
OWF Candidates Based on:
Xors, Error Detection Codes, Permutations,

Polynomials, Interaction and Nesting

Paweł Cyprys1, Shlomi Dolev1, and Oded Margalit1

Ben-Gurion University of the Negev
July 3, 2023

Abstract. Our research focuses on achieving perfect provable encryp-
tion by drawing inspiration from the principles of a one-time pad. We
explore the potential of leveraging the unique properties of the one-time
pad to design effective one-way functions. Our methodology involves the
application of the exclusive-or (xor) operation to two randomly chosen
strings. To address concerns related to preimage mappings, we incor-
porate error detection codes. Additionally, we utilize permutations to
overcome linearity issues in the computation process.
In order to enhance the security of our approach, we propose the integra-
tion of a secret-sharing scheme based on a linear polynomial. This helps
mitigate collisions and adds an additional layer of perfect security. We
thoroughly investigate the interactions between different aspects of one-
way functions to strengthen the reliability of commitments. Lastly, we
explore the possibility of nesting one-way functions as a countermeasure
against potential backdoors.
Through our study, we aim to contribute to the advancement of secure
encryption techniques by leveraging the inherent strengths of the one-
time pad and carefully considering the interplay of various components
in the design of one-way functions.

1 Introduction

We propose the exploration of computationally efficient one-way functions that
can serve as an alternative to Secure Hash Algorithms (SHA) [14]. These func-
tions should be resistant to preimage and collision attacks, providing enhanced
security for commitments and signatures, such as Lamport’s signature [17]. Re-
lying solely on block-cipher-based functions like SHA may lead cryptanalysts to
focus their efforts on breaking these functions, as demonstrated by the vulnera-
bilities found in MD4 [18] and MD5 [19], not to mention the potential existence
of backdoors [10]. In this paper, we propose simple constructions using provable
cryptographic primitives like one-time pads and secret sharing.

Our objective is to explore a range of computationally efficient one-way
functions that can expand the choices available to implementers. Commitments
based on one-way functions (assuming the provability of such functions implies
P ̸= NP) find applications in various scenarios, including Zero Knowledge Proofs

2 Cyprys, Dolev, Margalit

(ZKP) [1; 13], where one-way functions are used as commitment primitives.
While cryptographic hash functions like the SHA family are designed to handle
long inputs (e.g., files) and are expected to have collisions due to the pigeonhole
principle, our focus in this paper is on inputs of the same length as, or smaller
than, the output. This enables us to examine the inherent collision properties of
the proposed functions, as discussed in [12] regarding length-preserving one-way
functions.

We explore techniques to enhance the one-way properties of existing one-way
function candidates by utilizing xor operations in the style of a one-time pad. We
employ xor operations among essential components of instances of the original
one-way functions [6; 5; 3]. Our objective is to mimic xor with a one-time pad in
a way that ensures the success criteria of an instance (e.g., the sum in a subset-
sum instance) while limiting the possible number of preimages. In commitment
schemes, it is undesirable to have multiple fitting preimages or collisions, as the
committer could select a preimage from the colliding set when revealing the
commitment. Additionally, if there are numerous colliding preimages, the task
of reversing the output of the one-way function candidate may become relatively
easy. The ease of reversing the output obtained by bitwise xoring two random
sequences serves as evidence of both the existence of a large number of possible
preimages and the ease of finding one among them.
Overview. We aim to achieve provable encryption by utilizing the principles
of a one-time pad. In this study, we explore the potential of leveraging the
inherent properties of the one-time pad to design one-way functions. We begin
by randomly selecting two strings, s1 and s2, each consisting of n bits. It is
important to note that the result of performing a bitwise xor operation on s1 and
s2, denoted as r12, encompasses all possible combinations of s1 and compatible
counterparts of s2 that yield r12. As a result, reversing the process and obtaining
r12 is relatively easy and leads to a multitude of possible answers (collisions),
which grows exponentially with the lengths of si (n = |si|).

To address the issue of an excessive number of collisions and enhance the
difficulty of reversing the function, we propose the utilization of error detection
codes such as Cyclic Redundancy Check (CRC), Hamming codes, Reed-Solomon
codes, and binary Goppa codes. For each si, we introduce an error detection code
edci. The computation of r12 is then performed as follows: (s1◦eds1)⊕(edc2◦s2),
where ◦ denotes concatenation. To facilitate discussion, we set the length of the
error detection codes equal to the length of the original strings they represent,
i.e., |edci| = |si|.

The design endeavours to utilize s1 (and s2) as a one-time pad for edc2 (and
edc1, respectively). However, we demonstrate that in cases where the error de-
tection code is linear, there exist polynomial time algorithms that can invert r12
and recover s1 and s2 with relative ease. To cope with the (reversible) linearity
of error detection codes, we suggest using permutations, permuting edci by the
values of sj . For ease of discussion, we suggest using 2 lg(n) + 1 pairs si1, s

i
2,

namely, s11, s12, s21, s22, s31, s32, · · · , s
2 lg(n)+1
1 , s2 lg(n)+1

2 compute for each of si1, si2
the value ri = (si1 ◦ si2)⊕ π

s11,s
1
2,···s

i−1
1 ,si−1

2 ,si+1
1 ,si+1

2 ,···s2 lg(n)+1
1 ,s

2 lg(n)+1
2

(edci1 ◦ edci2).

OWF Candidates 3

Note that every bit in the permuted edci is a function of all random bits; thus,
the output is holographic in a sense.

To prevent collisions where more than one preimage exists for the same func-
tion output, we suggest using secret-sharing schemes. Secret sharing is another
(beyond one-time-pad) very useful, proven perfect information theoretical se-
cure primitive. In this scheme, the value ri may have multiple pre-images, but
still, we manage to restrict collisions. The commitment value is determined by
the intersection of a line (or polynomial) with the y-axis, denoted as si1 ◦ si2.
An interactive commitment approach is proposed to enhance security, where the
committing party receives random x-values. This process ensures that even if
only two values on the line do not collide, the commitment is still unique and
can be attributed to a single possible value.

We further suggest a nesting of one-way functions in which the committing
party is instructed first to use a certain one-way function to eliminate planned
collisions; then, the committing party uses the output of the given one-way
function as an input for her/his choice of a one-way function to eliminate possible
backdoors in the first determined one-way function. Both parties should agree
(and possibly verify by say, probabilistic sampling) that the suggested functions
imply a small number of collisions.

To make the presentation self-contained and concise, we present only explic-
itly used definitions in our analysis. For a more comprehensive background on
one-way functions and related applications, see, e.g., [16; 15; 6; 5; 3].
Paper roadmap. Section 2 develops the reasoning for the need for permutation
beyond xors (in the style of mutual one-time pads). Section 3 introduces the
use of (linear) polynomials to cope with possible collisions. Section 4 uses the
interaction between the committer and the verifier to cope with potential planned
collision (by the committer) and planned backdoors (by the verifier). Finally,
concluding remarks appear in Section 5.

Throughout the paper, we illustrate the proposed concepts using toy exam-
ples. For the convenience of readers, the implementations required to replicate
these examples can be found in [4]. The software was implemented using the
SageMath computational software environment [21].

2 XORS, Error Detection Codes, and Permutations

We illustrate that without the use of permutation, the application of xor, which
aims to emulate Shannon’s “one-time pad” concept (as described in [20]), by
mutually masking the error detections of s1 and s2, can be easily inverted in
polynomial time.

To demonstrate the potential ease of inversion, we consider the following
specific example: s1 and s2 are randomly chosen four-bit strings. We utilize a
standard CRC-4-ITU algorithm (with the polynomial representation x4 + x+ 1
as defined in [11]) to compute crc1 for s1 and crc2 for s2, where each crc value
consists of four bits. Subsequently, we compute f(s1, s2) = (s1◦crc1)⊕(crc2◦s2).

4 Cyprys, Dolev, Margalit

Due to the linearity of the process, we observe that f(s1, s2) = (s1 ◦ s2) · A,
where A is a square matrix that implements the function f .

Evidently, there exists a one-to-one mapping between the values of s1 and s2
and f(s1 ◦ s2), and it is feasible to construct a matrix that computes f .

Furthermore, f is invertible, as f−1 can retrieve s1 ◦ s2 from the output of
f(s1 ◦ s2). The inverse function f−1 can be computed in polynomial time by
utilizing the inverse matrix A−1, such that s1 ◦ s2 = f(s1, s2) ·A−1.

Appendix A presents a specific numerical example illustrating the straight-
forward nature of such inversion.

Incorporating permutations. To enhance the reconstruction of critical parts,
such as s1 and s2, we can extend the self-masking technique with CRC codes by
incorporating permutation using permutation indices. This approach allows us
to define an actual permutation.

In our example, we have presented a construction where a binary array is
generated based on a string s = s1 ◦ s2, with a binary length of |s| = 8 (suitable
for representing a single character in ASCII Encoding). The first three bits of
the binary array are utilized to determine the parameter p, while the next three
bits determine the parameter q. These parameters, p and q, are then used to
define a permutation denoted as π. The permutation function π is employed to
map the elements of the binary string to a new instance of the binary string
with permuted elements. Specifically, the elements (bit values) of the computed
crc1◦crc2 are swapped based on the indexes defined by p and q using this permu-
tation mapping. Namely, given two strings s1 = a1, a2, a3, a4, s2 = b1, b2, b3, b4,
compute crc1 = c1, c2, c3, c4 for s1, and compute crc2 = d1, d2, d3, d4 for s2.
Then, consider the sequence crc = crc2 ◦ crc1 = d1, d2, d3, d4, c1, c2, c3, c4 =
e1, e2, e3, e4, e5, e6, e7, e8, permute elements in a way that swapes ep+1 with eq+1.
The Blackbox then xors s = a1, a2, a3, a4, b1, b2, b3, b4 with the permuted crc.

Permutations example. Let us consider the following example that illustrates
the ineffectiveness of polynomial-time inversion when permutation is applied in
the BlackBox.

For instance, let us define s1 = 1001 and s2 = 1010. The resulting BlackBox
output for s1 and s2 is denoted as r:

s1 ◦ s2 =
[
1 0 0 1 1 0 1 0

]
r =

[
0 0 1 0 1 1 1 0

]

B =


(s11 ◦ s12)⊕ πs1 [crc

1
2 ◦ crc11]

(s21 ◦ s22)⊕ πs2 [crc
2
2 ◦ crc21]

...
(s81 ◦ s82)⊕ πs8 [crc

8
2 ◦ crc81]



OWF Candidates 5

B =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 1
0 0 0 0 1 0 1 0


We construct the matrix B to align with the new Blackbox, which incor-

porates a limited permutation and enables the computation of any row of the
identity matrix I. This capability directly stems from the construction of matri-
ces B (and A).

However, attempting to employ the same linear technique used in Appendix
A by substituting matrix A with B proves unsuccessful due to the nonlinearity
of the permutation.

In particular, the result of the Blackbox for the input s1◦s2 = [1 0 0 1 1 0 1 0]
is r =

[
0 0 1 0 1 1 1 0

]
while the multiplication of s1 ◦ s2 = [1 0 0 1 1 0 1 0] by B

yields a different vector of bits. When we perform xor operation over the rows
0, 3, 4 and 6 of B we get the vector: [0 1 0 0 0 1 1 1] ̸= r = [0 0 1 0 1 1 1 0].

Based on the aforementioned example, it becomes evident that constructing
matrix B according to the permuted Blackbox does not enable the utilization of
B (as with A) to compute all the results of the new permuting Blackbox.

Although the limited permutation may reduce the number of combinations
to be examined when attempting to reverse the function, we now aim to enhance
the permutation operation to achieve a complete random permutation based on
bits from other instances.
Better (full) permutation, the holographic approach. Although the min-
imal non-linearity in the solution presented in Appendix A is insufficient, we
can improve upon it. The limited number of bits used for permutation (six out
of the total eight in our example) restricts the available permutations to a very
limited set. Therefore, it is preferable to have an (almost) uniformly chosen per-
mutation. To achieve this, we introduce 2 lg n+1 instances (specified as an input
in Algorithm 1) of the s1, s2 scheme described earlier. In the second line of the
pseudocode, we generate ℓ instances accordingly.

The index of a permutation is determined by lg((2n)!) bits, where |si| = n. By
utilizing the random bits from all instances sj1, s

j
2 where j ̸= i, we obtain a total

of at least 2n lg n bits. This quantity is sufficient to fully define a permutation
of the bits in crci2 ◦ crci1 (as demonstrated in [8]). We may choose to define
the permutation index by starting with the most significant bit (MSB) of si+1

1 ,
followed by the MSB of si+2

1 up to the MSB of si−1
1 , and then listing the bits

that are second to the MSB of these s1’s, continuing until we reach the least
significant bit (LSB) layer of s2’s. We refer to this sequence as MSBLSBi. This
operation is performed within the for each loop defined in line three. In each
iteration of the loop, we execute the operations defined earlier (lines 4 and 5),

6 Cyprys, Dolev, Margalit

resulting in the production of a puzzle with the corresponding index for that
iteration.

It is important to note that every bit in the permuted crci2 ◦crci1 is a function
of all the random bits (sji), making it “holographic” in nature.

Algorithm 1: Full permutation holographic hash
Input: k = 2 lgn+ 1 = number of instances

1 Function Generate_Puzzles():
2 ℓ = Generate_Instances(k)
3 for each instance i in ℓ:
4 permutedi=permute(crci2 ◦ crci1, MSBLSBi)
5 puzzlei= (sj1 ◦ s

j
2) ⊕ permutedi

6 output puzzlei

Note that one can replace si1 and si2 with a single longer si; the use of two
parts here is for the sake of the gradual exposition for building our holographic
one-way function candidate.

3 Polynomials for Collision Prevention

In this section, we propose a novel approach to address collisions that can be
applied to other cryptographic hash functions, such as SHA-128. We utilize the
concept of secret sharing, where the actual committed value is encoded using a
polynomial, specifically a line.

Our new hash function employs a primitive cryptographic hash function to
hash the y coordinates of points on a line that intersects the y axis at the
committed value. The x values can range from 1 to m, where m is a chosen
parameter. Alternatively, the verifying party can define the x values, creating a
somewhat interactive commitment process.

We hypothesize that the committing party will be unable to coordinate two
lines from the collisions of these m hashed values in a way that encodes a different
line and a distinct secret. In cases where the number of collisions for each value
is limited, as in our suggested one-way function, we can demonstrate that the
number of possible collisions diminishes towards zero.

Let’s assume a sufficiently large finite field F and k + 2 distinct numbers
in F , denoted as x1, . . . , xk+2 (with the possibility of xi being equal to i). The
pseudocode for the technique to prevent polynomial collisions is presented in
Algorithm 2. As input to the algorithm, we generate the commitment (line 1) and
employ it as part of secret sharing, where the constant term a0 of the polynomial
P (x) = a1x + a0 defined over the finite field F represents the committed value
(in our example, the result of f using s1 and s2). These values are declared as
inputs to Algorithm 2. Next, we generate a random value from F to encode the

OWF Candidates 7

polynomial coefficient a1 (line 3). Finally, we employ Lagrange Interpolation to
construct the polynomial f(x) (line 4).

Algorithm 2: Polynomial generation
Input: n = k + 2 distinct numbers, F = GaloisF ield(2ℓ), commitment
Result: f(x) polynomial

1 Function Generate_Input():
2 a0 = commitment
3 a1 = Generate_Random_Point(n, F)
4 f(x) = Lagrange_Interpolation(a0, a1)

Continuing from the previous section, let’s consider a Finite Field with an
order of 2ℓ, where each element in the field consists of precisely ℓ bits. As men-
tioned before, let t be the input for Algorithm 3. The subsequent step involves
evaluating the polynomial P (x) for input values x = x1, x2, . . . , xk+2 to generate
a vector t1, t2, . . . , tk+2 (refer to lines 2 to 4 in Algorithm 3).

Subsequently, we can utilize the binary representation of ti (line 5) to encode
two strings si1 and si2 (line 6). Specifically, we take the first half of ℓ/2 bits from
ti to form si1, and in the subsequent line, we take the other half of ℓ/2 bits to
form si2. Following this, we can calculate the permuted hash for each string (line
8).

It’s important to note that the resulting value of f(si1, si2) may not be unique,
as there may exist s′1 and s′2 for which f(s′1, s

′
2) = f(si1, s

i
2), indicating the

presence of collisions.

Algorithm 3: Calculation of permuted hash
Input: f(x) = polynomial, F = GaloisF ield(2ℓ), commitment

1 Function Generate_Values():
2 tx1 = f(x1)

3
...

4 txk+2 = f(xk+2)
5 txibinary = binary_cast(txi)

6 s1 = txibinary [0:ℓ/2]
7 s2 = txibinary [ℓ/2:ℓ]
8 h = calculate_permuted_hash(s1, s2)

To enhance the resistance against inversion attacks, we can empower the
verifying party in the commitment process by allowing them to choose multiple
values of x. They can request the corresponding committed values (y) before
revealing the next challenge value of x.

8 Cyprys, Dolev, Margalit

In the following figures, we demonstrate the situation where the committer
has the option to expose one of several lines (and corresponding commitments)
when only the values for x = 1 and x = 2 are requested (indicated by the green
color). Let’s define P (x) = a1x + a0, where a0 represents the committed value
(preimage of the one-way function), and a1 is a randomly chosen value from the
field. In Figure 1, the value f(s1, s2) (or f(s3, s4)) is depicted as a blue horizontal
line, where s1 ◦ s2 corresponds to a0 + a1, and s3 ◦ s4 corresponds to a0 + 2a1.

Figure 2 illustrates the green line representing P (x), which shows the y co-
ordinate for x = 1 (or x = 2) based on s1 ◦ s2 (or s3 ◦ s4) values. Interestingly,
the blue horizontal lines in Figure 1 reveal a collision for s3 ◦ s4, indicating the
existence of s′3 ◦ s′4 for which f(s3, s4) = f(s′3, s

′
4). This collision implies that

the committer can expose an additional committed value, which differs from the
value represented by the green line.

When the committer needs to reveal f(s5, s6), where (s5 ◦ s6) corresponds
to the value of P (3), the collisions indicated by the new blue line in Figure 3
do not align with the red line represented by s1 ◦ s2 and s′3, s

′
4 (see Figure 4).

Consequently, the committer is compelled to reveal the points on the green line,
effectively exposing the original committed value.

Fig. 1. Black-box values distribution for all possible s1 and s2 along with collision lines
for r1,2 and r3,4

OWF Candidates 9

Fig. 2. Collision line for P (2) points

Fig. 3. Black-box values distribution for all possible s1 and s2 along with collision lines
for r1,2 and r3,4

Fig. 4. Collision lines for P (3) points

10 Cyprys, Dolev, Margalit

Note that such an approach can be relevant to other cryptographic hash func-
tions where the input is padded by a random nonce chosen by the other party.
The nonce can also encode a (partial) permutation index given to the commit-
ter. Possibly, the verifier and the committer may agree that the committer will
permute the message and concatenate it with the nonce.

Interaction can be eliminated by the use of the Fiat-Shamir random oracle
[9], where the next x coordinate is a function (say, xor based) of (several or all)
the y values obtained so far.

4 Nesting

In a scenario where a commitment scheme is used, allowing one side to choose
the one-way function can lead to adversarial behaviour. Let’s consider a situation
where a gambler wants to commit to a specific colour (red or black) for a bet in
a casino’s roulette game before the ball stops rotating.

The gambler may have doubts about the casino potentially manipulating the
outcome in favour of the unchosen colour, even if they commit to their chosen
colour using a one-way function (where the colour is encoded using enough bits
combined with a random nonce). The gambler can choose a one-way function
that exhibits collisions, meaning both red and black can be preimages of the
function’s output. This poses a risk since the casino needs to know the committed
colour before the roulette outcome is visible. To mitigate this risk, the casino
may enforce the selection of a specific one-way function. However, the gambler
may suspect that the suggested function has a backdoor known to the casino,
allowing them to know the committed colour in advance and potentially influence
the outcome and the outcome of the bet.

In other words, if the party committing to the value determines the function,
they can intentionally choose a function that has collisions for the committed
value. On the other hand, if the verifier (once the committed value is revealed)
selects the one-way function, it may have a backdoor that prematurely reveals
the committed value.

To address these concerns, it can be advantageous to allow both parties to
select a one-way function. The approach could involve using the one-way function
chosen by the party to whom the secret will be revealed first, thereby eliminating
planned collisions by the committing party. After that, another one-way function
chosen by the committing party can be applied to the result, thus avoiding the
existence of a backdoor in the first one-way function.

Care should be taken when nesting hash functions to ensure a low number
of implied collisions. It is crucial to maintain a small number of collisions in
each nesting stage and overall. Sampling techniques, similar to those employed
in self-testing scenarios discussed in references such as [2; 7], can be utilized to
estimate the probability of collisions.

Additionally, nesting can be combined with the utilization of polynomials to
further eliminate potential collisions, as presented in the previous section.

OWF Candidates 11

5 Concluding Remarks

The pursuit of one-way functions that can be proven to be secure is closely inter-
connected with the investigation of a fundamental milestone in computer science,
known as the P ̸= NP problem. By employing information-theoretically secure
building blocks, such as one-time pads and secret sharing, as outlined in our ap-
proach, we have the potential to strengthen the trustworthiness of cryptographic
commitments. This paper presents an efficient hash function that we have de-
veloped. By incorporating linear error detection techniques and permutations,
we have effectively reduced the incidence of collisions and eliminated linearity.
These measures significantly contribute to the resilience and dependability of
the cryptographic commitments put forth in our proposal.

Finally, we introduce a novel and efficient candidate for a one-way function
that is based on 2 lg(n) + 1 instances. This construction exhibits a distinctive
property that we refer to as a “holographic” property.

References

[1] Babai, L., Moran, S.: Proving properties of interactive proofs by a gener-
alized counting technique. Information and Computation 82(2), 185–197
(1989)

[2] Blum, M., Luby, M., Rubinfeld, R.: Self-testing/correcting with applications
to numerical problems. In: Proceedings of the twenty-second annual ACM
symposium on Theory of computing. pp. 73–83 (1990)

[3] Cohen, A., Cyprys, P., Dolev, S.: Single instance self-masking
via permutations. IACR Cryptol. ePrint Arch. p. 416 (2023),
https://eprint.iacr.org/2023/416

[4] Cyprys, P., Dolev, S., MargalitS, O.: Owf candidates, examples implemen-
tations. GitHub (2023)

[5] Cyprys, P., Dolev, S., Moran, S.: Self masking for harder-
ing inversions. IACR Cryptol. ePrint Arch. p. 1274 (2022),
https://eprint.iacr.org/2022/1274

[6] Dolev, H., Dolev, S.: Toward provable one way functions. IACR Cryptol.
ePrint Arch. p. 1358 (2020), https://eprint.iacr.org/2020/1358

[7] Dolev, S., Frenkel, S.: Extending the scope of self-correcting. In: Proceedings
of the XIII International Conference Applied Stochastic Models (ASMDA-
2009) (2009)

[8] Dolev, S., Lahiani, L., Haviv, Y.A.: Unique permutation hashing. Theor.
Comput. Sci. 475, 59–65 (2013). https://doi.org/10.1016/j.tcs.2012.12.047,
https://doi.org/10.1016/j.tcs.2012.12.047

[9] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identifi-
cation and signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryp-
tology — CRYPTO’ 86. pp. 186–194. Springer Berlin Heidelberg, Berlin,
Heidelberg (1987)

12 Cyprys, Dolev, Margalit

[10] Fischlin, M., Janson, C., Mazaheri, S.: Backdoored hash func-
tions: Immunizing HMAC and HKDF. In: 31st IEEE Com-
puter Security Foundations Symposium, CSF 2018, Oxford,
United Kingdom, July 9-12, 2018. pp. 105–118. IEEE Com-
puter Society (2018). https://doi.org/10.1109/CSF.2018.00015,
https://doi.org/10.1109/CSF.2018.00015

[11] ITU-T Study Group 15 Frame alignment and cyclic redundancy check
(CRC) procedures relating to basic frame structures defined in Recommen-
dation G.704. Standard, ITU (1991-04-05)

[12] Goldreich, O., Levin, L.A., Nisan, N.: On constructing 1-1 one-way func-
tions. In: Goldreich, O. (ed.) Studies in Complexity and Cryptogra-
phy. Miscellanea on the Interplay between Randomness and Computa-
tion - In Collaboration with Lidor Avigad, Mihir Bellare, Zvika Braker-
ski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam
Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigder-
son, David Zuckerman, Lecture Notes in Computer Science, vol. 6650,
pp. 13–25. Springer (2011). https://doi.org/10.1007/978-3-642-22670-0_3,
https://doi.org/10.1007/978-3-642-22670-0_3

[13] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing 18(1), 186–208 (1989).
https://doi.org/10.1137/0218012, https://doi.org/10.1137/0218012

[14] Handschuh, H.: SHA Family (Secure Hash Algorithm), pp. 565–567.
Springer US, Boston, MA (2005)

[15] Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom gen-
erator from any one-way function. SIAM Journal of Computing 28, 12–24
(1999)

[16] Impagliazzo, R., Naor, M.: Efficient cryptographic schemes provably as se-
cure as subset sum. Journal of cryptology 9(4), 199–216 (1996)

[17] Lamport, L.: Constructing digital signatures from a one way function.
Tech. Rep. CSL-98 (October 1979), https://www.microsoft.com/en-
us/research/publication/constructing-digital-signatures-one-way-
function/, this paper was published by IEEE in the Proceedings of
HICSS-43 in January, 2010.

[18] Leurent, G.: MD4 is not one-way. In: Nyberg, K. (ed.) Fast
Software Encryption, 15th International Workshop, FSE 2008, Lau-
sanne, Switzerland, February 10-13, 2008, Revised Selected Pa-
pers. Lecture Notes in Computer Science, vol. 5086, pp. 412–
428. Springer (2008). https://doi.org/10.1007/978-3-540-71039-4_26,
https://doi.org/10.1007/978-3-540-71039-4_26

[19] Sasaki, Y., Aoki, K.: Finding preimages in full MD5 faster than ex-
haustive search. In: Joux, A. (ed.) Advances in Cryptology - EURO-
CRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-
30, 2009. Proceedings. Lecture Notes in Computer Science, vol. 5479, pp.
134–152. Springer (2009). https://doi.org/10.1007/978-3-642-01001-9_8,
https://doi.org/10.1007/978-3-642-01001-9_8

OWF Candidates 13

[20] Shannon, C.E.: Communication theory of secrecy systems. The Bell system
technical journal 28(4), 656–715 (1949)

[21] The Sage Developers: SageMath, the Sage Mathematics Software System
(Version 9.8.0) (2023), https://www.sagemath.org

14 Cyprys, Dolev, Margalit

A The Insufficiency of Linear Error Detection Codes,
Toy Example

We present a simple example of numerical values to the reader to show the risk of
using linear error detection. The example is later used to introduce permutations
to eliminate linearity.

Let us consider the following example. Define the binary vector r = [10011010].
Compute f(s1, s2) = (s1 ◦crc1)⊕ (crc2 ◦s2) = [11010111]. To reverse the process
of this operation, define an identity matrix I with eight rows and eight columns.
Let si1 and si2 be defined as the first four bits and the next four bits in the i′th row
of the matrix I. Define matrix A as follows: the i’th row of the matrix consists
of (si1 ◦ crci1)⊕ (crci2 ◦ si2), where si1 (si2) are the four first (last, respectively) bits
in the ith row of the identity matrix I and crcij is the CRC result over sij . Below
is an example of numeric values to help the reader understand the process. We
use r to denote the result of f (also called the Blackbox) over s1, s2, which are,
in our toy example, four bits each.

s1 ◦ s2 =
[
1 0 0 1 1 0 1 0

]
r =

[
1 1 0 1 0 1 1 1

]

A =


(s11 ◦ crc11)⊕ (crc12 ◦ s12)
(s21 ◦ crc21)⊕ (crc22 ◦ s22)

...
(s81 ◦ crc81)⊕ (crc82 ◦ s82)



A =



1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1
1 0 1 0 1 0 0 0
0 1 1 0 0 1 0 0
0 1 1 0 0 0 1 0
0 1 1 1 0 0 0 1


A−1 =



0 1 1 1 1 1 0 0
1 1 1 1 0 1 1 0
1 0 1 1 0 0 1 1
1 0 0 1 1 1 0 1
1 1 0 0 0 1 1 1
0 1 1 0 1 1 1 1
0 0 1 1 1 0 1 1
1 1 0 1 1 0 0 1



f(s1, s2) ·A−1 =
[
1 1 0 1 0 1 1 1

]


0 1 1 1 1 1 0 0
1 1 1 1 0 1 1 0
1 0 1 1 0 0 1 1
1 0 0 1 1 1 0 1
1 1 0 0 0 1 1 1
0 1 1 0 1 1 1 1
0 0 1 1 1 0 1 1
1 1 0 1 1 0 0 1


=

[
1 0 0 1 1 0 1 0

]
= s1 ◦ s2

We recovered the original values from the output of the Blackbox. All-time
complexity (matrix multiplication and matrix inversion) is polynomial. The pre-
viously described operations are described in the following pseudocode:

OWF Candidates 15

The CRC-4 toy example.

Algorithm 4: Polynomial time inversion with CRC-4-ITU
1 Function BlackBox(s1, s2):
2 z1 = s1 ◦ calculate_crc(s1)
3 z2 = calculate_crc(s2) ◦ s2
4 return z1 ⊕ z2

5 Function GenerateMatrix():
6 A_matrix = Empty 0× 8 matrix
7 foreach row in (all 8 unit vectors) do
8 x = BlackBox(row[0:3], row[4:8])
9 A_matrix.add(row, x)

10 return A_matrix

11 Function Inverse():
12 r12 = BlackBox(s1, s2)
13 A_matrix = Generate_Matrix()
14 return recorvered_s1s2 = r12 ×A_matrix.inverse()

Description of the pseudocode. The pseudocode commences by defining a
function named “BlackBox.” This function takes two binary strings, denoted as
s1 and s2, as input. Subsequently, the CRC-4 value is computed for each of these
strings. The result of the function is a binary string obtained from performing
the bitwise XOR operation, represented as z1⊕z2. Following that, another func-
tion called “GenerateMatrix” is introduced. This function constructs a diagonal
matrix with a size equivalent to the length of the binary string obtained from
the previous XOR operation. Within a loop, the “BlackBox” function is invoked
to calculate the values for the first four elements (designated in the [n : m] list
notation, where n is the index of the first element and m is the index of the last
element) of each row. Subsequently, the function calculates the values for the
remaining four elements. These computed values are then used to create each
matrix row, denoted as Amatrix. Finally, the function returns the resulting ma-
trix. The last function, referred to as “Inverse,” is the program’s main function.
It begins by calling the “BlackBox” function with the selected inputs s1 and
s2, which produces a vector named r12. Subsequently, this vector is utilized to
restore the original values of s1 and s2 by performing multiplication with the
inverted A_matrix.

