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Abstract. The development of quantum computers, which employ a
different paradigm of computation, is posing a threat to the security
of cryptography. Narrowing down the scope to symmetric-key cryptog-
raphy, the Grover search algorithm is probably the most influential in
terms of its impact on security. Recently, there have been efforts to esti-
mate the complexity of the Grover’s key search for symmetric key ciphers
and evaluate their post-quantum security.

In this paper, we present a depth-optimized implementation of a quan-
tum circuit for ASCON, which is a symmetric key cipher that has re-
cently been standardized in the NIST (National Institute of Standards
and Technology) Lightweight Cryptography standardization. As far as we
know, this is the first implementation of a quantum circuit for the AS-
CON AEAD (Authenticated Encryption with Associated Data) scheme.
To our understanding, reducing the depth of the quantum circuit for the
target cipher is the most effective approach for Grover’s key search. We
demonstrate the optimal Grover’s key search cost for ASCON, along with
a proposed depth-optimized quantum circuit. Further, based on the esti-
mated cost, we evaluate the post-quantum security strength of ASCON
according to relevant evaluation criteria and state-of-the-art research.

Keywords: Grover’s Algorithm - NIST - Lightweight Cryptography -
ASCON - Post-Quantum Security.

1 Introduction

Due to the powerful/potential threat posed by quantum computers, researchers
and organizations are reassessing the security of cryptographic algorithms in
the field of cryptography. One of the noteworthy endeavors is the NIST Post-
Quantum Cryptography (PQC) standardization process®. The need for quantum-
safe cryptography arises from the fact that Shor’s algorithm [1] can solve factor-
ization and discrete logarithm problems (security foundation of RSA and Elliptic
Cruve Cryptography) in polynomial time.

3 https://csrc.nist.gov/projects/post-quantum-cryptography
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Another notable quantum algorithm is Grover’s algorithm [2]. This quantum
algorithm has the ability to accelerate data search, thereby reducing the complex-
ity of exhaustive search in symmetric key cryptography. The Grover’s algorithm
indeed reduces the security strength, but the quantum circuit required for the
attack is significantly large. Quantum attacks can be evaluated from two per-
spectives: problem-solving power and the size of the quantum circuits required
to solve those problems. A different interpretation of this would be that the secu-
rity of a cryptographic algorithm can be evaluated differently based on the size
of the quantum circuit needed for a quantum attack. This is addressed in the
NIST Post-Quantum Cryptography document, where the post-quantum security
strength is determined by considering the quantum cost needed for quantum at-
tacks (which will be explained in Section 2.3). NIST defines the post-quantum
security strength based on the cost of Grover’s attack against AES-128, -192,
-256 (conceptually similar to how the security parameters of PQC algorithms are
related to the AES family). The cost of the Grover attack is determined by the
implementation efficiency of the quantum circuit for the targeted cryptographic
algorithm.

This paper presents an optimized quantum circuit for the AEAD scheme of
ASCON [3], which has been selected as part of the NIST Lightweight Cryp-
tography standardization®. Our focus is to minimize the depth of the ASCON
quantum circuit while maintaining a reasonable number of qubits, aligning with
the concept of the Grover’s algorithm. The depth of the quantum circuit is di-
rectly related to the execution time of the circuit [4]. While Grover’s algorithm
reduces the search complexity by the square root, it still requires a significant
number of iterations in the quantum circuit. In other words, Grover’s exhaustive
key search is a time-consuming process, and NIST also takes this into account
when evaluating security. As far as we understand, minimizing the depth is the
optimal strategy for Grover’s algorithm (more discussion in Section 2.3), and it
has become the design philosophy of the ASCON quantum circuit. Finally, based
on the proposed ASCON quantum circuit, we estimate the cost of the Grover
attack and evaluate the post-quantum security strength of ASCON according to
NIST’s criteria.

Our Contribution

The contribution in this paper is manifold and can be summarized as follows:

1. Quantum Circuit Implementation of ASCON AEAD. We present
the first implementation of a quantum circuit for ASCON AEAD.

2. Low-Depth Implementation of ASCON AEAD. In our quantum cir-
cuit implementation of ASCON, we prioritize achieving a low Toffoli depth
and full depth. We demonstrate the reduction of Toffoli depth and full depth
through parallelization. Additionally, to maintain a reasonable qubit count,
we utilize the method of reusing ancilla qubits.

4 https://csrc.nist.gov/News/2023/1lightweight-cryptography-nist-selects-ascon
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3. Post-quantum Security Assessment of ASCON AEAD. We assess the
quantum security of ASCON by estimating the cost of Grover’s key search
based on our implemented quantum circuit for ASCON. This evaluation
involves comparing the estimated cost of Grover’s key search for ASCON
with the security levels provided by NIST.

2 Preliminaries

2.1 Quantum Gates

In this section, we explain commonly employed quantum gates for constructing
quantum circuits used in block ciphers (this list does not encompass all possible
gates that can be employed for this purpose).

Figure 1(a) shows the quantum X gate that can replace the classical NOT
operation. The qubit state is reversed through the X gate. Figure 1(b) represents
Swap gate that exchanges two qubit states. The quantum CNOT gate illustrated
in Figure 1(c) serves as a replacement for the classical XOR operation. By using
one control qubit, the CNOT gate determines the value of the target qubit.
Figure 1(d) shows the quantum Toffoli gate, which acts as an alternative to
the classical AND operation. The Toffoli gate employs two control qubits to
determine the value of the target qubit . Note that the Toffoli gate is implemented
using various quantum gates, such as the T, CNOT, X, and H gates, among
others [5]. Therefore, it is important to minimize Toffoli-related metrics when
optimizing quantum circuits.

a @ ~a a b
b a
(a) X gate (b) Swap gate
x T T x
Y S TPy y y
z S 2@ (z-y)
(c) CNOT gate (d) Toffoli gate

Fig. 1: Common (top level) quantum gates.

2.2 Key Search using Grover’s Algorithm

In cryptography, for an encryption scheme that uses a k-bit key, a classical com-
puter requires a search of O(2%) complexity for exhaustive key search. However,
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thanks to Grover’s algorithm, a quantum computer can accomplish this search
with a reduced complexity of only O(\/2TC ), which is decreased by a square root.
We split the steps of the Grover’s key search into three stages; and describe them
as follows.

1. Input Setting: Hadamard gates are used to prepare a k-qubit key in a super-
position state |1), resulting in equal amplitudes for all 2¥ possible states.

2k 1

1ok = ) = (L) - I

2. In the Oracle, the target cipher is implemented as a quantum circuit that
encrypts the known plaintext using the previously prepared key in a su-
perposition state, generating ciphertexts for all possible key values. These
ciphertexts (actually one ciphertext in a superposition state) are then com-
pared with the known ciphertext, and if a match is found (i.e., if f(z) =11in
Expression (1)), the sign of the key state to be recovered is negated (i.e., if
f(x) = =1 in Expression (2)). Finally, the implemented quantum circuit is
reversed, transforming the generated ciphertexts back into the known plain-
text (for the next iteration).

1 if Encrey(p) =

fla) = {O if Encgey(p) # c ()

2" —1

U () 1)) = g 3 (17 fa) ) 2)
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3. The Diffusion Operator serves to enhance the amplitude of the target key
state marked by the oracle, which is identified by changing the sign of the
corresponding amplitude to negative. The diffusion circuit is often a stan-
dard, off-the-shelf design that can be easily implemented. As the overhead
of the diffusion operator is negligible compared to that of the oracle, it is
typically disregarded in the cost analysis of the Grover’s search algorithm
[6,7,8]. In practice, Grover’s algorithm executes a sufficient number of iter-
ations of the oracle and diffusion to boost the amplitude of the target key
state, thereby enabling a high probability of measuring the solution key.

2.3 NIST Security Criteria

We need to take note of NIST’s document [9,10] on current/potential quantum
attacks related to ciphers. NIST establishes criteria for post-quantum security
based on the complexity of quantum attacks on the AES and SHA-2/3 families.
For the sake of brevity, this paper will only mention the criteria for estimating
quantum attack complexity on the AES family (corresponding to levels 1, 3
and 5). Levels 2 and 4 that correspond to the complexity of quantum attacks
(collision search) on SHA-2/3 families. Unlike the hashes, the tag depends on
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the secret key; so one may consider further quantum security level to account
for it.

— Level 1: To be considered secure, any attack that compromises the relevant
security definition must require computational resources that are at least
comparable to those required for a key search on a 128-bit key block cipher,
such as AES-128 (2170 — 2157,

— Level 3: To be considered secure, any attack that compromises the relevant
security definition must require computational resources that are at least
comparable to those required for a key search on a 128-bit key block cipher,
such as AES-192 (2233 — 2221),

— Level 5: To be considered secure, any attack that compromises the relevant
security definition must require computational resources that are at least
comparable to those required for a key search on a 128-bit key block cipher,
such as AES-256 (2298 — 2285),

As is well known, Grover’s search algorithm is one of the optimal quantum
attacks on symmetric key ciphers, and NIST also takes this into account. The dif-
ficulty of attacks corresponding to Levels 1, 3, and 5 are determined by the cost
of Grover’s key search on AES-128, 192, and 256, respectively, which is calculated
by the total gate count x depth of Grover’s key search circuit. NIST estimates
the costs for Levels 1, 3 and 5 to be 2170, 2233 and 2298 respectively; based on
the AES quantum circuit implementation by Grassl et al [6]. Recently, the costs
of Grover’s key search on the AES family have been adjusted/decreased by NIST
[10]. In recent years, there have been numerous efforts to optimize the quantum
circuits of AES [11,12,13,14,8,7]. Among them, Jaques et al. presented depth-
optimized quantum circuits for AES at Eurocrypt’20, reporting a decreased cost
of Grover’s key search on AES [7]. Currently, NIST has newly defined the quan-
tum attack cost for AES-128, 192, and 256 based on the reported costs from [7]
as 2197, 2221 and 228°; respectively”’. To the best of our knowledge, the currently
best-known results are reported in [8].

Furthermore, we must also take into account NIST’s specified MAXDEPTH,
which represents the maximum circuit depth that a quantum computer can exe-
cute. NIST classifies the depth limitations of quantum attacks (i.e., MAXDEPTH)
into the following ranges: (240 < 264 < 296) because it considers that the extreme
depth of Grover’s key search (due to numerous sequential iterations) makes the
attack practically difficult.

2.4 ASCON

ASCON is a symmetric key cipher that has been standardized in the NIST
Lightweight Cryptography standardization. ASCON includes an authenticated

5 Note that although there are some programming-related issues reported in their
quantum circuit implementation, Jang et al. analyze those issues from [8] and demon-
strate that the reported costs in [7] are achievable with their optimized AES quantum
circuits.
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encryption with associated data (AEAD) mode, a hash function, and a variant
called Ascon-80pq, which provides enhanced resistance against quantum key-
search attacks. Within ASCON, there are two versions of the AEAD mode:
ASCON-128 and ASCON-128a. The encryption process in ASCON involves sev-
eral phases: Initialization, Processing Associated Data, Processing Plaintext, and
Finalization.

The main components of ASCON are two 320-bit permutations, denoted as
p® and pP, with different numbers of rounds (a and b correspond to 12 and 6
rounds, respectively). These permutations are used in all phases of ASCON. For
computational purposes, the 320-bit state S is divided into five 64-bit register
words x; (S = xol||z1]||z2||zs||z4, where xq is the most significant word and x4 is
the least significant word). The permutation functions include adding constants,
a substitution layer with a 5-bit S-box, and a linear layer with 64-bit diffusion
functions.

3 Quantum Implementation of ASCON

As noted earlier, ASCON has two schemes (AEAD and hash), and our primary
focus lies on ASCON-128, which corresponds to the AEAD variant. With our de-
sign philosophy that emphasizes minimizing the depth for optimal performance
in Grover’s algorithm, we focus on optimizing the depth of the ASCON-128
quantum circuit while also maintaining a reasonable number of qubits.

3.1 Implementation (with Parallelization) of S-box

Due to the reversible nature of quantum computing, the implementation of S-
boxes using look-up table based methods is not suitable. Therefore, it becomes
apparent to implement S-box quantum circuits based on Boolean expression (of
the coordinate functions) using quantum gates. The 5-bit ASCON S-box can be
implemented by using the Boolean relationships that involve NOT (~), AND (+)
and XOR (@) gates; and are shown in Expression (3) (this is adopted from [3,
Section 7.3]).

To =T DTy, Tg=2Ts4Dw3, T2=2T2D T,
to =20, t1 =21, la =22, t3=u3, 4=,
to =~ 1o, t1=r11, foa=r12, t3=rv13, t4=r14, 3)
to=1to- o1, t1 =11 @2, Lo =12 @3, l3 =13 @4, L4 = ts4- X0,
To=xoDt, x1=x1Dt2, T2 =2x2Dt3, T3=x3Dts, T4 =x4D0,
T1 =21 Do, To=2ToDT4, T3=2T3DT2, Tz =r Ta.

It is evident that ancilla qubits g4 are required for calculating intermediate

values using combinations of AND and XOR operations. Therefore, we allocate
5 ancilla qubits to each S-box, and since there are 64 S-boxes operating in the
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Fig.2: ASCON S-box implementation in quantum (Toffoli depth 1).

substitution layer, a total of 320 (5 x 64) ancilla qubits are allocated. However,
in this case, Toffoli gates are executed sequentially for the AND operation, in-
creasing the Toffoli depth. To address this, we propose a shallow version of the
ASCON S-box quantum circuit optimized with Toffoli depth one.

Figure 2 illustrates our proposed quantum circuit for the ASCON S-box. Our
approach involves allocating an additional set of ancilla qubits and continuously
reusing them through reverse operations. By having an extra ancilla set, we can
independently prepare operands for Toffoli gates. As depicted in Figure 2, all
Toffoli gates operate in parallel, resulting in a Toffoli depth of one.

The Toffoli gate can be decomposed using various methods depending on
specific objectives, such as minimizing T-depth or qubit count. In our implemen-
tation, we follow a method described in [5] where the Toffoli gate is decomposed
into 8 Clifford gates followed by 7 T gates, resulting in a T-depth of 4 and a full
depth of 8. As expected, due to the optimized Toffoli depth, the T-depth and
full depth of our ASCON quantum circuit are also optimized.

To enable parallel operation of the S-boxes in the substitution layer, we need
to allocate an equal number of qubits (i.e., 320 qubits) for the additional ancilla
set, just as we allocated 320 qubits for tg~4. The number of qubits is a crucial
metric for optimizing quantum circuits. Taking this into account, we effectively
address the increased overhead of qubit count, which will be further explained
in the next section.

3.2 Reusing Ancilla Set with Reverse Operation

Thanks to the parallel implementation of Toffoli gates within the substitution
layer, we can achieve a Toffoli depth of 1 (Section 3.1). However, this is accom-
plished by allocating an additional ancilla set of 320 ancilla qubits, resulting in a
significant increase in qubit count. To address this issue, we allocate the ancilla
set only once and reuse it throughout the process.
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In this scenario, where we reuse the ancilla set, there is no need to allocate
a new ancilla set for each execution of the substitution layer. Only the initial
allocation of 320 ancilla qubits is required. To reuse the ancilla set, we perform
reverse operations after the Toffoli gate operations (see Figure 2). During the
reverse process, the number of X and CNOT gates increases. However, the depth
does not increase because this reverse operation is performed simultaneously with
the ongoing quantum gates from other operations.

In summary, by accepting the initial overhead of allocating an additional
ancilla set and tolerating a slight increase in the number of quantum gates, we
can achieve the benefits of reducing Toffoli and overall depth. Conceptually, our
circuit architecture is similar to the regular version described in Jang et al.’s AES
paper [8], which allocates sufficient ancilla qubits to parallelize S-box operations
and reuse them with reverse operations. In their paper, Jang et al. propose a
novel architecture called the shallow version, which offsets the depth overhead for
reverse operations. However, in our case, there is no depth overhead for reverse
operations, as explained earlier. Therefore, the new architecture for the shallow
version is not suitable for the ASCON substitution layer.

3.3 Quantum Implementation of Linear Layer

The ASCON linear layer operates on the 320-bit state and is typically described
with the 64-bit variables zp~4 as given in Expression (4).
xo + Zo(xo) = 2o @ (T0 >>19) @ (20 > 28),
1 X1(z1) =21 D (21 > 61) B (21 >> 39),
(z2) =22 @ (22 > 1) ® (22 > 6), (4)
(x3) = 23 @ (x5 >> 10) ® (x5 >> 17),
Ty Yy(xg) =24 D (g >> 7) D (24 >> 41).

To +— 2o (x9

.’1?3(—23

The ASCON linear layer can be considered as a series of operations over
32 x 32 binary matrices, where each of zg.4 represents 64-qubit arrays, result-
ing in a 320 x 320 binary matrix. To implement a quantum circuit for linear
operations, an in-place approach can be adopted. PLU-based quantum imple-
mentations of linear layers are presented in [6,7]. These implementations utilize
a PLU factorization and do not require the allocation of ancilla or output qubits,
resulting an in-place implementation. As a result, the number of qubits needed
for the quantum circuit is reduced. However, due to the restricted computation
space resulting from a small number of qubits, PLU-based implementations re-
quire sequential operations of CNOT gates, leading to an increase in the circuit
depth. This observation is reported in [15], where the PLU-based quantum circuit
of the LowMC linear layer is compared with the naive quantum implementation.

Additionally, a study in [16] explores different methods of implementing the
ASCON linear layer and compares the results. It is observed that while the naive
implementation requires a higher qubit count, it provides a lower-depth quantum
circuit. Therefore, based on our optimization goal, we choose to implement the
quantum circuit of the linear Layer with additional qubits.
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To store the output of the linear layer, 320 ancilla qubits are allocated for each
round (i.e., out-of-place) in our method. During the implementation process, we
discovered that the depth of the quantum circuit can be affected by the order
of the CNOT gates. Although quantum programming tools attempt to find the
optimal path of quantum gates, they do not always provide the lowest depth.
Considering this perspective, we arrange the order of CNOT gates to implement
the quantum circuit of the ASCON linear layer with a quantum depth of 3. Table
1 provides a comparison of quantum resources for the ASCON linear layer, and
our quantum implementation of linear layer has the lowest depth.

Table 1: Comparison of quantum resources required for ASCON linear layer.

Linear layer Source #CNOT | #Qubit | Depth
Out-of-place This work 960 640 3
Naive (binary matrix) | RBC’23 [16] 960 640 26
Gauss-Jordan RBC’23 [16] | 2,413 320 358
PLU RBC’23 [16] 2,413 320 288
Modified [17] RBC’23 [16] 1,595 320 119

3.4 Constructing ASCON AEAD Quantum Circuit

Algorithm 1 provides the implementation of the ASCON AEAD quantum cir-
cuit. The function Permutation®(S, ancilla) includes our quantum circuits for the
substitution layer and linear layer. Note that a single set of ancilla qubits (ancilla
in Algorithm 1) is reused throughout the circuit until its completion, following
the method described in Section 2.4. In the initialization, after the permutation
operations, a bitwise XOR operation is performed between the 320-qubit S value
and the 128-qubit key using CNOT gates (CNOT64 means CNOT gates operate
on 64 qubits). To align the key qubits with S, padding with zeros is applied to
the key value. As this point, since XOR with 0 is an identity operation, only the
least significant 128 qubits (z3 and z4) need to be XORed. During both the as-
sociated data processing and plaintext processing, the input data are processed
in blocks of 64 qubits. Therefore, by applying padding to the data, which in-
volves adding a single 1 and the least number of Os, the data can be divided into
blocks of 64 qubits each. The XOR operation with 1 is equivalent to the NOT
operation, so we apply the NOT operation (i.e., X gate) to the corresponding
qubit (corresponds to xo[31] in Algorithm 1).

4 Performance of Quantum Circuits

In this section, we present the performance analysis of our implemented ASCON-
128 quantum circuit. As mentioned earlier, we use the quantum programming
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Algorithm 1: Quantum circuit implementation of ASCON-128.

Input: S = xzo||z1||z2||zs||xa, pt, A, ancilla

Output: ct, T

1: S < Permutation®(S, ancilla) > Initialization
2: x3 + CNOT64(keyo, x3)

3: x4 < CNOT64(keyi, x4)

4: 20[32: 64] <~ CNOT32(A, x0[32 : 64]) > Processing Associated Data
5: xo[31] + NOT(z0[31]) > A||1]]0" — 1 — (JA] (mod r)) XORed with zo
6: S <Permutation®(S, ancilla)

7: x4[0] < NOT(z4[0]) > Last bit of S XORed with 1
8: x0[32: 64] + CNOT32(pt, x0[32 : 64]) > Processing Plaintext
9: ct + allocate new 32 qubits

10: ct + 20[32 : 64]

11: z0[31] + NOT(z0[31]) > pt|[1]jo" =1~ (Al (med M) ¥ ORed with xo

12: =1 + CNOT64(keyo, x1) > Finalization
13: T < CNOT64(k€y1, .’EQ)

14: S <Permutation®(S, ancilla)

15: z3 + CNOT64(keyo, x3)
16: x4 + CNOT64(key, x4)

17: T x3|\a:4
18: return ct,T

tool ProjectQ to implement and simulate the quantum circuits. We verify the
implementation using the ClassicalSimulator library in ProjectQ and analyze
the quantum resources used with the ResourceCounter. Tables 2 and 3 show the
resource requirements of our ASCON-128 quantum circuit implementation. The
quantum resources presented in Table 2 are the result of an analysis conducted at
the NCT (NOT, CNOT, Toffoli) level (enables intuitive comparison). In contrast,
Table 3 represents the resource analysis conducted at the Clifford + T level. Note
that the sizes of the Associated Data (AD) and Plaintext (P) in the resource
estimation are fixed at 32 bits, following the approach used in [18,19]. This
implies that we also fix the sizes in the same manner for our paper.

When comparing the results of Tables 2 and 3 with other quantum circuit
implementations for ciphers [18,19,14,15], it can be observed that the proposed
quantum circuit for ASCON-128 achieves a low Toffoli depth. However, our
quantum circuit requires a high number of qubits, which is a result of the trade-
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Table 2: Required quantum resources for ASCON-128 quantum circuit imple-
mentation
Cipher #X |#CNOT |#Toffoli| Toffoli depth | #Qubit | Depth |T'D-M cost
ASCON-128|21,243| 69,600 | 9,600 30 20,064 | 304 601,920
% Associated data and plaintext are both of 32-bits.

Table 3: Required decomposed quantum resources for ASCON-128 quantum
circuit implementation
Cipher #Clifford | #T | T-depth | #Qubit | Full depth | FD-M cost
ASCON-128 | 167,643 | 67,200 120 20,064 513 10,292,832
% Associated data and plaintext are both of 32-bits.

off between qubit count and depth. In this trade-off, we report the T'D-M and
FD-M costs in Tables 2 and 3. The T'D cost represents the Toffoli depth, F'D
represents the full depth, and M represents the qubit count. These metrics are
used to evaluate the trade-off performance of quantum circuits. Although reduc-
ing depth is optimal under the MAXDEPTH constraint (as the parallelization
of Grover instances has poor performance), we still find the TD-M or the FD-
M cost useful for comparing the performance of quantum circuits themselves.
Based on our proposed ASCON-128 quantum circuit, we estimate the cost of
the Grover’s key search and discuss the post-quantum security of ASCON.

5 Evaluation of Grover’s Search Complexity

To estimate the cost of Grover’s key search for ASCON-128, we follow the
methodology outlined in Section 2.2. Grover’s key search requires executing a
large number of sequential iterations of the ASCON-128 quantum circuit. For
each successive key recovery attempt for the cipher using a k-bit key, a set of
oracle and diffusion operators should be iterated L%\/ﬁj times. However, the
overhead of the diffusion operator can be neglected compared to the oracle since
most of the quantum resources are used for implementing the target cipher in
the quantum circuit. In many studies [8,7,6], the cost of iterations for the or-
acle is considered as the Grover’s key search cost. Following this approach, we
only count the quantum resources required for the iterations of the oracle to
estimate the Grover’s key search cost. The Grover oracle in our case consists of
two sequential executions of the ASCON-128 quantum circuit, and the oracle
is iterated L%\/ﬁj times. To summarize, we estimate the Grover’s key search

cost for ASCON-128 as follows: Table 3 x2 x [ §v2k|. Table 4 shows cost of the
Grover’s key search for ASCON-128.
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Table 4: Cost of the Grover’s key search for ASCON-128

TD-M | FD-M
Cipher | Total gates | Total depth| ~ C°%' | #Qubit
(complexity) cost cost
ASCON-128 | 1.180-2%% | 1.574-27 | 1.857-2%6 | 20065 |1.799 -25%|1.925 . 257

#: Associated data and plaintext are both of 32-bits.

6 Concluding Remarks (and Note on Quantum Security)

The cost of quantum attacks on ciphers can be used to assess the post-quantum
security of a cipher. In this context, it is important to consider the post-quantum
security criteria defined by NIST. In 2016, NIST established post-quantum se-
curity levels based on the estimated costs for AES-128, AES-192, and AES-256.
However, as the costs of attacks against AES have decreased over time, NIST
has recently adjusted the attack costs according to the security level (as outlined
in Section 2.3).

According to Table 4, the quantum attack cost for ASCON is 1.857 x 2196,
Thus, ASCON can be evaluated as achieving post-quantum security Level 1,
which corresponds to a cost equivalent to AES-128 (2157) according to the recent
standards (see Section 2.3 and [10]).

In conclusion, this paper presents the first optimized implementation of the
ASCON-128 quantum circuit. We utilize multiple methodologies to minimize
Toffoli and full depths while keeping the number of qubits at a reasonable level.
By evaluating our depth-optimized ASCON-128 quantum circuit, we can confi-
dently conclude that ASCON-128 achieves post-quantum security Level 1. Fur-
thermore, the implementation techniques presented in this paper have the po-
tential to be applied to other quantum circuit implementations of ciphers.
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