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Abstract. Streamlined NTRU Prime is a lattice-based Key Encapsulation Mechanism
(KEM) that is, together with X25519, currently the default algorithm in OpenSSH 9.
Being based on lattice assumptions, it is assumed to be secure also against attackers
with access to large-scale quantum computers. While Post-Quantum Cryptography
(PQC) schemes have been subject to extensive research in the recent years, challenges
remain with respect to protection mechanisms against attackers that have additional
side-channel information such as the power consumption of a device processing secret
data. As a countermeasure to such attacks, masking has been shown to be a promising
and effective approach. For public-key schemes, including any recent PQC schemes,
usually a mixture of Boolean and arithmetic approaches are applied on an algorithmic
level. Our generic hardware implementation of Streamlined NTRU Prime decapsulation,
however, follows an idea that until now was assumed to be only applicable to symmetric
cryptography: gate-level masking. There, a hardware design that consists of logic gates
is transformed into a secure implementation by replacing each gate with a composably
secure gadget that operates on uniform random shares of secret values. In our work,
we show the feasibility of applying this approach also to PQC schemes and present
the first Public-Key Cryptography (PKC) – pre- and post-quantum – implementation
masked at gate level considering several trade-offs and design choices. We synthesize
our implementation both for Artix-7 Field-Programmable Gate Arrays (FPGAs) and
45 nm Application-Specific Integrated Circuits (ASICs), yielding practically feasible
results regarding area, randomness demand and latency. Finally, we also analyze
the applicability of our concept to Kyber which will be standardized by the National
Institute of Standards and Technology (NIST).
Keywords: PQC, Masking, FPGA, ASIC, Streamlined NTRU Prime, Higher-order
Masking, Gate-level Masking

1 Introduction
Wide deployment of Post-Quantum Cryptography (PQC) algorithms in practical solutions
is indispensable. Even though there is no guarantee that the advent of large-scale quantum
computers will happen at all, the protection of future data must be ensured by deploying
algorithms that are secure even in the presence of large-scale quantum computers in the
near future.

Moreover, it is vital for deployed implementations processing sensitive data to provide
also security against physical attacks. For implementations on server machines and personal
computers, it usually suffices to use strictly constant time implementations by means of
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having an execution time independent of secret values. This does not include branching
based on secret data and loading values from secret addresses.

For embedded devices, however, we additionally have to consider adversaries who can
measure the power consumption or electromagnetic (EM) emanation of a device processing
secret data. In this context, many practical attacks have been shown in the past on
“classical”, but also PQC schemes. For instance, several attacks have been published
attacking Kyber [XPR+21, SPH22, HHP+21, HPP21], Saber [NDGJ21], Falcon [KA21],
NTRU [AR21], or even generic on lattice-based constructions [RRCB20]. Notable here
are attacks targeting side-channel protected implementations, such as the recent attacks
on a fifth-order masked Kyber implementation [DNG22], a third-order masked Saber
implementation [NWDP22] and a first-order masked Saber implementation [NDJ21].

Specifically for Streamlined NTRU Prime, two attacks have been proposed. First, Xu et
al. show single-trace attacks on fixed weight sampling as used in Streamlined NTRU Prime
and NTRU key generation as well as Dilithium signing [KAA21]. Furthermore, Ravi et al.
present a method to recover the Streamlined NTRU Prime secret key with a side-channel
assisted chosen-ciphertext attack [FBR+22]. They demonstrate the capability of a full key
recovery with just 3 005 traces for the smallest parameter set and with 4 688 traces for
larger parameter sets.

Contrary, dedicated countermeasures aiming at decoupling the connection between
secret data and power consumption have been proposed in the past decades. The main tech-
nique for that purpose is masking which splits secret values into multiple uniform random
shares. In this context, research has focused recently on masked PQC implementations in
software, mostly for Kyber and Saber. A recent preprint presents a masked implementation
of NTRU for embedded software [CGTZ22]. In contrast, there are far less works on harden-
ing hardware implementations, again focusing on Kyber [JGCS21,FBR+22,KNAH22] and
Saber [AMD+21,FBR+22]. To the best of our knowledge, no PQC schemes other than
Kyber and Saber have a fully masked hardware implementation published, where both
implementations target Field-Programmable Gate Arrays (FPGAs) and first order only.

To date, secure implementations for the Streamlined NTRU Prime scheme have not been
yet proposed, neither for software nor for hardware platforms, despite of the fact Streamlined
NTRU Prime is already the default choice for the widely used OpenSSH suite, starting
from version 9.0. In our work, we aim to close this gap by presenting the first masked
hardware implementation of Streamlined NTRU Prime decapsulation for hardware devices,
synthesizable both for FPGA and Application-Specific Integrated Circuit (ASIC) and
aiming at use-cases where OpenSSH-supported connections are established with external
hardware devices that are potentially under exposure to physical attackers. Moreover,
our implementation is masked on gate level rather than algorithmic level, which has the
advantage of being easily configurable to provide protection for any arbitrary order. To the
best of our knowledge, this is the first gate-level masked implementation of a Public-Key
Cryptography (PKC) decapsulation or decryption, both for the pre- and post-quantum
settings and the first masked ASIC implementation of any PQC scheme.

Contribution. Hence, we can summarize our contributions as follows:

• We present the first gate-level masked implementation of any PKC scheme.

• Our approach can be generalized to an arbitrary-order masked hardware implemen-
tation of any PQC scheme for which the masking degree can be adjusted easily.

• We implement our design both on a Xilinx Artix-7 FPGA, and as an ASIC using
the 45nm Nangate open cell library1.

1Available at https://si2.org/open-cell-library/
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• Compared to other existing fully masked PQC FPGA implementations, our imple-
mentation has similar (in the case of Saber) or significantly lower (in the case of
Kyber) resource requirements for first-order security.

• We present the first arbitrary-order masked SHA-2 hardware implementation in
scientific literature.

• The side-channel resistance of our implementation is formally verified using the
VERICA tool.

• Our source code will be available at https://github.com/AdrianMarotzke/Mask
ed-SNTRUP.

2 Preliminaries
In this section, we briefly introduce our notations used throughout this work. Afterwards,
we recap masking and important composability notions. Eventually, we describe Streamlined
NTRU Prime and particularly the decapsulation.

2.1 Notation
Throughout this work, we denote Rq = Zq[x]/(xp − x − 1), and R3 = Z3[x]/(xp − x − 1)
with p, q being primes. Furthermore, we write x[i : j] for bit vectors of length |i − j| + 1
and also allow multiple dimensions for this, e.g., x[i : j, k : l] is a vector of |i − j| + 1 bit
vectors each of length |k − l| + 1. For masking, we use d as the masking degree, i.e., the
number of probes an attacker has access to. It follows that we split secrets into d + 1
shares, referring to a single share as x(i) with 0 ≤ i ≤ d. Moreover, we denote x(0:d) as a
masked variable. At any occurrence of Boolean operations that involve masked variables,
we assume to perform this securely, e.g., by means of a secure gadget. Finally, we stress
that x(0:d) denotes inverting the secret value by inverting one share rather than inverting
each share (which would not invert the secret value for odd d).

2.2 Masking
Masking is an approach based on Shamir’s secret sharing. It has been proven as an effective
countermeasure against power or EM side-channel attacks by splitting secret values into
uniform random shares. In our work, we employ only Boolean masking where a secret
value x is split into d + 1 shares x(i), such that x =

⊕d
i=0 x(i). While functions that are

linear or affine in the masking domain can be applied trivially to each share individually,
we use specialized methods to secure non-linear functions like AND or OR operations.

In order to verify and evaluate the resistance against side-channel attacks of such
special function, a range of different attacker models have been proposed in the past. In
2003, Ishai, Sahai, and Wagner [ISW03] introduced the d-probing model which is still
frequently used as appropriate abstraction. However, this model neither includes glitches
nor transitions or couplings and thus has been extended to a robust d-probing model
incorporating these phenomena [BGI+18,FGP+18].

Nevertheless, the robust d-probing model is not sufficient to analyze the composability of
atomic building blocks called gadgets. Hence, Barthe et al. introduced Non-Interference (NI)
as the first composability notion in 2015 [BBD+15]. Although NI limits the leakage between
shared intermediate results, it does not guarantee probing security of composed circuits.
Therefore, Barthe et al. presented the notion of Strong Non-Interference (SNI) [BBD+16]
which ensures composability of gadgets. Eventually, Cassiers and Standaert proposed
Probe-Isolating Non-Interference (PINI) [CS20] reducing the overhead introduced by SNI

3

https://github.com/AdrianMarotzke/Masked-SNTRUP
https://github.com/AdrianMarotzke/Masked-SNTRUP


gadgets. PINI ensures that all shared AND gadgets are composable and XOR as well as
NOT operations can be performed share-wise without refreshing.

Bringing this concept to concrete instantiations of SecAND gadgets in hardware,
Cassiers et al. proposed Hardware Private Circuits (HPCs) [CGLS21]. HPC allows to
instantiate an arbitrary-order masked SecAND gate with two clock cycles latency for one
input and one clock cycle for the other input denoted as HPC1. Moreover, they optimized
this gadget for less randomness demand denoted as HPC2 gadget. Following this, Knichel
et al. proposed Generic Hardware Private Circuits (GHPCs) to build more complex gadgets
that are PINI [KSM22]. Finally, in a recent work, Knichel and Moradi presented HPC3
achieving a lower latency by using more fresh randomness [KM22].

2.3 Streamlined NTRU Prime
Streamlined NTRU Prime is a lattice-based Key Encapsulation Mechanism (KEM) which
is resistant against both classical and quantum adversaries [BCLv17,BBC+20]. It has been
designed carefully using structured lattices while firmly avoiding potentially exploitable
attack surfaces. In particular, it eliminates decryption failures and employs large Galois
groups instead of cyclotomics.

Streamlined NTRU Prime defines Short as the set of polynomials in Rq with exactly w
non-zero coefficients from {−1, 1} [BCLv17]. Furthermore, we also use the notation of an
underline indicating that the respective value is encoded.

As a KEM, it uses the Fujisaki-Okamoto transform to achieve indistinguishability
under chosen-ciphertext attacks (IND-CCA) and builds upon a public-key encryption
scheme that fulfills one-wayness against passive attacks. In the following, we describe the
three procedures of the KEM: key generation, encapsulation, and decapsulation.

Key Generation. First, a uniform random polynomial g in R3 is generated. This step
is repeated until g is invertible in R3. Then, the inverse polynomial of g is computed.
Furthermore, f is sampled to be a polynomial from Short. The secret key consists of
f and g−1 as well as a random bit string ρ which is used for implicit rejection during
decapsulation. Finally, the public key is computed as h ∈ Rq = g/(3f).

Encapsulation. The first step is to sample a uniformly random polynomial r from Short,
which is then multiplied with the public key polynomial h. In the resulting polynomial,
each coefficient is rounded to the nearest multiple of three. The output of this operations
is denoted as the polynomial c. Subsequently, the encoded r and the encoded public key
are hashed to create the ciphertext confirmation hash. The confirmation hash together
with the encoded c is the ciphertext. The session key is computed by hashing the encoded
r and the ciphertext.

Decapsulation. The decapsulation is shown in Algorithm 1 in detail. The basic idea is
to remove the denominator of the public key from the ciphertext by multiplying 3f in Rq.
The subsequent application of modulo 3 to each coefficient removes the rounding error
which is succeeded by the multiplication with 1/g ∈ R3 to also remove the numerator of
the public key and to obtain the plaintext. This plaintext is checked to be in the correct
space Short. Furthermore, to ensure that no chosen-ciphertext attack is carried out, the
obtained plaintext is re-encrypted and the result is compared to the original ciphertext. If
everything matches, the correct session key is reconstructed, else an implicit rejection is
performed by using ρ. Note that this final rejection step is strictly required to be performed
in constant time.
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Algorithm 1 Streamlined NTRU Prime Decapsulation [BBC+20]
Require: ciphertext C = (c, γ), secret key (k = Encode(f, g−1), K = Encode(h), ρ,

hash4(K))
1: c ∈ R3 := Decode(c)
2: (f, v) ∈ R3 × R3 := Decode(k)
3: h ∈ Rq := Decode(K)
4: e ∈ R3 := ((3fc) ∈ Rq) mod 3
5: r′ ∈ R3 := ev
6: if r′ does NOT have weight w then
7: r′ := (1, 1, . . . , 1, 0, 0, . . . , 0) ▷ The first w elements are 1, the rest 0
8: end if
9: c′ ∈ Rq := Round(hr′) ▷ re-encrypt with h, r′, compute new ciphertext c′

10: c′ := Encode(c′)
11: r′ := Encode(r′)
12: γ′ := hash2(hash3(r′), hash4(K))) ▷ re-compute the ciphertext confirmation hash
13: C ′ = (c′, γ′)
14: if C ′ = C then
15: return hash1(hash3(r′), C)
16: else
17: return hash0(hash3(ρ), C)
18: end if

3 Conceptual Considerations
To implement the decapsulation as shown in Algorithm 1, we essentially need six major
modules:

1. Polynomial multiplication with operands in (Rq, R3) and return values in Rq,
2. Polynomial multiplication with operands in (R3, R3) and result in R3,
3. Reduction component modulo 3,
4. Weight check component,
5. Rounding module, and
6. SHA-512.

Standard Approach. Usually, to mask polynomial multiplication modules, additive
masking would be applied, with either multiple polynomial multipliers being instantiated
in parallel, or one polynomial multiplier being instantiated that processes the shares
consecutively. Moreover, two of the three multiplications have one public and one secret
input which can be realized very efficiently by applying additive masking as it only requires
d + 1 polynomial multiplications and no re-sharing. The other multiplication, however,
has two secret input polynomials. In order to perform a secure polynomial multiplication
in additive domain, this requires sampling d2+d

2 fresh random polynomials, 2(d2 + d)
polynomial additions, and d2 + d polynomial multiplications.

In contrast, masking the reduction, weight check, and rounding is non-trivial in
arithmetic domain and would be solved in Boolean domain. Finally, SHA-512 uses 64 bit
additions, which is efficient in additive domain and feasible, but less efficient in Boolean
domain, as well as non-linear Boolean operations that strictly require Boolean masking.

In summary, this traditional approach is expected to yield a relatively efficient imple-
mentation at the cost of converting multiple times between additive and Boolean masking

5



domain. Moreover, often this type of implementation is very specific in terms of masking de-
gree, i.e., not being parametrizable. Besides, the big variety of techniques applied produces
a larger attack surface, as shown in recent attacks on masking conversions [NWDP22].

Applicability of Gate-Level Masking. To overcome these downsides, we follow a recent line
of research from the field of masking symmetric cryptographic schemes: gate-level masking.
For schemes in symmetric cryptography, we usually can find a Boolean description which
enables masking them at gate-level. This is not the case for public-key and post-quantum
cryptography as these schemes typically employ arithmetic operations on number-theoretic
structures such as multiplications in polynomial fields. Polynomial multiplications, however,
consists of modular multiplications and additions in some finite number field. While the
modular additions can be masked easily in Boolean domain by means of a secure adder,
the modular multiplications are vastly more complex and are deemed to be infeasible to
be masked in Boolean domain.

However, for Streamlined NTRU Prime, we observe that the three polynomial multipli-
cations each have at least one factor in R3. As a consequence, if we employ schoolbook
multiplication, the underlying coefficient multiplication-accumulation has an input from
Zq being multiplied either with 1, 0, or -1, and then accumulated to another value in
Zq. We immediately observe that no complex modular multiplication must be carried
out in this case. Instead, we can securely multiplex between the input coefficient from
Zq, its precomputed additive inverse, and zero. The result then is added securely to
the accumulation value. As indicated before, all other operations are already feasible in
Boolean domain, enabling the first fully Boolean masked implementation of a public key
and post-quantum secure scheme.

In the following, we describe our design considerations for each module in Boolean
domain. Note that in contrast to conventional hardware development, where it is desirable
to have as many NAND gates as possible as they are the cheapest gates, the design goal
in our case is to have as few as possible SecAND gates, as they require fresh randomness.
Throughout our design, we use the HPC2 SecAND gadget.

3.1 Polynomial Multiplication
Polynomial multiplications are the most expensive operations in the decapsulation. Thus,
research usually focuses on improving their performance [Mar20, PMT+22, CHK+21,
ACC+21]. Instead, we focus on achieving a secure implementation. During decapsulation,
two types of multiplications are required:

1. Multiplication in Rq with one operand from R3 (Lines 4 and 9 in Algorithm 1) and

2. Multiplication in R3 (Line 5 in Algorithm 1).

3.1.1 Multiplication in Rq

We observe that if we employ a standard schoolbook multiplication approach for both
occasions of this multiplication, no coefficient multiplier is necessary. Rather, we use a
secure adder and a secure three-way multiplexer. It is important to note that for both
multiplications in Rq, the input polynomial from Rq is public while the other factor from
R3 is secret. Thus, the idea is to compute the additive inverse of the input coefficient from
Rq which is unmasked. Then, we multiplex securely – with masked select signal – between
both values and zero, and finally accumulate the result securely to the (intermediate) result
coefficient.
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Secure Multiplexing. Furthermore, we need a secure three-way multiplexer. The three
public input signals are z = 0, ap = a, an = q − a ∈ Zq. However, here we view them as
boolean values in F13

2 . The secret select signal is (f [1], f [0]) ∈ {(0, 0), (0, 1), (1, 1)}. We
perform two consecutive secure 2-input multiplexing operations:

x[0](0:d) = ap ∧ f [1](0:d) ⊕ an ∧ f [1](0:d) = ap ∧ f [1](0:d) ⊕ an ∧ (f [1](0:d) ⊕ 1)
= ap ∧ f [1](0:d) ⊕ an ∧ f [1](0:d) ⊕ an

= ((ap ⊕ an) ∧ f [1](0:d)) ⊕ an (1)

x[1](0:d) = x[0](0:d) ∧ f [0] ⊕ z ∧ f [0](0:d) = ((x[0](0:d) ⊕ z) ∧ f [0](0:d)) ⊕ z

= x[0](0:d) ∧ f [0](0:d) (2)

Note that the public inputs can be set as first shares and all other shares are just zeros.
This is the reason why we can simply omit z in Equation 2. The SecAND gadget generates
a uniformly random output also for the case that (f1, f0) = (0, 0).

Secure Addition. Efficient addition in hardware can be achieved by parallel prefix adders.
These concepts also have been adapted to the Boolean masked domain first in [SMG15].
This was followed by a broader examination with more recent techniques like threshold
implementation and gate-level masking [BG22], which we also deploy for our work.

3.1.2 Multiplication in R3

The idea for this case is that there are only nine possible input combinations with three
output combinations. Thus, we develop a direct Boolean masking utilizing the fact
that the single inputs have a limited range. Multiplying two signed two-bit coefficients
e[1 : 0] = e[0]−2e[1] and v[1 : 0] = v[0]−2v[1] to a signed two-bit value r[1 : 0] = r[0]−2r[1]
can be done as follows:

r[0](0:d) = e[0](0:d) ∧ v[0](0:d) (3)
r[1](0:d) = e[0](0:d) ∧ v[0](0:d) ∧ (e[1](0:d) ⊕ v[1](0:d)) (4)

Then, we add r[1 : 0](0:d) to the accumulation value a[1 : 0](0:d) and map the result
back to the signed a′[1 : 0](0:d) ∈ {−1, 0, 1} which can be done with the following formulas
that take into account that only 002, 012, 112 are valid inputs:

a′[0](0:d) =
(

r[0](0:d) ⊕ a[0](0:d)
)

∨
(

r[0](0:d) ∧
(

r[1](0:d) ⊕ a[1](0:d)
))

(5)

a′[1](0:d) =
(

r[1](0:d) ∧ a[0](0:d)
)

⊕
(

r[1](0:d) ∧
(

r[0](0:d) ⊕ a[1](0:d)
))

(6)

3.1.3 Schoolbook Polynomial Multiplication

Generally, there are three approaches for this: Either we rotate one of the input polynomials
or the output polynomial. For our two “big” multiplications in Rq, we have a small secret
input represented by 2(d + 1) bit, a big public input represented by ⌈log2 q⌉ bit, and a big
secret output represented by (d + 1)⌈log2 q⌉ bit. Since shifting many data is expensive in
terms of routing, Flip-Flop (FF) demand, and dynamic power consumption, the natural
choice is to rotate either of the input polynomials.

3.1.4 Polynomial Reduction modulo xp − x − 1

For the schoolbook multiplication, we can directly perform the polynomial reduction. We
observe that xp ≡ x + 1 mod xp − x − 1, which indicates that the uppermost coefficient
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(xp) during rotation must be additionally added to the before lowermost coefficient. As we
indicated before, we want to rotate either of the input polynomials. Applying this strategy
to the R3 polynomial, would result in an increased coefficient range of [−2, 2] due to the
extra addition during polynomial reduction. We would require a 5-way multiplexer instead
of a 3-way multiplexer, increasing both area and randomness demand. Thus, we choose
to rotate the public Rq input polynomial and perform polynomial reduction in the same
domain.

3.2 Modular Reductions
For Streamlined NTRU Prime decapsulation, we require two different modular reductions.

3.2.1 Reduction Modulo q

This reduction is only applied for the accumulation within the Rq polynomial multipli-
cations. We decide to employ usage of the non-negative modular representation in the
interval [0, q) only since in the centered representation we would need to check both for
underflows and overflows. Therefore, the value to reduce only grows by a maximum of
one bit and can only provoke an overflow. Thus, a conditional subtraction by q suffices
resulting in two possible approaches:

1. Assuming the accumulation produces a carry-out bit which we use to conditionally
subtract q from the result. By this, our value always remains correctly in Zq, but
not necessarily in the interval [0, q). Therefore, a final pass over the polynomial is
required to reduce it to the minimal interval.

2. Subtract q from all accumulation results and obtain the carry bit from that operations.
If this is 1, we know an underflow occurred. Thus, we can use the carry bit to multiplex
securely between the original accumulation value and the subtracted value. This
keeps all intermediate values in the minimal interval [0, q).

3.2.2 Reduction Modulo 3

For the modulo 3 reduction, we have given an input from Zq and want to reduce it to
{−1, 0, 1}. We start with an unsigned 13-bit number z[12 : 0] and repeatedly exploit the
relation 2 ≡ −1 mod 3. Note that all operations here also carried out in masked domain,
but we omit the masking notation when dealing with arithmetic modulo 3.

z[12 : 0] ≡ 2z[12 : 1] + z[0] ≡ −z[12 : 1] + z[0] mod 3
≡ −2z[12 : 2] − z[1] + z[0] ≡ z[12 : 2] − z[1] + z[0] ≡ . . . mod 3

≡
6∑

i=0
z[2i] −

5∑
i=0

z[2i + 1] mod 3 (7)

The result of this computation ranges from -6 to 7 and is represented by a signed 4-bit
integer y[3 : 0] = −23y[3] + y[2 : 0]. We again exploit the above relation:

−23y[3] + y[2 : 0] ≡ y[3] + y[2 : 0] ≡ y[3] + 2y[2 : 1] + y[0] mod 3
≡ y[3] − y[2 : 1] + y[0] ≡ y[3] − 2y[2] − y[1] + y[0] mod 3
≡ y[3] + y[2] − y[1] + y[0] mod 3 (8)

This results in a value ranging from -1 to 3, represented by a signed 3-bit integer
x[2 : 0] = −4x[2] + x[1 : 0] ≡ x[1 : 0] − x[2] mod 3. This value can already be mapped to a
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value w[1 : 0] ∈ {−1, 0, 1} efficiently:

w[0](0:d) = x[0](0:d) ⊕ x[1](0:d) ⊕ x[2](0:d) (9)

w[1](0:d) =
(

x[0](0:d) ∧ x[1](0:d)
)

⊕ x[1](0:d) ⊕ x[2](0:d) (10)

One additional point to consider is that this modulo 3 calculation assumes an unsigned
13-bit number. However, in the NTRU Prime specification, the modulo 3 operation is used
on signed 13-bit numbers, in the interval [−q/2, q/2] [BBC+20]. This means that numbers
in the interval [q/2, q) must be treated slightly differently, as these were originally negative.
However, the solution is simple: since q = 4591, and 4591 = 1 mod 3, we simply have to
add 1 to the final result if the original number was in the interval [q/2, q). This addition
can be in a similar way to the multiplication in R3 (see section 3.1.2).

3.3 Weight Check
Let r′[0 : 1, 0 : p − 1](0:d) be an array of p shared two-bit numbers. Valid values are (0, 0),
(0, 1), (1, 1) if the signed representation is used, and (0, 0), (0, 1), (1, 0) for the unsigned
representation. We wish to check if exactly w array elements are non-zero. Thus, the basic
idea depends on the chosen representation.

Signed. We accumulate all r′[0, :](0:d) values together, with a secure ⌈log2 w⌉-bit
adder.

Unsigned. We compute r′[0, :](0:d) ∨ r′[1, :](0:d) and accumulate the resulting shared
bit vector with a ⌈log2 w⌉-bit adder.

It follows that the signed representation demands less non-linear Boolean operations. For
the secure adder, the same adder as used for the polynomial multiplications is applied.

Following this, we then bit-wise XOR the shared adder output with the public target
weight w, and then OR all bits of the result together to a single shared result bit.

The overwriting of r′ can be performed with a secure 2-way multiplexer deciding
between the secret r′ and the fixed public vector (1, 1, . . . , 1, 0, 0, . . . , 0).

3.4 Rounding
For rounding, we first perform a reduction of the coefficient modulo 3 and then subtract
the result from the original coefficient. As a result of the modulo operation, we obtain two
masked bits a[1 : 0](0:d) ∈ {(0, 0), (0, 1), (1, 1)}. With this, we want to

1. add 1 for a[1 : 0](0:d) = (1, 1)
2. add q − 1, which is analogue to subtracting 1, for a[1 : 0](0:d) = (0, 1), and
3. add zero for a[1 : 0](0:d) = (0, 0)

One way to achieve this is by multiplexing securely between q −1, 1 and zero depending
on a[1 : 0](0:d), which in turn would include more non-linearity. To avoid this, we can
construct the value a[0](0:d) · (q − 1) − a[1](0:d) · q and add that to the initial coefficient. In
other words, this value consists of a[0](0:d) in all binary positions where q − 1 is 1, except
the least significant bit, where it consists of a[0](0:d) ⊕ a[1](0:d). For the addition, we can
re-use the addition-reduction procedure as used for polynomial multiplication.

3.5 SHA-512
SHA-512 employs a Merkle-Damgård construction processing a 512 bit state divided into
eight 64 bit words A, B, C, D, E, F, G, H. In order to update the state, SHA-512 implements
seven adders (modulo 264), the two functions Σ0 and Σ1, and the functions SHA-Ch and
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SHA-Ma. The former two functions Σ0 and Σ1 consist of simple shift operations by three
different values for each function processing A and E, respectively. The outputs of the
shifts are added together by XOR operations. SHA-Ch and SHA-Ma are both non-linear
function processing E, F, G and A, B, C, respectively.

For our masked hardware implementation, we can secure the seven adders by applying
the concept of the masked adder introduced in Section 3.1. We instantiate a complete
64-bit adder to realize the correct addition. Masking Σ0 and Σ1 can be accomplished in a
straightforward way since the shift operations do not introduce additional implementation
overhead in hardware and all XOR gates can simply be replaced by secure XOR gates.

Finally, SHA-Ch and SHA-Ma are bit-wise operations, that can be implemented in
parallel to match the width of the adder to be used. Hence, we can modify the formulas
for both to reduce the number of non-linear gates in order to minimize the amount of
required randomness and the area overhead leading to

SHA-Ch(E, F, G) = (E ∧ F ) ⊕ (E ∧ G) = (E ∧ F ) ⊕ ((E ⊕ 1) ∧ G)
= (E ∧ (F ⊕ G)) ⊕ G (11)

SHA-Ma(A, B, C) = (A ∧ B) ⊕ (A ∧ C) ⊕ (B ∧ C)
= (A ∧ (B ⊕ C)) ⊕ (B ∧ C). (12)

3.6 Encoding, Decoding & Comparison
Streamlined NTRU Prime defines multiple en- and decoding algorithms for transforming
polynomials in R3 and Rq to and from byte arrays [BBC+20]. Decoding the ciphertext and
public key can be done unmasked as they are both public. We use the decoder described
in [PMT+22]. For decoding the secret polynomials f and g−1, we also use the decoder
from [PMT+22], and apply masking afterwards. However, to compute the confirmation
hash and session key, we need to securely encode r′ into a byte array. For this, we apply
masking to the R3 encoder from [PMT+22]. As the encoder only consists of a shift register
and a 2-bit adder, this is straightforward.

In the original algorithm specification, the recomputed ciphertext polynomial c′ is
encoded (line 10 in Algorithm 1) before the ciphertext comparison (line 14), using an
Rq encoder. However, the Rq encoder requires a 16-bit multiplication which would
be prohibitively expensive to implement securely. We instead compare the ciphertext
polynomial coefficients directly, after which we compare the confirmation hashes. This
allows us to not have to implement the masked Rq encoder. The masked ciphertext
comparison is straightforward: We do a bit-wise secure XOR of the two ciphertext
coefficients, and then repeatedly OR the output together.

4 Implementation
After introducing the theoretical background of masking all required operations, we now
discuss the implementations of each building block. Afterwards, we briefly discuss the
generation of fresh randomness that is necessary to achieve a side-channel protected
implementation.

4.1 Building Blocks
In order to implement the operations described in Section 3, we define the following
modules:

Add13 pipelined 13 bit Sklansky adder with carry-in for usage in polynomial multipli-
cation, weight check and rounding
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CSubQ pipelined 13 bit Sklansky adder with one operand being fixed to the two’s
complement of q, with subsequent multiplexer

Mod3 pipelined reduction from 13 bit modulo 3

Mul3 Z3 multiplier

Mux3 3-way mux with public input and secret select signal

Mux2 2-way mux with secret input and secret select signal

SHA-Ch 64 bit wide SHA-Ch step

SHA-Ma 64 bit wide SHA-Ma step

Add64 pipelined 64 bit Sklansky adder

4.1.1 Add13 and Add64

In their work [BG22], Bache and Güneysu compare the Brent-Kung, Kogge-Stone, and
Sklansky adder architectures in the context of Boolean masking. For gate-level masking,
the Sklansky adder turns out to be the optimal choice of of these, having the same low
latency like Kogge-Stone but less randomness demand, while having a lower latency than
Brent-Kung at the cost of slightly more randomness.

The 13-bit Sklansky adder with carry-in deployed in our implementation is shown in
Figure 1a. For input bits a[i](0:d), b[i](0:d) where i ∈ {0, . . . , 12}, we compute in each circle:

g[i](0:d) = a[i](0:d) ∧ b[i](0:d) (13)
p[i](0:d) = a[i](0:d) ⊕ b[i](0:d) (14)

Note that the dotted circle indicates the uppermost p, g from a previous addition which
can be used to realize cascaded additions. Each square node has four inputs, the two “left”
inputs g

(0:d)
l , p

(0:d)
l and the two “right” inputs g

(0:d)
r , p

(0:d)
r , and computes the following

outputs:

g(0:d) = g
(0:d)
l ⊕

(
p

(0:d)
l ∧ g(0:d)

r

)
(15)

p(0:d) = p
(0:d)
l ∧ p(0:d)

r (16)

(a) 13 bit Adder with Carry In (b) CSubQ with optimizations for q = 4591

Figure 1: Sklansky Adder Constructions
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Finally, note that all leaf nodes do not need to compute p(0:d), as only the final g(0:d)

values are needed. The only exception is the uppermost p(0:d), which might be needed for
a cascaded addition.

The 64-bit adder works equivalently, though with a total of six levels. In this case, we
do not need a carry-in or carry out.

4.1.2 CSubQ

For the conditional subtraction with q, we take a similar approach. We instantiate another
Sklansky adder with one public operand fixed to the two’s complement of q. Then, after
each addition (let us denote the result here as x(0:d)), we perform this subtraction by q and
obtain (q − x)(0:d) as well as the shared carry-out bit. Using this, we multiplex securely
between x(0:d) and (q − x)(0:d) selecting the former if the carry-out is one (indicating an
underflow has occurred) and else the latter one.

The fixed input already enables vast optimizations by the synthesizer. Further improve-
ments could be possible by optimizing the adder architecture itself for a fixed operand.
Since we know the positions of the zeros, we could simplify our adder as depicted in
Figure 1b. However, note that we did not implement these optimizations, and have left
them for future work.

For the computation of all p values below the first row nothing changes. However,
we can completely omit computing the first row of p, g as described in Equation 13 and
Equation 14. Instead, we know, given an input a[12 : 0](0:d), for each circle in Figure 1b
that

g[i](0:d) =
{

a[i](0:d) if (−q)[i] = 1
0 else

(17)

p[i](0:d) =
{

a[i](0:d) if (−q)[i] = 1
a[i](0:d) else

. (18)

In Figure 1b, the circles filled with the diagonal line pattern indicate that the fixed
input bit of the two’s complement of q is one. For the squares, we have four different cases
now:

Non-filled Computed as before.

Grid g(0:d) = g
(0:d)
l ⊕

(
p

(0:d)
l ∧ g

(0:d)
r

)
= g

(0:d)
l ⊕

(
p

(0:d)
l ∧ 0

)
= g

(0:d)
l

Dotted g(0:d) = g
(0:d)
l ⊕

(
p

(0:d)
l ∧ g

(0:d)
r

)
= 0 ⊕

(
p

(0:d)
l ∧ 0

)
= 0

Horizontal lines g(0:d) = g
(0:d)
l ⊕

(
p

(0:d)
l ∧ g

(0:d)
r

)
= 0⊕

(
p

(0:d)
l ∧ g

(0:d)
r

)
= p

(0:d)
l ∧g

(0:d)
r

4.1.3 Mod3

The architecture to compute this is depicted in Figure 2. For the secure additions and
subtractions, we employ simple ripple-carry adders as parallel prefix adders have no
advantage for these small bit widths.

4.1.4 Mux3 and Mux2

Mux3 can be implemented with three pipeline stages as the HPC2-SecAND gadget has a
delay of two cycles for one input and 1 clock cycle for the other one. We instantiate 13 of
these two-bit MUXes in parallel in order to feed Add13 without idling.
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Figure 2: Mod3 module
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For Mux2, which has two secret data input and a secret select input, we have a delay
of two cycles. We instantiate 13 of these MUXes in the Rq multiplier to select between
the CSubQ output and the non subtracted value. We also instantiate two multiplexer
during the weight check calculation, to select between the original r′ and the fixed vector.
Finally, we use eight multiplexer to select between the encoded r′ and ρ after the ciphertext
comparison.

4.2 Randomness Generation
The generation of a large amount of randomness is comparatively easy to solve on an
FPGA, but there are still different approaches:

1. Pre-generated randomness that is stored in Block-RAMs (BRAMs). This approach
consumes no LUT, at the cost of a large amount of BRAMs, and is only valid for
testing.

2. Pseudorandom Number Generators (PRNGs) using Linear Feedback Shift Registers
(LFSRs). This approach is very lightweight, but does not create cryptographically
secure randomness. However, for masking statistical randomness is sufficient, as
shown, e.g., in [WDMM20]. There, just three LUTs were needed to create one
random bit per cycle.

3. True Random Number Generators (TRNGs). As an example, the jitter of a freely
looping ring oscillator or PLLs can be sampled. Generating secure instances is
non-trivial [BBA+12] and often provides only limited throughput.

4. A hash based Extendible Output Function (XOF). This is the most expensive but
also highest quality Random Number Generator (RNG). A Keccak-based XOF would
likely be suitable.

5 Evaluation
After introducing our implementation concept, we present in this section the corresponding
implementation results. Furthermore, we formally verify our building blocks in order to
demonstrate their protection against side-channel attacks. Eventually, we compare our
hardware implementation of Streamlined NTRU Prime to a hardware design of Saber.

5.1 Implementation Results
We implement our design on a Xilinx Artix-7 device, using Vivado v2021.2 (64-bit), for
the sntrup761 parameter set. We also synthesize our design for an ASIC, using the 45nm
Nangate open cell library. Table 1 shows the latency, frequency, and peak randomness
demand per module and masking degree. As can be seen there, the cycle count is dominated
by the three polynomial multiplications which take 93 % of all total cycles. At the same
time, the peak randomness is always set by the 64-bit adder in the SHA-512 module. While
the total cycle count is independent of the masking order, the maximum clock frequency
varies: On an FPGA and at masking order 1 and 3, the design reaches 200 MHz, but the
maximum frequency is lower for masking order 2, 4 and 5. For all three, the critical path
lies in the SHA-512 module. For the ASIC, the design reaches a higher maximum clock
frequency than the FPGA at first order, with 207 MHz. However, as the masking order
increases, the maximum frequency drops off faster, reaching just 75 MHz at fifth order,
and 100 MHz at sixth order. Here, the critical path also lies in the SHA-512 module.

In Table 2, the area demand per module and masking degree is shown for Artix-7 FPGA.
As expected, the area increases vastly with increasing masking degree. Interestingly, for all
masking orders, the SHA-512 dominates the resource cost consuming roughly 61 % of all
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Table 1: Latency, frequency, and randomness results after Place and Route (PnR). Note that
the cycle count for SHA-512 is for a single 1024-bit block. We did not perform PnR for orders 6
and 7 for an FPGA, as they no longer fit into an Artix-7 FPGA.

Module Cycle Count
Maximum Randomness (bits per cycle)

Masking Degree
1 2 3 4 5 6 7

Decap 1 870 049 52 82 156 252 370 510 672
Encode R3 765 4 12 24 40 60 84 112
C′ comp. 4 050 14 42 84 140 210 294 392

Decrypt 1 171 270 96 288 576 960 1 440 2 016 2 688
mod 3 29 46 138 276 460 690 966 1 288
Mul. R3 581 409 6 18 36 60 90 126 168
Weight calc. 9 145 42 126 252 420 630 882 1 176

Re-Encrypt 581 501 123 369 738 1 230 1 845 2 583 3 444
Rounding 812 123 369 738 1 230 1 845 2 583 3 444

Mul. Rq 580 646 103 309 618 1 030 1 545 2 163 2 884
Adder 13-bit 10 32 96 192 320 480 672 896
13 Mux2 2 13 39 78 130 195 273 364
13 Mux3 3 26 78 156 260 390 546 728

SHA-512 7 845 310 930 1 860 3 100 4 650 6 510 8 680
SHA-Ma 2 128 384 768 1 280 1 920 2 688 3 584
SHA-Ch 2 64 192 384 640 960 1 344 1 792
Adder 64-bit 14 310 930 1 860 3 100 4 650 6 510 8 680

Total 1 870 049 310 930 1 860 3 100 4 650 6 510 8 680

FPGA fmax (MHz) 200 182 200 169 179 – –
Latency (ms) 9.35 10.3 9.35 11.1 11.4 – –

ASIC fmax (MHz) 207 165 148 91 75 100 –
Latency (ms) 9.03 11.3 12.6 20.5 24.9 18.7 –

LUT and FF. The next most expensive operation is the rounding during the re-encryption,
followed by the Rq polynomial multiplication. When comparing the ratios of cycle counts
and the resources consumed, it is apparent that the current SHA-512 implementation is
sub-optimal: it is too expensive when considering the whole design. In particular, the full
64-bit adder is oversized. For a better ratio of cycles and resources consumed, using a
smaller, e.g., 16 bit adder multiple times for each 64 bit addition, would be more efficient,
while only adding a comparatively minor number of cycles. Doing so would also allow the
SHA-Ch and SHA-Ma gadgets to have a smaller widths, saving further resources. Finally,
this would reduce the maximum of random bits used per cycle.

In Table 3, we list the gate equivalent area demand per module and masking degree
for a ASIC. As we did not have access to a memory macro, we list the memory footprint
separately. We see similar behavior to the FPGA area demand, with the SHA-512
dominating the area demand, followed by the rounding during the re-encryption. The
total GE also grows significantly as the masking order increases, while the SRAM usage
grows more slowly.

Different Masking Degrees for Decrypt and Re-Encrypt. In [ABH+22], the authors
reason that re-encryption must be protected at a higher level than decryption during
decapsulation. Our design, and all building blocks can be easily adapted to any masking
order allowing a flexible configuration. However, doing so would decrease the modules
that can be re-used across the design, e.g., the Rq multiplier which is used both during
decryption and re-encryption.
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Table 2: FPGA area results after PnR. Note that this does not include the area needed for
randomness generation. Not listed is the Digital Signal Processor (DSP) usage: 4 DSPs are
needed as multipliers in the decoder, regardless of the masking order.

Module
Masking Order

1 2 3 4

LUT FF BR LUT FF BR LUT FF BR LUT FF BR

Decap 2270 1180 4.5 2493 1575 6 3088 2256 6 3766 2980 8
Encode R3 61 52 0 77 80 0 104 115 0 131 157 0
C′ comp. 278 263 0 503 530 0 855 895 0 1273 1358 0

Decrypt 1743 1602 0 2680 3225 1.5 4847 5451 1.5 7276 8282 1.5
mod 3 542 719 0 1197 1528 0 2274 2638 0 3474 4049 0
Mul. R3 470 208 0 329 319 1 489 476 1 665 675 1
Weight calc. 528 612 0 1066 1286 0 1947 2194 0 2941 3350 0

Re-Encrypt 2017 2450 0.5 4138 5180 1 7755 8936 1 11696 13714 1
Rounding 1888 2387 0 4080 5108 0 7695 8851 0 11636 13616 0

Mul. Rq 1846 2148 1.5 3693 4419 2 6686 7554 2 9885 11553 2.5
Adder 13-bit 627 715 0 1352 1545 0 2523 2690 0 3729 4150 0
13 Mux2 182 221 0 390 468 0 676 806 0 1040 1235 0
13 Mux3 211 286 0 463 625 0 848 1107 0 1314 1723 0

SHA-512 11684 12035 2 22493 23880 3 38370 39406 8 56207 59097 9
SHA-Ma 1528 1664 0 3439 3840 0 6624 6912 0 10197 10880 0
SHA-Ch 896 1088 0 1920 2304 0 3584 3968 0 5440 6080 0
Adder 64-bit 5996 5663 0 12352 23162 0 22506 21770 0 32702 33740 0

Total 19923 19725 8.5 36340 39209 13.5 62498 65463 18.5 91731 98726 22
Total w/o SHA 8239 7690 6.5 13847 15329 10.5 24128 26057 10.5 35524 39629 13
SHA Pct. 58.4 61.0 23.5 61.9 60.9 22.2 61.4 60.2 43.2 61.3 59.9 40.9

Table 3: ASIC area results in gate equivalents (GE), using the 45nm Nangate open cell library.
The area does not include SRAM cells, which are listed separately. Note that this does not include
the area needed for randomness generation. The area for the Encode R3 entity is not available
for masking orders one through three, as it was merged with its parent entity.

Module Masking Order
1 2 3 4 5 6

Decap 14 703 18 520 23 632 29 561 37 176 46 078
Encode R3 n/a n/a n/a 1 130 1 447 1 799
C ′ comp. 2 052 4 103 6 943 10 571 14 981 20 208

Decrypt 14 727 28 021 46 047 68 449 95 889 128 306
mod 3 5 744 12 216 21 101 32 386 46 085 62 295
Mul. R3 2 452 3 436 4 756 6 065 8 025 10 412
Weight calc. 5 688 11 202 18 584 27 825 38 949 51 986

Re-Encrypt 29 615 56 009 90 348 127 595 176 907 234 225
Rounding 29 057 55 375 89 636 126 818 176 050 233 295

Mul. Rq 25 244 45 906 73 131 103 820 143 784 190 601
Adder 13-bit 7 115 14 482 24 375 36 840 51 817 69 367
13 Mux2 1 607 3 510 6 144 9 511 13 611 18 442
13 Mux3 2 015 4 468 7 910 12 356 17 811 24 366

SHA-512 114 570 218 453 354 242 519 545 719 019 950 021
SHA-Ma 12 416 29 440 53 674 85 120 123 776 169 642
SHA-Ch 7 914 17 280 30 250 46 826 67 008 90 794
Adder 64-bit 55 503 114 820 195 205 296 601 419 131 563 160

Total 201 112 373 349 600 100 870 124 1 204 839 1 594 022
Total w/o SHA 86 542 154 896 245 858 350 579 485 820 644 001
SHA Pct. 57.0 58.5 59.0 59.7 59.7 59.6
SRAM (bits) 189 440 246 272 294 912 343 296 393 216 443 392
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Table 4: Verification results of the protected submodules using VERICA. We report for each
design the number of combinational gates, memory gates and the verification time. The verification
of the expected security order is indicated by green check marks.

First Order Second Order Third Order
Design comb. mem. sec. time comb. mem. sec. time comb. mem. sec. time

Mux2 16 17 1✓ 0.383 s 39 36 2✓ 0.402 s 72 62 3✓ 20.609 s
Mux3 28 31 1✓ 0.385 s 72 69 2✓ 0.521 s 136 122 3✓ 4.985 h
Mod3 586 774 1✓ 1.125 s 1464 1581 2✓ 90.82 min 2742 2668 – ∞
Mul3 89 94 1✓ 0.412 s 221 204 2✓ 23.591 s 413 356 – ∞
SHA-Ch 16 17 1✓ 0.404 s 39 36 2✓ 0.420 s 72 62 3✓ 26.355 s
SHA-Ma 28 26 1✓ 0.386 s 72 60 2✓ 0.928 s 136 108 3✓ 11.5 h

Table 5: Comparison with previous work. All implementations are synthesized for Artix-7,
except for Kyber, which is synthesized for Virtex-7. Note that for ASIC, we are the first to report
a fully masked implementation of any PQC scheme.

Scheme Area Cycle cnt. fmax max rand.
d Ref.LUT FF BRAM DSP Mhz bits / cycle

sNTRUp-761 36 789 22 700 3.5 9 10 989 137 0 0 [PMT+22]
sNTRUp-761 6 279 3 086 3.0 7 85 628 131 0 0 [PMT+22]
sNTRUp-761 19 923 19 725 8.5 4 1 870 049 200 310 1 this
sNTRUp-761 36 340 39 209 13.5 4 1 870 049 182 930 2 this
sNTRUp-761 62 498 65 463 18.5 4 1 870 049 200 1 860 3 this
sNTRUp-761 91 731 98 726 22.0 4 1 870 049 169 3 100 4 this
Saber 19 299 21 977 0.0 64 72 005 125 DNR 1 [AMD+21]
Kyber-512 152 860 DNR 489.5 76 137 738 100 DNR 1 [KNAH22]

5.2 Side-Channel Evaluation
In order to evaluate the protection against side-channel attacks, we rely on formal ver-
ification of each of our submodules. Please note, evaluating the entire decapsulation
by practical measurements is out of scope for typical setups due to the huge amount of
required clock cycles. To this end, we formally verify the security of each module by using
the recently presented verification tool VERICA [RFSG22]. VERICA is constructed based
on the verification concepts developed in the side-channel analysis tool SILVER [KSM20]
and the fault-injection analysis tool FIVER [RBSS+21]. The formal verification of a
target design is performed based on its (Verilog) gate-level netlist which is transformed
into a Direct Acyclic Graph (DAG) serving as circuit model. Each node in the DAG is
associated with a Binary Decision Diagram (BDD) representing the Boolean function of the
corresponding gate. This data structure allows efficient applications of statistical checks
verifying side-channel security in the glitch-extended probing model and composability
notions. To this end, we analyze our modules in the glitch-extended d-probing model
for different security orders. The corresponding results are shown in Table 4. Note that
all modules pass first- and second-order verification, while third-order verification is too
complex for Mod3 and Mul3. For the Add13 and Add64 modules, we use the implementation
by Bache and Güneysu [BG22] which is verified to be secure practically.

5.3 Comparison
In Table 5, we compare our implementation against an unmasked implementation of
Streamlined NTRU Prime as well as two first-order masked FPGA implementations. To the
best of our knowledge, we are the first to report a higher-order full FPGA implementation
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of any PQC scheme, and the first to report a masked ASIC PQC implementation, thus we
cannot compare to other higher-order implementations. As expected, the two unmasked
implementations (one “high speed” and one “low area”) both are smaller and faster.
Additionally, the masked Saber implementation has a comparable LUT and FF footprint
to our first-order implementation and uses no BRAM, but uses significantly more DSP.
However, it is about an order of magnitude faster. In contrast to this, the masked Kyber-512
implementation is vastly bigger even than our fourth-order implementation, but only faster
by a factor of 6.8 compared to our first-order implementation.

Moreover, both the Saber and the Kyber-512 implementations only support first order,
while our design can easily be instantiated at an arbitrary level, allowing protections
against more advanced attacks. Finally, our masked gadgets have been verified to be secure
and we do not need any masking conversion which may be used in future attacks.

6 Discussion
In this section, we address and discuss potential improvements and the huge overhead
introduced by masking the symmetric core in Streamlined NTRU Prime. Additionally, we
briefly discuss the application of our concepts and approaches to Kyber.

6.1 Gate-level Masking
There are several advantages in a gate-level masked implementation. First, it is very easy
to adapt to an arbitrary masking order. This obviously reduces the time required for
development. Moreover, no masking conversion can be attacked, since there is none. The
masking conversion were the targets in the attacks against a first-order and third-order
masked Saber implementation [NDJ21, NWDP22]. Additionally, it is usually easy to
exchange the underlying gadgets by others with the same latency properties. For example,
it could be possible to achieve a fault-secure implementation easily by deploying the work
from [FRBSG22].

6.2 Potential Improvements
We leave several potential improvements as future work and address them here. The most
expensive operation from the latency view point is polynomial multiplication. The two
Rq multiplications take 62 % of the decapsulation cycle counts and the multiplication
in R3 takes another 31 %. To speed this up, it is possible to instantiate more adders in
parallel at the cost of slightly more area and a potentially higher amount of randomness
per clock cycle, depending on the grade of deployed parallelism. Thus, halving the latency
of both multipliers results in an 47 % speed-up at the cost of approximately 8 % more gate
equivalents for the first-order ASIC implementation.

Moreover, a potential area reduction can be achieved by optimizing the CSubQ module.
This would likely also have an impact to the randomness demand.

Additionally, we want to stress that the specified encoding procedure for polynomials
Rq is suboptimal for hardware implementations, as it includes multiplications. This
accounts for the four DSP slices required in the FPGA implementation and about 7.3 kGE
in the ASIC implementation. However, alternatives would increase transmission sizes and
would obviously require a change of specification.

6.3 Symmetric Core
As discussed in Section 5.1, masking the symmetric core (i.e., SHA-512) in Streamlined
NTRU Prime consumes a considerable large part of the entire implementation’s footprint,
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and has the highest per cycle randomness consumption. Nevertheless, secure and hardened
SHA-512 implementations are widely deployed in industry, and can for example be found in
smartcards and secure elements [NXP22]. Thus, one could assume that a secure SHA-512
is already available, and does not need to be implemented. If we exclude the SHA-512
from the area consumption (cf. Table 2 and Table 3), then the design is not only surprising
small at first order, but the area overhead is much more moderate with an increasing
masking order.

Another possibility would be to replace the 64-bit Sklansky adder that is deployed in
the SHA-512 module by a smaller one, trading area for latency. Moreover, it is possible to
deploy no additional adder for the SHA-512 module at all by re-using the secure adder from
the polynomial multiplication module. In this case, five consecutive 13-bit additions would
yield the 64-bit addition. This would require cleverly scheduling the additions required
by SHA-512 such that the 13-bit adder pipeline is maximally occupied. As can be seen
from Table 2 and Table 3, the 64-bit Sklansky adder occupies about half of the area of the
SHA-512 module, and about a quarter of the overall area.

Additionally, in order to reduce the total area overhead introduced by the masked
symmetric core in Streamlined NTRU Prime, the SHA-512 could be replaced by an imple-
mentation based on Keccak [BDPA13]. As Keccak does not use an adder internally, it
is significantly easier and cheaper to mask. Most notably, it can be implemented with a
very low amount of fresh randomness [BDN+13]. In addition, as the critical path lies in
the SHA-512 module for both FPGAs and ASICs, using Keccak would likely increase the
maximum achievable clock frequency. However, this would deviate from the Streamlined
NTRU Prime specification and would not be interoperable with other Streamlined NTRU
Prime implementations.

6.4 Applicability to Kyber
The efficiency of our gate-level masking is built upon the fact that the three polynomial
multiplications that are carried out each include a secret polynomial with ternary coef-
ficients, where the other one is either small and secret as well, or has a big coefficient
modulus and is public. This enables us to perform schoolbook multiplication in Boolean
domain. Notably, Kyber has a similar property: Here, all polynomial multiplications have
one public input polynomial with “big” coefficients modulo q = 3 329.

Moreover, the polynomial degree is far smaller with 256 compared to 677 for Streamlined
NTRU Prime, enabling a faster multiplication. For Kyber, 2562 = 65 536 coefficient additions
are to be performed per polynomial multiplication, whereas Streamlined NTRU Prime
with p = 761 requires p2 + p = 579 882 coefficient additions. However, Kyber requires
more multiplications to be performed: for k ∈ {2, 3, 4}, it requires k2 + 2k polynomial
multiplications, as well as k2 + 4k − 1 polynomial additions, whereas Streamlined NTRU
Prime constantly requires three polynomial multiplications.

We compare the cost in terms of estimated number of coefficient additions in Table 6.
As can be seen there, Kyber constantly requires less coefficient additions than Streamlined
NTRU Prime in the regarding security categories.

Another advantage for Kyber is that during key generation it features no operations
that are infeasible to mask in Boolean domain, which is in contrast to Streamlined NTRU
Prime, where this is not possible. The most complex remaining operations in Kyber both
for key generation and decapsulation are (de-)compression and sampling for a centered
binomial distribution using a Keccak output stream, both of which are feasible in Boolean
domain.

Still, we want to stress that a gate-level masked Kyber implementation would require
an Number-Theoretic Transform (NTT) core and would have another big downside: Kyber
requires to extend a seed into a public matrix of polynomials, which are assumed to be in
NTT domain. Since the implementation would not perform multiplication in NTT domain,
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Table 6: Comparison to Kyber
NIST Scheme Polynomial Module Number of

Category size size coefficient additions

I Kyber-512 256 k = 2 527 104
sNTRUp 653 — 1 281 186

II sNTRUp 761 — 1 739 646

III Kyber-768 256 k = 3 988 160
sNTRUp 857 — 2 205 918

IV sNTRUp 953 — 2 727 486
IV sNTRUp 1013 — 3 081 546

V Kyber-1024 256 k = 4 1 580 800
sNTRUp 1277 — 4 896 018

an inverse transform of each polynomial in the matrix would be required, resulting in k2

inverse NTTs during decapsulation. Finally, it is noteworthy that the fact that Kyber uses
the same polynomial ring for all security levels is no advantage for a gate-level-masked
implementation, since schoolbook multiplication is used for Streamlined NTRU Prime
anyways, which also allows for easy parametrization. On the other hand, Streamlined
NTRU Prime changes the coefficient modulus over the parameter sets, which might require
manual adjustments.

Overall, we leave this as an interesting open idea for future work.

7 Conclusion
In our work, we have presented the first gate-level masked implementation of any PKC
scheme. Notably, it is competitive regarding area demand to other protected PQC
implementations while still offering a reasonable latency. The main advantage is the ability
to adapt the implementation easily to arbitrary masking order. For the first-order secure
instance of the implementation, 19 923 LUTs, 19 725 FFs, and 8.5 BRAMs are utilized,
reaching a frequency of 200 MHz. Implemented as an ASIC, the first-oder secure instance
consumes 201k GE and 189 kbit SRAM, reaching a frequency of 207 MHz. This results in a
latency of only 9.35 ms on an FPGA and 9.03 ms as an ASIC, with a peak demand of fresh
randomness of 310 bit per clock cycle. While for higher masking degrees, the latency only
increases slightly due to a lower frequency, the randomness demand increases to 3 100 bit
per clock cycle for d = 4. Nevertheless, further optimization of the hashing module could
significantly reduce the area and randomness consumption. Finally, we also analyzed the
applicability of our concept to the designated NIST standard algorithm Kyber, finding
that gate-level masking could be efficient Kyber as well.
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