
Auditable Attribute-Based Credentials Scheme
and Its Applications in Contact Tracing

Pengfei Wang1, Xiangyu Su2, Mario Larangeira2,3, and Keisuke Tanaka2

1 Rakuten
2 Department of Mathematical and Computing Sciences, School of Computing,
Tokyo Institute of Technology. Tokyo-to Meguro-ku Oookayama 2-12-1 W8-55.
wang.p.ae@m.titech.ac.jp, su.x.ab@m.titech.ac.jp, mario@c.titech.ac.jp,

keisuke@is.titech.ac.jp.
3 Input Output, Global. mario.larangeira@iohk.io.

Abstract. During the pandemic, the limited functionality of existing
privacy-preserving contact tracing systems highlights the need for new
designs. Wang et al. proposed an environmental-adaptive framework
(CSS ’21) but failed to formalize the security. The similarity between
their framework and attribute-based credentials (ABC) inspires us to re-
consider contact tracing from the perspective of ABC schemes. In such
schemes, users can obtain credentials on attributes from issuers and prove
the credentials anonymously (i.e., hiding sensitive information of both
user and issuer). This work first extends ABC schemes with auditability,
which enables designated auditing authorities to revoke the anonymity
of particular issuers. We show a concrete construction by adding a DDH-
based “auditable public key” mechanism to the Connolly et al.’s ABC
scheme (PKC ’22). In this work we present three contributions regard-
ing the auditable ABC: (1) we refine the environmental-adaptive contact
tracing framework, (2) present a formal treatment which includes game-
based security definition and a detailed protocol construction. Finally,
(3) we implement our construction to showcase the practicality of our
protocol.

Keywords: Contact Tracing, Attribute-Based Credentials, Auditable Public
Keys

1 Introduction

1.1 Background and Motivation

Contact tracing, a method that prevents diseases from spreading, faces new chal-
lenges considering new founds in epidemiology research. Proposed in [18], the
environmental-adaptive contact tracing (EACT) framework took virus distri-
bution (e.g., lifespan and region size, which depends on environmental factors)
and different transmission modes (i.e., droplet and airborne) into considera-
tion. However, the framework failed to unify the tracing processes in droplet

and airborne modes, hence, burdening the implementation and weakening the
practicality. Moreover, the security definitions are based on an informal threat
model, leaving a gap between the theoretical proofs and implementations.

The similarity between their framework and a self-issuing decentralized cre-
dentials scheme [11] inspires us to turn our eyes to credentials schemes, typically
the attribute-based ones (ABC), which to the best of our knowledge, have never
been connected with contact tracing in previous works despite of being a nat-
ural approach. We explain the reason as follows. Recall that an ABC scheme
involves issuers, users, and verifiers. In the issuance phase, an issuer grants a
credential to a user on the user’s attributes. The user can then prove posses-
sion (showing) of the credential on their attributes without revealing identities,
but they CANNOT prove attributes that are not embedded in their credentials.
Hence, by building contact tracing systems atop a general ABC scheme: (1) users
can record environmental factors and local information as attributes; (2) users
can prove their records anonymously; (3) the security of ABC, i.e., anonymity
and unforgeability, can easily be adapted to contact tracing (as we will show
in Section 4.2). Moreover, it is also convenient to bring the broad spectrum of
functionalities in ABC to contact tracing, e.g., selective showing [9], proof of
disjoint attributes [4], issuer-hiding [2, 4], delegation [1], traceability [14], etc.

Note that the traceable ABC [14] shares a similar traceability with group
signatures schemes, i.e., to revoke the anonymity of regular users. However, it
differs from the traceability of contact tracing systems, which requires issuers
(or third parties delegated on behalf of the issuer) of a credential can “audit”
shown credentials, i.e., to verify if the credential is issued by the issuer. The
following of this paper will explain our approach that adds the new functionality
of auditability to ABC schemes. We emphasize that an auditable ABC scheme
may have its interests, and the applications will not be limited to contact tracing.

Related work. In EACT [18], the authors showed a rather extensive list of existing
contact tracing systems. Hence, we will not repeat their observation but argue
that none of these works, including [18], are in the same scope as ours, in which
bringing credentials schemes into contact tracing. Moreover, despite the broad
functionalities of ABC schemes, no existing work considers the same traceability
(revoking issuer’s anonymity) as in contact tracing systems.

1.2 Our approach and Contributions

Now, we show a brief image of our approach.

In order to build an auditable ABC scheme, we first propose a cryptographic
tool called “auditable public keys (APK)”, which extends the updatable public
key mechanism given in [6]. The APK embeds extra structure within secret
and public keys as a new auditing key so that the structure preserves even
after updating the public key. Hence, a participant who holds the auditing key
corresponding to some key pair can “audit” if a given public key is updated from
the corresponding public key. Like the updatable public key, our APK can be

2

used as a plug-in in many different cryptographic primitives, hence, not being
limited to credentials schemes.

Next, we adapt APK to existing ABC schemes [9] and define the formal syn-
tax of our auditable ABC. We show a concrete construction for the APK mecha-
nism based on the matrix diffie-hellman assumptions over matrix distributions [5,
15]. We prove that our APK construction can be inserted into the structure-
preserving signatures on equivalence classes (SPS-EQ) scheme [4] without break-
ing the security of the original SPS-EQ (though incurring a slight reduction loss).
By employing our modified SPS-EQ, a set-commitment scheme [9], and general
zero-knowledge proof-of-knowledge protocols (with perfect zero-knowledge) [7],
we present a construction for the auditable ABC scheme.

Finally, we refine the EACT framework [18] and provide a construction based
on our auditable ABC scheme. Hence, we can unify the tracing process of the
conventional BLE-based setting for droplet mode and their discrete-location-
tracing setting (DLT) for airborne mode. Then, we argue that the security of
the refined EACT can be derived from auditable EACT but requires sufficient
adaptions, e.g., in contact tracing, the verifier of credentials may be malicious
and approve falsely shown credentials. We explain these adaptions and finally
show an implementation for our refined EACT construction on real-life Android
devices to demonstrate practicality.

Our contributions. Our contributions are threefold: (1) we propose an APK
mechanism that can be used as a plug-in tool for many cryptographic primi-
tives; (2) we propose an auditable ABC scheme that inherits auditability from
our APK, and show concrete constructions for APK and the auditable ABC
scheme; (3) we refine and construct the EACT framework [18] based on creden-
tials schemes. We also provide cryptographic game-based security definitions and
implement the construction. Additionally, we add algorithms to jPBC library [3]
to support matrix-based bilinear pairing operations during implementation.

1.3 Organization

We organize the main contents of the paper as follows. First, we present the nec-
essary general building blocks and assumptions in Section 2. Section 3 formally
introduces our first contribution, i.e., an APK mechanism and an auditable ABC
scheme. We show constructions and give security proofs to these schemes. Sec-
tion 4 shows a construction for our refined EACT framework based on auditable
ABC, argues its security, and provides implementation results. Finally, Section 5
concludes this work.

2 Preliminaries

Throughout this paper, we use λ for the security parameter and negl(·) for
the negligible function. PPT is short for probabilistic polynomial time. For an

integer q, [q] denotes the set {1, . . . , q}. Given a set A, x
$← A denotes that x is

3

randomly and uniformly sampled from A; whereas, for an algorithm Alg, x← Alg
denotes that x is assigned the output of an algorithm Alg on fresh randomness.
Let Alg1,Alg2 be two algorithms, ⟨Alg1,Alg2⟩ denotes a potentially interactive
protocol between the two algorithms. Let H denote a collision-free hash function.
For an additive group G, G∗ denotes G \ {0G}. For a set A ⊆ Zp, we refer to a

monic polynomial of order |A| defined over Zp[X], ChA(X)
∆
= Πx∈A(X − x) =∑|A|

i=0 ci ·Xi as A’s characteristic polynomial.
We denote the asymmetric bilinear group generator as BG ← BGGen(1λ)

where BG
∆
= (p,G1,G2,GT , P1, P2, e). Here,G1,G2,GT are additive cyclic groups

of prime order p with ⌈log2 p⌉ = λ, P1, P2 are generators of G1,G2, and e :
G1 × G2 → GT is a type-3, i.e., efficiently computable non-degenerate bilinear
map with no efficiently computable isomorphism between G1 and G2. For an
element a ∈ Zp and i ∈ {1, 2}, [a]i denotes aPi ∈ Gi as the representation of a
in group Gi. As mentioned in [4], for vectors or matrices A,B, the bilinear map
e computes e([A]1, [B]2) = [AB]T ∈ GT .

General building blocks. This work takes the black-box use of three cryptographic

primitives: (1) a digital signature scheme SIG
∆
= (KGen,Sign,Verify) that satisfies

correctness and existentially unforgeability under adaptive chosen-message at-

tacks (EUF-CMA) [12]; (2) a set-commitment scheme SC
∆
= (Setup,Commit,Open,

OpenSubset,VerifySubset) that satisfies correctness, binding, subset soundness
and hiding [9]; (3) a zero-knowledge proofs of knowledge (ZKPoK) protocol Π
that satisfies completeness, perfect zero-knowledge and knowledge-soundness [7].
Due to the page limitation, the formal descriptions of these primitives are omit-
ted in this paper. They can be found in the corresponding references.

Assumptions. We assume the following assumptions hold over matrix dis-
tribution: the matrix decision diffie-hellman (MDDH) assumption [5] and the
kernel matrix diffie-hellman (KerMDH) assumption [15]. We also assume the
q-co-discrete-logarithm (q-co-DL) assumption holds over bilinear groups. The
definitions are as follows.

Definition 1 (Matrix Distribution). Let l, k ∈ N with l > k. Dl,k is a matrix
distribution that outputs matrices in Zl×k

p of full rank k in polynomial time. We

further denote Dk
∆
= Dk+1,k.

Let BGGen be the bilinear group generator that outputs BG = (p,G1,G2,GT ,
P1, P2, e) and Dl,k be a matrix distribution.

Definition 2 (Dl,k-MDDH Assumption). Dl,k-MDDH assumption holds in

group Gi ∈ BG where i ∈ {1, 2, T}, if for all BG ← BGGen(1λ),A
$← Dl,k,w

$←
Zk
p,u

$← Zl
p and all PPT adversary A, the following advantage is negligible of λ.

AdvMDDH
Dl,k,Gi

= |Pr[A(BG, [A]i, [Aw]i) = 1]− Pr[A(BG, [A]i, [u]i) = 1]|

4

Definition 3 (Dl,k-KerMDH Assumption). Dl,k-KerMDH assumption holds

in group Gi ∈ BG where i ∈ {1, 2}, if for all BG ← BGGen(1λ),A
$← Dl,k and

all PPT adversary A, the following advantage is negligible of λ.

Pr[[x]3−i ← A(BG, [A]i]) : x
⊤A = 0 ∧ x ̸= 0)]

3 Auditable Attribute-Based Credentials Scheme

This section presents our first contribution: an auditable attribute-based creden-
tials scheme, which will be the main building block of our refined environmental-
adaptive contact tracing framework.

Conventionally, an attribute-based credentials (ABC) scheme involves three
types of participants: Issuer (also called organization), user, and verifier. An
issuer grants credentials to a user on the user’s attributes. The user can then
prove possession of credentials with respect to her attributes to verifiers. The
basic requirements of a secure ABC include correctness, anonymity, and unforge-
ability [9]. On a high level, correctness guarantees that verifies always accept the
showing of a credential if the credential is issued honestly; Anonymity prevents
verifiers and (malicious) issuers (even by colluding) from identifying the user
or exposing information during a showing against the user’s will; Unforgeabil-
ity requires that users (even by colluding) cannot perform a valid showing of
attributes if the users do not possess credentials for the attributes.

The recent specifications of decentralized identifier and verifiable creden-
tials [16, 17] refueled the interest of the community in researching ABC schemes.
New functionalities, as shown in Section 1.1, have been proposed to broaden the
application of ABC schemes. Abstracted from the demands of contact tracing
systems, we propose yet another functionality, i.e., the auditability, that enables
designated users to deanonymize particular issuers. In order to show our scheme,
we first introduce the notion of an auditable public key (APK) mechanism that
extends the updatable public key from [6]. Then, we employ APK and present
our auditable ABC scheme in terms of definitions and constructions.

3.1 Auditable Public Keys

Proposed in [6], the updatable public key mechanism is a generic tool that can be
integrated into many cryptographic primitives, e.g., digital signature and pub-
lic key encryption schemes. The mechanism enables public keys to be updated
in a public fashion, and updated public keys are indistinguishable from freshly
generated ones. The verification of public keys either requires the correspond-
ing secret key (verifying the key pair) or the randomness used in the updating
algorithm. However, these approaches are insufficient in multi-user cases, e.g.,
in credentials schemes and contact tracing systems. The reasons are: (1) secret
keys should only be known to their holders; (2) asking the user who runs the up-
dating algorithm to store its random value or keep the value secret may require
impractical assumptions (e.g., assuming every user to be honest).

5

Therefore, we propose an APKmechanism to extend the updatable public key
by embedding a structure represented by an auditing key into public keys. The
structure enables designated third parties, the auditors, who hold the auditing
key to decide whether a public key is updated from the corresponding public
key of the auditing key. Moreover, we require that no auditor can learn the
corresponding secret key of its auditing key. Hence, we separate the role of
users, i.e., a user can delegate her capability of auditing to an auditor without
revealing the secret key, and a user who performs the updating algorithm can
discard her randomness without the concern of being asked to provide it.

The formal syntax and security definitions of APK are given in the following.
We recall and extend the definitions from [6].

Definition 4 (Auditable Public Key Mechanism). An auditable public key

(APK) mechanism involves a tuple of algorithms APK
∆
= (Setup,KGen,Update,

VerifyUpdate,VerifyAK,Audit) that are performed as follows.

– Setup(1λ) takes as input the security parameter λ and outputs the public pa-
rameter pp that includes secret, auditing and public key space SK,AK,PK.
These are given implicitly as input to all other algorithms;

– KGen(pp) takes as input the public parameter pp and outputs a secret and
public key pair (sk, pk) ∈ SK×PK, and an auditing key ak ∈ AK. Later, we
omit pp in algorithm inputs;

– Update(pk; r) takes as input a public key pk and a randomness r. It outputs a
new public key pk′ ∈ PK;

– VerifyUpdate(sk, r, pk′) is deterministic. VerifyUpdate takes as input a secret
key sk ∈ SK, a value r and a public key pk′ ∈ PK. It outputs 1 if pk′ ←
Update(pk; r) given (sk, pk, ·)← KGen(pp), or 0 otherwise;

– VerifyAK(sk, ak) is deterministic. VerifyAK takes as input a secret key sk ∈ SK
and an auditing key ak ∈ AK. It outputs 1 if ak corresponds to sk, or 0
otherwise;

– Audit(ak, pk′, pk) is deterministic and is performed by a designated auditor
who holds the auditing key ak ∈ AK of a secret and public key pair (sk, pk) ∈
SK×PK. Audit takes as input a public key pk′ ∈ PK, the auditing key ak and
the public key pk. It outputs 1 if pk′ is updated from pk, or 0 otherwise.

The APK mechanism should satisfy correctness, indistinguishability, and un-
forgeabilities.

Definition 5 (Correctness). An APK mechanism satisfies perfect correctness
if the following properties hold for any λ > 0, pp← Setup(1λ), and (sk, pk, ak)←
KGen(pp): (1) the update process verifies, i.e., VerifyUpdate(Update(pk; r), sk, r) =
1; (2) the auditing key verifies, i.e., VerifyAK(sk, ak) = 1; (3) the auditing process
verifies, i.e., Audit(ak, pk′, pk) = 1 for any pk′ ← Update(pk).

The indistinguishability of APK follows [6], i.e., no adversary can distinguish
between an updated known public key and a freshly generated one. Note that
(also applies in unforgeability) the adversary can query to KGen and Update
since these algorithms are publicly available.

6

Definition 6 (Indistinguishability). An APK mechanism satisfies indistin-
guishability if for any PPT adversary A, the following probability holds for any
λ > 0, pp← Setup(1λ), and (sk∗, pk∗, ak∗)← KGen(pp).

Pr

 b
$← {0, 1}; pk0 ← Update(pk∗);

(sk1, pk1, ak1)← KGen(pp); : b∗ = b
b∗ ← A(pk∗, pkb)

− 1

2
≤ negl(λ)

We formalize two types of unforgeability, i.e., for secret key and auditing key.
Concretely, the former requires that given an auditing key with its corresponding
public key, the adversary cannot produce a secret and public key pair, and a
randomness, such that: (1) the output public is updated from the secret key’s
corresponding public key with respect to the randomness; (2) the secret verifies
the given auditing key; (3) the auditing key verifies the output and given public
keys. This property captures adversarial auditors who hold an auditing key and
intend to recover the corresponding secret key. Hence, it covers the one given
in [6], in which the adversary is only given a public key.

Next, the auditing key unforgeability requires that given a public key, the
adversary cannot produce an auditing key such that the corresponding secret
key of the public key verifies the auditing key. This property captures adver-
sarial participants who intend to trigger the auditing algorithm to output 1 for
arbitrary public keys. The formal definitions are as follows. Note that in the
unforgeability game, the challenge given to the adversary must not be queried
before.

Definition 7 (Secret Key Unforgeability). An APK mechanism satisfies
secret key unforgeability if for any PPT adversary A, the following probability
holds for any λ > 0, pp← Setup(1λ), and (sk, pk, ak)← KGen(pp).

Pr

 VerifyUpdate(pk′, sk′, r) = 1∧
(sk′, pk′, r)← A(ak, pk) : VerifyAK(sk′, ak) = 1∧

Audit(ak, pk′, pk) = 1

 ≤ negl(λ)

Definition 8 (Auditing Key Unforgeability). An APK mechanism satisfies
auditing key unforgeability if for any PPT adversary A, the following probability
holds for any λ > 0, pp← Setup(1λ), and (sk, pk, ak)← KGen(pp).

Pr
[
ak′ ← A(pk) : VerifyAK(sk, ak′) = 1

]
≤ negl(λ)

For constructions, similar to the updatable public key [6], our APK can be
constructed from the DDH assumption and variants. We will show one con-
crete example based on the MDDH (and KerMDH, which can be implied by
the MDDH [15]) assumption in our auditable ABC construction given in the
following (Section 3.3).

3.2 Formal Definitions of Auditable ABC

The start point of our auditable ABC is the scheme given in [9], which supports
selective showing on subsets of attributes. Then, we integrate APK by modifying

7

the key generation algorithm of issuers and adding the auditing algorithm. Given
a credential showing, the auditing algorithm with an auditing key outputs 1 or 0
to indicate whether the shown credential is issued by a secret key corresponding
to the auditing key. We show the formal syntax of auditable ABC in the following.

Definition 9 (Auditable ABC Scheme). An auditable ABC scheme AABC
consists of PPT algorithms (Setup,OrgKGen,UsrKGen), two potentially interac-
tive protocols ⟨Obtain, Issue⟩ and ⟨Show,Verify⟩, and a deterministic algorithm
Audit. The participants in AABC perform as follows.

– Setup(1λ, q) takes as input the security parameter λ and the size upper bound
q of attribute sets. It outputs the public parameter pp;

– OrgKGen(pp) is executed by issuers. OrgKGen takes as input the public pa-
rameter pp. It outputs an issuer-secret and issuer-public key pair (osk, opk)
with an auditing key ak. The issuer delegates ak to users (auditors) selected
by herself (if there is none, the issuer is the auditor);

– UsrKGen(pp) is executed by users. UsrKGen takes as input the public parameter
pp. It outputs a user-secret and user-public key pair (usk, upk). Later, we omit
pp in algorithm inputs;

– ⟨Obtain(usk, opk, A), Issue(upk, osk, A)⟩ are PPT algorithms executed between
a user and an issuer, respectively. Obtain takes as input the user-secret key
usk, the issuer-public key opk and an attribute set A of size |A| ≤ q; Issue takes
as input the user-public key upk, the issuer-secret key osk and the attribute set
A. Obtain returns cred on A to the user, and cred =⊥ if protocol execution
fails. The protocol outputs (cred, I) where I denotes the issuer’s transcript;

– ⟨Show(opk, A,D, cred),Verify(D)⟩ are executed between a user and a verifier,
respectively, where Show is a PPT algorithm, and Verify is deterministic. Show
takes as input an issuer-public key opk, an attribute set A of size |A| ≤ q, a
non-empty set D ⊆ A representing the attributes to be shown, and a credential
cred; Verify takes as input the set of shown attributes D. Verify returns 1 if
the credential showing is accepted, or 0 otherwise. The protocol outputs (S, b)
where S denotes the user’s transcript, and b ∈ {0, 1}. For convenience, we
also write b← ⟨Show,Verify⟩(S);

– Audit(ak, S, opk) is executed by a designated auditor with an auditing key ak
such that corresponding issuer-key pair is (osk, opk). Audit also takes as input
a showing of credential (S, ·) ← ⟨Show,Verify⟩ and the issuer-public key opk.
It outputs 1 if the shown credential is issued with osk, or 0 otherwise.

In addition to the auditing process, we make two modifications to the ABC
scheme from [9]. First, we write protocol transcriptions of ⟨Obtain, Issue⟩ and
⟨Show,Verify⟩ explicitly in our syntax concerning that the application in con-
tact tracing may involve non-interactive proofs and require some transcripts to
be publicly accessible (Section 4.1). In contrast, the previous works [9, 4] only
mentioned them in security definitions.

Second, our Verify algorithm of ⟨Show,Verify⟩ takes as input only the attribute
sets to be shown. In contrast, the original scheme also takes the issuer-public
key opk of the Show algorithm. Their purpose is to prevent credentials from

8

being issued by unidentified issuers. However, as shown in [4], the exposure of
issuer identity affects the anonymity of users. Although some previous works [2,
4] proposed the property of issuer-hiding so that users can hide their credential
issuers’ identities within a list of identified issuers, achieving such a property
incurs heavy mechanisms. In our case, we rely on the Audit algorithm to provide
an extra layer of verification. That is, given an updated issuer-public key in a
credential showing, the auditor who holds an auditing key that corresponds to
an identified public key must prove whether the shown credential is issued the
corresponding secret key.

Security properties. We formally define correctness, anonymity, and unforge-
abilities for our auditable ABC scheme. Concretely, correctness requires auditors
to output 1 on any valid showing of credentials if the credential was issued by the
corresponding secret key of the auditing key. The unforgeability game grants its
adversary access to auditing keys. In the following, we omit pp if the algorithm
takes as input other variables.

Definition 10 (Correctness). An AABC scheme satisfies perfect correctness,
if the following properties hold for any λ > 0, q > 0, any non-empty sets
A,D such that |A| ≤ q and D ⊆ A, and pp ← Setup(1λ, q), (osk, opk, ak) ←
OrgKGen(pp), (usk, upk) ← UsrKGen(pp), (cred, ·) ← ⟨Obtain(usk, opk, A), Issue(
upk, osk, A)⟩: (1) the credential showing verifies, i.e., (·, 1) ← ⟨Show(opk, A,D,
cred),Verify(D)⟩; (2) if the credential showing is accepted, the auditing verifies,
i.e., Audit(ak, S, opk) = 1 for any (S, 1)← ⟨Show,Verify⟩.

For anonymity and unforgeability, we follow the approach given by [9], in
which adversaries can corrupt some participants. We first introduce the following
lists and oracles to model the adversary.

Lists and oracles. At the beginning of each experiment, either the experiment
generates the key tuple (osk, opk, ak), or the adversary outputs opk. The sets
HU,CU track all honest and corrupt users. We use the lists USK,UPK,CRED,
ATTR,OWNER to track user-secret keys, user-public keys, issued credentials with
the corresponding attribute sets, and the users who obtain the credentials. In
the anonymity games, we use JLoR, ILoR to store the issuance indices and the
corresponding users that have been set during the first query to the left-or-right
oracle. The adversary is required to guess a bit b.

Considering a PPT adversary A, the oracles are listed in the following. Note
that we add the OAudit oracle for the unforgeability experiment.

– OHU(i) takes as input a user index i. If i ∈ HU ∪ CU, the oracle returns ⊥;
Otherwise, it creates a new honest user i with (USK[i],UPK[i])← UsrKGen(pp)
and adds the user to the honest user list HU. It returns UPK[i] to the adversary.

– OCU(i, upk) takes as input i and (optionally) a user public key upk. If i ∈ CU
or i ∈ ILoR, the oracle returns ⊥; If i ∈ HU, it moves i from HU to CU and
returns USK[i] and CRED[j] for all j such that OWNER[j] = i; If i /∈ HU∪CU,
it adds i to CU and sets UPK[i] = upk.

9

– OObtIss(i, A) takes as input i and a set of attributes A. If i /∈ HU, the oracle re-
turns ⊥; Otherwise, it generates a credential with (cred,⊤)← ⟨Obtain(USK[i],
opk, A), Issue(UPK[i], osk, A⟩). If cred =⊥, the oracle returns ⊥; Otherwise, it
adds (i, cred, A) to (OWNER,CRED,ATTR) and returns ⊤.

– OObtain(i, A) takes as input i and A. If i /∈ HU, the oracle returns ⊥; Oth-
erwise, it runs (cred, ·) ← ⟨Obtain(USK[i], opk, A), ·⟩ by interacting with the
adversary A running Issue. If cred =⊥, the oracle returns ⊥; Otherwise, it
adds (i, cred, A) to (OWNER,CRED,ATTR) and returns ⊤.

– OIssue(i, A) takes as input i and A. If i /∈ CU, the oracle returns ⊥; Otherwise,
it runs (·, I)← ⟨Obtain(USK[i], opk, A), ·⟩ by interacting with the adversary A
running Obtain. If I =⊥, the oracle returns ⊥; Otherwise, it adds (i,⊥, A) to
(OWNER,CRED,ATTR) and returns ⊤.

– OShow(j,D) takes in the index j and a set of attributesD. Let i = OWNER[j], if
i /∈ HU, the oracle returns ⊥; Otherwise, it runs (S, ·)← ⟨Show(opk,ATTR[j],
D,CRED[j]), ·⟩ by interacting with the adversary A running Verify.

– OAudit(S) is an oracle that holds public and auditing keys for all identified is-
suers. Given a showing transcript of a credential S, it runs b← ⟨Show,Verify⟩(S).
If there exists opk and ak pair such that Audit(ak, S, opk)=1, the oracle returns
(opk, b, 1) to the adversary; Otherwise, it returns ⊥.

– OLoR(j0, j1, D; b) takes as input two issuance indices j0, j1, a set of attributes

D and a challenge bit b
$← {0, 1}. If JLoR ̸= ∅ and JLoR ̸= {j0, j1}, the oracle

returns ⊥. Let i0 = OWNER[j0], i1 = OWNER[j1]. If JLoR = ∅, it sets JLoR =
{j0, j1}, ILoR = {i0, i1}. If i0, i1 /∈ HU orD ⊈ (ATTR[j0]∩ATTR[j1]), the oracle
returns ⊥; Otherwise, it runs (Sb, ·) ← ⟨Show(opk,ATTR[jb], D,CRED[jb]), ·⟩
by interacting with the adversary A running Verify.

Then, the formal definitions are as follows.

Definition 11 (Anonymity). An AABC scheme satisfies anonymity if for any
PPT adversary A that has access to oracles O = {OHU,OCU,OObtIss,OIssue,OShow,OLoR},
the following probability holds for any λ, q > 0, pp← Setup(1λ, q).

Pr

[
b

$← {0, 1}; (opk, st)← A(pp); : b∗ = b
b∗ ← AO(st)

]
− 1

2
≤ negl(λ)

Definition 12 (Unforgeability). An AABC scheme satisfies unforgeability, if
for any PPT adversary A that has access to oracles O = {OHU,OCU,OObtIss,OIssue,
OShow,OAudit}, the following probability holds for any λ > 0, q > 0, pp← Setup(1λ, q),
and (osk, opk, ak)← OrgKGen(pp).

Pr

[
(D, st)← AO(opk, ak); : b = 1 ∧ If OWNER[j]∈CU,
(S, b)← ⟨A(st),Verify(D)⟩ D/∈ATTR[j]

]
≤ negl(λ)

Similar to APK, we require another unforgeability regarding to auditing keys.
Concretely, a user should not be able to recover the auditing key of a given
public key even after querying the auditing oracles on other key tuples for poly-
nomial times. Since the adversary can run key generation on its own in APK,

10

the auditing unforgeability of auditable ABC is equivalent to the auditing key
unforgeability in Definition 8.

3.3 Our Constructions and Analysis

The construction of our auditable ABC follows the same approach of [4] that
takes as building blocks a structure-preserving signatures on equivalence classes
(SPS-EQ) scheme and a set-commit scheme. We extend their ABC construction
with our APK mechanism.

An MDDH-based APK construction. In order to work with the ABC
scheme (precisely, the SPS-EQ) given in [4], the setup algorithm Setup runs

BG ← BGGen(1λ) and samples a matrix A
$← D1. It outputs pp

∆
= (BG, [A]2, ℓ)

where BG = (p,G1,G2,GT , P1, P2, e), and ℓ is a parameter for message size in
the SPS-EQ. We present a construction of APK based on group (G2, P2, p) where
the MDDH and KerMDH assumptions are believed to hold.

Construction 1 (Auditable Public Key APK) The rest of the algorithms
are as follows.

– KGen(pp): Sample matrices K0
$← Dℓ,2 and K1

$← Z2×2
p of full rank 2. Set

K = K0K1. Then, compute [B]2 = [K1A]2 and [C]2 = [KA]2. Finally, set
sk = (K1,K), pk = ([B]2, [C]2), ak = K0 and output (sk, pk, ak);

– Update(pk; r): Sample r
$← Zp and compute [B′]2 = r · [B]2, [C

′]2 = r · [C]2.
Output pk′ = ([B′]2, [C

′]2);
– VerifyUpdate(pk′, sk, r): Parse pk′ = (pk′0, pk

′
1) and sk = (sk0, sk1). Output 1

if pk′0 = r · sk0 · [A]2 ∧ pk′1 = r · pk1 · [A]2, or 0 otherwise;
– VerifyAK(sk, ak): Parse sk = (sk0, sk1). Output 1 if sk1 = ak · sk0, or 0 other-

wise;
– Audit(ak, pk′, pk): Parse pk′ = (pk′0, pk

′
1), pk = (pk0, pk1). Output 1 if pk1 =

ak · pk0 ∧ pk′1 = ak · pk′0, or 0 otherwise.

Hence, we have the following theorem.

Theorem 1. The APK mechanism APK given by Construction 1 satisfies cor-
rectness (Definition 5), indistinguishability (Definition 6), and secret key and
auditing key unforgeability (Definition 7 and 8) if the MDDH and KerMDH as-
sumption (Definition 2 and 3) holds on G2.

Proof. On the additive cyclic group G2, APK correctness can be yielded directly
from our construction. To prove indistinguishability, let pp ← Setup(1λ) where
pp = (BG, [A]2, ℓ) are given as above. The reduction receives an MDDH challenge

over G2, chl = (P2, [X]2, [Xy]2, [z]2) where X
$← Dl,1, y

$← Zp, z
$← Zl

p. Here, l
takes its value from {2, ℓ} because the two components in a public key, [B]2 and
[C]2, are matrices of size 2×1 and ℓ×1, respectively. Note that the reduction

11

needs to prepare both components of the public key. That is, it samples X′ $←
Zl′×l
p such that l′ ∈ {2, ℓ}∧l′ ̸= l, and embeds the MDDH challenge chl by setting

pk∗
∆
= ([X]2,X

′[X]2) and pk′
∆
= ([z]2,X

′[z]2). The indistinguishability adversary
A takes as input (pk∗, pk′). If the challenge tuple satisfies [z]2 = y[X]2, then pk′ is
distributed identically to pk0 (pk0 ← Update(pk∗)). Otherwise, pk′ is distributed
identically to pk1 (a freshly generated public key). Therefore, the reduction has
the same advantage in the Dl,1-MDDH (l ∈ {2, ℓ}) game as the adversary in the
indistinguishability game.

The proofs of two types of unforgeability are similar. For secret key unforge-
ability, the reduction receives a KerMDH challenge overG2, chl = (P2, [A]2, [X]2 =
[K1A]2) where A ∈ D1, and K1 ∈ Z2×2

p of full rank 2. The reduction then pre-

pares the inputs for the unforgeability adversary A. That is, it samples K0
$←

Dℓ,2 and embeds the challenge chl by setting ak
∆
= K0 and pk

∆
= ([X]2, [K0X]2).

Hence, the input to the adversary in the reduction is distributed identically as in
the definition of unforgeability (note that [A]2 ∈ pp). Suppose the adversary A
breaks secret key unforgeability, which means that VerifyUpdate,VerifyAK,Audit
verify the output tuple (sk′, pk′, r). More precisely, parse sk′ = (sk′0, sk

′
1), it holds

that sk′0[A]2 = [X]2 = [K1A]2 and sk′1[A]2 = [K0X]2, i.e., (sk
′
0 − K1)[A]2 =

[0]2 (hence, yielding sk′1 = K0 · sk′0). The equation is equivalent to solving
D1-KerMDH problems. Therefore, the advantage of the reduction in the D1-
KerMDH game is the same as the adversary in the secret key unforgeability
game.

Similarly, the auditing key unforgeability reduction receives a KerMDH chal-
lenge over G2, chl = (P2, [X]2, [Y]2 = [K0X]2) where X ∈ D1, and K0 ∈ Zℓ×2

p

of full rank 2. It directly relays the challenge to the adversary. Hence, the input
of the adversary, pk = ([X]2, [K0X]2), distributes identically to the definition.
Suppose the adversary A breaks auditing key unforgeability, which means it
finds ak′ such that VerifyAK(sk, ak′) = 1. Note that although the reduction can-
not prepare the corresponding secret key, the structure preserves in the public
key, i.e., ak′ · [X]2 should equal to [K0X]2. As explained before, the reduction
cannot gain advantages in the D1-KerMDH game by invoking the auditing key
unforgeability adversary.

An auditable ABC construction. Before we present the full construction of
our auditable ABC scheme, we first recall briefly the SPS-EQ scheme from [4]
(the construction and security definitions can be found in Appendix A). We will
note that the key generation in their construction differs from our APK.KGen.
Hence, by further proving that the change only incurs slightly more advantage to
the adversary in the original scheme, we show that our modification preserves the
security definitions of the SPS-EQ. Moreover, as proven before, our modification
also satisfies the security of the APK mechanism.

Extending the SPS-EQ [4]. We show the original key generation of the SPS-EQ
in the following. Recall that the Setup algorithm outputs pp = (BG, [A]2, ℓ).

12

– SPSEQ.KGen(pp): Sample matrices K1
$← Z2×2

p and K
$← Dℓ,2 of full rank

2. Then, compute [B]2 = [K1A]2 and [C]2 = [KA]2. Finally, set sk = (K1,
K), pk = ([B]2, [C]2) and output (sk, pk).

The only difference here is that we further sample K0
$← Dℓ,2 of full rank 2

and compute K by the multiplication of K0 and K1. In the following lemma,
we prove that this change only increases the SPS-EQ adversary’s advantage by
at most the advantage of solving a Dℓ,2-MDDH problem over G2.

Lemma 1. Replacing SPSEQ.KGen with APK.KGen in the SPS-EQ scheme SPSEQ
given by Construction 4 preserves the correctness, EUF-CMA and perfect adap-
tion of signatures with respect to message space of the original scheme.

Proof. Correctness is straightforward as proven in Theorem 1. We unify the
proofs of EUF-CMA and perfect adaption of signatures with respect to message
space by considering a sequence of games: Game0 is our modified scheme with
APK.KGen, and Game1 is the original SPS-EQ scheme with SPSEQ.KGen. We
further denote the adversaryA’s advantage with Advi for each game Gamei where
∈ {0, 1}. In the transition of Game0 → Game1, pkGame1 = ([K1A]2, [KGame1A]2)
replaces pkGame0 = ([K1A]2, [K0K1A]2). Note that all matrices are of full rank
2, hence, distinguishing pkGame1 and pkGame0 is equivalent to solve a challenge of
Dℓ,2-MDDH problem (because KGame1 is an ℓ×2 matrix of full rank 2). That is,

|Adv0 − Adv1| ≤ AdvMDDH
Dℓ,2,G2

. Therefore, we conclude the lemma.

Constructing the auditable ABC. Let BGGen be the bilinear group generation,
SC = (Setup,Commit,Open,OpenSubset,VerifySubset) be the set-commitment
scheme [9] that satisfies correctness, binding, subset soundness and hiding, andΠ
be a general ZKPoK protocol that satisfies completeness, perfect zero-knowledge
and knowledge-soundness. With the necessary algorithms from our APK mech-
anism and the SPS-EQ [4], i.e., (KGen,Update,Audit) ∈ APK and (Setup,Sign,
ChgRep,Verify) ∈ SPSEQ, we show an auditable ABC AABC in the following.

Construction 2 (Auditable ABC AABC) The algorithms are as follows.

– Setup(1λ, aq): Run BG ← BGGen(1λ) where BG = (p,G1,G2,GT , P1, P2, e).

Sample a
$← Z∗

p and compute ([ai]1, [a
i]2)i∈[q]. Sample matrices [A]2, [A0]1, [A1]1

$← D1, and a common reference string crs for the non-interactive zero knowl-
edge argument in SPSEQ (which we take as a black-box). Output pp = (BG, ([ai]1,
[ai]2)i∈[q], ([A]2, [A0]1, [A1]1), crs, ℓ = 3);

– OrgKGen(pp): Output (osk, opk, ak)← APK.KGen(BG, [A]2, ℓ) and delegate ak
to auditors selected by the issuer;

– UsrKGen(pp): Sample usk
$← Z∗

p and output (usk, upk = uskP1);
– ⟨Obtain, Issue⟩ and ⟨Show,Verify⟩: See Figure 1. In ⟨Obtain, Issue⟩, following

the arguments in [4], we consider malicious issuer-keys and user-keys. Hence,
both the issuer and the user should run a ZKPoK protocol to prove their pub-
lic keys to each other; Whereas, in ⟨Show,Verify⟩, the ZKPoK protocol, i.e.,

13

(π1, π2, π3) ← Π(C,rC,P1)(C1, C2, C3), proves freshness to prevent transcripts
of valid showings from being replayed by someone not in possession of the
credential [9];

– Audit(ak, S, opk): Parse S=(opk′, cred′,W ;D). Return APK.Audit(ak, opk′, opk).

Obtain(pp, usk, opk, A) Issue(pp, upk, osk, A)
π←Πusk(upk)←−−−−−−−→→ If Π fails, return ⊥

If Π fails, return ⊥ ←π←Πosk(opk)←−−−−−−−→

(C,O)← SC.Commit(A; usk);

r
$← Z∗p;R

∆
= rC;

(C,R)−−−−→ If e(C,P2) ̸= e(upk,ChA(a)P2 and
∀a′ ∈ A : [a′]1 = [a]1, return ⊥; Else

(σ,τ)←−−− (σ, τ)← SPSEQ.Sign(osk, (C,R, P1))
Check SPSEQ.Verify(opk, (C,R, P1), (σ, τ));

Return cred
∆
= (C, (σ, τ), r, O)

AABC.Show(opk, A,D, cred) AABC.Verify(D)

Parse cred = (C, σ, r,O);

µ, ρ
$← Z∗p;

((C1, C2, C3), σ
′)← SPSEQ.ChgRep(

(C, rC, P1), (σ, τ), µ, ρ, opk);

(C1, C2, C3)
∆
= µ · (C, rC, P1);

cred′
∆
= (C1, C2, C3, σ

′);
opk′ ← APK.Update(opk, ρ);

O′
∆
= (b, µ ·O) where b ∈ {0, 1};

W ← SC.OpenSubset(SC.pp, µC,A,O′, D)

S
∆
= (opk′, cred′,W);

(π1, π2, π3)← Π(C,rC,P1)(C1, C2, C3)
(S,π1,π2,π3)←−−−−−−−→→ If Π fails, return 0; Else

Return SPSEQ.Verify(opk′, cred′)∧
SC.VerifySubset(C1, D,W)

Fig. 1. ⟨Obtain, Issue⟩, ⟨Show,Verify⟩ protocols in AABC.

Therefore, we have the following result.

Theorem 2. The auditable ABC scheme AABC given by Construction 2 satis-
fies correctness (Definition 10), anonymity (Definition 11), unforgeability (Def-
inition 12), and auditing unforgeability (Definition 8).

Proof. We show a brief proof here. Correctness follows directly from the cor-
rectness of building blocks. If the ZKPoK protocol has perfect zero-knowledge,
anonymity and unforgeability can be derived from adapting these properties of
the original SPS-EQ [4] with our APK mechanism, which has been proven in

14

Lemma 1. It further requires the indistinguishability and secret key unforge-
ability of APK, which has been proven in Theorem 1. Particularly, unforge-
ability requires the set-commitment scheme to be subset-sound. Since we use
set-commitment as a black-box building block, the reduction here follows the
original ABC paper [9]. Finally, as we explained before, the auditing unforge-
ability is equivalent to the auditing key unforgeability of APK (we even use the
same definition), which has been proven in Theorem 1.

4 Application: Contact Tracing

From the perspective of credentials, we review the environmental-adaptive con-
tact tracing (EACT) framework proposed in [18]. We provide a construction
based on our auditable ABC scheme and argue that the game-based security
definitions of auditable ABC suffice the requirements in contact tracing systems.
Finally, we implement our construction to showcase its practicality.

Overview. We start by recalling the settings in the EACT framework [18]. Con-
cerning different virus transmission modes (droplet and airborne), EACT con-
sidered tracing approaches via Bluetooth Low Energy (BLE) and self-reported
discrete location (DLT). However, the framework cannot unify the tracing ap-
proach in both settings because the recorded data are of different structures.
As we will show later, ABC schemes enable us to circumvent this problem by
regarding environmental and location data as attributes. Here, for completeness,
we define a comparison algorithm to decide close contacts for BLE and DLT,
i.e., Compare{BLE,DLT}(envpp, D,A) takes as input the environmental parame-
ters envpp, an opened attributed setD (from other users, potentially downloaded
from the bulletin board) and an attribute set A (of the user who runs the algo-
rithm). We say the algorithm is “well-defined” if it outputs 1 when attributes
in D and A are regarded as close contact concerning the tracing setting in
{BLE,DLT}, and 0 otherwise.

The EACT framework involves three phases: key management, recording, and
tracing, with two types of participants: user U and medical agencyM. We refine
the algorithms with respect to our auditable ABC scheme (which will be shown in
Construction 3). Note that in the recording phase, when users contact (two users
in BLE or one user in DLT), we consider a pairwise executed ⟨Obtain, Issue⟩, i.e.,
each user performs as an ABC issuer to grant its counterparty (itself in DLT)
a credential on the attributes of current environmental data (or location data).
This approach in the DLT setting can be easily adapted to the case in which the
user can communicate to BLE beacons, hence, providing additional evidence for
the user’s location data. In the following section, we present the full construction,
including our modifications to the original framework.

15

4.1 An Auditable ABC-Based Construction

Let SIG = (KGen,Sign,Verify) be a general signature scheme that satisfies cor-
rectness and EUF-CMA, and let AABC be our auditable ABC construction given
in Construction 2.

Construction 3 (Refined EACT REACT) Our refined EACT framework in-
volves three phases, i.e., Key management: (Setup,OrgKGen,UsrKGen,MedKGen,
KReg); Recording: Exchange; Tracing: (⟨Show,Verify⟩,Merge,Trace). The algo-
rithms are performed as follows.

– Setup(1λ, q, envpp) is run by the system where envpp denotes the environmen-
tal parameters. It runs AABC.pp ← AABC.Setup(1λ, q) and outputs pp =
(AABC.pp, envpp).

– OrgKGen(pp) is run be a user and outputs (osk, opk, ak)← AABC.OrgKGen(pp).
Note that in contact tracing, we consider the user auditing for herself;

– UsrKGen(pp) is run be a user and outputs (usk, upk)← AABC.UsrKGen(pp);
– MedKGen(pp) is run by a medical agency. It outputs a medical agent key pair

with (msk,mpk)← SIG.KGen(1λ). Later, we omit pp in algorithm inputs;
– KReg(pk,misc;B) is a DID [16] black-box, which takes as input a public key

pk ∈ {opk,mpk}, auxiliary information misc, and a bulletin board B. KReg
registers pk with the corresponding misc on B.

– Exchange({(oski, opki), (uski, upki), Ai}i∈{0,1}) is an interactive protocol exe-
cuted between two users U0,U1, who may be identical, e.g., in the DLT setting.
For i ∈ {0, 1}, both users perform (credi, ·)← ⟨Obtain(uski, opk1−i, Ai), Issue(
upki, osk1−i, Ai)⟩ to grant each other a credential. The protocol outputs cred0
and cred1 for each user, respectively.

– ⟨Show,Verify⟩ is the showing and verification protocol in our auditable ABC,
which here, is executed between a user U and a medical agencyM. The protocol
outputs (S, b) ← AABC.⟨Show,Verify⟩ where S is a showing of the credential

and b ∈ {0, 1}. Note that we explicitly add revealed attributes to S, i.e., S
∆
=

(opk′, cred′,W ;D). Moreover, we enable this protocol to process in batches,
i.e., it can takes a list of n credentials and verifies for each entry;

– Merge(msk, (S, b),B) is run by a medical agency M. If b = 1, Merge runs
σ ← SIG.Sign(msk, S) and outputs B||(mpk, S, σ), or aborts otherwise;

– Trace(ak, A,B) is run by a user U with issuer-public and auditing keys opk, ak.
It parses B = {(mpkj , Sj , σj)}j∈[|B|], and for each entry, parses Sj = (opk′j ,

cred′j ,Wj ;Dj). Then, for each entry, it runs b ← SIG.Verify(mpkj , Sj , σj),

and b′ ← AABC.Audit(ak, Sj , opk) (which is APK.Audit(ak, opk′j , opk)). For all
j∈[|B|] such that b=1∧b′=1, it compares according to environmental parame-
ters and tracing settings, i.e., bj ← Compare{BLE,DLT}(envpp, Dj , A). If there
exists any j that satisfies bj = 1, Trace outputs 1; Otherwise, it outputs 0.

4.2 Security and Analysis

In contrast to previous works, which only provide informal threat models, we
directly employ the cryptographic game-based security definitions from our au-

16

ditable ABC scheme given in Section 3.2, including correctness, anonymity, and
unforgeability. Note that the refined EACT requires signatures from medical
agencies in Merge and the bulletin board B (which should satisfy the robust
ledger properties [10], i.e., the capability of achieving consensus atomically), we
define separately “traceability” (which can be regarded as the correctness of the
tracing process) to capture such a change.

Definition 13 (Traceability). Given the bulletin board B, a REACT system
satisfies traceability, if for any λ > 0, q > 0, any non-empty sets A with |A| ≤ q,

and for any honest user U with a key tuple (osk, opk, ak)
$← OrgKGen(pp) where

pp← Setup(1λ, 1q), if there exists (mpk, S, σ) ∈ B such that ⟨Show,Verify⟩(S) =
1, SIG.Verify(mpk, S, σ) = 1, D ∈ S such that Compare{BLE,DLT}(envpp, D,A) =
1, then Pr[Trace(ak, A,B) = 1] = 1 where A is the attribute set of U when she
issues the credential being shown in S.

It is easy to prove traceability for our REACT construction based on the cor-
rectness of the underlying AABC and SIG. Hence, we have the following theorem.

Theorem 3. Let the bulletin board satisfy the robust ledger properties [10]. The
refined EACT REACT given by construction 3 satisfies traceability if AABC and
SIG satisfy correctness, and the Compare algorithm is well-defined.

Next, we consider the soundness of tracing, i.e., the situation in which an
honest user’s Trace outputs 1 falsely. The PPT adversary A either: (1) forges
a valid credential on behalf of honest users; or (2) colludes with a malicious
medical agency so that arbitrary showings can be uploaded to the bulletin board.
The first case has been captured by our unforgeability game in the auditable
ABC scheme (Definition 12) with additional assumptions for the bulletin board,
signature scheme, and comparing algorithm (like in Theorem 3).

However, the second one is dedicated to contact tracing. The reason lies in
the different use cases, i.e., in auditable ABC, auditors audit credential show-
ings on behalf of the original issuer, hence, triggering the auditing algorithm of
another auditor gains the adversary no benefits; whereas, in contact tracing, it
will cause false positive errors to the original issuer. In order to prevent such
an attack, we require the proof of freshness in AABC.⟨Show,Verify⟩ to be non-
interactive. As shown in Theorem 2, the anonymity and unforgeability of AABC
(also for REACT in Theorem 4) requires perfect zero-knowledge of Π. Hence,
we must rely on heavy mechanisms, e.g., [13], to make such a protocol non-
interactive. An alternative way is to prove these theorems with computational
zero-knowledge with a looser security reduction. The transformation to a non-
interactive protocol with computational zero-knowledge can be achieved with
the Fiat-Shamir heuristic [8] to trade security tightness for efficiency. Then, the
showing of a credential becomes publicly verifiable so that even if a malicious
medical agency falsely uploads credential showings to the bulletin board, every
user (including the one who runs Trace) can verify the showing.

Compared to the unforgeability of auditable ABC in Definition 12, due to
the malicious M setting, tracing soundness removes the requirement of b = 1

17

(the credential showing can be invalid) but embeds the proof of freshness (the
showing must be presented at most once). We formally define tracing soundness
(with respect to maliciousM).

Definition 14 (Tracing Soundness). Given the bulletin board B, a REACT
system satisfies tracing soundness (with respect to maliciousM), if for any PPT
adversary A that has access to oracles O = {OHU,OCU,OObtIss,OIssue,OShow},
the following probability holds for any λ > 0, q > 0, pp ← Setup(1λ, q), and
(osk, opk, ak)← OrgKGen(pp).

Pr

[
(D, st)← AO(opk, ak); : Trace(ak, ·, (S, π)) = 1∧
((S, π), b)← ⟨A(st),Verify(D)⟩ If OWNER[j]∈CU, D/∈ATTR[j]

]
≤ negl(λ),

where π = (π1, π2, π3) ← Π(C,rC,P1)(C1, C2, C3), and the variables are given in
Figure 1 of auditable ABC construction.

Finally, we have the following theorem. The proofs can be derived from pre-
vious content.

Theorem 4. Our refined EACT REACT satisfies correctness, traceability, anonymity,
and tracing soundness (with respect to maliciousM).

4.3 Implementation

We provide a proof-of-concept implementation for the refined EACT construc-
tion to prove its practicality on mobile devices with comparatively limited perfor-
mance. The implementation uses Java/Kotlin for the raw Android environment.
However, we also implement necessary functions since the Java Pairing-Based
Cryptography (jPBC) library [3] cannot fully support matrix-based bilinear pair-
ing operations. The library-level implementation, together with extended parts
for jPBC [3] library, can also be found in our anonymous repository4.

Overview. In the recording protocol of our EAHT system, users only have lim-
ited time to exchange and record credentials. Hence, algorithms in the recording
protocol, i.e., UsrKGen,Exchange, have great impacts on the overall system per-
formance. In contrast, in the tracing protocol, users can interact with medical
agencies to get treatment. Hence, the time consumption of the tracing protocol
is unlikely to be a performance bottleneck. Therefore, we focus on implementing
the recording phase of the EAHT system. Concretely, we implement the follow-
ing algorithms of REACT: (Setup,OrgKGen,UsrKGen,Exchange). Moreover, in the
Exchange, we need to measure the performance of algorithms and transmission
separately. For simplicity, we write data transmission in the form of Transmit(·),
and divide Exchange into (Obtain-1,Transmit1, Issue,Transmit2,Obtain-2). We run
our implementation on a physical device and simulate data transmissions using
Bluetooth 5.0. The results are shown in Table 1.

4 https://anonymous.4open.science/r/EAHT MODULE TEST

18

Table 1. Experiment Results

Algorithms Time Algorithms Time Algorithms Time

Setup 168.99 Obtain-1 40.08 Transmit(σ, τ) 75.16
OrgKGen 54.18 Transmit(π,C,R) 38.32 Obtain-2 164.81
UsrKGen 9.05 AABC.Issue 257.50 GenProof 0.26

Experiment device: Samsung SM-S9080 Android 12, Bluetooth
5.0 (Bluetooth Low Energy); Time consumption is presented in
milliseconds and calculated with the average of 100 attempts.

Evaluation. Setup and OrgKGen only need to be executed once. Hence, they
are performance-insensitive. We implement them merely to support other algo-
rithms. Although we do not require user key pairs to be renewed once per con-
tact, UsrKGen should be run periodically (e.g., once per hour) to prevent a user’s
complete track under its public key from exposing. We leave the setting of the re-
newal interval for real-life users to decide. Finally, for Exchange, we consider the
performance of AABC.Obtain = (Obtain-1,Obtain-2), AABC.Issue and the time
cost of data transmission, i.e., Transmit(π,C,R) and Transmit(σ, τ). A one-sided
round trip, e.g., U0 issuing a credential to U1 is performed with (U0.Obtain-1 −→
U0.Transmit(π,C,R) −→ U1.Issue −→ U1.Transmit(σ, τ) −→ U0.Obtain-2) takes
approximately 575.87 milliseconds in total. Consider the worst case, e.g., when
a crowded train is filled with 101 users. Each of them needs to Exchange with
the other 100, hence, taking approximately 57.6 seconds to finish the execution
and transmission. We consider this result to be reasonable and plausible.

5 Conclusion

Motivated by the new requirements in contact tracing, we adopt a novel per-
spective from attribute-based credential schemes due to their similarity. By ab-
stracting “traceability” from contact tracing systems, we propose an auditable
public key (APK) mechanism that, like its predecessor, the updatable public
keys, can be applied in many cryptographic primitives. Hence, we emphasize
that the APK mechanism may be an independent point of interest.

Next, we extend the ABC schemes in [9, 4] with our APK mechanism to port
the auditability to the world of ABC. Such property enables auditors, delegated
by an issuer, to audit if a shown credential is issued by the issuer. We argue that
it brings an additional layer of verification to the schemes that can hide identities
for issuers, which is usually an overpowerful anonymity property in real-life. The
auditability for identifying issuers may also be helpful in revoking credentials,
which has been another long-worried problem when deploying credentials in
reality.

Finally, our refined EACT framework fixes the problems in the original
work [18], i.e., (1) distinct tracing approaches for different settings; (2) weak
security guarantee from informal threat models. We achieve so by constructing

19

it from our auditable ABC and adapting security properties accordingly. More-
over, we clarify that EACT is only one example application for our auditable
primitives (public keys and ABC).

References

1. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A.,
Shacham, H.: Randomizable proofs and delegatable anonymous credentials. In:
Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009, 29th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2009. Proceedings. Lecture Notes in Computer Science, vol. 5677, pp. 108–
125. Springer (2009). https://doi.org/10.1007/978-3-642-03356-8“˙7, https://

doi.org/10.1007/978-3-642-03356-8_7

2. Bobolz, J., Eidens, F., Krenn, S., Ramacher, S., Samelin, K.: Issuer-hiding
attribute-based credentials. In: Conti, M., Stevens, M., Krenn, S. (eds.) Cryptol-
ogy and Network Security - 20th International Conference, CANS 2021, Vienna,
Austria, December 13-15, 2021, Proceedings. Lecture Notes in Computer Science,
vol. 13099, pp. 158–178. Springer (2021). https://doi.org/10.1007/978-3-030-92548-
2“˙9, https://doi.org/10.1007/978-3-030-92548-2_9

3. Caro, A.D., Iovino, V.: jpbc: Java pairing based cryptography. In: Proceedings
of the 16th IEEE Symposium on Computers and Communications, ISCC 2011,
Kerkyra, Corfu, Greece, June 28 - July 1, 2011. pp. 850–855. IEEE Computer So-
ciety (2011). https://doi.org/10.1109/ISCC.2011.5983948, https://doi.org/10.
1109/ISCC.2011.5983948

4. Connolly, A., Lafourcade, P., Perez-Kempner, O.: Improved constructions of
anonymous credentials from structure-preserving signatures on equivalence classes.
In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography
- PKC 2022 - 25th IACR International Conference on Practice and The-
ory of Public-Key Cryptography, Virtual Event, March 8-11, 2022, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 13177, pp. 409–438.
Springer (2022). https://doi.org/10.1007/978-3-030-97121-2“˙15, https://doi.

org/10.1007/978-3-030-97121-2_15

5. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.L.: An algebraic framework
for diffie-hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) Advances in
Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II. Lecture Notes in Computer
Science, vol. 8043, pp. 129–147. Springer (2013). https://doi.org/10.1007/978-3-
642-40084-1“˙8, https://doi.org/10.1007/978-3-642-40084-1_8

6. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new design for
anonymous cryptocurrencies. In: Galbraith, S.D., Moriai, S. (eds.) Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe, Japan, December
8-12, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11921, pp.
649–678. Springer (2019). https://doi.org/10.1007/978-3-030-34578-5“˙23, https:
//doi.org/10.1007/978-3-030-34578-5_23

7. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In:
Brassard, G. (ed.) Advances in Cryptology - CRYPTO ’89, 9th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 20-
24, 1989, Proceedings. Lecture Notes in Computer Science, vol. 435, pp. 526–

20

544. Springer (1989). https://doi.org/10.1007/0-387-34805-0“˙46, https://doi.

org/10.1007/0-387-34805-0_46

8. Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings. Lecture Notes in Com-
puter Science, vol. 263, pp. 186–194. Springer (1986). https://doi.org/10.1007/3-
540-47721-7“˙12, https://doi.org/10.1007/3-540-47721-7_12

9. Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on
equivalence classes and constant-size anonymous credentials. J. Cryptol. 32(2),
498–546 (2019). https://doi.org/10.1007/s00145-018-9281-4, https://doi.org/

10.1007/s00145-018-9281-4

10. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Anal-
ysis and applications. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2015 - 34th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9057, pp.
281–310. Springer (2015). https://doi.org/10.1007/978-3-662-46803-6“˙10, https:
//doi.org/10.1007/978-3-662-46803-6_10

11. Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In: 21st
Annual Network and Distributed System Security Symposium, NDSS 2014, San
Diego, California, USA, February 23-26, 2014. The Internet Society (2014), https:
//www.ndss-symposium.org/ndss2014/decentralized-anonymous-credentials

12. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).
https://doi.org/10.1137/0217017, https://doi.org/10.1137/0217017

13. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for
NP. In: Vaudenay, S. (ed.) Advances in Cryptology - EUROCRYPT 2006, 25th
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceed-
ings. Lecture Notes in Computer Science, vol. 4004, pp. 339–358. Springer (2006).
https://doi.org/10.1007/11761679“˙21, https://doi.org/10.1007/11761679_21

14. Hébant, C., Pointcheval, D.: Traceable constant-size multi-authority creden-
tials. In: Galdi, C., Jarecki, S. (eds.) Security and Cryptography for Networks
- 13th International Conference, SCN 2022, Amalfi, Italy, September 12-14,
2022, Proceedings. Lecture Notes in Computer Science, vol. 13409, pp. 411–
434. Springer (2022). https://doi.org/10.1007/978-3-031-14791-3“˙18, https://

doi.org/10.1007/978-3-031-14791-3_18

15. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix diffie-hellman assump-
tion. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASIACRYPT
2016 - 22nd International Conference on the Theory and Application of Cryp-
tology and Information Security, Hanoi, Vietnam, December 4-8, 2016, Pro-
ceedings, Part I. Lecture Notes in Computer Science, vol. 10031, pp. 729–
758 (2016). https://doi.org/10.1007/978-3-662-53887-6“˙27, https://doi.org/10.
1007/978-3-662-53887-6_27

16. Sporny, M., Sabadello, M., Guy, A., Reed, D.: Decentralized identifiers (DIDs) v1.0.
W3C recommendation, W3C (Jul 2022), https://www.w3.org/TR/2022/REC-did-
core-20220719/

17. Sporny, M., Zundel, B., Noble, G., Burnett, D., Longley, D., Hartog, K.D.: Ver-
ifiable credentials data model v1.1. W3C recommendation, W3C (Mar 2022),
https://www.w3.org/TR/2022/REC-vc-data-model-20220303/

21

18. Wang, P., Su, X., Jourenko, M., Jiang, Z., Larangeira, M., Tanaka, K.: En-
vironmental adaptive privacy preserving contact tracing system for respiratory
infectious diseases. In: Meng, W., Conti, M. (eds.) Cyberspace Safety and Se-
curity - 13th International Symposium, CSS 2021, Virtual Event, November
9-11, 2021, Proceedings. Lecture Notes in Computer Science, vol. 13172, pp.
131–144. Springer (2021). https://doi.org/10.1007/978-3-030-94029-4“˙10, https:
//doi.org/10.1007/978-3-030-94029-4_10

A The SPS-EQ Scheme from [4]

Here, we show the construction and security definitions of the SPS-EQ scheme
given by [4]. First, the construction is built atop a fully adaptive non-interactive

zero-knowledge (NIZK) argument NIZK
∆
= (PGen,PPro,PSim,PRVer,PVer,ZKEval).

We omit their details due to the page limitation.

Construction 4 (SPS-EQ Scheme SPSEQ) The algorithms are performed as
follows.

– Setup(1λ). Run BG← BGGen(1λ) where BG = (p,G1,G2,GT , P1, P2, e). Sam-

ple matrices A,A0,A1
$← D1 from matrix distribution. Generate a com-

mon reference string and trapdoor for the malleable NIZK argument with
NIZK.PGen(1λ,BG)→ (crs, td). Return pp = (BG, [A]2, [A0]1, [A1]1, crs, ℓ);

– KGen(pp). Sample K0
$← Z2×2

p ,K
$← Zℓ×2

p . Compute [B]2 = [K0]2[A]2 and
[C]2 = [K]2[A]2. Set sk = (K0,K1,K) and pk = ([B]2, [C]2). Return (sk, pk);

– Sign(pp, sk, [m]1). Sample r1, r2
$← Zp. Compute [t]1 = [A0]1r1 and [w]1 =

[A0]1r2. Compute u1 = K⊤
0 [t]1 + K⊤[m]1 and u2 = K⊤

0 [w]1. Generate
proof with NIZK.PPro(crs, [t]1, r1, [w]1, r2)→ (Ω1, Ω2, [z0]2, [z1]2, Z1). Set σ =
([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1) and τ = ([u2]1, [u2]1, [w]1, Ω2). Return (σ, τ);

– ChgRep(pp, [m]1, (σ, τ), µ, ρ, pk). Parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1) and
τ ∈ {([u2]1, [w]1, Ω2),⊥}. Let Ω = (Ω1, Ω2, [z0]2, [z1]2, Z1). Check proof with
NIZK.PVer(crs, [t]1, [w]1, Ω). Check if e([u2]

⊤
1 ,A]2) = e([w]⊤1 ,B]2) and e([u1]

⊤
1 ,

A]2) = e([t]⊤1 ,B]2) + e([m]⊤1 ,C]2). Sample α, β
$← Z∗

p. Compute [u′
1]1 =

ρ(µ[u1]1 + β[u2]1) and [t′]1 = µ[t]1 + β[w]1 = [A0]1(µr1 + βr2). And for
i ∈ {0, 1}, compute [z′i]2 = α[zi]2, [a

′
i]1 = αµ[a1i]1 + αβ[a2i]1, [d

′
i]2 = αµ[d1i]2 +

αβ[d2i]2. Set Ω
′ = (([a′i]1, [d

′
i]2, [z

′
i]2)i∈{0,1}, αZ1). Set σ

′ = ([u′
1]1, [t

′]1, Ω
′).

Return (µ[m]1, σ
′);

– Verify(pp, (ρ, pk), [m]1, (σ, τ)). Parse σ = ([u1]1, [t]1, Ω1, [z0]2, [z1]2, Z1) and
τ ∈ {([u2]1, [w]1, Ω2),⊥}. Check proof Ω1 with NIZK.PRVer(crs, [t]1, Ω1, [z0]2,
[z1]2, Z1) and check if e([u1]

⊤
1 ,A]2) = e([t]⊤1 ,B]2) + e([m]⊤1 ,C]2). If τ ̸=⊥,

then check proof Ω2 with NIZK.PRVer(crs, [w]1, Ω2, [z0]2, [z1]2, Z1) and check
if e([u2]

⊤
1 ,A]2) = e([w]⊤1 ,B]2).

An SPS-EQ scheme is secure if it satisfies correctness, EUF-CMA, and perfect
adaption of signatures with respect to message space.

22

Definition 15 (Correctness). An SPS-EQ scheme SPSEQ satisfies correct-
ness, if the following properties hold for any λ > 0, ℓ > 1, pp← Setup(1λ), (sk, pk)←
KGen(pp), all message m ∈ (G∗

i)
ℓ and all µ, ρ ∈ Z∗

p.

Pr[Verify(pk,m,Sign(sk,m)) = 1] = 1∧
Pr[Verify(ρpk,ChgRep(m,Sign(sk,m), µ, ρ, pk) = 1] = 1.

Definition 16 (EUF-CMA). An SPS-EQ scheme satisfies EUF-CMA, if for
any adversary that has access to a signing oracle OSign(sk, ·) with queries [m]i ∈
Q, the following probability holds for any λ > 0, ℓ > 1 and pp← Setup(1λ).

Pr

[
(sk, pk)← KGen(pp); : ∀[m]i ∈ Q, [m∗]R ̸= [m]R∧
([m]∗i , σ

∗)← AOSign(pk) Verify([m]∗i , σ
∗, pk) = 1

]
≤ negl(λ).

Definition 17 (Perfect Adaption of Signatures with respect to Mes-
sage Space (under Malicious Keys in the Honest Parameters Model)).
An SPS-EQ scheme over a message space Sm ⊆ (G∗

i)
ℓ perfectly adapts signa-

tures with respect to the message space, if for all tuples (pp, [pk]j , [m]i, (σ, τ), µ, ρ)
such that pp← Setup(1λ), [m]i ∈ Sm, µ, ρ ∈ Z∗

p, and Verify(pk, [m]i, (σ, τ)) = 1,
we have the output ([µ ·m]i, σ

∗)← ChgRep([m]i, (σ, τ), µ, ρ, [pk]j) where σ∗ is a
random element in the signature space such that Verify([ρ · pk, µ ·m]i, σ

∗) = 1.

23

