2: T1 = [0, 1, 4, 5], T2 = [0, 2, 8, 10]
3: T = [ [(T1)

8, (T2)
8, (T1)

8, (T2)
8], [(T2)

8, (T1)
8, (T2)

8, (T1)
8] ] ▷ Input nibble

differences at the second-to-last round correspond to faults at the left/right
half

4: L1 = L∆C

5: L1 = P−1(L1) ▷ Invert through bit-permutation layer
6: for i = 0 to 31 do ▷ At the round R27

7: A27
ID[1][i] = L1[i]

8: for j = 0 to 1 do ▷ For each fault at the left/right half in the fifth-to-last
round

9: for i = 0 to 8 do ▷ For each group Gri at R26

10: for (∆0, ∆1, ∆2, ∆3) ∈ S−1(L1[i])×S−1(L1[i+8])×S−1(L1[i+16])×
S−1(L1[i+ 24]) at round R27 do

11: L1[i] = ∆0,L1[i+ 8] = ∆1,L1[i+ 16] = ∆2,L1[i+ 24] = ∆3

12: L1[j] = 0, j /∈ {i, i+ 8, i+ 16, i+ 24}
13: A27

ID[0] = L1

14: L1 = P−1(L1)
15: A26

ID[1] = L1

16: for (∆0, ∆1, ∆2, ∆3) ∈ S−1(L1[0 + α]) × S−1(L1[1 + α]) ×
S−1(L1[2 + α])× S−1(L1[3 + α]) at round R26 do ▷ α← 4 ∗ i

17: L2[α] = ∆0,L2[1 + α] = ∆1,L2[2 + α] = ∆2,L2[3 + α] = ∆3

18: L2[j] = 0, j /∈ {α, 1 + α, 2 + α, 3 + α}
19: A26

ID[0] = L2

20: if (∆0 ∈ T [j][α]) & (∆1 ∈ T [j][1 + α]) & (∆2 ∈ T [j][2 +
α]) & (∆3 ∈ T [j][3 + α]) then

21: L∆C = L2

22: Use Algorithm 1 to compute the unique trail for other three rounds and get
the lists A25

ID,A24
ID, and A23

ID

23: return the lists A27
ID,A26

ID,A25
ID,A24

ID and A23
ID

round function of DEFAULT cipher will be 22×32 = 264. The steps to generate628

an equivallent keys of DEFAULT-LAYER is given in Algorithm 4. Thus, for the629

DEFAULT-LAYER with four keys (k0, k1, k2, k3) used in the three round func-630

tions, the number of equivalent keys (k̂0, k̂1, k̂2, k̂3) will be 23×64 = 2192. For631

example, the keys in Figure 6 are equivalent keys and hence, generate the same632

ciphertext c corresponds to the message m. Since the keyspace of (k0, k1, k2, k3)633

used in the DEFAULT-LAYER is 2512 and it has 2192 number of equivalent keys634



Algorithm 4 Compute Equivalent Round Keys for DEFAULT-LAYER

Input: key seq[ ] = [[k3], [k2], [k1], [k0]]
Output: Return an equivalent key key seq[]

1: for i = 0 to 2 do
2: δ = [0, 0, . . . , 0] ▷ List of size 32
3: for j = 0 to 31 do
4: for any (α, β) ∈ L(S, S−1) do
5: key seq[i] = key seq[i]⊕ α
6: δ = δ ⊕ β
7: break
8: key seq[i] = permute bits(key seq[i])
9: for ℓ = 0 to 32 do

10: key seq[i+ 1][ℓ] = key seq[i+ 1][ℓ]⊕ δ

11: return key seq[]

for any choosen key, we can further divide the keyspace into 2512−192 = 2320635

number of different equivalent key classes.636

k0 : 1a5f01b35ef5deea60361f4df591c654
k1 : 5a66c55f3847aed3025023785542a124
k2 : 85cb6b4f87f44ed160d20d713c86144f
k3 : 84c302e5cb1539af59d623e9acdae09d

(a) Original Keys

k̂0 : 7c3967d53893b88c0650792b93f7a032

k̂1 : 96aa0993f48b621fce9cefb4998e6de8

k̂2 : 4907a7834b38821dac1ec1bdf04ad883

k̂3 : 2e69a84f61bf9305f37c894306704a37

(b) An Equivalent Keys

k̂0 : 153f98d5310a481a0930e0bdfc61c95d

k̂1 : 31210031003333000322101301033031

k̂2 : 12120210330102210232022122130120

k̂3 : 12320213202301003022231012132232

(c) An Equivalent Keys

k̂0 : 153f98d5310a481a0930e0bdfc61c95d

k̂1 : 57476657665555666544767567655657

k̂2 : 47475745665457745767577477465475

k̂3 : 47675746757654556577764547467767

(d) An Equivalent Keys

Table 6: An Example of Different Sets of Equivalent Keys

4.2.2 Generalized Attack Strategy In this approach, we exploit the fact637

that injecting two faults at each nibble position in the last round of the encryp-638

tion process reduces the key nibble space from 24 to 22. We iteratively select one639

key nibble from each reduced set of key nibble values to obtain keys k̂3, k̂2, and640

k̂1. However, at the fourth-to-last round, the key nibbles of k0 still have 22 pos-641

sible choices. To compute k̂0, our strategy involves introducing additional faults642



at higher rounds and using the other keys k̂3, k̂2, and k̂1 in conjunction with the643

deterministic trail computation up to the fourth-to-last round. For instance, if644

we inject 32 faults at each nibble in the sixth-to-last round of DEFAULT-LAYER,645

we can trace back from the ciphertext difference to the fourth-to-last round out-646

put difference by applying the equivalent round keys k̂3, k̂2, and k̂1. Based on647

this fourth-to-last round difference, we can compute the trail for the upper three648

rounds (from fourth to sixth last rounds) using Algorithm 1.649

In the case of the simple key schedule, we have demonstrated that around650

32 faults at each nibble in the third-to-last round are adequate for unique key651

recovery. Similarly, in the scenario described above, we can uniquely retrieve the652

key k̂0 by injecting a suitable number of faults, such as around 16 or 8 faults at653

the seventh-to-last or eighth-to-last rounds, and deterministically computing the654

upper trails for four or five rounds using Algorithm 2 or Algorithm 1, respectively.655

To summarize, the first step requires approximately 256 faults to uniquely select656

k̂3, k̂2, and k̂1 from 264 choices, along with k0 having 264 possibilities. The657

recovery of k̂0 can be accomplished by injecting just 8 faults at the eight-to-last658

round. Consequently, around 264 faults are needed to recover an equivalent key659

of DEFAULT-LAYER. Once the equivalent key is obtained, the original key can660

be recovered by injecting faults in the DEFAULT-CORE.661

The aim is to explore alternative strategies that can effectively reduce the662

number of faults required, as opposed to the initial approach of injecting two663

faults at each nibble in the last four rounds. By leveraging deterministic trail664

computations, several strategies can be employed to achieve this reduction. These665

strategies are as follows:666

4.2.2.1 Retrieving Equivalent Key Using Three Round Trail Computation. It667

should be noted that a bit fault at any nibble can activate at least two nibbles in668

the next round. By injecting 32 faults at each nibble in the third-to-last round,669

we can generate at least two differences at each nibble in the second-to-last and670

last rounds. This allows us to compute k̂3 and k̂2. Then, by injecting another 32671

faults at the fifth-to-last round, we can recover k̂1 and consider the 264 choices672

of k0 by computing three-round trails using k̂3 and k̂2. Finally, inducing another673

32 faults at the sixth-to-last round, we obtain an equivalent key (k̂0, k̂1, k̂2, k̂3).674

In summary, approximately 96 faults are required to recover an equivalent key675

for DEFAULT-LAYER.676

4.2.2.2 Retrieving Equivalent Key Using Four Round Trail Computation. By677

selecting the fault location at the fourth-to-last round, we can achieve the gen-678

eration of at least two differences at each nibble in the second-to-last and last679

rounds with only around 16 faults. This enables the computation of k̂3 and k̂2.680

Additionally, by introducing 16 faults at the sixth-to-last round, we can recover681

k̂1 and consider the 264 choices of k0 by utilizing four-round trails computed us-682

ing k̂3 and k̂2. Furthermore, approximately 16 faults at the seventh-to-last round683

are sufficient to obtain an equivalent key (k̂0, k̂1, k̂2, k̂3). To summarize, a total of684

around 48 faults are required to recover an equivalent key for DEFAULT-LAYER.685



4.2.2.3 Retrieving Equivalent Key Using Five Round Trail Computation. To686

obtain equivalent keys k̂3 and k̂2 for DEFAULT-LAYER, we induce at least two687

differences in the second-to-last and last rounds using around 8 faults at the fifth-688

to-last round. By injecting 16 faults at the seventh-to-last round, we recover k̂1689

and consider 264 choices of k0 using five-round trails computed with k̂3 and k̂2.690

Finally, around 8 faults at the eight-to-last round retrieve the equivalent key691

(k̂0, k̂1, k̂2, k̂3). In total, about 24 faults are required.692

4.2.3 Generic Attack Strategy for More Round Keys In the scenario693

where an DEFAULT-LAYER encryption consists of r rounds with r + 1 round694

keys k0, k1, . . . , kr, a simple approach involves injecting two faults at each nibble695

in the encryption process for each of the r rounds. This allows us to compute696

r equivalent keys: k̂r, k̂r−1, . . . , k1. However, the initial key k0 remains unknown697

due to the lack of input knowledge and the unavailability of additional DEFAULT-698

LAYER SBox to be faulted.699

To recover the unknown key k0, we target the last round of the DEFAULT-700

CORE and introduce faults individually to each SBox. This technique enables701

the unique retrieval of the key k0. Once an equivalent key is determined, the702

original key can be obtained by applying the DFA to the DEFAULT-CORE.703

To minimize the number of required faults, an efficient strategy involves704

injecting 8 faults at the fifth-to-last round, allowing the unique determination705

of k̂r and kr−1. This strategy is repeated iteratively until only three rounds706

remain. At this point, injecting 32 faults at the initial round of DEFAULT-LAYER707

facilitates the unique recovery of k̂3 and k̂2. Finally, injecting two faults at each708

nibble in the initial round yields the unique choice of k̂1. Subsequently, the DFA709

is applied to the DEFAULT-CORE to uniquely retrieve k0.710

5 Introducing SDFA: Statistical-Differential Fault Attack711

In addition to Difference-based Fault Analysis (DFA), Statistical Fault Attack712

(SFA) is another powerful attack in the context of fault attacks and their analysis.713

SFA leverages the statistical bias introduced by injected faults and differs from714

previous attacks is that it only requires faulty ciphertexts, making it applicable in715

various scenarios compared to difference-based fault attacks. While the designers716

of the DEFAULT cipher claim that their proposed design can protect against DFA717

and any form of difference-based fault attacks, but they do not assert security718

against other fault attacks that exploit statistical biases in the execution. In such719

cases, the designers recommend using specialized countermeasures like Statistical720

Ineffective Fault Analysis (SIFA) and Fault Template Attack (FTA) to mitigate721

the risks associated with these attacks.722

Although countermeasures against statistical ineffective fault attacks and723

fault template attacks can enhance the resilience of a cryptographic system, the724

absence of specific countermeasures against difference-based fault attacks leaves725

a potential vulnerability to bit-set faults. Bit-set faults involve intentional ma-726

nipulations of individual or groups of bits, allowing attackers to strategically727



modify intermediate values or ciphertexts. Without dedicated countermeasures728

against difference-based fault attacks, which exploit the propagation of differ-729

ences through the algorithm, bit-set faults could potentially be exploited to730

reveal sensitive information or compromise the security of the system.731

In this section, we introduce a new fault attack called SDFA, which combines732

DFA with SFA by inducing bit-set faults. The SDFA attack enables us to further733

reduce the number of faults required to recover the key compared to our proposed734

improved attacks for both simple and rotating key schedules. Additionally, we735

demonstrate the effectiveness of this attack in retrieving subkeys for rotating736

key schedules, even when all the subkeys are generated from a random source.737

5.1 Learned Information via SDFA738

In Section 3.2, we discussed the information learned from DFA and its relation739

to input-output differences in an SBox. In this section, we delve deeper into the740

connection between DFA and SFA when bit-set faults are introduced into the741

state. Specifically, we examine the scenario where four bit-set faults are applied742

to positions in the last round SBox, resulting in the unique recovery of the key743

nibble using SFA. Alternatively, by introducing α bit-set faults in a nibble, we744

can narrow down the key nibble space from 24 to 24−α. Our objective is to745

combine the power of SFA and DFA to uniquely recover the key nibble with746

fewer faults in a nibble.747

Consider an SBox with inputs (u0, u1, u2, u3) and outputs (v0, v1, v2, v3).748

Given an input-output difference α→ β in the SBox, the set of possible output749

nibbles that satisfy the given differential can be represented as Di ∪ Dj , where750

i, j ∈ 0, 1, 2, 3. Now, let us assume an attacker injects a bit-set fault at the 0-th751

bit of the SBox, resulting in u0 = 1, and the input difference α = 1. Depending752

on the DDT table, this leads to either β = 3 or β = 9. Consequently, the set753

(D) of outputs that satisfy the differential α → β will be either D = D0 ∪ D3754

for β = 3, or D = D1 ∪ D2 for β = 9. Simultaneously, for SFA, the attacker can755

compute the set of outputs I that satisfy ui = 1 by inverting the SBox using756

the faulty outputs, i.e., I = {x : S−1(x) & 2i = 2i}.757

To determine the intersecting nibbles between DFA and SFA, our objective is758

to identify the common nibble values from each of the four partition sets Di for759

DFA. These sets are denoted as Hi and defined as Hi = {x ∈ D : S−1(x) & 2i =760

2i}. Table 7 provides the sets Hi corresponding to different bit-sets at the ith761

position. These sets Hi are obtained by identifying the common values found762

within the intersecting sets of D for DFA and I for SFA.763

Finally, for each bit-set ui in the SBox, if D = Dp ∪ Dq, p, q ∈ {0, . . . , 3}764

represents the set of outputs that satisfy the differential α→ β, then the SDFA765

(Statistical-Differential Fault Attack) is defined as the set Z of possible outputs766

that satisfy the differential α→ β, given by Z = D ∩ I = Hp ∪Hq. An example767

of the intersecting outputs obtained by performing SDFA under a bit-set fault768

at the second bit position in the SBox is presented in Example 1.769



Now consider a toy cipher where given a message m, the ciphertext c is770

produced by c = S(m)⊕ k. From the above example, the attacker can learn the771

following two independent equations involving the key bits as follows:772

k0 ⊕ k2 = (c0 ⊕ c2)⊕ (v0 ⊕ v2) = c0 ⊕ c2,

k2 ⊕ k3 = (c2 ⊕ c3)⊕ (v2 ⊕ v3) = c2 ⊕ c3 ⊕ 1.

Likewise, for any S-box differential α → β involving bit-sets in the SBox,773

the attacker can extract two independent equations that involve the key bits,774

thereby revealing two bits of information about that key nibble. Table 8 provides775

a comprehensive list of possible differentials under nibble bit-sets, along with776

their corresponding independent equations that can be derived through the SDFA777

attack. It is important to note that in the case of bit-set faults, if the targeted bit778

is already set to 1, no difference will be generated. In such cases, the DFA attack779

cannot be performed. However, the SFA attack can still be applied to reduce the780

key information by one bit. Therefore, even if bit-set faults fail to generate a781

difference, they can still contribute to the reduction of one key bit information.782

Example 1. Let us consider the input-output difference 2→ 7 corresponding to783

the bit-set u1 = 1 in an S-box. In this case, the set D of output differences784

corresponding to the DFA will be D = D0 ∪D2 = {0, 5, a, f, 2, 7, 8, d}. Similarly,785

for SFA, the set I will be I = {1, 5, 6, 7, 8, 9, a, e}. Therefore, the intersecting786

set Z is obtained as Z = D ∩ I = {5, a, 7, 8}. Alternatively, we can compute787

H0 = {5, a} and H2 = {7, 8}, which are the sets of output differences in D that788

satisfy the condition (S−1(x) & 2i) = 2i. Then, the set Z can be expressed as789

Z = H0 ∪H2 = {5, a, 7, 8}.790

Bit-Set H0 H1 H2 H3

u0 = 1 {5, f} {4, e} {2, 8} {3, 9}
u1 = 1 {5, a} {1, e} {7, 8} {6, 9}
u2 = 1 {5, a} {4, b} {2, d} {6, 9}
u3 = 1 {5, f} {1, b} {2, 8} {6, c}

Table 7: Set of Outputs of SBox under Bit-Sets

Table 8: Learned Key-Information under Bit-Sets at SBox
Direction Learned Expression

u0 = 1 u1 = 1 u2 = 1 u3 = 1

Enc (S−1)

3∑
i=0

ki k0⊕k2 k0⊕k2

3∑
i=0

ki

k0 k2 ⊕ k3 k2 ⊕ k3 k0 ⊕ k1 ⊕ k3
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Fig. 3: Toy example of single SBox

5.2 Attack on Simple Key Schedule791

By analyzing the SBox-based toy cipher (Figure 3), we have discovered that a792

single bit-set at the SBox can effectively extract atmost two bits of information793

from the key nibble. Additionally, from the insights provided in Table 8, we794

observe that any two bit-sets at the SBox can reduce atmost four bits of infor-795

mation, i.e., to generate four independent equations involving the key bits. This796

enables us to uniquely recover the key nibble. In the worst case, it can reduce797

atleast two bits of information for two bit-sets in a nibble.798

If our focus is on the last round of the DEFAULT-LAYER, in the best case799

scenario we can achieve the unique recovery of each key nibble by injecting 2800

faults (active bit-set faults). In the worst case, 4 bit-set faults ensure the unique801

key recovery of each key nibbles. This shows that around 64 active bit-set faults802

(in the best case) are required to retrieve the key uniquely. Whereas in the worst803

case scenario 128 active bit-set faults are sufficient to recover the key. However,804

to minimize the number of faults required, the attacker can strategically inject805

bit-set faults in the upper rounds.806

5.3 Attack on Rotating Key Schedule807

The rotating key schedule in DEFAULT-LAYER involves four keys, namely k0, k1,808

k2, and k3, which are used for each round in a rotating fashion. The master key k0809

serves as the initial key, and the other three keys are derived by applying the four810

unkeyed round function of DEFAULT-LAYER recursively. From the perspective811

of an attacker, if any one of the round keys is successfully recovered, it becomes812

possible to derive the remaining three keys using the key schedule function. In813

the case of DEFAULT-LAYER, the key k3 is used in the last round. By injecting814

approximately three bit-set faults at each nibble in the last round, it is feasible815

to effectively retrieve the key k3.816

To summarize, a total of around 64 to 128 faults are required to recover817

the complete set of keys in DEFAULT-LAYER. This attack strategy leverages the818

relationship between the round keys and the rotating key schedule, allowing for819

the recovery of the master key and subsequent derivation of the other keys.820

5.4 Generic Attack on Truely Independent Random Keys821

In the scenario where the round keys in DEFAULT-LAYER are truly generated822

from random sources instead of being derived from a master key using recursive823

unkeyed round functions, the task of uniquely retrieving all the keys becomes824



significantly more challenging. In this case, both our DFA approach and the825

strategy presented in [NDE22] require injecting a considerably larger number of826

faults compared to our SDFA approach. The approach involves injecting approx-827

imately three bit-set faults at each round of DEFAULT-LAYER and leveraging828

the resulting faults to recover the key uniquely. However, when the round keys829

are truly independent and not derived from a master key, this strategy proves830

to be much effective compared to the DFA strategy. Consequently, a less num-831

ber of faults need to be injected to achieve key recovery. To be more specific, if832

DEFAULT-LAYER utilizes a total of x truly independent round keys (where x is833

less than 28), then approximately x× y, y ∈ [64, 128] bit-set faults are required834

to recover all of its independent keys. This significant increase in the number of835

required faults emphasizes the increased difficulty in retrieving the keys when836

they are truly independent and not derived from a common source.837

6 Discussion838

In this section, we provide a brief discussion on the introduction of the Differen-839

tial Fault Analysis (SDFA) technique for linear structured SBox-based ciphers.840

In the previous section, we demonstrated that by injecting two bit-set faults at841

the last round SBox in a specific manner, the corresponding key nibble can be842

uniquely recovered. This occurs when the actual bit value in the state changes843

from zero to one due to the fault injection. The resulting difference propagates844

through the ciphertext, allowing for the recovery of the key nibble. We classify845

bit-sets that generate differences in the ciphertext as active bit-sets, while those846

that do not are referred to as non-active bit-sets. Therefore, by performing two847

DFA + SFA operations individually on two active bit-sets in each SBox of the848

last round of the cipher, the key nibbles can be recovered uniquely. Additionally,849

we have observed that injecting four faults at each nibble is sufficient to recover850

the key uniquely using the SFA technique.851

Recently, Baksi et al. proposed a new lightweight cipher called BAKSHEESH852

in their work [BBC+23]. BAKSHEESH is designed as a successor to the GIFT-128853

cipher, with a smaller size (12.50% smaller) while maintaining the same security854

claims against classical attacks. The main differences between BAKSHEESH855

and GIFT-128 lie in the usage of a single non-trivial linear structured SBox in856

each round and the use of full-round key XOR instead of half-round key XOR857

in GIFT-128. In BAKSHEESH, each nibble key is reduced from 4 bits to 1 bit858

for the 1 non-trivial linear structured SBox, resulting in trivial DFA security859

with 232. However, it is claimed that the overall DFA security becomes 264 when860

DEFAULT-CORE is replaced by the 10 rounds of the BAKSHEESH cipher in the861

DEFAULT design. So, in this case, the attack shown in [NDE22] cannot recover862

the key uniquely if the DEFAULT design use the rotating keys.863

We have observed that in the case of the 1 non-trivial SBox in the BAK-864

SHEESH cipher, injecting two active bit-set faults at each nibble reduces the865

key nibble from 4 bits to 1 bit, similar to the scenario of 3 non-trivial SBox in866

the DEFAULT cipher. As a result, the SDFA attack not only successfully recov-867



ers the key of the BAKSHEESH cipher but also efficiently recovers the keys of868

BAKSHEESH-based DEFAULT ciphers, regardless of whether they use simple or869

round-independent rotating keys. Furthermore, we claim that our DFA attack870

approach for the BAKSHEESH/BAKSHEESH-based DEFAULT cipher is capa-871

ble of effectively and uniquely recovering the key for both simple and rotating872

keys.873

Moreover, we have also demonstrated that both the DFA and SDFA attack874

approaches can efficiently recover the key for any linear structured SBox-based875

ciphers. This indicates that employing such linear structured SBox-based cipher876

designs may not be a good idea for achieving DFA protection.877

7 Conclusion878

In this work, we have presented an enhanced differential fault attack (DFA) on879

the DEFAULT cipher, which enables the effective and unique retrieval of the880

encryption key. Our approach involves determining the deterministic differential881

trails up to five rounds and then applying the DFA by injecting faults at various882

rounds, with a quantification of the required number of faults. Notably, our883

attack requires a significantly reduced number of faults compared to previous884

methods while achieving key recovery.885

Furthermore, we have extended our DFA attack to handle rotating keys.886

By first recovering the equivalent keys using a smaller number of faults in887

the DEFAULT-LAYER and subsequently applying the DFA individually on the888

DEFAULT-CORE, we successfully retrieve the encryption key. Additionally, we889

have proposed a generic DFA approach for DEFAULT cipher instances utilizing890

round independent keys.891

Moreover, we introduced a novel fault attack technique known as the statistical-892

differential fault attack (SDFA) that combines elements of both statistical fault893

analysis (SFA) and DFA. This attack demonstrates its efficacy in recovering en-894

cryption keys, not only for rotating keys but also for ciphers employing entirely895

round independent keys.896

In conclusion, our work contributes to the field of fault attacks by presenting897

enhanced DFA techniques, extending their applicability to rotating and round898

independent keys, and introducing the SDFA approach. These advancements899

provide valuable insights into the vulnerabilities of the DEFAULT cipher and900

highlight the challenges in achieving effective DFA protection for linear structure901

Sbox-based ciphers. They emphasize the importance of implementing robust key902

protection mechanisms to address these vulnerabilities. Our findings underscore903

the difficulty in achieving DFA protection for such ciphers and reinforce the need904

for enhanced security measures to safeguard encryption keys.905
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