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Abstract—Lattice-based cryptographic schemes such as
Crystals-Kyber and Dilithium are post-quantum algorithms se-
lected to be standardized by NIST as they are considered to be
secure against quantum computing attacks. The multiplication in
polynomial rings is the most time-consuming operation in many
lattice-based cryptographic schemes, which is also subject to side-
channel attacks. While NTT-based polynomial multiplication is
almost a norm in a wide range of implementations, a relatively
new method, incomplete-NTT is preferred to accelerate lattice-
based cryptography, especially on some computing platforms
that feature special instructions. In this paper, we present a
novel, efficient and non-profiled power/EM side-channel attack
targeting polynomial multiplication based on the incomplete
NTT algorithm. We apply the attack on the Crystals-Dilithium
signature algorithm and demonstrate that the method accelerates
attack run-time when compared to conventional correlation
power attacks (CPA). While a conventional CPA tests much
larger hypothesis set due to the fact that it needs to predict two
coefficients of secret polynomials together, we propose a much
faster zero-value filtering attack (ZV-FA), which reduces the size
of the hypothesis set by targeting the coefficients individually. We
also propose an effective and efficient validation and correction
technique to estimate and modify the mis-predicted coefficients.
Our experimental results show that we can achieve a speed-up
of 128.1× over conventional CPA using a total of 13K traces.

Index Terms—post-quantum cryptography; side-channel at-
tack; correlation power analysis; crsytals dilithium;

I. INTRODUCTION

SECURITY of public-key cryptosystems relies on the hard-
ness of well-known mathematical problems such as the

discrete logarithm problem for the elliptic curve cryptography
(ECC) [1], [2] and the digital signature algorithm (DSA) [3]
or the integer factorization problem for RSA [4]. While those
hard problems are conjectured to be secure against known
cryptanalytic algorithms running on classical computers, it
has been shown that Shor’s algorithm [5] can solve them in
polynomial time on a large-scale quantum computer.

To address the quantum threat, the National Institute of
Standards and Technology (NIST) has announced the stan-
dardization process for post-quantum public-key cryptographic
algorithms (PQC) in 2016. The standardization process cov-
ers quantum-resistant digital signature schemes, and public-
key encryption and key-establishment algorithms. Currently,
the contest is at the fourth round with already standardized
algorithms. Lattice-based schemes, based on various hard lat-

tice problems, facilitate the construction of quantum resilient
public-key cryptography with a promising level of efficiency.
Among the winners, the lattice-based digital signature algo-
rithm Crystals-Dilithium [6] is based on the Module-LWE [7]
and Module-SIS (MSIS) problems, while Crystals-Kyber [8]
is MLWE based KEM. As Kyber and Dilithium are members
of the same family, Crystals, they have several building blocks
in common.

In cryptoanalysis, side-channel attacks (SCA) are the ones
that target the weaknesses in implementations rather than
algorithm specifications, by collecting side information such
as running time or power consumption that can leak sensitive
(intermediate) information during the execution of the targeted
cryptographic operation. Side-channel attacks are considered
as one of the main threats, particularly for embedded devices
because of the simplicity of side-information collection. The
Correlation Power Analysis (CPA) is proposed in [9], which
models the power consumption of the device under test and
measures the correlation of the model with real-world data
to test secret value hypotheses. The power leakage of the
device/implementation is often modeled with the Hamming
Weight (HW)/Hamming Distance (HD) of/between the inter-
mediate data. The Electromagnetic (EM) side-channels [10]
are similar to power analysis as any attack suit designed for
the power leakage can be practiced with EM leakage while
it can supply more precise information about the sensitive
intermediate data. Masking is one of the the most promising
countermeasures against power/EM attacks, which randomizes
the intermediate data with secret sharing so that characteristics
of sensitive data are not reflected on power consumption.

Needless to say that the side-channel security of post-
quantum public cryptography is essential as well since post-
quantum algorithms are intended to replace the existing public-
key standards in the near future and the usage of public-
key cryptography in embedded devices will be potentially
more extensive. For example, a secure firmware update on
an embedded device relies on the security of the employed
digital signature while embedded devices are open to timing,
power/EM attacks by nature. With increasing interest, several
attacks and countermeasures have been proposed for PQC
candidates in the literature.

Polynomial multiplication is the core operation for practical
constructions of lattice-based cryptography, which are based
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Attack Class Algorithm Implementation Target Operation
this work Non-profiled Dilithium ARM M4 polynomial multiplication

[20] Non-profiled Dilithium Reference C polynomial multiplication
[21] Non-Profiled Dilithium HW polynomial multiplication
[19] Non-profiled Kyber ARM M4 polynomial multiplication
[16] Profiled Dilithium Reference C NTT
[17] Profiled Dilithium Reference C bit-unpacking
[21] Profiled Dilithium HW decoding / NTT
[22] Profiled Dilithium Reference C / ARM M4 small polynomial sampling
[23] Profiled Dilithium Reference C decompose
[24] Profiled Kyber Reference C / ARM M4 NTT
[18] Profiled R-LWE Encryption ARM M4 (masked) [25] NTT

TABLE I: Related Side-Channel Attacks from the Literature

on ring-learning with errors (R-LWE) problem [11]. Most
implementations utilize number theoretic transform (NTT) for
efficient polynomial arithmetic [12]. A technique referred as
incomplete NTT is introduced to handle rings of special struc-
tures as well as for efficiency [13]–[15] in implementations
of various lattice-based cryptography algorithms. Our study
targets the incomplete NTT operation specifically.

Table I summarizes the related side-channel attacks against
lattice-based schemes from the literature. Among the attack
types, the profiled class forms the majority, where we require
a device identical to the one targeted by the attacker, who tries
to characterize the leakage when executing a cryptographic
algorithm with a known secret key. In other words, the attacker
needs to have more capability in a profiled attack compared
to non-profiled class. Machine learning based approaches are
gaining popularity in the design of profiled attacks for lattice-
based cryptography [16], [17]. In addition, Primas et al. [18]
present a notable study by combining the side-channel leakage
of NTT computation with belief propagation algorithm to
conduct a single-trace profiled attack.

As for the non-profiled class, the polynomial multiplication
is the most attractive target operation [19]–[21]. Steffen et
al. [21] conduct attack on a hardware implementation of
Dilithium. Mujdei et al. [19] attack ARM M4 implementation
of Kyber [15], which has a very similar NTT implementation
with Dilithium, based on [14]. The authors of [19] show that
the secret coefficients must be predicted in pairs due to the
fact that the incomplete NTT algorithm is used in polynomial
multiplication of the targeted implementation. Chen et al. [20]
target the reference implementation of Dilithium, concen-
trating on improving the runtime performance of CPA, as
conventional approach requires brute-force effort over 22-bit
secrets based on the coefficient modulus length of Dilithium.

In our study, we present a more efficient non-profiled attack
on incomplete NTT implementation, which facilitates that
the coefficients of the secret polynomials can be predicted
individually. To show its efficacy, we use a very recent and fast
implementation of Dilithium on ARM M4 [15]. We present
several non-profiled side-channel attacks targeting the multi-
plication in the incomplete NTT domain and finally develop
a much more efficient approach exploiting the zero-valued
coefficients of the challenge polynomials of the Dilithium
scheme.

A. Main Contributions
We can list our contributions as follows:

• We present a novel non-profiled power/EM attack against
incomplete NTT based implementations of polynomial
multiplication in Lattice-based Cryptography, referred to
as Zero-Value Filtering Attack (ZV-FA). Our approach is
efficient as it decreases the number of hypotheses signifi-
cantly by introducing a filtering technique based on zero-
value coefficients in the known input/output polynomials
of the operation targeted by the CPA attack.

• We present an efficient validation technique for estimat-
ing and correcting mis-predicted values for attacking to
secret polynomials with short coefficients, utilizing the
inverse NTT operation. The method not only ensures full
accuracy on the estimated secret polynomials, but also
accelerate the attack run time.

• We implement the ZV-FA with the validation technique
on the M4 specific implementation of Dilithium [14].
Our experiments demonstrate that a moderate increase
in the number of traces can decrease the attack run-time
significantly. It is experimentally shown through EM side-
channel that, a speed-up of two orders of magnitude in
attack run-time can be achieved over a conventional CPA
targeting the polynomial multiplication.

II. NOTATION

Matrices are represented by bold uppercase letters, such
as A, while vectors are represented by bold lowercase letters,
such as b. Sets are denoted by uppercase blackboard bold
letters, such as A. Polynomials are denoted by lowercase italic
letters, such as f . Depending on the context, polynomials may
be represented together with their indeterminate, such as f(x).
Subscripts together with square brackets are used to denote
element(s) of matrices and vectors, such as A[i,j] and s[i];
elements of sets, such as A[i]; coefficients of polynomials, such
as f[i]. The notation A[:,j] denotes the j-th column vector of A.

Modular reductions are performed in a centered manner.
Specifically, given an integer k and a modulus q, the operation
k′ = k (mod±q) maps k to a unique integer k′ in the range
of [−⌊q/2⌋, ⌊q/2⌋] for odd q. The set of integers modulo q
with centered reduction is denoted by Zq . On the other hand,
the notation Z+

q is used to denote the set of integers modulo
q using the positive range, namely [0, q − 1]. The ring of
polynomials Zq[x]/(X

n+1), where elements are polynomials
of maximum degree of n−1, whose coefficients are modulo-q
reduced, is denoted by Rq .

The dimensionality of matrices and vectors is shown in
the superscript. For example, Rk×l

q represents a matrix of
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dimensions k × l, whose elements are in Rq . Similarly,
superscript is used for the matrices and vectors to express their
dimensionality, such as AN×M and bN . The cardinality of the
set A is denoted by |A|. The matrix-vector multiplication of the
operands A and b is denoted by Ab. Similarly, multiplication
of the vector b with scalar a is denoted by ab. Polynomial
multiplication is denoted by the standard symbol ·, while
element-wise multiplication of two vectors is denoted by ⊙.
In some cases, the symbol · is used to represent integer
multiplication to support the narrative. The symbol × denotes
Cartesian product between sets, such as A× B.

The notation (also referred as infinity norm) ||s||∞ is used
to represent the maximum coefficient of the polynomial s
in absolute value, whose elements are reduced in centered
manner. Similarly, ||s||∞ is the maximum of the maximum
absolute values of coefficients of the polynomials in the
vector s. The set Sη consists of polynomials w ∈ Rq with
||w||∞ ≤ η, where η is a (relatively small) positive integer,
referred to as the set of short polynomials. Similarly, S̃η is
another set of short polynomials whose coefficients fall within
the range of [−η + 1, η]. Another subset of Rq is denoted by
Bτ , which consists of polynomials with exactly τ coefficients
that are either -1 or 1, ant the rest is zero. {0, 1}N denotes
the set of N -bit strings. The operator ← denotes uniformly
random sampling from the set on the right-hand side, such as
ρ← {0, 1}N . The symbol ⊥ represents an invalid character.

III. CORRELATION POWER ANALYSIS (CPA)

CPA [9] is a well-known side-channel attack that exploits
the dependency between the data processed by a cryptographic
implementation and its power consumption. CPA assumes that
a secret key is stored in a targeted device, and while it is not
possible to directly access the key, the attacker can perform
a cryptographic operation (e.g., encryption, decryption, sig-
nature generation) that involves the secret key by querying
the device. Embedded devices such as IoT chips, which sign
sensor data before transmission, are often targeted by CPA.

CPA can be summarized in the following steps:
• The attacker performs N experiments, i.e. queries the

victim device, and records the power consumption of the
device. M points are sampled in time at each power
measurement. Power samples are stored in the matrix
TN×M while pN is the vector of known variables. T
and p are referred to as traces.

• A point of interest (PoI) is selected by the adversary. The
PoI should be a function of a known variable that changes
at each experiment and the attacked secret that remains
the same for all experiments.

• A set of predictions (i.e, hypotheses) is prepared, denoted
by K. Then, intermediate value matrix VN×S is computed
w.r.t. each hypothesis; i.e., V[i,j] is the value of the PoI
computed using p[i] and K[j].

• V is mapped to the hypothetical power consumption ma-
trix, HN×S by applying a power model. Most frequently
used power models are Hamming Weight (HW) and Ham-
ming Distance (HD). In other words, H[i,j] = HW(V[i,j]),
in case HW is chosen.

NIST Security Level 2 3 5
Parameter Meaning

d dropped bits from t 13 13 13
τ number of ±1 in c 39 49 60
γ1 coefficient range of y 217 219 219

γ2 (q − 1)/88 (q − 1)/32 (q − 1)/32
k,l dimensions of A (4,4) (6,5) (8,7)
η coefficient range of si 2 4 2
ω max. # 1’s in h 80 55 75

TABLE II: Dilithium parameter set

• The Pearson correlation coefficient between each T[:,i]

and H[:,j] for 0 ≤ i < M, 0 ≤ j < |K| is approximated
by the following:

ρ̂i,j =
ˆcov(T[:,i],H[:,j])

ˆstd(T[:,i]) ˆstd(H[:,j])
(1)

where ˆstd and ˆcov stand for sample standard deviation
and sample covariance functions, respectively. The score
for the jth prediction is equal to maxi(|ρ̂i,j |). The predic-
tion with highest score, namely argmaxj(maxi(|ρ̂i,j |)),
is the output of the attack. CPA is performed exactly the
same for the EM side-channel. Overall complexity of the
attack is Θ(NM |K|).

IV. DILITHIUM

Crystals: Dilithium [6] is a lattice-based post-quantum dig-
ital signature scheme based on the hardness of MLWE and
MSIS problems. It consists of three main algorithms: key gen-
eration (Algorithm 1), signature generation (Algorithm 2) and
signature verification. It operates over the ring of polynomials
Rq with dimension n = 256 and q = 8380417 = 223−213+1.
The rest of the parameter set used by Dilithium can be found
in Table II. The NIST security levels 2, 3, 5 are equivalent
to the SHA-256 collision search, the AES-192 key search and
the AES-256 key search, respectively.

The key generation operation creates a MLWE instance by
the equation t := As1+s2 as seen in line 5 of Algorithm 1. The
public matrix A and the vectors of short polynomials s1, s2
are generated pseudo-randomly from the 256-bit seed ζ, using
the helper functions H, ExpandA and ExpandS, respectively.
While H is instantiated as SHAKE-256, ExpandS and Ex-
pandA utilizes SHAKE-256 and SHAKE-128, respectively.
The public matrix A is represented by the 256-bit seed ρ in
the public key. Another optimization in public key size is to
store t1 which is the upper bits of t, generated by the function
Power2Roundq .

Algorithm 1 Dilithium.KeyGeneration

1: ζ ← {0, 1}256
2: (ρ, ρ′,K)← {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ)
3: A ∈ Rk×l

q := ExpandA(ρ)
4: (s1, s2)← Sl

η × Sk
η := ExpandS(ρ′)

5: t := As1 + s2
6: (t1, t0) := Power2Roundq(t, d)
7: tr ∈ {0, 1}256 := H(ρ || t1)
8: return (pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0))
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The signature generation of Dilithium, given in Algorithm 2,
applies the rejection sampling idea. Most of the signature
procedure is implemented in a loop, which iterates until a
valid and secure signature is found. At each iteration, the
pseudo-random numbers are refreshed by incrementing the
nonce κ. The parameters are chosen such that expected number
of iterations are small, around 4. Inside the signature loop, a
vector of masking polynomials y is generated deterministically
from the seed ρ′ and the nonce κ using the helper function
ExpandMask. w1 is the high-order bits of w = Ay. The
function SampleInBall and the hash function in line 9 map
µ and w1 to a challenge polynomial in Bτ that has exactly τ
coefficients that are either -1 or 1 and the rest are 0, denoted
by c. Both ExpandMask and SampleInBall utilizes SHAKE-
256. The candidate signature is z = y + cs1. The first check
in line 13 of Algorithm 2 is executed to assess the security
of the signature and while the second concerns both security
and correctness. The function MakeHint returns the positions
where high bits of w − cs2 + ct0 and w − cs2 are different.
This is needed due to the fact that the verification is performed
using t1 instead of t. At line 16, hint related correctness checks
are performed.

Algorithm 2 Dilithium.Sign(sk, M)

1: A ∈ Rk×l
q := ExpandA(ρ)

2: µ ∈ {0, 1}512 := H(tr || M)
3: κ := 0, (z,h) := ⊥
4: ρ′ ∈ {0, 1}512 := H(K || µ)
5: while (z,h) := ⊥ do
6: y ∈ S̃l

γ1
:= ExpandMask(ρ′, κ)

7: w := Ay
8: w1 := HighBitsq(w, 2γ2)
9: c̃ ∈ {0, 1}256 := H(µ || w1)

10: c ∈ Bτ := SampleInBall(c̃)
11: z := y + cs1
12: r0 := LowBitsq(w− cs2, 2γ2)
13: if ||z||∞ ≥ γ1 − β or ||r0||∞ ≥ γ2 − β then

(z,h) := ⊥
14: else
15: h := MakeHintq(−ct0,w− cs2 + ct0, 2γ2)
16: if ||ct0||∞ ≥ γ2 or # 1’s in h is greater than ω then

(z,h) := ⊥
17: end if
18: end if
19: κ := κ+ l
20: end while
21: return σ = (z,h, c̃)

V. NUMBER THEORETIC TRANSFORM (NTT)

Number Theoretic Transform (NTT) is a special form of
Fast-Fourier Transform (FFT) that operates over Zq instead of
complex numbers C. NTT allows efficient multiplication of
polynomials over Rq . Representing a polynomial a(x) ∈ Rq

in the NTT domain can be viewed as an application of Chi-
nese Remainder Theorem (CRT). Polynomial multiplication is

achieved by element-wise multiplying the NTT representations
of the operands:

a(x) · b(x) = NTT−1(NTT(a(x))⊙ NTT(b(x))) (2)

Most lattice-based crypto systems, including Dilithium, op-
erates over the ring Rq . NTT in Rq requires q ≡ 1 (mod 2n),
which ensures a primitive 2n-th root of unity ζ2n exists in Zq

for which ζn2n = −1 mod q, referred to as negacyclic NTT.
Therefore, (xn + 1) is factored to

∏n−1
i=0 (x − ζ2i+1

2n ). NTT
computes the following isomorphism:

a(x) ≈ NTT(a(x)) : Zq[x]/(x
n+1) −→

n−1∏
i=0

Zq[x]/(x−ζ2i+1
2n )

Here, the i-th element of NTT(a(x)) is the remainder from
dividing a(x) to (x − ζ2i+1

2n ). NTT can be computed by
evaluating the polynomial at the powers of ζ2n. Let a =
NTT(a(x)) ∈ Zn

q . Then, a[i] = a(ζ2i+1
2n ) for i < n. However,

this computation requires Θ(n2) steps. In case n is a power of
2, NTT can be computed efficiently by splitting the polynomial
to half of its size in recursive manner until linear degree is
reached. The transformation at each layer can be efficiently
implemented using Cooley-Tukey (CT) butterfly circuit [26].
For degree-n/2i polynomial a(x) = a′(x) + a′′(x) · xn/2i+1

,
the CT butterfly is defined by the map

a′(x)+a′′(x) ·xn/2
i+1

−→ (a′(x)−δ ·a′′(x), a′(x)+δ ·a′′(x)).

where δ is an odd power of ζ2n, called the twiddle factor.
In this manner, full NTT computation requires log n layers.
Most applications use Gentleman-Sande (GS) butterfly for
computing the inverse NTT [27], although it is not necessarily
required. Using CT or GS when n is a power of 2, computing
NTT / inverse NTT takes Θ(n log n) steps.

A. Incomplete NTT

For efficiency NTT can be computed for k < log n
layers so polynomials are recursively splitted to degree-n/2k

polynomial components, denoted by NTTk(a(x)). The pre-
requisite for NTTk is to have q ≡ 1 (mod

n

2logn−k−1
) for

the negacyclic NTT [28].
Let a = NTTk(a(x)) and b = NTTk(b(x)). a and b are

2k-dimensional vectors and a[i],b[i] ∈ Zq[x]/(x
n/2k − δ) for

i < 2k, where δ is some power of ζ2n. Then, a(x)·b(x) can be
computed through a⊙b as in Equation 2. In this case, element-
wise multiplication refers to multiplication of polynomials of
degree n/2k−1, which is mostly implemented by the school-
book algorithm, and there are 2k such multiplications. For
instance, when k = log (n/2), we perform n/2 multiplications
of degree-1 polynomials.

B. Asymmetric Multiplication

It is shown that, pre-computation based on one of the
operands accelerates the incomplete NTT multiplication in
certain circumstances [29]. Consider the vector of polynomials
a and b from the previous section for the case k = (log n/2).
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We know that, a[i](x),b[i](x) ∈ Zq[x]/(x
2 − δi) for i < n/2,

where and x2 = δi for the mentioned ring. Then, we have

a[i](x) · b[i](x) = (a[i,0] · b[i,0] + δi · a[i,1] · b[i,1])

+ (a[i,0] · b[i,1] + a[i,1] · b[i,0]) · x. (3)

The terms δi · a[i,1] are computed regardless of the values of
b[i,1], or vice-versa. Therefore, the terms δi · a[i,1] can be pre-
computed and retrieved from memory, leading to a method
referred to as asymmetric multiplication as explained in the
subsequent section. Notice that, this is beneficial only in case
a is involved in more than one multiplication. For instance,
it makes sense to use asymmetric multiplication with c in
Algorithm 2 since it is involved in multiple multiplications.
As explained in the subsequent section, ARM M4 core fa-
cilitates the multiplications of two coefficients with only one
instruction.

VI. PROPOSED SIDE-CHANNEL ATTACKS

In this section, we first show a straightforward baseline
attack and then give the details of more efficient zero-value
filtering attack.

A. Target Implementation and Point of Interest (PoI)

We target the Dilithium implementation of the pqm4 li-
brary [15], which is based on the work [14]. The aim of the
attack is to recover the secret key sk so that the attacker can
forge signatures. The implementation is specialized for the
ARM M4 core, mostly written in Assembly.

A radical design decision made by the authors is that,
NTT is incomplete as it is computed for 7 layers instead of
8 = log2 256. Consequently, multiplication in this domain is
achieved by 128 2×2 school-book multiplications of degree-1
polynomials, with the application of asymmetric multiplica-
tion. Both the Forward NTT and the Inverse NTT are carried
out by CT butterflies. The Montgomery reduction algorithm
is used to perform modular reductions; however, reductions
in modular addition and subtractions during the butterflies
are omitted for efficiency reasons, which is known as lazy
reduction in the literature [30]. Related parts of the victim
implementation is discussed in more detail in the following
section.

Secondly, a carrier modulus is used for NTT representation
of short polynomials in the vectors s1 and s2 as well as the
challenge polynomial c, referred to as small NTT. The small
NTT operates with the prime q′ = 257 for Dilithium2 and
Dilithium5 while q′ = 769 is chosen for Dilithium3. The
rationale behind the small NTT is that, coefficients of cs1
and cs2 does not exceed τη in absolute value. Recall that
coefficient range of the polynomials in s1 and s2 is [−η, η]
while c has exactly τ coefficients equal to ±1 and the rest of
the coefficients are 0.

The targeted operation is the product cs1, which is per-
formed in Line-11 of Algorithm 2. This is a natural choice
for a non-profiled attack since it is where the s1 part of the
secret key sk is processed along with the challenge polynomial
c. Note that c is computed from c̃, which is among the
outputs of the signature and alternates with respect to the

1.macro montgomery q, qinv, a, tmp
2 smulbt \tmp, \a, \qinv
3 smlabb \tmp, \q, \tmp, \a
4.endm
5

6 movw r14, #769
7 movt r14, #767
8 .equ width, 4
9 add.w r12, r0, #256*2

10 _asymmetric_mul_16_loop:
11 ldr.w r7, [r1, #width]
12 ldr.w r4, [r1], #2*width
13 ldr.w r8, [r2, #width]
14 ldr.w r5, [r2], #2*width
15 ldr.w r9, [r3, #width]
16 ldr.w r6, [r3], #2*width
17

18 smuad r10, r4, r6
19 montgomery r14, r14, r10, r6
20 smuadx r11, r4, r5
21 montgomery r14, r14, r11, r10
22

23 pkhtb r10, r10, r6, asr#16
24

25 str.w r10, [r0], #width
26

27 smuad r10, r7, r9
28 montgomery r14, r14, r10, r6
29 smuadx r11, r7, r8
30 montgomery r14, r14, r11, r10
31

32 pkhtb r10, r10, r6, asr#16
33 str.w r10, [r0], #width
34

35 cmp.w r0, r12
36 bne.w _asymmetric_mul_16_loop

Source Code 1: Implementation of asymmetric multiplication
by the function small_asymmetric_mul_asm

choice of the message M . Each polynomial in the vector
s1 is multiplied by c; a multiplication in the ring R, which
is performed in the NTT domain by the Assembly function
small_asymmetric_mul_asm (See Source Code-1).

To compute cs1, small_asymmetric_mul_asm is
invoked ℓ times. During the zth call to the function
small_asymmetric_mul_asm, the input register r1
stores the address of NTT7(s1[z]) for 0 ≤ z < ℓ, which is
an 128-dimensional vector of degree-1 polynomials. For the
rest of the paper, we will denote any of these vectors by s∗
to simplify notation since our work is identical for all z. The
ith polynomial in s∗ is written as s∗[i](x) = s∗[i,0] + s∗[i,1]x, for
0 ≤ i < 128. On the other hand, r2 stores the address of
NTT7(c), denoted by c. Similarly, c[i](x) = c[i,0] + c[i,1]x.
Finally, r3 stores the address of c′, pre-computed from c,
for which the pre-computation methodology explained in
Section V-B is applied. Precisely, c′[i](x) = c[i,0] + δic[i,1]x,
where δi are the twiddle factors. Pseudo-code for the func-
tion small_asymmetric_mul_asm is provided in Algo-
rithm 3. Formally, r = s∗⊙ c is computed. For the rest of the
paper, the function NTT(·) refers to the explained incomplete
NTT, i.e. NTT7(c), to simplify the notation.

The coefficients s∗[i,0], s
∗
[i,1], c[i,0], c[i,1] ∈ Zq′ are represented

by 16-bit signed integers in the memory. The 2 × 2 school-
book multiplications needed for the degree-1 polynomials are
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Algorithm 3 Asymmetric Multiplication Pseudo-Code(s∗ =
r1, c = r2, c′ = r3)

1: for i← 0 until 128 do
2: T0 ← s∗[i,0] · c′[i,0], T1 ← s∗[i,1] · c′[i,1], r[i,0] ←

Montgomery(T0 + T1)
3: T2 ← s∗[i,0] · c[i,1], T3 ← s∗[i,1] · c[i,0], r[i,1] ←

Montgomery(T2 + T3)
4: T4 ← s∗[i+1,0] ·c

′
[i+1,0], T5 ← s∗[i+1,1] ·c

′
[i+1,1], r[i+1,0] ←

Montgomery(T4 + T5)
5: T6 ← s∗[i+1,0] ·c[i+1,1], T7 ← s∗[i+1,1] ·c[i+1,0], r[i+1,1] ←

Montgomery(T6 + T7)
6: i← i+ 2
7: end for
8: return r4 = r

achieved by smuad and smuadx instructions1 followed by
Montgomery reductions. The smuad(x) instructions consider
their 32-bit inputs as two 16-bit halves, which store the
two coefficients of degree-1 polynomials in the (incomplete)
NTT domain. The smuad instruction multiplies the lower
and upper halves of its operands concurrently and sums the
results of the two multiplications. The smuadx instruction
functions very similarly, except it multiples upper-halves of
the operands by lower-halves. Lines 2 and 4 of Algorithm 3
illustrate the behaviour of smuad instruction while lines 3
and 5 demonstrate the behaviour of smuadx. As a more
precise example, line 2 of Algorithm 3 is computed in a single
step except for the Montgomery reduction by the smuad
instruction at line 18 of Source Code 1. Notice that, smuad
is used in the computation of the constant terms in the school-
book multiplication while smuadx is used in computation of
the degree-1 coefficients.

The results of Montgomery reductions for the lower and
higher degree coefficients are combined in a single 32-bit
register by pkhtb instructions at lines 23 and 32 of Source
Code 1, followed by memory writes via the str.w instruc-
tions at lines 25 and 33. We consider the operands of the store
instructions as the PoI, assuming a memory operation leads
to a power leakage with a greater signal-to-noise-ratio (SNR)
compared to the register updates. We use the HW model for
the hypothetical power consumption computation.

B. The Baseline Attack

As each output coefficient r[i,j], written to the memory
by the str.w instruction, and chosen as the PoI, depends
on both s∗[i,0] and s∗[i,1], the baseline scheme is formed as
conventional CPA that predicts {s∗[i,0], s

∗
[i,1]}, simultaneously.

The crucial question is, within what range must each coef-
ficient be predicted? Recall that, Montgomery modular re-
ductions are omitted from modular addition and subtraction
steps of the CT butterfly operations for efficiency during
the NTT computations. Consequently, when the function
small_asymmetric_mul_asm is called, the coefficients

1https://developer.arm.com/documentation/ddi0403/d/Application-Level-
Architecture/Instruction-Details/Alphabetical-list-of-ARMv7-M-Thumb-
instructions/SMUAD–SMUADX
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Fig. 1: Average (cold) and Minimum (hot) of the Pearson
correlation coefficients, ρ̂, computed between H:,{α0,α1} and
H:,{β0,β1} for {β0, β1} ∈ ψα0,α1

s∗[i,j] can be larger than the modulus q′; precisely, they are in
the range [−7q′−η,+7q′+η], namely Z14q′+2η , despite s∗[i,j] ∈
Zq′ by definition as implied by [14], [20], [30]. A prediction
in Z14q′+2η × Z14q′+2η , which results in a approximately
26-bit search space for the pair {s∗[i,0], s

∗
[i,1]}, is excessive.

Fortunately, it is sufficient to predict in the set of residues [19],
[20], Zq′ due to two main factors: 1) A trivial mathematical
fact is that the coefficients are indeed in Zq′ , which is sufficient
to compute the inverse NTT to obtain the coefficients of
the secret polynomial. 2) For the selected PoI function, the
integers in Z14q′+2η that are in the same congruence class
modulo q′, mostly result in the same output. Therefore, the
PoI that are calculated for integers of the same congruence
class are correlated with each other. Note that, the PoI is the
output of the signed Montgomery reduction presented in [30],
whose output is in Z2q′ . We set an experiment to demonstrate
this observation. Let α0, α1 ∈ Zq′×Zq′ be a pair of predictions
for {s∗[i,0], s

∗
[i,1]} for a value of i. Consider the following set

of predictions:

ψα0,α1 = {β0 = α0 ± κ0 · q′}κ0 × {β1 = α1 ± κ1 · q′}κ1

for 0 ≤ κ0, κ1 ≤ 7 , β0, β1 ∈ Z14q′+2η.

We run 105 experiments with uniformly random α0, α1 to
assess our observation. Let H:,{α0,α1} denotes the hypothetical
power consumption vector computed w.r.t. {α0, α1} based
on the chosen PoI with a set of uniformly random c[i] of
size N = 10K and Hamming Weight (HW) as the power
model. Similarly, H:,{β0,β1} denotes the hypothetical power
consumption w.r.t. each one of the pairs {β0, β1} ∈ ψα0,α1

.
Figure 1 shows the average and minimum of the Pearson
correlation coefficients computed between H:,{α0,α1} and each
H:,{β0,β1}. The variables {β0, β1} are enumerated by the
factors κ0, κ1 from the above definition of ψα0,α1

in the
figure. The experiments show that, even the distant elements
of the congruence class, such as those with κ0, κ1 = 7, are in
correlation with {α0, α1}, in terms of the hypothetical power
consumption.

We emphasize yet another significant point. The distribution
of the coefficients s∗[i,j] is not uniform in Z14q′+2η , as observed
by [19] within the side-channel analysis of M4 specific im-
plementations of PQC KEMs. We set another experiment to
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Fig. 2: Distribution of the integer values taken by s∗[i,j] as a
result of the NTT implementation’s lazy reductions, where s1
is generated at uniformly random within 106 experiments.

further investigate the statistics of the values taken by s∗[i,j],
in practice. We uniformly randomly generated 106 samples
for s1, for which, Figure 2 demonstrates that the distribution
of s∗[i,j] follows a bell shape. The maximum of the observed
values is 2412 while the minimum is −2421, showing even
κ0, κ1 ≥ 4 is very rare. Consequently we can conclude that
values in congruence class with higher correlation is more
likely.

The findings of the experiments show that it is sufficient
to perform the search for {s∗[i,0], s

∗
[i,1]} by including just one

representative of the congruence class, precisely in Zq′ ×Zq′ ,
leading to q′2 hypotheses. q′2 is approximately 16.01-bit for
Dilithium2 and Dilithium5, while it is approximately 19.17-bit
for Dilithium3. The computational complexity of the baseline
scheme is, therefore, Θ(q′2(n/2)). Clearly, it is an accurate,
yet inefficient attacking scheme in terms of the attack run-
time. Therefore, we seek more efficient methods to accelerate
the attack time in the next section.

C. Boosting the Baseline Attack

Using negative correlation, it is possible to further narrow
down the hypothesis set presented in the preceding sec-
tion. Note that, the Hamming weights of an integer and its
additive inverse in 2’s complement notation are correlated.
Consider the following enumeration of the set of hypotheses
for {s∗[i,0], s

∗
[i,1]}, ignoring 0s for the sake of simplicity.

K = Zq′ × Zq′ = {−Z+
⌊q′/2⌋,Z

+
⌊q′/2⌋} × {−Z

+
⌊q′/2⌋,Z

+
⌊q′/2⌋}

= {K0,0,K0,1} × {K1,0,K1,1} (4)

We can consider dropping exactly one of
K0,0,K0,1,K1,0,K1,1 from the search space. Without
loss of generality, let K′ be the reduced set defined as
{K0,0,K0,1} × {K1,1}. For any {α0, α1} ∈ K, it is
guaranteed that either {α0, α1} or its additive inverse
{−α0,−α1} is included in K′, which has a straightforward
explanation. We can re-write K by distributing its terms as
{K0,0 ×K1,0,K0,0 ×K1,1,K0,1 ×K1,1,K0,0 ×K1,1}. On the
other hand, K′ can be arranged as {K0,0×K1,1,K0,1×K1,1}
and let K′′ be the set obtained by inverting the prediction
for s∗i,1 in K′, namely K′′ = {K0,0 ×−K1,1,K0,1 ×−K1,1}.

Clearly, K = {K′,K′′} since K1,0 = −K1,1, proving the
argument.

Showing the existence of the secret itself or its additive
inverse in the reduced search space K′ is not sufficient to be
able to carry out a correlation attack using K′. We should also
note that, V:,{−α0,−α1} = −V:,{α0,α1}, for any {α0, α1} ∈ K;
recalling that V:,{α0,α1} is the intermediate value vector com-
puted w.r.t. {α0, α1}. The statistical properties of Hamming
Weight suggest that H:,{−α0,−α1} correlates with H:,{α0,α1}.
Lastly, we need a distinguisher to tell the difference between
the actual key and its additive inverse as the attacker can get
either one of them. If the sign of the peak on correlation scores
is positive we conclude that the actual key is found. Otherwise,
additive inverse of the hypothesis is computed as the output
of the attack. We would like to note that, the actual device
leakage inversely correlates with the HW of intermediate data
in some cases such as the data-bus is pre-charged with all 1’s.
Then, the behaviour of the explained distinguisher is reversed.

In summary, using the Boosted baseline scheme, de-
noted by baseline+, the attack complexity drops by 1-bit to
Θ(q′(q′/2)(n/2)). The same approach is employed in [20] for
attacking the reference implementation of Dilithium, which
utilizes 8-layer NTT so it does not require simultaneous
prediction of pairs.

D. Decreasing the Number of Hypotheses: Zero-Value Attack

A more practical scheme in terms of the attack run-time
can be constructed by attacking to the coefficients s∗[i,0] and
s∗[i,1] individually, referred here as Zero-Value (ZV) Attack. To
achieve this, we need to eliminate the effect of one of the
secret coefficients from the Montgomery reduction step during
the asymmetric multiplication, whose output constitutes the
chosen PoI. This can be accomplished by including only the
traces to the attack that contain zeros in their coefficients,
which multiply one of the secret coefficients. Consider line 2
of Algorithm 3 to develop intuition to the proposed method.
Assume c′[i,1] = 0 for some 0 ≤ i < n/2, then T1 becomes
0 and r[i,0] = Montgomery(T0 = s∗[i,0] · c

′
[i,0]). With sufficient

number of traces meeting the condition c′[i,1] = 0, predictions
on s∗[i,0] can be made independently from s∗[i,1] for the specific
value of i. In general, traces with c′[i,1] = 0 (c′[i,0] = 0) or
traces with c[i,0] = 0 (c[i,1] = 0) are used for predicting s∗[i,0]
(s∗[i,1]). These pre-requisites for the ZV attack are referred
to as zero-value conditions. Table III lists the five attacking
scenarios that can be adopted. For instance, to attack s∗[i,0],
we need the condition c′[i,1] = 0 and use c′[i,0] or c[i,0] = 0
and use c[i,1]. Note also that c′[i,0] = c[i,0] by the definition
of the asymmetric multiplication. Therefore, an attack can
be launched for s∗[i,1] by using the traces with c′[i,1] = 0, as
illustrated in the 5th scenario in the table. As the conditions
are identical with attack scenarios 1, 4 and 5, both s∗[i,0] and
s∗[i,1] will show peaks in the results.

This approach leads to an attack complexity of Θ(q′n),
Θ((q′/2)n), without and with the negative correlation trick
from the previous section. The drawback of this method is the
hardness of finding traces meeting the mentioned conditions.
Recall that c and c′ are computed from c̃, which is among
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Attacking Scenario Target Condition Used Meta Probability
1 s∗

[i,0]
c′
[i,1]

= 0 c′
[i,0]

0.00544

2 s∗
[i,0]

c[i,0] = 0 c[i,1] 0.00344

3 s∗
[i,1]

c′
[i,0]

= 0 c′
[i,1]

0.00344

4 s∗
[i,1]

c[i,1] = 0 c[i,0] 0.00344

5 s∗
[i,1]

c′
[i,1]

= 0 c′
[i,0]

0.00544

TABLE III: ZV-Attack Scenarios. Probabilities are experimen-
tally computed for zero-value conditions with N = 105 valid
traces

the output of the signature scheme. We mark a trace and the
corresponding challenge c̃ as valid for the attack if at least one
coefficient in c or c′ is 0; namely,

c[0,0] = 0 ∨ c[0,1] = 0 ∨ .. ∨ c[n/2−1,0] = 0 ∨ c[n/2−1,1] = 0 ∨
c′[0,0] = 0 ∨ c′[0,1] = 0 ∨ .. ∨ c′[n/2−1,0] = 0 ∨ c[n/2−1,1] = 0

(5)

The attacker has two options for collecting valid traces: i)
Sending random inputs to the victim device and record only
the valid traces, whereby the ratio for c̃ being valid for random
input is experimentally found as 0.23. ii) Compute messages
M that lead to valid traces. The ability of the attacker to
find messages that leads to valid challenges depends on the
knowledge over the secret key ingredient K, which can easily
be traced on the Dilithium signature generations function,
given in Algorithm 2. Note that, to force signatures that result
in valid traces, the attacker needs to learn K, which can be
achieved by a side-channel attack on Keccak with similar
resources [31], which is out of the scope of this paper. Once a
sufficient number of valid traces are found, they can be used
to attack ct0 and cs2 in addition to cs1 in all dimensions of
vectors s1, s2, t0, since all secrets are multiplied with same
challenges.

The individual probabilities for the coefficients c′[i,j] and
c[i,j] being 0, for a valid c̃ are another crucial factor of
attack performance. Table III lists the probabilities for the
aforementioned conditions, which are obtained experimentally
running signature generation algorithm with 105 different
inputs. Note that, each s∗[i,j] is attacked with the ones ensuring
the corresponding zero-value conditions among the collected
traces. The listed probabilities suggest that the conditions
are not met very often. Intuitively, assuming the SNR in
T requires 500 traces for the attack to converge, then the
attacker must perform approximately 145K measurements on
the victim’s device considering the probabilities of conditions
in the scenarios 2, 3, or 4 in Table III. Although the attacking
phase of the presented scheme is significantly faster than the
baseline by a factor of q′/2, it is extremely difficult to collect
valid traces to carry out the attack.

E. Decreasing the Number of Traces: Zero-Value Filtering

While the ZV scheme introduced in Section VI-D requires
a large number of traces to retrieve exactly the correct key, al-
ternatively having the correct key fall in top-d candidate list is
relatively inexpensive, depending on the value of d. Therefore,
the ZV attack method can be used as a filtering mechanism
for a conventional CPA as in the baseline scheme, forming a

two-stage attacking scheme, referred to as Zero-Value Filtering
Attack (ZV-FA), which is formalized in Figure 3. In the first
stage (a.k.a. filtering stage), the attacker detects d candidates
each for s∗[i,0] and s∗[i,1] using the ZV attack scheme, denoted
by K0 and K1. Then, a set of predictions K = K0 × K1 of
size d2 is formed. K is scored by a usual CPA in the second
stage (a.k.a. scoring stage). This is equivalent to carrying out
the baseline attack with relatively small number of hypotheses,
d2, as opposed to q′2. {α0, α1} is the top scoring pair from
the second stage, with score λ.

START

ZV-Attack for s∗[i,0] ZV-Attack for s∗[i,1]

CPA for {s∗[i,0], s∗[i,1]} with K = K0 ×K1

filtering stage

scoring stage

λ > υ

Return α0, α1 d← 2d

K1 = top-dK0 = top-d

α0, α1 with score λ

Yes No expand K0,K1

Fig. 3: Flowchart of ZV-FA on s∗[i]

By the filtering stage, this method assumes that the correct
key is in the top-d list of predictions of the highest scores for
the ZV attack. A threshold mechanism, denoted by υ, validates
the assumption through the attack output. The value of d is
iteratively increased and K0 and K1 are updated accordingly
until a prediction scoring greater than υ is found. By increasing
d, more candidates are evaluated by the second stage, which
increases the probability having the correct key in the top-d
list; naturally the second stage takes longer to evaluate more
candidates. Needless to say, the evaluated candidates from
previous trials are not included during the attack. Although
we double d at each time the threshold is not exceeded, a
different strategy on increasing d can be applied, as well. The
attack becomes identical to the baseline attack for which the
threshold is not taken into account if the scores remain below
υ until d covers the whole search space.

Compared to the ZV attack scheme, the new ZV-filtering
attack is more effective with a significantly smaller number
of traces. The number of traces included in the filtering stage
is denoted by Nf , while the second stage can be carried out
without the zero-value conditions. As a result, it can be carried
out with sufficient number of traces to ensure that its output is
reliable rather than using the entire set of valid traces, which
is excessive for evaluating the score.
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F. Using Inverse-NTT to Validate Predictions

The zero-value filtering attack introduced in Section VI-E
relies on the assumption that a precise threshold can be found
for all attacks on s∗[i] for 0 ≤ i < n/2, which, however, may
not hold in practice as a non-profiled attack is performed
in a blind manner. A possible solution to this problem is
to use a conservative threshold. However, this approach is
computationally expensive, and a conservative threshold can
still result in false positives, albeit with a lower probability.
Therefore, the attacker needs to verify the found secrets s1,
s2, and t0 using the public key and line 5 of Algorithm 1.
Note that this verification can only be performed after all the
mentioned secrets have been attacked in all vector indices.

A more reasonable strategy for the attacker is to make use
of the fact that NTT−1(s∗) ∈ Sη , is a short polynomial, whose
coefficients are in the range [−η, η]. A small mistake in the
prediction will diffuse through the inverse NTT computation
and ruin the coefficients of the output polynomial, empowering
the attacker efficiently validate the attack output. Figure 4
illustrates the flowchart of the ZV-FA from a higher-level
perspective with validation using the inverse NTT. Let a
denote the vector of polynomials, a prediction to s∗, formed
after completing the individual ZV-FAs to s∗[i] for all i. Note
that, a[i] is equal to {α0, α1} in Figure 3. To validate a,
a = NTT−1(a) is computed and the shortness property is
sought in the resulting polynomial a. In case the found poly-
nomial is not validated, the mispredicted pair of coefficients
in a is approximated and re-attacked in order to correct it.
The approximation is performed by selecting the pair of
coefficients with minimum score as computed by ZV-FA. Let
λ(a[i]) denote the score computed for a[i] by the application
of the ZV-FA to s∗[i], as can be observed in Figure 3. Then,
the index of the minimum scoring pair from a is found by
computing i′ = argmini′(λ(a[i′])) and the baseline+ attack
is performed on s∗[i′] to replace a[i′]. As the baseline+ attack
is a more exhaustive method compared to ZV-FA, a reliable
prediction is obtained for the coefficient pair with index i′.
Needless to say, until the inverse NTT results in a short
polynomial, the process is repeated. We should also not that,
once a pair of coefficients in s∗ is corrected by the baseline+,
that pair is not included in the subsequent baseline+ attacks
as the baseline+ cannot be repeated for the same coefficient
pair.

The application of inverse NTT as a reliable and efficient
method of verification renders the ZV-FA fault-tolerant. This
method ensures the preservation of accuracy regardless of the
choice of υ, allowing for the use of lower thresholds that can
enhance attack performance. Furthermore, verification can be
conducted individually on s∗, i.e. any of the polynomials in
s1 or s2. After obtaining s1 and s2, through the side-channel
attacks described earlier, the attacker can compute t0 using
line 5 of Algorithm 1.

VII. RESULTS

In this section, we present the results obtained after imple-
menting the above-mentioned attacks on a realistic experimen-
tal setting.

START ZV-FA for all s∗[i]

a = NTT−1(a)||a||∞ ≤ ηReturn a

Baseline+ for s∗[i] | i = argmini(λ(a[i]))

a

Yes

No

update a

Fig. 4: Application of Inverse NTT Validation to ZV-FA for
attacking s∗

A. Experimental Setup

We employ Analog Devices’ MAX325202 as the victim
device to run pqm4’s Dilithium signature implementation. The
MAX32520 incorporates a 120MHz ARM Cortex-M4F core
that can sign random 32B messages in 65.52 ms, on average.
For EM trace collection, LeCroy WavePro HD oscilloscope3

and Langer ICR HH500-64 nearfield micro-probe are used.
Sampling rate of the oscilloscope is set to 10GS/s, yielding
83.33 samples per clock. We set up a trigger at the beginning
of the function small_asymmetric_mul_asm to record
the relevant time samples because our focus is on the poly-
nomial multiplication. That the attacker would collect time
samples throughout the entire multiplication process in a real-
world scenario and use pattern detection to locate the men-
tioned function is beyond the scope of this work. The Scared
library5 is used for analysis and attack, running on a computer
equipped with 64GB RAM and AMD Ryzen 9 5900X 12-Core
Processor clocked at 3.70GHz. Note that the study requires a
Python model that mimics the target processor’s behavior for
the intended Dilithium implementation, which is developed
in-house.

B. Post-processing and Analysis

Our first observation is that, misalignment emerges as time
progresses in the trace set. It is clearly seen in Figure 5a that
the correlation of c as well as c′ with EM samples decreases
over time, towards greater indexes of both vectors. To cope
with the adverse effects of misalignment We performed the
following post-processing steps: 1) pattern detection, 2) signal
filtering, 3) extraction around peaks. A reference pattern is
set by band-pass filtering the first trace between 100MHz -
140MHz and applying moving variance on it. A 50 MHz low-
pass filter is applied to the raw traces which are aligned based
on the reference pattern. Then, 64 peaks, which correspond
to iterations of small_asymmetric_mul_asm (see Algo-
rithm 3), are detected and 2480 sequential points after each
peak are combined. Figure 5b illustrates the effect of post-
processing through meta data correlation. Figure 6 highlights

2https://www.analog.com/en/products/max32520.html
3https://teledynelecroy.com/oscilloscope/wavepro-hd-oscilloscope
4https://www.langer-emv.de/en/product/near-field-microprobes-icr-hh-h-

field/26/icr-hh500-6-near-field-microprobe-2-mhz-to-6-ghz/108
5https://pypi.org/project/scared/
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(a)

(b)

Fig. 5: Reverse meta analysis for c and c’, before (a) and after
(b) synchronization.

(a)

(b)

Fig. 6: Iterations of _asymmetric_mul_16_loop high-
lighted over mean trace

the iterations over the average of post-processed traces, con-
forming with the pre-knowledge on the implementation.

Given the clear visibility of the iterations of
_asymmetric_mul_16_loop over time samples, it
is possible to conduct individual attacks on s∗[i] during time
regions associated with each iteration. Note that, partitioning
the attack range over time is critical for the presented
performance results of all schemes. As an initial analysis,
we have performed the baseline+ on s∗[0] and s∗[1]. The
convergence patterns of the retrieved secrets are presented
in Figure 7. It is evident that the convergence behaviors of
the two attack indexes are dissimilar. Notably, attacking s∗[0]
targets Line 25 of Source Code 1, while attacking s∗[1] targets
Line 33, resulting in distinctive SNRs. Therefore, we employ
different numbers of traces and thresholds for attacks on s∗[i]
depending on the oddness of i.

(a) (b)

Fig. 7: Key convergence for s∗[0] (a) and s∗[1] (b) with the valid
threshold ranges

C. Attack and Performance

We start the evaluation by the performance of the baseline
and baseline+ schemes. As discussed in the preceding section,
the signal-to-noise ratio (SNR) varies for attacking odd and
even indices of the secret vector s∗. Accordingly, 300 and
100 traces are employed for attacking even and odd indexes,
respectively, based on the key convergence results presented in
Figure 7. Clearly, fewer number of traces could indeed work
for the initially analysed indexes. However, we need to set a
ballpark margin considering noisy indexes. It should be noted
that the same number of traces is employed for the scoring
stage of the ZV filtering attack, and the focus of this paper is
not on reducing N further, but rather on assessing the impact
of filtering. The performance of the baseline and baseline+

schemes is reported in Table IV. In terms of accuracy, both
schemes exhibit flawless performance and do not pose any
concerns. However, in terms of run-time, the performance of
the attacks is moderate. As expected, the baseline+ scheme
improves the performance of the baseline scheme by a factor
of 2× while preserving accuracy, which supports the correct-
ness of the attack methodology. Nevertheless, even with the
baseline+ scheme, retrieving s1 and s2 requires approximately
4.5 hours.

For the application of ZV-FA, the attack scenarios 1 and 2
from Table III are employed for attacking the lower degree
coefficients of the polynomials, specifically s∗[i,0] for any 0 ≤
i < 128, while the scenarios 3 and 5 are utilized for the higher
degree coefficients s∗[i,1]. It should be noted that scenarios 1
and 5 are not independently executed, as they represent the
same attack. The outcomes of different scenarios are combined
by multiplying their respective results. Experimental results
indicate that the ZV filtering can substantially decrease the
attack response time up to two orders of magnitude, dependant
upon the number of filtering traces Nf available in the system.
The trade-off between Nf and speed-up is illustrated in
Figure 8a. It is noteworthy that even a small number of traces
can yield a significant improvement in baseline performance.
For example, the ZV-FA provides a speed-up of 9× with
Nf = 5K, collection of which is feasible. When more valid
traces are available in the system, particularly with Nf = 13K,
ZV-FA achieves a speed-up of 128.1× over the baseline. We
underline that, the achieved speed-up can save approximately
535 minutes (≈ 9 hours) considering the retrieval of whole s1
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Method N Runtime(s∗
[i]

) Runtime(s∗) Runtime(s1) Runtime(s1,s2)
Baseline 300,100 ≈22.96s ≈49m ≈245m ≈539m

Baseline+ 300,100 ≈11.48s ≈24.5m ≈122.5m ≈269.6m

TABLE IV: Performance of Baseline and Baseline+ Attacks
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Fig. 8: Speed-up w.r.t. Nf (a) and υ (b)

and s2 with a trace collection overhead of 14.1 minutes for
filtering.

Threshold values for odd and even indexes of s∗ are as-
signed distinctively, as can be observed in the threshold ranges
highlighted in Figure 7. One can also observe from Figure 8b
that the best speed-up is reached for the threshold values of
{υ0, υ1} = {0.3, 0.5}. While attacker may not always know
the best threshold values, using other threshold values can also
provide significant speedup over the baseline attack. For lower
threshold values, false positives deteriorate the performance.
On the other hand, the algorithm may not terminate for higher
threshold values, as the correct hypothesis may fail to satisfy
them. We also note that the scheme’s accuracy is preserved
for any threshold value thanks to the inverse NTT validation
and correction mechanism presented in Section VI-F.

Note also that minimum distances to the corresponding
threshold value are taken into consideration instead of absolute
scores during the execution of the flowchart in Figure 4 for
replacing mispredicted values as we use two distinct threshold
values for the elements of s∗ with even and odd indices.

Similarly, the scheme’s accurate independently from the
number of traces used for filtering Nf , which, however,
determines its performance. Recall that, the performance of
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Fig. 9: Number of occurrences for which threshold is exceeded
by evaluating the candidates from top-d with respect to d for
υ0 = 0.3, υ1 = 0.5

the ZV-FA scheme strongly depends on the effectiveness of
the filtering stage. Figure 9 shows that, even with a moderate
values of Nf , a secret pair with score greater than the threshold
is discovered within the top-d during the filtering stage for
a remarkable portion of the secret coefficients and practical
values of d in terms of performance. Particularly for Nf = 5K,
84 of 128 (%65) secret pairs are retrieved in top-64, which
corresponds to (769− 64)/769 (%92) reduction in the search
space from the baseline to scoring stage of ZV-FA.

VIII. CONCLUSION

This paper presents a series of non-profiled side-channel
attacks against the incomplete NTT based implementation of
lattice-based post-quantum signature algorithm Dilithium [14],
[15]. Specifically, the attacks focus on the NTT-based poly-
nomial multiplication cs1, although they can also be applied
to cs2 without any modification. The target implementation
operates with a carrier prime q′ = 769, which results in
a key guess space of q′2 since two coefficients of the in-
complete NTT representation must be predicted together. The
baseline and baseline+ schemes are conventional methods
that rely on brute-force method in the sets of cardinality
q′2 and q′2/2, respectively. Our study shows that, the cost
of a conventional CPA against the studied incomplete NTT
based implementation of Dilithium [14] is approximately 3-
bit cheaper compared to the attack [20] against Dilithium’s
traditional implementation utilizing the 22-bit q. To mitigate
the search costs, we introduced the zero-value attack, which
reduces the size of the set of hypotheses to q′ in the brute force
attack by taking advantage of multiplication by 0 to eliminate
one of the attacked pair of coefficients from the equation.
However, this approach requires a significantly higher number
of traces. Next, we presented the zero-value filtering attack,
which represents a trade-off between the number of traces and
attack run-time. With an appropriate number of traces, this
attack can achieve a speed-up of two orders of magnitude
over the baseline. Finally, we proposed an efficient way of
verification of predictions on short polynomials. It makes the
proposed scheme accurate independent of parameters such as
the threshold, number of filtering traces. Experiments suggest
that the ZV-FA is favorable even with moderate parameters.

Although we practiced our approach against Dilithium, it
can be generalized to similar incomplete NTT based imple-
mentations of lattice-based cryptography, such as the Kyber
implementation in [14]. Note that, Kyber also employs 7
layers of incomplete NTT albeit with a different prime, leading
≈ 23.4-bit search space for a pair of secret coefficients
with exhaustive search [19]. Masking stands as the most
promising way of counteracting the presented attacks [32].
As a takeaway, our study evidences that special cases such as
zero-values in parts of targeted secrets can still be exploited
efficiently, although they are not frequent, by constructing a
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filtering mechanism based on them and the accuracy of the
attack is preserved if a suitable method of verifying hypothesis
can be found.
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