
E2E near-standard and practical authenticated
transciphering

Ehud Aharoni
IBM Research - Israel

Nir Drucker
IBM Research - Israel

Gilad Ezov
IBM Research - Israel

Eyal Kushnir
IBM Research - Israel

Hayim Shaul
IBM Research - Israel

Omri Soceanu
IBM Research - Israel

Abstract—Homomorphic encryption (HE) enables computation
delegation to untrusted third-party while maintaining data
confidentiality. Hybrid encryption (a.k.a Transciphering) allows a
reduction in the number of ciphertexts and storage size, which
makes HE solutions practical for a variety of modern applications.
Still, modern transciphering has two main drawbacks: 1) lack of
standardization or bad performance of symmetric decryption
under FHE; 2) lack of input data integrity. In this paper,
we discuss the concept of Authenticated Transciphering (AT),
which like Authenticated Encryption (AE) provides some integrity
guarantees for the transciphered data. For that, we report on
the first implementations of AES-GCM decryption and Ascon
decryption under CKKS. Moreover, we report and demonstrate
the first end-to-end process that uses transciphering for real-world
applications i.e., running deep neural network inference (ResNet50
over ImageNet) under encryption.

I. INTRODUCTION

Nowadays, many organizations move their workloads from
in-house data centers to public cloud environments. This
trend has not skipped conservative industries like finance and
healthcare. However, the use of these third-party services can be
restricted by the need to comply with government regulations
such as GDPR [35] and HIPAA [15], which ensure data privacy.

Modern cryptography provides useful and standardized
solutions for ensuring the confidentiality and integrity of orga-
nizations’ data in transit, for example, through the use of TLS
1.3 [57], or at rest, using advanced encryption standard (AES)-
Galois / counter mode (GCM) [34]. While the combination of
these solutions allows users to take advantage of the storage
services provided by the cloud, they do not provide a secure
way to utilize its computing capabilities. The reason is that the
computations are done in the clear.

One cryptographic solution to the above issue, which gains
popularity nowadays is homomorphic encryption (HE) because
it enables computation to be performed on encrypted data. The
potential of HE can be observed in Gartner’s report [38], which
states that by 2025, 50% of large enterprises are expected to
adopt privacy-enhancing computation for processing data in
untrusted environments e.g., by using HE. Another example
that highlights its widespread adoption is the extensive list
of enterprises and academic institutions actively involved in
initiatives like HEBench [60] and the standardization efforts
for HE [4].

The literature on HE primarily focuses on demonstrating
its practicality for specific use cases, such as performing

Figure 1: A Hybrid encryption a.k.a. transciphering flow. A user
possesses a symmetric AES key (blue) and an HE secret key
(red). They upload the HE public key (green) and the evaluation
key (brown) to the cloud. The user encrypts the data using
AES and sends it to the cloud, along with an encryption of the
AES keys under HE. The cloud replaces the AES encryption
with HE encryption, processes the data, and returns the results
FHE encrypted back to the user. Finally, the user utilizes the
secret HE key to decrypt the results.

classification through inferencing over deep neural networks
[50], [2], [7]. These studies often assume an ephemeral
application, where data is encrypted using HE, uploaded to an
untrusted environment for HE computation, and the results are
promptly returned to the user for decryption.

However, in reality, the situation becomes more complex
when users need to store their data encrypted at one point in
time and use it in the cloud for computation at a later point
in time. In such cases, the large size of HE ciphertexts can
result in extra costs. For instance, HE ciphertexts may have
an expansion ratio of more than 2:1 compared to storing the
original plaintext, or compared with the 1:1 compression ratio
when using symmetric encryption such as AES. These costs
impact not only the storage “at rest” but also the bandwidth
required for uploading and downloading the data to and from
the cloud.

Hybrid encryption, a.k.a., transciphering (see e.g., [39],
[58]), enables the encryption of data using symmetric block
ciphers, which can then be transmitted and stored in the cloud
at moderate costs. Subsequently, the encrypted data can be
moved to a computing service that employs HE. Through

https://orcid.org/0000-0002-3647-1440
https://orcid.org/0000-0002-7273-4797
https://orcid.org/0000-0003-4579-8127
https://orcid.org/0000-0001-6123-0297
https://orcid.org/0000-0001-8432-0623
https://orcid.org/0000-0001-8432-0623

transciphering, the service effectively “replaces” the encryption
scheme from symmetric encryption to HE encryption. Once
the data is encrypted using HE, the service can perform
computations on it and return the results to the user or store
them for future use. Figure 1 illustrates the hybrid encryption
process.

Till this work, there were three main drawbacks to hybrid
encryption: a) it is either considered unpractical for many
applications; b) it involves non-standardized symmetric ciphers,
which again places some restrictions on organizations from
using such a solution; c) it does not authenticate the data that
is fed to the HE service, when its origin is another untrusted
entity such as a storage service.

Our contribution. Our contribution is as follows:

• We provide the first hybrid encryption implementation that
can be considered practical by many applications that use
standardized block-cipher, specifically AES-CTR. We do
that by using the IBM

®
HElayers library [2] compiled

with the CryptoLab
®

HEaaN [26] library and running on
a commodity GPU. Our implementation runs in 4 minutes
for 512KB of data, with amortized latency of 7 msec per
AES block.
• Today, many applications attempt to ensure both the

confidentiality and the integrity of the user data. To this
end, using an authenticated encryption with associated
data (AEAD) scheme is advantageous over using solely a
symmetric cipher. Consequently, we have enhanced our
implementation to encompass the novel integration of
hybrid encryption with a standardized AEAD, specifically
AES-GCM. Our implementation exhibits an efficient
performance, processing 512KB of data in a mere 11.5
minutes, with an amortized latency of 21 milliseconds per
AES block.
• In addition to our AES-GCM implementation, we also

implemented and evaluated the Ascon cryptosystem under
HE. Ascon is the winner of the national institute for
standards and technology (NIST) lightweight project [55]
and is about to be standardized.

• We study and discuss the security guarantees of the above
implementation using a notion that we call authenticated
transciphering (AT). Here the integrity of the input data to
the HE service is guaranteed. We discuss the advantages
and disadvantages of this notion and how it should be
used in threat models.

• We demonstrate for the first time an end-to-end application
that uses near-standard hybrid encryption. We say that it is
near-standard because an HE standard is only expected in
2024. Our demonstration involved a large task of running
neural network inference over a large network, ResNet-
50, and a large dataset – ImageNet with images of size
224x224x3.

Roadmap. The rest of the paper is organized as follows.
Section II reports the state-of-the-art hybrid encryption con-
structions. Section III lists the notation used in the paper, and
briefly explains the concepts of HE and AEAD. The paper
proceeds by describing our fast AES-CTR implementation in
Section IV. The handling of the error of CKKS is explained
in Section V, and the notion that we call AT is explored in

Table I: Standardized AES-ECB implementations under FHE,
Reported measurements are of the cited references, which may
derived using different hardware.

Ref. Scheme Security Latency Amortized latency
bits (hours) (min/AES block)

[39] BGV 128 65 5
[39] BGV 128 36 40
[61] BGV 128 0.023 1.4
[16] DGHV 72 113 12
[23] DGHV 72 18.3 33
[23] DGHV 72 3.58 0.38
[23] DGHV 80 102 3.25
[59] TFHE 128 0.07 4.2

Section VI. Using this notion, AT schemes using AES-GCM
or Ascon, and CKKS are implemented in Sections VII and
VIII, respectively. The latency measurements of running these
schemes are reported in Section IX. The above implementation
is utilized to construct and demonstrate the first end-to-end flow
for performing deep neural network inference over encrypted
data in Section X. Finally, Section XI discusses some takeaways
from the study, and we conclude the paper in Section XII.

II. RELATED WORK.

Related work for transciphers involve two principle cate-
gories: a) implementations of transciphers that use standard
symmetric encryption e.g., AES-electronic codebook (ECB)
[54]; b) implementations of transciphers that offer a new non-
standardized symmetric encryption schemes.

The first type of implementations is compared in Table I.
Some implementations offer less than 128-bit security e.g., [16],
[23], while others took over an hour to complete e.g., [39],
[61]. Among these implementations, the one with the fastest
amortized latency was [23] that used the BGV HE scheme,
which took 0.38 minutes per AES-128 block while the FHE
security level was only 72 bits. In contrast, our implementation
is several orders of magnitude faster, taking only 7 amortized
milli-seconds to decrypt an AES-256 block when decrypting a
batch of 32,768 AES blocks, using HE configuration of 128
bits security. We consider amortized latency instead of latency,
because the input to modern tasks is often large, e.g., 602
KB of data are required for just one image sample from the
commonly used ImageNet dataset. This means that we need to
consider the decryption latency of 37,632 AES blocks and not
just the latency of a single AES block.

The second type of implementations is summarized in
Figure 2 and it includes Krevyium [14], FLIP [53] and
Elizabeth [25] that target the FHEW/TFHE [33], [20] HE
schemes, LowMC [5], Rasta [28], Dasta [47], Pasta [31],
Masta [44], Fasta [22], and Chaghri [6] that target the B/FV
[36], [11] and BGV [12] schemes, and Hera [21] and Rubato
[45] that target CKKS. However, none of these schemes
are yet standardized, making them unsuitable for our case.
Additionally, comparing their performance to the standardized
scheme would be meaningless as it would not be an apples-
to-apples comparison. We include them here for the sake of
completeness. Another demonstration of why the thorough
process of standardization is needed was recently demonstrated
in [40] that present a key recovery attack on Rubato with some
recommendations for parameter modifications.

2

Figure 2: Non-standardized block cipher proposals. Each block
cipher is described below the HE scheme that it targets. The
order in which the block ciphers is listed is arbitrary.

Another type of implementation was conducted to assess
the performance of HE on lightweight stream ciphers that
participated in the NIST lightweight cryptography project [55]
before the selection of Ascon as the finalist for standardization.
For example, [8] reported the implementations of the stream
ciphers Trivium [27], Kreyvium [14], and Grain-128a [41]
under TFHE [20]. Additionally, it also implemented Grain128-
AEAD [41] and thus initiated the process of studying AT
constructions. Section VI provides further details on AT.
Unfortunately, none of the above constructions was selected for
standardization and thus the reported implementations cannot be
used by those who require standardized cryptography. Moreover,
due to the use of TFHE, no batching is possible, which results
in latency in the orders of several dozen seconds per 64-bit
block.

III. PRELIMINARIES AND NOTATION

We denote a sequence of x bits, where all bits are 0 by 0x.
Concatenation of two strings a and b is denoted by a||b. For
a byte b we access its bits by bi, where b =

∑
0≤i<8 bi · 2i.

Galois Fields (GF) of characteristic 2a are denoted by GF (2a),
e.g., GF (28) for the AES state elements. Hexadecimal values
are prefixed by 0x, e.g., 0xe = 14. The symbol ⊕ and ⊙
denote the Boolean XOR and AND operations of two bits,
bytes, or 64-bit words dependent on the context. We denote
by a := f() a deterministic assignment of f() to a, and by
a← f() probabilistic assignment. We denote by x ≫ k the
left rotation of the bits of x by k.

A. Homomorphic Encryption

We start by describing the high-level background and basic
concepts of HE schemes. HE schemes allow us to perform
operations on encrypted data [46]. Modern HE instantiations
such as BGV [12], B/FV [36], [11], and CKKS [17] rely on
the complexity of the Ring-LWE problem [52] for security
and support single instruction multiple data (SIMD) operations.
The HE system has an encryption operation HE.Enc : R1 →
R2 that encrypts input plaintext from the ring R1(+, ∗) into
ciphertexts in the ring R2(⋆, ·) and an associated decryption
operation HE.Dec : R2 → R1. An HE scheme is correct if
for every valid input x, y ∈ R1

HE.Dec(HE.Enc(x)) = x (1)
HE.Dec(HE.Enc(x) ⋆HE.Enc(y)) = x+ y (2)
HE.Dec(HE.Enc(x) ·HE.Enc(y)) = x ∗ y (3)

and is approximately correct (as in CKKS) if for some small
ϵ > 0 that is determined by the key, it follows that |x −
HE.Dec(HE.Enc(x))| ≤ ϵ. Equations 2,and 3 are modified in
the same way. In this paper, we used CKKS for the experiments,
as state-of-the-art deep neural network inference studies such
as [50], [7] are based on CKKS. In CKKS, R1 is a vector
space over the complex plane Cn and R2 is the polynomial
quotient ring over the integers Z[X]/(Xn − 1). We call every
element in the plaintext vector a slot.

When designing an HE application, it is important to
consider that certain operations incur higher computational
costs than others. For instance, additions are significantly
faster compared to multiplications of plaintexts by ciphertexts,
which, in turn, are faster compared to ciphertext-ciphertext
multiplications. The slowest operation in HE is known as
the bootstrap operation. The bootstrap operation is required
after a series of consecutive multiplications in order to refresh
the state of the ciphertext, enabling further computations.
In the CKKS scheme, on modern hardware, the bootstrap
operation is several orders of magnitude slower compared to
regular multiplications. Consequently, minimizing the need for
bootstrapping is essential for efficient HE computations.

There are two primary methods to mitigate the need for
bootstrapping: 1) reducing the multiplication depth of the
evaluated circuit. By minimizing the number of sequential
multiplications, the frequency of bootstrapping operations can
be reduced; 2) Avoiding the wait until the last moment to
perform a bootstrap operation. Instead, strategically identify
locations in the computation where the number of ciphertexts
in memory requiring bootstrap operations is minimal. This
approach involves manual inspection and careful placement of
the bootstrap operation to optimize efficiency. In this work, we
adopted the latter approach. The decision regarding bootstrap
placement is elaborated upon in the relevant sections.

To support binary inputs within the CKKS scheme, it is
necessary to effectively handle binary inputs, we adopt the
methodology proposed by BLEACH [32] and employ a cleanup
utility after a specific number of Boolean gates. See an analysis
of the error management in Section V.

B. Authenticated Encryption

Authenticated encryption with associated data (AEAD) is
a cryptosystem that offers users both confidentiality and au-
thenticity guarantees. Similar to block ciphers, AEAD schemes
consist of three methods: AEAD.KeyGen, AEAD.Enc, and
AEAD.Dec, which operate over various spaces. The key space
is denoted as K, the nonce space as N , the plaintext and
additional data space as {0, 1}∗, and the ciphertext space as C.

The key generation method k ← AEAD.KeyGen gen-
erates a new (pseudo)random symmetric key k ∈ K. The
encryption function (c, t)← AEAD.Enck(a, n,m) receives a
plaintext message m ∈ {0, 1}∗ a nonce n ∈ N , some authenti-
cation data a ∈ {0, 1}∗ and the key k. It outputs a ciphertext
c ∈ C in addition to an authentication tag t over the pair
(a,m). The decription method {m,⊥} = AEAD.Deck(a, n, c)
receives a ciphertext c ∈ C a nonce n ∈ N and some
authentication data a ∈ {0, 1}∗ and an authentication tag t.
If the verification of the authentication tag succeed, it returns
the decryption of c (m), otherwise, it returns ⊥.

3

IV. ADVANCED ENCRYPTION STANDARD (AES)

This chapter starts by briefly describing the AES block
cipher. Subsequently, using this info we describe our imple-
mentation of AES-CTR under decryption.

A. The AES block cipher

AES was officially standardized by NIST in 2001 [54] and
has since become widely accepted and the most commonly used
block cipher in modern cryptographic systems and applications.
Its importance is exemplified by the rapid growth of AES-
encrypted online data, which is strongly supported by industry
players like IBM in its Z systems [48], and Intel, who have
introduced AES-NI processor instructions [43], [42] to enhance
AES performance.

We briefly describe the AES encryption algorithm, which
we illustrate in Fig. 3, the decryption procedure is described in
[54]. AES encryption operates on a plaintext block consisting
of 128 bits and a key that can be either 128, 192, or 256 bits
in size. The encryption process generates a ciphertext block of
128 bits. The key undergoes an expansion process, resulting in
the creation of 10, 12, or 14 round keys, depending on the key
size. To begin the encryption, the plaintext block is XOR-ed
with the first 128 bits of the key, which serves as a whitening
step. The resulting value then undergoes a series of 39, 47, or
55 consecutive transformations. These transformations can be
organized into 9, 11, or 13 identical AES rounds, respectively,
followed by an additional final round. The jth AES round, j=1,
. . . , 9/11/13, is the sequence of transformations

MixColumns(ShiftRows(SubBytes(S)))⊕ RoundKey[j]

operating on the 128-bits state S, where RoundKey[j] is the
jth round key. The last round j = 10/12/14 is the sequence

ShiftRows(SubBytes(S))⊕ RoundKey[j]

Encryption modes. Various cryptographic modes of operation
can be utilized with the AES algorithm, including ECB,
cipher block chaining (CBC), counter (CTR), and GCM. In
our implementation, we chose to implement the CTR and
GCM modes. The selection of these modes is driven by the
fact that ECB is deemed insecure due to its vulnerability to
certain attacks, thus making it unsuitable for our purposes.
In addition, the CBC mode poses challenges in terms of
parallelization, limiting its efficiency in certain scenarios,
especially when considering HE, which may already introduce
some slowdowns. In contrast, AES-GCM, which extends AES-
CTR with authentication capabilities, has been designated as
the preferred AES mode of operation in security protocols such
as TLS 1.3 [57].

In AES-CTR mode, each plaintext block is XORed with
the output of an AES encryption operation using a 32-bit nonce
(n) concatenated with a 96-bit counter (c), with a specified
key (k). It is crucial for the security and confidentiality of
AES that the concatenated 128-bit value (n||c) remains unique
for a given key (k). A notable advantage of AES-CTR is
its ability to encrypt multiple plaintext blocks in parallel,
making it highly efficient for processing large volumes of
data simultaneously. Leveraging this inherent parallelizability,
our implementation takes advantage of the AES-CTR mode to
enhance the decryption performance and the overall efficiency.

Figure 3: An illustration of an AES-128/192/256 block cipher.
When considering hybrid encryption, the key is encrypted using
HE.

Remark 1. The generation of AES keys, their subsequent
cleartext expansion, and the encryption of all keys are con-
ducted offline by the client only once. The procedure itself is
straightforward, assuming consistent data packing as outlined
below. For the sake of brevity, we omit the detailed description
of this process.

B. Implementing AES-CTR over HE

Our implementation follows a bit-sliced approach, where
each HE plaintext slot is treated individually per AES block,
leveraging the HE SIMD capabilities. Because every AES
block consists of 128 bits, this implementation requires 128
ciphertexts (or in tile tensor shape notation, [128, s

s], where
s is the number of slots. See [2]) . In the case where each
ciphertext occupies approximately 12 MB, calculated as 65,536
coefficients multiplied by a multiplication depth of ∼ 12,
multiplied by 2 polynomials, and further multiplied by 8 bytes
per coefficient, the overall state size amounts to ∼ 12 MB
×128 = 1.5 GB.

The advantage of employing this method is the elimination
of rotational operations entirely. However, a trade-off arises
in the form of the requirement for users to decrypt 512
KB at a time, derived from the multiplication of 128-bit
blocks by 32K slots per ciphertext. Nonetheless, this limitation
becomes negligible when the primary use case involves handling
substantial amounts of data, such as in the scale of megabytes
(MB), gigabytes (GB), or even petabytes (PT).

During our design process, we considered various alternative
approaches. One such approach involves utilizing the CKKS

4

scheme to operate on bytes instead of individual bits through
techniques like the BLEACH cleanup method [32]. However,
CKKS currently lacks support for performing Boolean-XOR
operations directly on these bytes. Instead, it requires the
decomposition of numbers into bits before applying the XOR
operation, and the subsequent reconstruction of bits into bytes.
While this approach may potentially reduce the number of
ciphertexts and thereby improved cache and memory utilization,
the associated costs of decomposing and reconstructing bytes,
as well as managing the S-Box look-up table, would have been
considerably higher for the same number of AES blocks. As
a result, we chose not to use this approach, and preferred the
above bit-sliced implementation.

Another approach involved consolidating all the bits of the
AES blocks into a single ciphertext, placing them adjacent to
each other. In this approach, the MixColumns and ShiftRows
stages would require numerous rotations, while the AddKey
and SubBytes operations would still involve the same amount
of computation as in the bit-sliced approach. Similar to the
byte-sliced approach, this approach offers the advantage of
reducing the number of ciphertexts and imposing a lower limit
on the number of blocks that need to be decrypted at a time.
However, as mentioned earlier, this limit is generally not a
concern when operating with large volumes of data in cloud
environments. This approach was taken for example in [18].

Next, we describe our implementation of the four AES
methods: AddKey, MixColumns, ShiftRows, and SubBytes.

AddKey Operation. The AddKey operation, within the
context of CKKS, is realized through a straightforward XOR
operation. In CKKS, this XOR operation is implemented using
the equation x ⊕ y = (x − y)2, where x and y represent
individual bits, which in turn are represented by values within
the range [0 ± ϵ, 1 ± ϵ], where ϵ denotes an extremely small
value, see Section V. For efficient parallelization, the XOR
operation is performed in parallel for all the 128 ciphertexts of
the AES state, ensuring efficient and simultaneous processing.
As mentioned in Remark 1, the keys must also be packed
using the bit-sliced approach, which means that the same key
is duplicated over all slots of the 128-ciphertexts (in tile tensor
shape notation, [128, ∗

s], where s is the number of slots) .

Remark 2. It is feasible to “share" HE ciphertexts for multiple
AES decryptions, employing distinct keys. This can be achieved
by either the clients broadcasting the respective keys to the
corresponding HE ciphertext slots beforehand or by requesting
the server to select the pertinent keys per slot using application
masks. These masks consist of binary values, with a value of 1
in the relevant positions and 0 elsewhere. They are multiplied
by the associated HE ciphertexts that encrypt the corresponding
AES keys and summed together.

ShiftRows Operation. Using the bit-sliced representation,
the ShiftRows operation is achieved without any additional
computational cost. In this representation, the operation simply
involves replacing the ciphertext location. More precisely, it is
implemented by permuting the pointers to the corresponding
ciphertexts.

MixColumns Operation. One reason that we preferred
implementing AES-CTR over other alternatives, e.g., AES-CBC,

is that its decryption process involves only AES encryption
operations. This is especially critical when considering the
MixColumns Step. If we consider the AES state as a 4 × 4
matrix of elements in GF (28) multiplied modulo the polyno-
mial x4 + 1 then the output of the MixColumns operation (in
encryption) on every column input [b0, b1, b2, b3]T is

D0 = x · b0 + (x+ 1) · b1 + b2 + b3

D1 = b0 + x · b1 + (x+ 1) · b2 + b3

D2 = b0 + b1 + x · b2 + (x+ 1) · b3
D3 = (x+ 1) · b0 + b1 + b2 + x · b3

As described in [37], these equations can be simplified to the
following:

D0 = x · (b0 + b1) + b1 + b2 + b3
D1 = x · (b1 + b2) + b2 + b3 + b0
D2 = x · (b2 + b3) + b3 + b0 + b1
D3 = x · (b3 + b0) + b0 + b1 + b2

Here, + translates in GF (28) to the XOR operation and
multiplication by x of a value a ∈ GF (28) is done using
the equation

(a7, a6,a5, a4, a3, a2, a1, a0) =

(a6, a5, a4, a3 ⊕ a7, a2 ⊕ a7, a1, a0 ⊕ a7, a7)

These simplified equations primarily involve repeated XOR
operations. In contrast, during the AES decryption, which is
used by AES-CBC decryption, the InvMixColumns operation
is performed using the following equations:

D0 =(x3 + x2 + x) · b0 + (x3 + x+ 1) · b1+
(x3 + x2 + 1) · b2 + (x3 + 1) · b3

D1 =(x3 + 1) · b0 + (x3 + x2 + x) · b1+
(x3 + x+ 1) · b2 + (x3 + x2 + 1) · b3

D2 =(x3 + x2 + 1) · b0 + (x3 + 1) · b1+
(x3 + x2 + x) · b2 + (x3 + x+ 1) · b3

D3 =(x3 + x+ 1) · b0 + (x3 + x2 + 1) · b1+
(x3 + 1) · b2 + (x3 + x2 + x) · b3

These equations involve multiple serial multiplications, which
leads to an increase in the circuit’s multiplication depth
when executed under HE. Hence, evaluating MixColumns is
significantly faster compared to InvMixColumns.

SubBytes Operation. The AES S-box involves an affine
transformation on the inverse of the input in GF (28). However,
computing the inverse efficiently is not an easy task. Extensive
research has been dedicated to achieve this task in various
contexts, such as hardware implementation and secure multi
party computation (MPC) protocols. Notable studies include [9],
[10], [56], [13]. One prominent approach involves transforming
the AES Galois field data to a tower (composite) field with
a minimized number of gates. For instance, in [10], a circuit
was achieved using only 34 AND gates and a multiplication
depth of 4, while [9] presented a circuit with 32 AND gates
and a multiplication depth of 6.

However, a drawback of prior-art designs is their assumption
that XOR gates are computationally free. Consequently, they

5

propose minimization functions that primarily aim to reduce
the number of AND gates. While this assumption holds true
in hardware implementations, MPC protocols, and some HE
schemes such as BGV or BF/V, it does not hold for the
CKKS scheme. In CKKS, both XOR and AND gates require
one multiplication operation, thereby increasing the overall
multiplication depth of the circuit.

Our implementation utilizes the lookup table approach,
commonly employed in hardware systems. Usually these
hardware implementations are vulnerable to memory access
attacks. However, in our case the nature of HE imposes
oblivious computations, thereby eliminating this drawback. For
AES, we employ a lookup table consisting of 256 entries, where
each entry represents a unique 8-bit value expressed in plaintext
bits.

To compute the inverse function, we begin by calculating the
indicator mask for each table cell by comparing the cell index
with the input value. We leverage the following observations:
1) when an output bit is 0, we can disregard the indicator
ciphertext entirely, and 2) when a bit is 1, we can utilize the
indicator ciphertext, particularly during the summation process
involved in collecting all the indicators of all cells to get the final
output. Computing the indicators requires 272 multiplications
with a multiplication depth of 3. However, the second part of
selecting the value from the table is computationally “free" in
the context of HE. Appendix A describes another approach for
computing lookup tables with finite range under encryption.
This approach achieves less multiplication but it is less generic
so that it introduces additional code overhead. Thus, we decided
to avoid it in our implementation and to report it only for the
completeness of the paper.

Overall, the multiplication depth associated with each
round in our implementation is 9 as follows: AddKey: 1,
MixColumns: 3, ShiftRows: 0, SubBytes: 3, and the cleanup
function h1 (Section V): 2. For AES128/192/256, which require
9, 11, and 13 rounds respectively, as well as an additional final
round, which does not include the MixColumns operation, the
total multiplication depth is calculated as 87, 105, and 123
respectively.

Bootstrap Policy. As part of our implementation, at every
round, we incorporated a bootstrap operation after SubBytes
following by a cleanup utility. The bootstrap operation is
executed independently on each of the 128 ciphertexts, and
hence can be parallelized, dependent on the capabilities of the
hardware being utilized. The above bootstrap policy fits nicely
when the maximal multiplication depth is 12 and a bootstrap
is needed when a ciphertext reaches chain index 3.

V. BINARY CIRCUITS OVER CKKS

To achieve high throughput we decided to leverage the
approximated HE scheme CKKS [17]. Moreover, CKKS is
the leading HE scheme when considering state-of-the-art
inference applications, for example, [50], [7]. For that, we
leveraged a recent technique called BLEACH [32], which has
demonstrated the practicality of executing binary circuits over
CKKS. Specifically, it showed (Lemma 1) that performing XOR
(⊕), AND (∧), or OR (∨) operations on two encrypted bits,
followed by the cleanup function h1(x) = −2x3 + 3x2 [19],
does not introduce any significant increase in the ciphertext

error. This allows us to efficiently execute these operations while
maintaining the desired level of accuracy in the ciphertext.

Lemma 1 ([32] Lemma 3). Let x = bx+ex and y = by+ey be
input to a binary operation, bx, by ∈ {0, 1} and |ex|, |ey| < e ≤
0.001, and the error added when multiplying and rescaling two
ciphertexts is eckks such that 2.1eckks < 0.5e. Then z = bz+ez ,
where bz ∈ {0, 1} and |ez| < e for z = h1(x ∧ y) or h1(x ∨
y) or h1(x⊕ y)

To avoid bleaching after every boolean gate, we extend
this lemma and show that it is enough to perform a cleanup
operation after every several steps that depend on the scheme
parameters e.g., the fractional part accuracy. We start by
reminding:

Lemma 2 ([32][Lemma 2). For x, y ∈ [0 ± ϵ, 1 ± ϵ], i.e.,
x = bx + ex and y = by + ey, where bx, by ∈ {0, 1} and
|ex|, |ey| < e < 0.25. Then

|(x ∧ y)− (bx ∧ by)| < 5e,

|(x ∨ y)− (bx ∨ by)| < 5e,

|(x⊕ y)− (bx ⊕ by)| < 2.25e.

Using this gate error bounds (5,5,2.25) we state the
following lemma.

Lemma 3. Let 0 < e < 1 be the bound on the initial error
in the scheme, let B be the gate error bound, and let f be a
Boolean circuit with multiplication depth d and input values
xi = bxi

+ exi
, 1 ≤ i ≤ n, bxi

∈ {0, 1} and |exi
| < e. If the

error added when multiplying and rescaling two ciphertexts is
eckks such that eckks < 0.25e. Then z = h1(f(x1, . . . , xn)) =
bz + ez , where bz ∈ {0, 1} and

|ez| < 3 · (B + 0.25)2d · e2 + 2 · (B + 0.25)3d · e3

Proof: Consider the expression w = bw + ew =
f(x1, . . . , xn), where bw ∈ 0, 1 represents the result obtained
by applying the function f to binary inputs. Assuming that the
error incurred when applying a gate is B + eckks < (B + 1)e,
we can establish a bound on the final error ew as ew <
(B + 0.25)d · e. When applying the cleanup utility h1, the
resulting value z is:

z = h1(w) = h1(bw + ew)

= −2(bw + ew)
3 + 3(bw + ew)

2

= −2b3w − 6b2wew + 3b2w − 6bwe
2
w + 6bwew − 2e3w + 3e2w

=

{
3e2w − 2e3w bw = 0

1− 3e2w − 2e3w bw = 1

and

|ez| = |z − bw| < |3(B + 0.25)2de2 ± 2(B + 0.25)3de3|
< 3(B + 0.25)2d · e2 + 2(B + 0.25)3d · e3

We can now use the lemma to find the largest d for which
ez < e. This will allow stability of the evaluation process. While
this can be solved analytically, the results are not displayed
nicely, and instead we chose to use a SageMath script to plot

6

Figure 4: Maximum d (y-axis) as a function of log2(e) (x-axis).
Three functions (f) are considered: f with AND gates only
(B = 5), f with XOR gates only (B = 2.25), and f with XOR
gates except for the last three levels (B = 5/2.5).

Figure 4. The graph illustrates the relationship between the
logarithm of the error bound (log2(e)) on the x-axis and the
corresponding maximum value of d allowed before invoking
the h1() function. Three different functions, are considered: a
function that solely performs AND gates, a function that only
performs XOR gates, and a function that primarily performs
XOR gates, except for the last three multiplication levels, where
it incorporates AND gates. The last function is the one we have
in our AES-CTR implementation. As can be seen, calling h1

only at the end of every AES round (which has a multiplication
depth of 7) is possible when the initial error satisfies e < 2−29.
In our experiments, we chose a scale of 242 and since the initial
HE noise is only a few bits it guarantees that our initial error
meets the requirement.

Remark 3. The analysis provided in this section relies on the
worst case scenario. In practice, it is possible to derive bounds
that depend on the error expectation and are achieved with
some probability. We leave this research to future work.

VI. AUTHENTICATED TRANSCIPHERING (AT)

This section informally define the notion of AT. This
definition will be presented in a step-by-step manner, where
each step describes an expanded threat model encompassing
additional capabilities.

In the basic HE scenario, there exists a user and an untrusted
semi-honest environment, such as the cloud. The user generates
the HE secret, public, and evaluation keys. The secret key is
securely stored in a private location, while the user publishes
the public and evaluation keys to the cloud. To utilize the cloud
HE service, the user encrypts data using either the HE secret
key or the public key and uploads the encrypted data to the
cloud. Subsequently, the cloud performs operations on the data,
such as running a neural network inference, and returns the
encrypted results to the user. The user can then decrypt and
view the results using their private key.

Modern HE schemes are designed to be either IND-CPA
secure (e.g., BGV [12] or B/FV [36], [11]) or IND-CPAD

secure [51] like CKKS. In either case, these schemes offer
semantic security to the uploaded ciphertexts, meaning that
the cloud gains no knowledge about the user’s data solely by
observing the ciphertexts.

In the context of hybrid encryption, we expand upon the
aforementioned scenario by introducing a partition in the cloud
infrastructure, dividing it into two distinct entities with varying
capabilities. Specifically, we consider a semi-honest HE service
that adheres to the established protocol, while characterizing the
remaining components of the cloud as malicious. In particular,
we identify the database that stores AES ciphertexts of the
client as a malicious entity.

In this setup, a user initiates a request to the HE service,
specifying a list of keys to be utilized for accessing data
from the database. The HE service, in turn, communicates
with the database to acquire the ciphertexts associated with
the provided keys. To ensure the integrity of the ciphertexts,
certain assumptions are made. Specifically, it is assumed that
the user has encrypted the data using an AEAD scheme, and
the keys form a part of the additional authentication data (AAD)
associated with the ciphertext. This enables the HE service
to authenticate the data on behalf of the user. We refer to
the combination of AEAD and HE construction as AT. The
concept of AT was also explored in [8] with the Grain128-
AEAD implementation. Below we provide further discussion
on AT that leads to our near-standardized implementations in
Section VII and Section VIII.

The fundamental concept underlying AT is to ensure that
the authentication tag propagates seamlessly from the AEAD
ciphertexts to the HE decryption process, where decryption
failure occurs if the original AEAD tag check would have
failed. This objective can be accomplished through two distinct
approaches. The first approach involves transmitting both the
consumed tags by the HE service and the tags generated
during the AEAD decryption under HE process to the user.
Alternatively, the second approach utilizes a single bit sent
(encrypted) from the server to the client to indicate the
validity of the returned results. In the first option, the client is
responsible for comparing the two lists of tags and releasing
the HE decrypted results only if the lists are identical. This
places some computational burden on the client. Conversely, in
the second option, only one bit is sent, which saves bandwidth
and computation to the client but increases the overhead on
the server side.

In the context of AT, there are two crucial aspects that
deserve attention. First, it is imperative to ensure the confiden-
tiality of the AES key encrypted under HE from any potential
adversary. Even though the key is encrypted under HE, if an
adversary gains access to this key, they can encrypt their own
ciphertexts, thereby compromising the authenticity guarantees
of the scheme. This concern does not apply to the HE service
itself since we assume it to be semi-honest. Moreover, regardless
of the situation, the HE service can always provide a bit of
choice to the client, thereby indicating whether the returned
ciphertext is valid or not. Note also that revealing the encrypted
key to an adversary does not harm privacy of the AT scheme
because the adversary still does not hold the HE secret key
and thus cannot decrypt HE ciphertexts.

7

Alternatives to AT. There exist alternatives to the aforemen-
tioned construction, such as employing asymmetric encryption
instead of symmetric encryption in conjunction with the HE
scheme. However, this alternative solution is less practical
compared to using AEAD, primarily due to the prevalence
of AEAD usage among users in current systems. Adopting
asymmetric encryption would require significant modifications
in software or, in some cases, even hardware, to encrypt
or reencrypt all existing data under the asymmetric scheme.
Additionally, the expansion rate of data would no longer remain
at a 1:1 ratio, as with AEAD, which deviates from the goal of
compression that was initially pursued.

Another option, which faces similar challenges involves
requesting the user to sign each symmetric or AEAD ciphertext.
While this approach enables the HE service to efficiently
validate the authenticity of the data (in plaintext), it suffers
from the same practical issues as the previous alternative.
Furthermore, the existing standardized signature schemes are
either not post-quantum secure or require significant space,
rendering them unsuitable for integration into IoT devices.
Considering these factors, it becomes evident that the use of
AEAD within the AT scheme presents a more practical and
efficient solution.

Verifiable authenticated transciphering (VAT). Once we
established what an AT is, we need also to say what guarantees
it does not provide. HE schemes are susceptible to malleability
issues, which allows malicious entities to manipulate the
ciphertext data. For example, operations like subtracting a
ciphertext from itself or multiplying it by a plaintext value are
possible without informing the original data owner. While there
are methods available to protect the integrity of HE ciphertexts,
such as using verifiable computation (VC) or trusted execution
environments (TEEs) like Intel

®
SGX [49] or ARM

®
Trustzone

[24], these approaches are still considered impractical, and the
latter requires involving third-party entities in the user trusted
computing base (TCB), e.g, Intel. As a result, most prior works
have assumed a semi-honest cloud that faithfully executes
computations on the encrypted ciphertexts without deviation.

In the context of AT, we also make the semi-honest
assumption on the HE service. As a result, the authenticity
guarantees provided by AT pertain solely to the inputs obtained
from external storage or other services, rather than ensuring the
integrity of the computations performed by the HE service itself.
A compelling area for further research lies in the combination of
VC techniques with AT, which can yield intriguing possibilities.
We propose the term verifiable authenticated transciphering
(VAT) as a potential name for this novel approach.

Remark 4. AT is not limited to one client or one client key
per HE computation. The client can ask the HE service to
collect data that was encrypted using multiple AES keys that
may belong to different users. As long as the server holds the
required keys encrypted under HE, it can combine them in the
evaluation process.

Remark 5. As a desirable practice, it is preferable for the HE
service to promptly delete the content of any unauthenticated
decrypted data as soon as it becomes aware of its authenticity
status, even when under HE. By doing so, the server mini-
mizes the potential risk posed by attackers who may capture
ciphertexts containing potentially maliciously crafted data.

VII. AES-GCM

We start with some background on AES-GCM and then
continue by describing our implementation.

A. Background

The Galois / counter mode (GCM) [34] is a mode of
operation specifically developed for symmetric block ciphers,
such as AES. Unlike other modes like CTR, ECB, and CBC,
which primarily aim for confidentiality, GCM is classified as
an AEAD scheme. As such, it provides guarantees for both
confidentiality and integrity. This is accomplished through the
combination of the AES-CTR mode with a GHASH function,
which ensures the authenticity of the data being processed.

Presently, AES-GCM has gained widespread adoption due
to its high throughput rates on modern processors. It is among
the few allowed ciphers when using TLS 1.3 [57] and is
highly recommended by prominent companies libraries like
AWS encryption SDK [1]. Additionally, in terms of ciphertext
expansion rate, AES-GCM incurs a minimal overhead of only
an additional 128-bit tag compared to AES-CTR ciphertexts.
Figure 5 illustrates the AES-GCM scheme, where it highlights
the parts the be eventually encrypted under HE.

The GHASH function is defined over the Galois field
FGCM = GF (2128) with a polynomial reduction x128 + x7 +
x2 + x+ 1. To generate the authentication tag the ciphertext
blocks are XORed and multiplied by an encrypted value
H = AESk(0

128) in FGCM .

An illustration of the AES-GCM AEAD scheme within the
context of HE is presented in Figure 5. The figure provides a
visual representation of the components that are encrypted with
AEAD, encrypted with HE, or remain in plaintext. It is impor-
tant to note that at the end of the process, both the ciphertexts
and the authentication tag are preserved in an encrypted form
under HE. Moreover, because H = AESk(0

128) is encrypted,
the entire tag computation must be done under HE.

B. An implementation of AES-GCM

Our implementation of the AES-CTR mode is discussed
in detail in Section IV-B. This implementation serves as the
foundation for our AES-GCM implementation, as well as an
additional implementation of the GHASH function under HE.

The code presented in Figure 6 provides an overview
of our GHASH implementation. It is implemented using
SageMath with Numpy and incorporates a basic GF-mul
algorithm. This code is later adapted to operate on real HE
ciphertexts. The multiplication function takes two elements
from GF (2128) as input, where ct represents a ciphertext and
pt represents a plaintext. The function computes the product
ct · pt within GF (2128), while also accommodating the CKKS
scheme by replacing XOR operations with (x− y)2 operations.
Furthermore, it assumes that each bit in the first axis of the
array corresponds to a distinct ciphertext, enabling the HE
rotate operation (np.roll) to be executed without incurring
additional computational cost.

HTBL. Consider the AAD data A = a1, . . . , am and ciphertext
data C = c1, . . . , cn as elements from GF (2128) on which we

8

Figure 5: An illustration of the AES-GCM AEAD scheme
within the context of HE. Green blocks represent plaintext
blocks, blue blocks represent AES-GCM encryption methods,
yellow blocks represent AES-GCM encrypted blocks, and red
blocks represent the AES-GCM decrypted plaintext that remains
encrypted under HE.

def gf_mul(ct, pt):
z = np.zeros(pt.shape, dtype=np.int32)
v = ct.copy()
for i in range(128):

z = np.power((z − (pt[i]*v)),2)
c = v[127,:]
v = np.roll(v, 1, axis=0)
v[0] = c
v[1] = (c − v[1])**2
v[2] = (c − v[2])**2
v[7] = (c − v[7])**2

return z

Figure 6: An illustration of our GHASH implementation using
SageMath and Numpy.

apply the function GHASH(A,C,H), defined as:

GHASH(A,C,H) =

m∑
i=1

ai ·Hi +

n∑
i=1

ci ·Hm+i

Figure 5 presents an alternative approach to compute the
GHASH tag, utilizing Horner’s rule, which states that

n∑
i=1

xi ·Hi = (x1 ·H)⊕ x2) ·H . . .⊕ xn) ·H

This technique is commonly employed to avoid the expensive
computation of powers of H . However, due to the SIMD
nature of HE, we adopt a different commonly used strategy by
precomputing a table called HTBL that stores the s powers of

H , where s represents the number of slots in the HE ciphertext.
Note that even though a new nonce or IV are required per
ciphertext, the HTBL is the same for all ciphertexts under the
same AES-GCM key. This means that a user can precompute
the HTBL once, maybe at an offline stage, and use in many
different occasions in the online phase.

There are two options for computing HTBL, either the
client precomputes it and sends it encrypted under HE to the
server, or the client encrypts only H , and the server computes
all the relevant powers of H . This computation requires log2 s
GF multiplications. Precomputing the data on the client side
offers the advantage of faster computations in plaintext, and in
any case, the bandwidth remains the same as at least one HE
ciphertext needs to be transmitted from the client to the server.
However, this approach places an additional burden on the
client, which sometimes needs to be avoided. Another option
is to combine the two approaches sending only partial HTBL
and complete it if needed on the server.

The size of the HTBL is similar to the size of an AES
ciphertext under HE encryption, i.e., ∼ 12 MB times 128 =
1.536 GB. If the number of AES blocks to be processed under
the same key is more than 32,768, i.e., it fits in more than one
ciphertext, one can either use the Horner rule, or precompute
the power of H also for the extra slots.

VIII. ASCON

A. Background

Ascon [30] stands as an alternative to AES-GCM in the
presence of lightweight and low-end devices. Recently, it
was selected by NIST for standardization [55]. Additionally,
Ascon emerged as the top choice for AE in the CAESAR
competition [29]. What makes Ascon particularly appealing
is its ease of implementation in both software and hardware.
With a compact state size of 320 bits (comprised of five 64-bit
words), Ascon can benefit from parallelization through SIMD
operations. Consequently, it exhibits compatibility not only
with large-end CPUs but also with HE. Another advantageous
aspect of Ascon is its avoidance of look-up tables, an original
motivation stemming from the need to ensure constant-time
implementations that avoid timing-based information leaks.
This property also aligns with our implementation, which uses
CKKS that does not provide native support for look-up tables.

The encryption process of Ascon involves iteratively apply-
ing a round transformation based on the substitute permutation
network (SPN) to the Ascon state. This state is composed of
five 64-bit words, denoted as x0, . . . , x5, resulting in a total of
320 bits. The Ascon encryption process involves four distinct
phases: an initial phase comprising 12 permutation rounds to
establish the ciphertext state, a final phase consisting of an
additional 12 rounds to complete the encryption process.

In between, the encryption of plaintext blocks, Ascon128
and Ascon128a utilize 6 rounds to process blocks of size 64-bit
and 128-bit, respectively, for the AAD and ciphertext data. Each
round encompasses three essential steps: the addition of round
constants, a non-linear substitution layer (depicted in Figure
7), and a linear diffusion layer described by equations 4 to 8.
This systematic approach ensures the secure transformation of
data during encryption.

9

x0

x1

x2

x3

x4

1
1
1
1
1

1

x0

x1

x2

x3

x4

Figure 7: Schematic representation of the Ascon s-box, image
was taken from [30]. x0, . . . , x4 are 64-bit word elements.

x0 := x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28) (4)
x1 := x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39) (5)
x2 := x2 ⊕ (x2 ≫ 01)⊕ (x2 ≫ 06) (6)
x3 := x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17) (7)
x4 := x4 ⊕ (x4 ≫ 07)⊕ (x4 ≫ 41) (8)

B. Implementing Ascon

For the purpose of Ascon decryption within the context
of HE, we made a decision to employ a 64-bit word sliced
implementation instead of a bit-sliced implementation as we
did for AES-CTR. This choice was motivated by the fact that
the 320-bit state of Ascon would require the utilization of 320
ciphertexts, resulting in a total size of approximately 12 MB ×
320 ≈ 3.84 GB, which was less practical. Instead, a strategy
was adopted wherein only five ciphertexts were employed,
with a total size of approximately 60 MB. This configuration
allowed for the parallel decryption of a batch consisting of
32, 768/64 = 512 Ascon blocks in parallel.

However, unlike AES-CTR/GCM, where parallel operations
can be performed on different blocks of the same ciphertext,
the adapting state of Ascon necessitated the decryption of
blocks from different ciphertexts. These blocks either employed
different keys or different nonces. Similar to the AES-CTR
implementation, the placement of Ascon keys within the
relevant slots in the HE ciphertexts can either be done directly
by the clients or using masks on the server side. In summary,
the advantage of Ascon lies in its relatively small number
of ciphertexts, while the limitation lies in the requirement
to operate on orthogonal Ascon blocks during HE-based
decryption.

Overall, the multiplication depth associated with each Ascon
round in our implementation is 9 as follows: The addition of
round constants: 1 XOR; the non-linear substitution layer: 4
(3 XORs and 1 AND); the linear diffusion layer: 2 XORs; and
the cleanup function h1(): 2. The total multiplication depth
is therefore (12 + 12 + 6 ∗ m) ∗ 9 = 216 + 54m, where m
is the number of AAD and ciphertext blocks. The number
of bootstraps is (24 + 6m) ∗ 5 = 120 + 30m due to the 5
ciphertexts that hold the Ascon state.

Table II: A comparison of decryption methods under HE

Cipher Process Size Latency Amortized latency Peak Memory
unit (KB) (min) mSec/block (GB)

CTR CPU 512 31 56.7 127.62
CTR GPU 512 4 7.3 60.10
GCM GPU 512 11.4 21 65.10

ASCON CPU 4 21 2,460 50.10
ASCON GPU 4 0.55 64.5 45.10
ASCON GPU 512 14 12.8 49.10

IX. EXPERIMENTS

A. Experimental setup

For the experiments, we considered two platforms

1) CPU: An Intel® Xeon® CPU E5-2699 v4 @ 2.20GHz
machine with 44 cores (88 threads) and 750GB memory.

2) GPU: A100 SXM4 80 GB GPU, on a server with an
AMD® EPYC 7763 64-Core Processor 2.45GHz machine
with 64 cores (128 threads). Used single CPU thread by
setting OMP_NUM_THREADS=1.

The experiments were conducted using HElayers [2],
a software development kit (SDK) for privacy-preserving
computations that offers various programming capabilities for
developers working with HE. Each experiment was repeated 10
times, and the reported result represents the minimum measured
running time. In our experiments, we configured HElayers to
utilize a bootstrappable HEaaN context (using the CryptoLab
HEaaN library) with a security level of 128 bits. The ciphertexts
employed had a capacity of 32,768 slots, allowing for parallel
processing of multiple data elements. We set the multiplication
depth to 12, furthermore, the fractional part precision (scale)
was set to 42 bits, while the integer part precision (number of
additional bits in the first prime) was set to 18 bits. In addition,
the chain index after bootstrap is 12 and the minimal chain
index for bootstrap is 3.

B. Experiments results

Table II presents1 the benchmark results for the decryption
process of various block ciphers in different modes of operation.
The chosen data sizes, specifically 512KB for AES-CTR/GCM
and 4KB for Ascon, correspond to the number of blocks
required to fill the ciphertexts representing the block cipher
states: 128 ciphertexts for AES-CTR/GCM and 5 ciphertexts for
Ascon. These sizes were selected to maximize the utilization of
our implementation, as lower values would leave unused slots
in the ciphertexts and result in under-utilization. It is important
to note that the decryption time will double if the data size
is doubled, as our implementation currently utilizes only one
thread on the GPU device. For a fair comparison between
our AES-GCM and Ascon implementations we also include
the runtime of decrypting 512 KB using Ascon, where we
increased the number of blocks in the original 512 ciphertext.
Figure 8 illustrates how the amortized latency is reduced when
increasing the ciphertexts size. The reason is that cost of the
constant overhead of the initialization and finalization steps,
which include 12 permutation rounds each becomes negligible
with the ciphertext size. Particularly, one permutation round

1The AES-CTR/GCM results were also presented in a poster [3].

10

Figure 8: Latency and amortized latency of Ascon for a batch
of 512 ciphertexts and different number of blocks (either AAD
or ciphertext data).

takes around 1.125 seconds. The latency on the other hand
increases linearly.

We make the assumption that users who intend to harness
the capabilities of HE will utilize specialized devices such
as GPUs, and potentially in the future, FPGAs or ASICs.
Accordingly, we present the reported results for all our
constructions on a GPU device. To provide a point of reference
regarding the performance disparity between GPUs and CPUs,
we also include the runtime of the CPU implementation for
AES-CTR. As depicted in the table, even with 88 threads, the
CPU implementation is nearly 7.75× slower compared to the
GPU implementation using a single thread.

The reported latency values are given in minutes, while the
amortized latency values are reported in milliseconds, which
represents a significant improvement compared to the previous
methods outlined in Table I. It is evident that the fastest
implementation among the tested implementations is AES-CTR,
as it solely provides confidentiality guarantees. Conversely,
AES-GCM and Ascon offer both confidentiality and authenticity
capabilities, resulting in slower performance. Among the two,
our AES-GCM implementation demonstrated faster speeds. It
should be noted that AES-GCM operates on a block size of 16
bytes, whereas Ascon operates on a block size of 8 bytes. When
comparing amortized latency per 16 bytes, the reported value
for Ascon (25.6 mSec) is higher than that for AES-GCM (21
mSec). Another observation is that in our experiment we used
a GPU with a single thread, in practice the computation of the
AES-CTR and the GHASH functions can be parallelized, which
will result in latency of 7.4 minutes and amortized latency of
13.5 milli-seconds.

X. AN END2END IMPLEMENTATION

Our end-to-end process is illustrated in Fig. 9, which show-
cases the steps involved in our approach. In this demonstration,
we utilize our implementations of AES-GCM and CKKS. The

objective is to perform an inference operation on a deep neural
network, specifically ResNet-50, using a large image with
dimensions 224 × 224 × 3, which is currently the state-of-
the-art when considering inference over HE. We have also
experimented with AES-CTR, but the flow for AES-GCM is
more complex due to the additional requirement of integrity
checks. Therefore, we focus on describing the AES-GCM based
flow in detail. It is worth noting that using Ascon instead of
AES-GCM would result in a similar flow.

The demonstration begins with a client who employs AES-
GCM to encrypt the sample data, which in this case is an image
consisting of 224× 224× 3 = 150, 528 pixels represented as
32-bit floating-point elements. The total size of the data is
approximately 588 KB, and the encryption size closely matches
that of the plaintext (taking into account the overhead of adding
a 128-bit tag). Finally, the user saves the data in some database
location, in our case, it was our local file system.

Subsequently, a server process was executed on the same
machine, which received an AES ciphertext to be decrypted.
The total size of the ciphertext, 588 KB, can be accommodated
within 2 units of 512 KB (in tile tensor shape notation,
[128, 150,528∗4

32,768], see [2] for more info on tile tensors). In other
words, 2 blocks of 128 HE ciphertexts are required to store
the AES-encrypted data. In our implementation, we load all
the 256 ciphertexts (approximately 3.072 GB) into memory.
Alternatively, a lazy evaluation mode could be employed, where
blocks of 1.5 GB are loaded at a time.

Upon completing the decryption process, we obtained the
original data encrypted under HE in a bit-sliced representation,
along with the authentication tag. We first compared the original
AES-GCM plaintext tag with the resulting tag using an IsEq()
HE utility, which generates an authentication indicator. This
indicator is then transmitted to the client, who can utilize it
during the decryption process to determine whether to release
the inference results or not. At this point we also decrypted the
results and measured the generated noise after the AES-GCM
decryption process. The average noise (avg(|pt−HE.Dec(ct)|)
observed was 1.16 × 10−10, with an even smaller standard
deviation of 7.30562 × 10−17. These measurements confirm
the expected behavior discussed in Section V.

Prior to executing the inference step, two additional steps
were incorporated into the process. First, we needed to convert
the bit-sliced data into numerical representation, which is
discussed in greater detail in Section X-A. Once the data was
prepared, it was necessary to ensure that it was packed using the
same packing methodology selected for the inference operation,
where the specific packing methodology employed depends on
the particular model to be executed.

To accomplish this, the server initially loaded the final
application (model inference) and queried it to determine the
expected input format of the data. Utilizing this information,
the server performed a permutation of the elements of the input
ciphertext to their respective destinations. Further insights about
permuting the data are provided in Section X-B.

Before running the inference step we needed to equip the
process with two extra steps, the first convert the bit sliced
data to number and is described in more details in Section
X-A. Once we have the data ready we still need to make sure

11

Figure 9: An illustration of an end-to-end flow using AES-GCM and CKKS.

that it is packed using the same packing methodology that was
chosen to run the inference operation. This, of course depends
on the model to be run. To this end, the server first needs to
load the final application, and query it to learn the expected
output format of the data. Using this data the server permutes
the elements of the ciphertext to their destination. The overhead
of the permutation depends on the number of rotations that
need to be done on the input data and vary between different
applications. Luckily it may only consume one multiplication
depth due to the use of masking, which means that often no
extra bootstraps are required on the data. We provide some
insights on the topic in Section X-B.

To execute the inference operation, we leveraged the
existing AI over HE capability provided by HElayers [2], as
documented in [7]. Specifically, we utilized their pre-trained
ResNet-50 model that is compatible with HE computations
and trained on the ImageNet dataset. Notably, the latency
and accuracy achieved in our implementation closely aligned
with the results reported in [7]. This outcome was anticipated
since our approach introduced no additional overhead to the
inference process, and the negligible error introduced during the
decryption process had minimal impact on the overall accuracy.

A. From bits to numbers

Upon completing the decryption process, we store the seri-
alized data in a bit-sliced representation. However, subsequent
applications require the data to be casted back to its original data
type, which can include signed or unsigned integers, floating-
point numbers, or fixed-point elements with sizes of 8, 16, 32, or
64 bits. In our implementation, we assume that knowledge of the
original data type is common, similar to many other applications
that utilize AES encryption. Nevertheless, if necessary, it is
possible to include this information as an AAD of the AES
ciphertexts.

It is important to note that not all conversions are feasible
due to the inherent error involved in the restoration process.

For instance, if the HE ciphertext’s integer part consists of 16
bits, it does not make sense to restore a 32-bit integer within
it, unless we have some guarantees on the input upper bound.
Similarly, if both the integer part and the fractional part are 32
bits each, attempting to restore 32-bit integers would not be
meaningful, as we would need to multiply the most significant
bit (MSB) by 232. This operation would result in the error
also growing by 232, potentially corrupting the lower bits of
the integer. Therefore, it is crucial to consider the scheme
parameters before attempting such conversions. Fortunately,
many applications require the integer part to have a relatively
small number of bits, allowing most of the data to be allocated
to the fractional part. We stress that the restoration process
may introduce some level of error, and careful consideration
of the scheme’s limitations is necessary to ensure accurate and
meaningful conversions.

Algorithm 1 presents a methodology for reconstructing
numbers in scenarios where the desired type is a fixed-point or
integer representation. It takes as input an array of bits in that
encodes the number and precisely positions each bit according
to its designated location. In order to mitigate potential errors
arising from zero-valued bits, the algorithm employs a quadratic
operation that effectively restores the original error magnitude.
The choice of whether to perform one or two square operations
dependence on the HE configuration and specifically, the error
bound e.

B. Packing the data

The overhead associated with organizing the AES-decrypted
data for consumption by subsequent applications, such as
model inference, primarily involves rotating and masking
operations. The extent of this overhead depends on the number
of rotations needed for the input data and can vary across
different applications. Fortunately, in many scenarios, this
overhead is limited to a single multiplication depth, thanks to
the utilization of masking techniques. Consequently, additional

12

Algorithm 1 Constructing numbers from bits

Input: in – an array of n encrypted bits, e the bound on
the error
Output: out an integer with n bits and error below e.

1: procedure CONSTRUCTINT
2: out = in0 + 2in1

3: for i = 2 to n− 1 do
4: if i < − log2(e)

2 then
5: b =

(
2⌊i/2⌋ · ini

)2
6: if i (mod 2) = 1 then
7: b = 2b
8: end if
9: else

10: b =
(
2⌊i/4⌋ · ini

)4
11: b = 2i−(4⌊i/4⌋) · b
12: out = out+ b ▷ Here, out = out+ 2iini

13: end if
14: end for
15: return out
16: end procedure

bootstraps are typically unnecessary for the data.

There are methods to mitigate this extra permutation cost.
For instance, if the client possesses knowledge of the expected
packing requirements, they can encrypt the data with AES in
the desired format. However, in most cases, it is not anticipated
that this approach will be feasible since data is often stored
well in advance of its usage by the target model. Consequently,
the specific model type and, hence, the required input packing
style are typically unknown in advanced.

There are additional approaches that can expedite the
process. First, compilers such as HElayers [2] could optimize
the end-to-end process by considering the permutation costs
when selecting the packing style to be used. By incorporating
knowledge of the permutation overhead, compilers can make
more informed decisions that minimize the overall computa-
tional requirements. Second, data preparation for packing can be
performed earlier, specifically when the data is retrieved from
the database. At this stage, the server can apply permutations
to the AES ciphertext blocks, aligning them in a manner that
reduces the subsequent number of required permutations. This
approach is applicable to our AES-GCM implementation, as the
encrypted HTBL powers and the IV+CTR inputs for the AES
encryption calls can be permuted in the same way. However,
this cannot be achieved with Ascon due to its serialization
characteristic.

XI. DISCUSSION

Our demonstration establishes the feasibility and practicality
of an end-to-end AT approach that enables the inference process.
However, it is essential to acknowledge the additional compo-
nents required by products that will utilize our implementation.
These components include a key management system (KMS)
for securely storing the AES, HE, and AES encrypted under
HE keys. Additionally, a public key infrastructure (PKI) is
necessary to manage the transfer of keys and validate their
authenticity.

These additional components play a crucial role in ensuring
the security and integrity of the system. Without proper
safeguards, a malicious adversary could potentially provide
the server with a manipulated ciphertext and a malicious
encryption of the AES key under HE. While the ciphertexts
may pass authentication, the resulting inference results would
be compromised and incorrect.

Using scheme switching. An intriguing research avenue
involves investigating the use of e.g., the B/FV scheme [36],
[11] instead of CKKS [17] for AES decryption, followed by
scheme switching from B/FV to CKKS for performing the
inference operation. Exploring the optimal point at which
to perform the scheme switching, such as before the bits-to-
numbers conversion or after, or even after the permutation step,
presents an interesting direction for further investigation. In the
scope of this paper, we did not delve into this option, as the
implementation scheme switching capabilities is anticipated to
be realized in HE libraries after the submission of this paper.

Using AES-CTR only. The primary focus of our paper is on
AT, and we propose the utilization of AES-GCM or ASCON
for this purpose. However, there are certain scenarios where the
use of AES-CTR alone is sufficient. One such example is when
the sample data is transmitted directly to the server through
a secure channel, such as TLS 1.3 [57]. In such cases, the
client and server can rely on TLS 1.3 for data authentication,
and no further guarantees are necessary. In this context, AES-
CTR serves mainly to enable efficient and compressed data
transmission, as opposed to encrypting the data directly under
HE. Note that in this case the data is encrypted twice once with
AES-CTR and another time with the AES-GCM or Poly-Chacha
AEAD of TLS 1.3.

Other AEADs. Our choice to implement AES-GCM and
Ascon was influenced by the fact that these schemes have either
already been standardized or are on the verge of being stan-
dardized by NIST. However, there is an intriguing alternative
known as Poly1305-ChaCha, which is an AEAD scheme that
is also recommended for use with TLS 1.3. Upon examining its
design, we observed that Poly1305-ChaCha involves numerous
transitions between integers and bits. Specifically, it performs
integer addition and immediately follows it with an XOR
operation on the results. As mentioned earlier, the process of
composing integers from bits and subsequently decomposing
them for the XOR operation can be computationally expensive
under the CKKS scheme. It remains an interesting alternative
worthy of further investigation and evaluation in scenarios
where the cost of transitioning between integers and bits is less
of a concern.

XII. CONCLUSION

We explored the properties of a recent security notion that
we term AT, which enhances the use case of hybrid encryption
by incorporating an integrity layer to the inputs of the symmetric
cipher. We have discussed the advantages and disadvantages of
this approach, highlighting its potential benefits and limitations.
Additionally, we have proposed a stronger notion called VAT,
which represents an intriguing avenue for future research and
development.

13

To demonstrate the practical feasibility of near-standardized
hybrid encryption and AT, we have presented a novel implemen-
tation of an end-to-end neural network inference application that
employs transciphering using standardized AEAD algorithms,
specifically AES-GCM and Ascon. Our experimental results
showcase that, when leveraging GPUs, the application achieves
satisfactory execution times for various applications. We
anticipate that upcoming HE accelerators will further enhance
the speed and efficiency of our solution. This implies that within
a relatively short time frame, approximately one to two years
from now, when the HE standardization process is finalized,
users will be able to adopt standardized hybrid encryption,
eliminating certain barriers associated with the adoption of HE
in general use cases.

REFERENCES

[1] “AWS Encryption SDK,” jun 2023, last accessed Jun 2023. [Online].
Available: https://docs.aws.amazon.com/encryption-sdk/latest/develope
r-guide/faq.html 8

[2] E. Aharoni, A. Adir, M. Baruch, N. Drucker, G. Ezov, A. Farkash,
L. Greenberg, R. Masalha, G. Moshkowich, D. Murik et al., “HElayers:
A tile tensors framework for large neural networks on encrypted data,”
PoPETs, 2023. [Online]. Available: https://doi.org/10.56553/popets-202
3-0020 1, 2, 4, 10, 11, 12, 13

[3] E. Aharoni, N. Drucker, G. Ezov, E. Kushnir, H. Shaul, and O. Soceanu,
“E2E near-standard hybrid encryption,” March 2023, poster session
at 6th HomomorphicEncryption.org Standards Meeting, Seoul, South
korea. [Online]. Available: https://homomorphicencryption.org/6th-hom
omorphicencryption-org-standards-meeting/ 10

[4] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser,
S. Gorbunov, S. Halevi, J. Hoffstein, K. Laine, K. Lauter,
S. Lokam, D. Micciancio, D. Moody, T. Morrison, A. Sahai, and
V. Vaikuntanathan, “Homomorphic encryption security standard,”
HomomorphicEncryption.org, Toronto, Canada, Tech. Rep., November
2018. [Online]. Available: https://HomomorphicEncryption.org 1

[5] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner,
“Ciphers for MPC and FHE,” in Advances in Cryptology – EUROCRYPT
2015, E. Oswald and M. Fischlin, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2015, pp. 430–454. [Online]. Available: https://doi.
org/10.1007/978-3-662-46800-5_17 2

[6] T. Ashur, M. Mahzoun, and D. Toprakhisar, “Chaghri - a fhe-friendly
block cipher,” in Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 139–150.
[Online]. Available: https://doi.org/10.1145/3548606.3559364 2

[7] M. Baruch, N. Drucker, G. Ezov, E. Kushnir, J. Lerner, O. Soceanu, and
I. Zimerman, “Sensitive Tuning of Large Scale CNNs for E2E Secure
Prediction using Homomorphic Encryption,” 2023. 1, 3, 6, 12

[8] A.-A. Bendoukha, A. Boudguiga, and R. Sirdey, “Revisiting Stream-
Cipher-Based Homomorphic Transciphering in the TFHE Era,” in
Foundations and Practice of Security, E. Aïmeur, M. Laurent, R. Yaich,
B. Dupont, and J. Garcia-Alfaro, Eds. Cham: Springer International
Publishing, 2022, pp. 19–33. [Online]. Available: https://doi.org/10.100
7/978-3-031-08147-7_2 3, 7

[9] J. Boyar, P. Matthews, and R. Peralta, “Logic Minimization Techniques
with Applications to Cryptology,” Journal of Cryptology, vol. 26, no. 2,
pp. 280–312, 2013. [Online]. Available: https://doi.org/10.1007/s00145
-012-9124-7 5

[10] J. Boyar and R. Peralta, “A Small Depth-16 Circuit for the AES
S-Box,” in Information Security and Privacy Research, D. Gritzalis,
S. Furnell, and M. Theoharidou, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 287–298. [Online]. Available: https:
//doi.org/10.1007/978-3-642-30436-1_24 5

[11] Z. Brakerski, “Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP,” in Advances in Cryptology – CRYPTO
2012, R. Safavi-Naini and R. Canetti, Eds., vol. 7417 LNCS. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 868–886. [Online].
Available: https://doi.org/10.1007/978-3-642-32009-5_50 2, 3, 7, 13

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) Fully
Homomorphic Encryption without Bootstrapping,” ACM Transactions
on Computation Theory, vol. 6, no. 3, jul 2014. [Online]. Available:
https://doi.org/10.1145/2633600 2, 3, 7

[13] D. Canright, “A Very Compact S-Box for AES,” in Cryptographic
Hardware and Embedded Systems – CHES 2005, J. R. Rao and B. Sunar,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 441–455.
[Online]. Available: https://doi.org/10.1007/11545262_32 5

[14] A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia,
P. Paillier, and R. Sirdey, “Stream Ciphers: A Practical Solution for
Efficient Homomorphic-Ciphertext Compression,” Journal of Cryptology,
vol. 31, no. 3, pp. 885–916, 2018. [Online]. Available: https://doi.org/
10.1007/s00145-017-9273-9 2, 3

[15] Centers for Medicare & Medicaid Services, “The Health Insurance
Portability and Accountability Act of 1996 (HIPAA),” 1996. [Online].
Available: https://www.hhs.gov/hipaa/ 1

[16] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi,
and A. Yun, “Batch Fully Homomorphic Encryption over the Integers,”
in Advances in Cryptology – EUROCRYPT 2013, T. Johansson and P. Q.
Nguyen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 315–335. [Online]. Available: https://doi.org/10.1007/978-3-642-3
8348-9_20 2

[17] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437. [Online]. Available: https://doi.org/10.100
7/978-3-319-70694-8_15 3, 6, 13

[18] J. H. Cheon, D. Kim, and D. Kim, “Efficient Homomorphic Comparison
Methods with Optimal Complexity,” in Advances in Cryptology –
ASIACRYPT 2020, S. Moriai and H. Wang, Eds. Cham: Springer
International Publishing, 2020, pp. 221–256. [Online]. Available: https:
//doi.org/10.1007/978-3-030-64834-3_8 5

[19] ——, “Efficient homomorphic comparison methods with optimal com-
plexity,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2020, pp. 221–256.
[Online]. Available: https://doi.org/10.1007/978-3-030-64834-3_8 6

[20] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast
Fully Homomorphic Encryption Over the Torus,” Journal of Cryptology,
vol. 33, no. 1, pp. 34–91, 2020. [Online]. Available: https://doi.org/10.1
007/s00145-019-09319-x 2, 3

[21] J. Cho, J. Ha, S. Kim, B. Lee, J. Lee, J. Lee, D. Moon, and H. Yoon,
“Transciphering Framework for Approximate Homomorphic Encryption,”
in Advances in Cryptology – ASIACRYPT 2021, M. Tibouchi and
H. Wang, Eds. Cham: Springer International Publishing, 2021, pp. 640–
669. [Online]. Available: https://doi.org/10.1007/978-3-030-92078-4_22
2

[22] C. Cid, J. P. Indrøy, and H. Raddum, “FASTA – A Stream Cipher for
Fast FHE Evaluation,” in Topics in Cryptology – CT-RSA 2022, S. D.
Galbraith, Ed. Cham: Springer International Publishing, 2022, pp. 451–
483. [Online]. Available: https://doi.org/10.1007/978-3-030-95312-6_19
2

[23] J.-S. Coron, T. Lepoint, and M. Tibouchi, “Scale-Invariant Fully
Homomorphic Encryption over the Integers,” in Public-Key Cryptography
– PKC 2014, H. Krawczyk, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 311–328. [Online]. Available: https://doi.org/10.1
007/978-3-642-54631-0_18 2

[24] .-. A. Corporation, “Arm security technology - building a secure system
using trustzone technology whitepaper,” http://infocenter.arm.com/help/
topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trust
zone_security_whitepaper.pdf, April 2009. 8

[25] O. Cosseron, C. Hoffmann, P. Méaux, and F.-X. Standaert, “Towards
Case-Optimized Hybrid Homomorphic Encryption,” in Advances in
Cryptology – ASIACRYPT 2022, S. Agrawal and D. Lin, Eds. Cham:
Springer Nature Switzerland, 2022, pp. 32–67. 2

[26] CryptoLab, “HEaaN: Homomorphic Encryption for Arithmetic of
Approximate Numbers, version 3.1.4,” 2022. [Online]. Available:
https://www.cryptolab.co.kr/eng/product/heaan.php 2

[27] C. De Cannière and B. Preneel, Trivium. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 244–266. [Online]. Available: https://doi.
org/10.1007/978-3-540-68351-3_18 3

14

https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/faq.html
https://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/faq.html
https://doi.org/10.56553/popets-2023-0020
https://doi.org/10.56553/popets-2023-0020
https://homomorphicencryption.org/6th-homomorphicencryption-org-standards-meeting/
https://homomorphicencryption.org/6th-homomorphicencryption-org-standards-meeting/
https://HomomorphicEncryption.org
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.1145/3548606.3559364
https://doi.org/10.1007/978-3-031-08147-7_2
https://doi.org/10.1007/978-3-031-08147-7_2
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1145/2633600
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/s00145-017-9273-9
https://doi.org/10.1007/s00145-017-9273-9
https://www.hhs.gov/hipaa/
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-642-38348-9_20
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-319-70694-8_15
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/978-3-030-64834-3_8
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-030-92078-4_22
https://doi.org/10.1007/978-3-030-95312-6_19
https://doi.org/10.1007/978-3-642-54631-0_18
https://doi.org/10.1007/978-3-642-54631-0_18
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.cryptolab.co.kr/eng/product/heaan.php
https://doi.org/10.1007/978-3-540-68351-3_18
https://doi.org/10.1007/978-3-540-68351-3_18

[28] C. Dobraunig, M. Eichlseder, L. Grassi, V. Lallemand, G. Leander,
E. List, F. Mendel, and C. Rechberger, “Rasta: A Cipher with Low
ANDdepth and Few ANDs per Bit,” in Advances in Cryptology
– CRYPTO 2018, H. Shacham and A. Boldyreva, Eds. Cham:
Springer International Publishing, 2018, pp. 662–692. [Online]. Available:
https://doi.org/10.1007/978-3-319-96884-1_22 2

[29] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer, “Ascon
v1.2,” Submission to Round 3 of the CAESAR competition, 2016.
[Online]. Available: https://competitions.cr.yp.to/round3/asconv12.pdf 9

[30] ——, “Ascon v1.2,” Submission to Round 1 of the NIST
Lightweight Cryptography project, 2019. [Online]. Available: https:
//csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/docu
ments/round-1/spec-doc/ascon-spec.pdf 9, 10

[31] C. Dobraunig, L. Grassi, L. Helminger, C. Rechberger, M. Schofnegger,
and R. Walch, “Pasta: A case for hybrid homomorphic encryption,”
Cryptology ePrint Archive, Paper 2021/731, 2021. [Online]. Available:
https://eprint.iacr.org/2021/731 2

[32] N. Drucker, G. Moshkowich, T. Pelleg, and H. Shaul, “Bleach:
Cleaning errors in discrete computations over ckks,” Cryptology
ePrint Archive, Paper 2022/1298, 2022. [Online]. Available: https:
//eprint.iacr.org/2022/1298 3, 5, 6

[33] L. Ducas and D. Micciancio, “FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second,” in Advances in Cryptology –
EUROCRYPT 2015, E. Oswald and M. Fischlin, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 617–640. [Online]. Available:
https://doi.org/10.1007/978-3-662-46800-5_24 2

[34] M. Dworkin, “Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC,” 2007. [Online]. Available:
https://doi.org/10.6028/NIST.SP.800-38d 1, 8

[35] EU General Data Protection Regulation, “Regulation (EU) 2016/679
of the European Parliament and of the Council of 27 April 2016 on
the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation),” Official
Journal of the European Union, vol. 119, 2016. [Online]. Available:
http://data.europa.eu/eli/reg/2016/679/oj 1

[36] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic
Encryption,” Proceedings of the 15th international conference on
Practice and Theory in Public Key Cryptography, pp. 1–16, 2012.
[Online]. Available: https://eprint.iacr.org/2012/144 2, 3, 7, 13

[37] H. Fujii, F. C. Rodrigues, and J. López, “Fast AES Implementation
Using ARMv8 ASIMD Without Cryptography Extension,” in Information
Security and Cryptology – ICISC 2019, J. H. Seo, Ed. Cham: Springer
International Publishing, 2020, pp. 84–101. [Online]. Available: https:
//doi.org/10.1007/978-3-030-40921-0_5 5

[38] Gartner, “Gartner identifies top security and risk management
trends for 2021,” Tech. Rep., March 2021. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2021-03-23-gartn
er-identifies-top-security-and-risk-management-t 1

[39] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic Evaluation of the
AES Circuit,” in Advances in Cryptology – CRYPTO 2012, R. Safavi-
Naini and R. Canetti, Eds., vol. 7417 LNCS. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 850–867. [Online]. Available:
https://doi.org/10.1007/978-3-642-32009-5_49 1, 2

[40] L. Grassi, I. M. Ayala, M. N. Hovd, M. Øygarden, H. Raddum, and
Q. Wang, “Cryptanalysis of symmetric primitives over rings and a key
recovery attack on rubato,” Cryptology ePrint Archive, Paper 2023/822,
2023. [Online]. Available: https://eprint.iacr.org/2023/822 2

[41] M. ?gren, M. Hell, T. Johansson, and W. Meier, “Grain-128a: a new
version of grain-128 with optional authentication,” International Journal
of Wireless and Mobile Computing, vol. 5, no. 1, pp. 48–59, 2011.
[Online]. Available: https://doi.org/10.1504/IJWMC.2011.044106 3

[42] S. Gueron, “Intel’s New AES Instructions for Enhanced Performance
and Security,” in Fast Software Encryption, O. Dunkelman, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 51–66. [Online].
Available: https://doi.org/10.1007/978-3-642-03317-9_4 4

[43] ——, “Intel® Advanced Encryption Standard (AES) New Instructions
Set Rev. 3.01,” Intel Software Network, 2010. 4

[44] J. Ha, S. Kim, W. Choi, J. Lee, D. Moon, H. Yoon, and J. Cho, “Masta:
An he-friendly cipher using modular arithmetic,” IEEE Access, vol. 8,

pp. 194 741–194 751, 2020. [Online]. Available: https://doi.org/10.1109/
ACCESS.2020.3033564 2

[45] J. Ha, S. Kim, B. Lee, J. Lee, and M. Son, “Rubato: Noisy Ciphers
for Approximate Homomorphic Encryption (Full Version),” Cryptology
ePrint Archive, Paper 2022/537, Tech. Rep. Report 2022/537, 2022.
[Online]. Available: https://eprint.iacr.org/2022/537 2

[46] S. Halevi, “Homomorphic Encryption,” in Tutorials on the Foundations
of Cryptography: Dedicated to Oded Goldreich, Y. Lindell, Ed. Cham:
Springer International Publishing, 2017, pp. 219–276. [Online]. Available:
https://doi.org/10.1007/978-3-319-57048-8_5 3

[47] P. Hebborn and G. Leander, “Dasta – alternative linear layer for rasta,”
IACR Transactions on Symmetric Cryptology, vol. 2020, no. 3, p. 46–86,
Sep. 2020. [Online]. Available: https://doi.org/10.13154/tosc.v2020.i3.4
6-86 2

[48] IBM, “Ibm z15 performance of cryptographic operations,” 2020.
[Online]. Available: https://www.ibm.com/downloads/cas/6K2653EJ 4

[49] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen,
“Intel

®
Software Guard Extensions: EPID provisioning and attestation

services,” White Paper, April 2016. [Online]. Available: https:
//software.intel.com/sites/default/files/managed/ac/40/2016%20WW10
%20sgx%20provisioning%20and%20attesatation%20final.pdf 8

[50] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and
W. Choi, “Low-complexity deep convolutional neural networks on fully
homomorphic encryption using multiplexed parallel convolutions,” in
Proceedings of the 39th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, K. Chaudhuri,
S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., vol.
162. PMLR, 17–23 Jul 2022, pp. 12 403–12 422. [Online]. Available:
https://proceedings.mlr.press/v162/lee22e.html 1, 3, 6

[51] B. Li and D. Micciancio, “On the Security of Homomorphic En-
cryption on Approximate Numbers,” in Advances in Cryptology –
EUROCRYPT 2021, A. Canteaut and F.-X. Standaert, Eds. Cham:
Springer International Publishing, 2021, pp. 648–677. [Online]. Available:
https://doi.org/10.1007/978-3-030-77870-5_23 7

[52] V. Lyubashevsky, C. Peikert, and O. Regev, “On Ideal Lattices and
Learning with Errors over Rings,” in Advances in Cryptology – EU-
ROCRYPT 2010, H. Gilbert, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 1–23. [Online]. Available: https://doi.org/10.1007/
978-3-642-13190-5_1 3

[53] P. Méaux, A. Journault, F.-X. Standaert, and C. Carlet, “Towards Stream
Ciphers for Efficient FHE with Low-Noise Ciphertexts,” in Advances
in Cryptology – EUROCRYPT 2016, M. Fischlin and J.-S. Coron, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 311–343.
[Online]. Available: https://doi.org/10.1007/978-3-662-49890-3_13 2

[54] NIST, “FIPS pub 197: Advanced encryption standard (AES),” p. 311,
2001. [Online]. Available: https://doi.org/10.6028/NIST.FIPS.197 2, 4

[55] NIST, “Lightweight cryptography,” 2023, last accessed 28 June 2023.
[Online]. Available: https://csrc.nist.gov/Projects/lightweight-cryptogra
phy 2, 3, 9

[56] C. Rebeiro, D. Selvakumar, and A. S. L. Devi, “Bitslice Implementation
of AES,” in Cryptology and Network Security, D. Pointcheval, Y. Mu,
and K. Chen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,
pp. 203–212. [Online]. Available: https://doi.org/10.1007/11935070_14
5

[57] E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.3,”
RFC 8446, Aug. 2018. [Online]. Available: https://doi.org/10.17487/R
FC8446 1, 4, 8, 13

[58] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,”
Designs, Codes and Cryptography, vol. 71, no. 1, pp. 57–81, 2014.
[Online]. Available: https://doi.org/10.1007/s10623-012-9720-4 1

[59] R. Stracovsky, R. Akhavan, and F. Mahdavi Kerschbaum, “Faster
Evaluation of AES using TFHE,” 2022, fHE.org 2022, Last accessed
July 2023. [Online]. Available: https://drive.google.com/file/d/1WMBjj
M416BXGoiLf16gPn6q5aLt4zZqi/view 2

[60] The HEBench Organization, “HEBench,” 2022. [Online]. Available:
https://hebench.github.io/ 1

[61] D. Toprakhisar, “Behaviour of algebraic ciphers in fully homomorphic
encryption,” Aug 2021. [Online]. Available: https://research.tue.nl/nl/stu
dentTheses/behaviour-of-algebraic-ciphers-in-fully-homomorphic-enc
ryption 2

15

https://doi.org/10.1007/978-3-319-96884-1_22
https://competitions.cr.yp.to/round3/asconv12.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ascon-spec.pdf
https://eprint.iacr.org/2021/731
https://eprint.iacr.org/2022/1298
https://eprint.iacr.org/2022/1298
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.6028/NIST.SP.800-38d
http://data.europa.eu/eli/reg/2016/679/oj
https://eprint.iacr.org/2012/144
https://doi.org/10.1007/978-3-030-40921-0_5
https://doi.org/10.1007/978-3-030-40921-0_5
https://www.gartner.com/en/newsroom/press-releases/2021-03-23-gartner-identifies-top-security-and-risk-management-t
https://www.gartner.com/en/newsroom/press-releases/2021-03-23-gartner-identifies-top-security-and-risk-management-t
https://doi.org/10.1007/978-3-642-32009-5_49
https://eprint.iacr.org/2023/822
https://doi.org/10.1504/IJWMC.2011.044106
https://doi.org/10.1007/978-3-642-03317-9_4
https://doi.org/10.1109/ACCESS.2020.3033564
https://doi.org/10.1109/ACCESS.2020.3033564
https://eprint.iacr.org/2022/537
https://doi.org/10.1007/978-3-319-57048-8_5
https://doi.org/10.13154/tosc.v2020.i3.46-86
https://doi.org/10.13154/tosc.v2020.i3.46-86
https://www.ibm.com/downloads/cas/6K2653EJ
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://proceedings.mlr.press/v162/lee22e.html
https://doi.org/10.1007/978-3-030-77870-5_23
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-662-49890-3_13
https://doi.org/10.6028/NIST.FIPS.197
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://doi.org/10.1007/11935070_14
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://doi.org/10.1007/s10623-012-9720-4
https://drive.google.com/file/d/1WMBjjM416BXGoiLf16gPn6q5aLt4zZqi/view
https://drive.google.com/file/d/1WMBjjM416BXGoiLf16gPn6q5aLt4zZqi/view
https://hebench.github.io/
https://research.tue.nl/nl/studentTheses/behaviour-of-algebraic-ciphers-in-fully-homomorphic-encryption
https://research.tue.nl/nl/studentTheses/behaviour-of-algebraic-ciphers-in-fully-homomorphic-encryption
https://research.tue.nl/nl/studentTheses/behaviour-of-algebraic-ciphers-in-fully-homomorphic-encryption

APPENDIX A
EFFICIENT LOOKUP TABLE WITH LIMITED VALUE RANGE

Consider a vector v consisting of n elements, where each
element satisfies the condition a ≤ vi ≤ a+ b. We are given
an address x, represented in binary form as xi, such that
x =

∑⌈log2 n⌉
i=0 xi2

i. The objective is to preprocess v in a way
that facilitates efficient computation of vx under HE, even when
the binary values x0, . . . , x⌈log2 n⌉ are encrypted.

A straightforward approach to calculate vx is as follows:

vx =

n∑
i=0

IsEq(x, i) · vi (9)

Here, IsEq represents a polynomial that yields an approximation
of 1 when c1 = c2 and approximately 0 otherwise. It is impor-
tant to note that evaluating IsEq typically incurs a significant
computational cost and this naive method requires performing
n evaluations of IsEq, resulting in potential inefficiency.

We propose a method that offers a significant improvement
over the aforementioned approach. To achieve this, we make
the assumption that a = 0 and observe that we can treat the
elements of vector v as being within the range 0 ≤ vi ≤ b.
The rationale behind this assumption is that we can introduce
a new vector v′, where v′i = vi − a, for all i. By doing so, we
can compute vx as v′x + a. Denote by xi = 1− xi then

vx =(xlogn · · ·x1x0) v0 + (xlogn · · ·x1x0) v1+

(xlogn · · ·x2x1x0) v2 + (xlogn · · ·x2x1x0) v3+

. . .+ (xlogn · · ·x1x0) vn

=
∑

cmi
mi,

where m1, . . . ,mn represent n monomials, namely
1, x0, x1, . . . , xlogn, x0x1, . . . , x0x1 . . . xlogn and the
coefficients ci depend on the values of v and can be
computed using the formula:

cm =
∑
j

vjfm(j). (10)

For example, c1 = v0 and cxi
= v2i − v0, for any i.

The coefficients cm and the functions fm possess certain
properties: a) for a monomial m with k variables, the summation
in Equation 10 contains 2k terms for which fm(i) ̸= 0; b)
Except for the monomial m = 1, the number of occurrences
where fm(j) = 1 is equal to the number of occurrences where
fm(j) = −1. It follows that cm have a binomial distribution
with E[cm] = 0.

A. Computing all monomials efficiently

To compute all the monomials
1, x1, . . . , xlogn, x1x2, x1x3, . . . , x1x2 . . . xlogn, a recursive
approach can be employed.

We start with the given monomials 1, x1, . . . , xlogn as input.
Then, we recursively compute a monomial m by multiplying
two existing monomials, denoted as m1 and m2, where the
number of variables in m1 and m2 is approximately half of
those in m. This recursive process continues until all desired

Figure 10: The number of monomials (y-axis) with a coefficient
cm (x-axis) dervied from the values of the AES S-box.

monomials are computed. The number of multiplications
required in this process is n − log n − 1, and the depth of
the computation is log n.

Our proposed method offers several advantages over the
approach described in Equation 9:

1) It requires fewer ciphertext-ciphertext multiplications.
Specifically, our method requires n − log n − 1 multi-
plications, which is significantly fewer compared to the
n log n multiplications required by the other method.

2) Due to the Binomial distribution nature of the coefficients
cm, many monomials have coefficients of zero value. This
means that the computation of these monomials can be
skipped entirely, leading to further reduction in the number
of required multiplications.

3) In addition to zero-valued coefficients, many monomials
have coefficients of 1 or -1. Since multiplication by these
scalar values does not require actual multiplications, the
computation becomes even more efficient.

B. AES S-box as an example

We tested our method on computing an AES S-box, which
showed slightly improvement over the method described in
Section IV-B. Computing S-box requires a lookup table of 256
entries, where each value is from the range [0, 255]. A boolean
function is then performed on the bits of the value read from
the table. To perform this efficiently, implementations split the
table into 8 tables where each table holds a single bit of the
output.

We tested our method on an AES S-box that involves a
lookup table with 256 entries, where each entry corresponds
to a unique value in the range of [0, 255]. A boolean function
is applied to the bits of the value retrieved from the table. As
in Section IV-B, to optimize this computation, we divided the
table into 8 sub-tables, with each sub-table responsible for
a single output bit of the original values. Fig. 10 shows the
distribution of the coefficients.

Based on our evaluation, our proposed methodology ex-
hibited a moderate advancement over the implementation of
Section IV-B when implemented for the computation of the
AES S-box. However, it also incurred supplementary overhead
in the form of coding the boolean functions. Consequently,

16

we made a decision to forgo this optimization during the
experimentation phase, as elaborated in Section IX, and include
it solely as an appendix for the sake of completeness.

17

	Introduction
	Related work.
	Preliminaries and notation
	Homomorphic Encryption
	Authenticated Encryption

	AES
	The AES block cipher
	Implementing AES-CTR over HE

	Binary circuits over CKKS
	AT
	AES-GCM
	Background
	An implementation of AES-GCM

	Ascon
	Background
	Implementing Ascon

	Experiments
	Experimental setup
	Experiments results

	An End2End implementation
	From bits to numbers
	Packing the data

	Discussion
	Conclusion
	References
	Appendix A: Efficient lookup table with limited value range
	Computing all monomials efficiently
	AES S-box as an example

