
IOPs with Inverse Polynomial Soundness Error

Gal Arnon
gal.arnon@weizmann.ac.il

Weizmann Institute

Alessandro Chiesa
alessandro.chiesa@epfl.ch

EPFL

Eylon Yogev
eylon.yogev@biu.ac.il

Bar-Ilan University

Abstract

We show that every language in NP has an Interactive Oracle Proof (IOP) with inverse poly-
nomial soundness error and small query complexity. This achieves parameters that surpass all
previously known PCPs and IOPs. Specifically, we construct an IOP with perfect completeness,
soundness error 1/n, round complexity O(log log n), proof length poly(n) over an alphabet of
size O(n), and query complexity O(log log n). This is a step forward in the quest to establish
the sliding-scale conjecture for IOPs (which would additionally require query complexity O(1)).

Our main technical contribution is a high-soundness small-query proximity test for the Reed–
Solomon code. We construct an IOP of proximity for Reed–Solomon codes, over a field F
with evaluation domain L and degree d, with perfect completeness, soundness error (roughly)
max{1 − δ,O(ρ1/4)} for δ-far functions, round complexity O(log log d), proof length O(|L|/ρ)
over F, and query complexity O(log log d); here ρ = (d + 1)/|L| is the code rate. En route, we
obtain a new high-soundness proximity test for bivariate Reed–Muller codes.

The IOP for NP is then obtained via a high-soundness reduction from NP to Reed–Solomon
proximity testing with rate ρ = 1/poly(n) and distance δ = 1 − 1/poly(n) (and applying our
proximity test). Our constructions are direct and efficient, and hold the potential for practical
realizations that would improve the state-of-the-art in real-world applications of IOPs.

Keywords: interactive oracle proofs; Reed–Solomon proximity testing; sliding-scale conjecture

1

Contents

1 Introduction 1
1.1 Our results . 2
1.2 Related work . 3

2 Techniques 5
2.1 From poly-IOPP to IOPP . 6
2.2 poly-IOPP for RS codes . 10
2.3 Testing RS codes with inverse polynomial error . 15

3 Preliminaries 16
3.1 Interactive oracle proofs . 16
3.2 IOPs of proximity . 17
3.3 Polynomial IOPs and IOPPs . 17
3.4 The Reed–Solomon and Reed–Muller codes . 18
3.5 Polynomial identity lemma . 19

4 Proximity generators for correlated agreement 20
4.1 Proximity generators . 20
4.2 Strong proximity generators . 21

5 From poly-IOPs to IOPs through low-degree tests 24
5.1 Univariate function quotienting . 25
5.2 Construction . 26
5.3 Completeness and soundness . 28

6 High-soundness small-query test for RS codes 32
6.1 Weighted univariate sumcheck . 32
6.2 poly-IOPP for bivariate RM codes . 34
6.3 poly-IOPP for RS codes . 38
6.4 Recursive construction of IOPP for RS codes . 40

7 High-soundness IOP for NP 46
7.1 poly-IOP for R1CS . 47

8 Applications 51
8.1 poly-IOPPs to IOPPs . 51
8.2 IOPPs for RS codes over every domain . 52
8.3 Testing bivariate RM codes with inverse polynomial error 53

Acknowledgments 56

References 56

2

1 Introduction

Probabilistic proofs are a central tool in complexity theory and cryptography. They have enabled
breakthroughs in areas such as zero knowledge, delegation of computation, and hardness of approx-
imation.

A probabilistically checkable proof (PCP) [BFLS91; FGLSS96] is a proof system in which a
polynomial-time probabilistic verifier has query access to a proof string. The celebrated PCP
theorem [AS98; ALMSS98] states that every language in NP has a PCP with constant soundness
error, polynomial proof length, and constant query complexity. While decades of research have
contributed numerous PCP constructions achieving important goals, major open problems remain.
For example, the shortest PCPs known to date have quasilinear proof length [BS08; Din07], and
achieving PCPs with linear proof length remains an open problem.

Some limitations of known PCPs have been circumvented by the introduction of a multi-round
variant of PCPs called interactive oracle proofs (IOPs) [BCS16; RRR16]. An IOP is an interactive
proof where the verifier has PCP-like access to each prover message (the verifier may read a few
symbols from each prover message).

IOPs leverage interaction to overcome barriers that arise with PCPs. For instance, known
PCPs use proof composition to reduce query complexity but at the cost of a blowup in proof
length. In contrast, interactive proof composition enables IOPs to reduce query complexity with
only a small increase in proof length. Thanks to this and many other techniques, known IOPs
achieve linear proof length as well as other desirable properties such as fast provers, zero knowledge,
and concrete efficiency [BCGV16; Ben+17; BCGRS17; BBHR18; BCGGHJ17; XZZPS19; BCG20;
BCL22; RR20; ACY22a; ACY22b; BN22; RR22; GLSTW23]. IOPs now underlie highly-efficient
cryptographic proofs that have seen widespread deployment in real-world applications.
Small soundness error. A major open problem for PCPs is the sliding-scale conjecture: for every
β ≥ 1

poly(n) , every language in NP has a PCP with soundness error β, proof length poly(n) over
an alphabet of size poly(1/β), and query complexity O(1) [BGLR93]. Note that the PCP theorem
does not achieve the requirement of small soundness error (e.g., take β = 1/n). This requirement is
crucial for numerous applications; see [Mos19] for a survey on this conjecture and its implications.

The state-of-the-art for low-error PCPs is due to Dinur, Harsha, and Kindler [DHK15]. Build-
ing on a line of work on low-error PCPs [RS97; AS03; DFKRS11] and through comprehensive
understanding and usage of proof composition, they show that every language in NP has a PCP
with perfect completeness, soundness error 1/poly(n), proof length poly(n) over an alphabet of size
poly(n), and query complexity polyloglog(n).

Despite the striking progress on IOP constructions in the last few years, the aforementioned
conjecture remains open even for IOPs and, in fact, all known IOPs to date have not made any
improvements compared to PCPs as far as soundness error is concerned.1 Indeed, leveraging inter-
action to achieve small soundness error has been a frustratingly elusive goal, and the aforementioned
PCP from [DHK15] remains the state-of-the-art even for low-error IOPs.

Conjecture 1.1 (sliding-scale conjecture for IOPs). For every β ≥ 1
poly(n) , every language in NP

has an IOP with perfect completeness, soundness error β, total proof length poly(n) over an alphabet
of size poly(1/β), and query complexity O(1); the round complexity can be up to poly(n).

1Any IOP can be “unrolled” into a corresponding PCP with the same verifier parameters. (Only the prover is
affected: proof length, and thus prover time, blows up, and zero knowledge may disappear.)

1

The sliding-scale conjecture for IOPs is a natural generalization of the sliding-scale conjecture
for PCPs. Progress on the IOP conjecture may lead to progress on the PCP conjecture. In fact, the
PCP theorem was achieved thanks to advancements in IPs; and, relevant to our setting, [ABCY22]
shows that solving the sliding-scale conjecture for IOPs with round complexity polylog(n) implies
solving the sliding-scale conjecture for PCPs. Finally, trading a larger alphabet for fewer queries has
cryptographic applications: in constructions of succinct arguments from IOPs based on the Merkle-
tree paradigm, the main bottleneck to reducing argument size comes from the query complexity of
the IOP rather than the alphabet size or proof length of the IOP [BCS16; CY21a; CY21b].

1.1 Our results

We demonstrate that interaction can improve soundness, achieving a regime of parameters that is
beyond all known PCPs and IOPs to date. The theorem below is a step towards proving the sliding
scale conjecture for IOPs; in particular, fixing β = 1/n, we obtain that every language in NP has
an IOP with soundness error 1/n and query complexity O(loglog n).

Theorem 1. For every β = β(n) ∈ (0, 1), every language in NP has a public-coin IOP with
perfect completeness, soundness error β, round complexity O(loglog n), proof length poly(nβ) over
an alphabet of size poly(nβ), and query complexity O(loglog n) (O(1) queries per round).

Setting β = 1/n, Theorem 1 achieves the same soundness error as in [DHK15] with smaller query
complexity (albeit at the price of more rounds of interaction). Our techniques differ significantly and
are more “direct”, in the sense that our protocol avoids proof composition and soundness amplifica-
tion (see Section 1.2 for further discussion). Moreover, our IOP implies a corresponding low-error
PCP: the IOP can be “unrolled” into a PCP with the same query complexity and soundness error,
and proof length nO(loglogn) (see [ABCY22]).

While Theorem 1 applies for general NP languages, for the NP-complete language R1CS we
achieve better parameters. Over a field of size O(n/β) we achieve proof length O(t · n · β−1/t) and
query complexity O(t · loglog n) for any t ∈ N. By setting t appropriately, we achieve short proof
length. For example, for β = 1/n, by setting t = logloglog n we get a high-soundness IOP for R1CS
with proof length n1+o(1) and query complexity Õ(loglog n), which is essentially tight [ABCY22].2

Proximity testing for Reed–Solomon codes. The main technical tool underlying Theorem 1
is a new proximity test for Reed–Solomon (RS) codes. RS codes are a fundamental object of study
in algebraic coding theory and theoretical computer science, and, in particular, they often play a
role in the design of probabilistic proofs. The code RS[F, L, d] is the set of functions f : L→ F that
are evaluations of polynomials of degree (at most) d. An IOP of proximity (IOPP) for RS[F, L, d]
enables a prover to convince a verifier with oracle access to f that f is close (in relative Hamming
distance) to a codeword in RS[F, L, d] by engaging in a multi-round interaction where the prover
sends additional oracles and the verifier sends randomness. We provide an IOPP for RS[F, L, d]
with small soundness error and small query complexity.

Theorem 2 (informal). Let F be a “nice” field. There is a public-coin IOPP for RS[F, L, d] with
soundness error max{1 − δ, ρ1/4 + O(d

2·(1/ρ)4
|F|)} for δ-far functions, round complexity O(loglog d),

proof length O(|L|/ρ) over F, and query complexity O(loglog d); here ρ := d+1
|L| is the code rate.

2Following [ABCY22], an IOP with the same parameters but shorter proof length Õ(n) would imply a randomized
algorithm that decides R1CS in subexponential time (in the witness length), opposing current beliefs of its hardness.

2

A formal statement and proof appear in Section 6.
The new proximity test is direct and efficient, and holds the potential for practical realizations

that would improve the state-of-the-art in real-world applications of IOPs. Prior IOPPs for Reed–
Solomon codes achieve, regardless of code rate, only constant soundness error or logarithmic query
complexity (e.g., [Din07; BS08; Mie09; RVW13; BBHR18; BGHSV06; BGKS20; BCIKS20]).

A building block of independent interest on the way to Theorem 2 is a new proximity test for
(individual degree) bivariate Reed–Muller codes.3 Our bivariate proximity test has small soundness
error and small query complexity, making it potentially useful in other contexts.

Theorem 3 (informal). Let F be a “nice” field. There is a public-coin IOPP for the bivariate Reed–
Muller code RM[F, X × Y, (dX , dY)] with soundness error max

{
2
√
1− δ, ρ1/4X

}
+ O

(
d2·(1/ρX)4

|F|

)
for δ-far functions, round complexity O(loglog d), proof length O (d · |X|/ρX) over F, and query
complexity O(loglog d); here d := max{dX , dY } and ρX := dX+1

|X| .

A formal statement and proof appear in Section 8.3.

1.2 Related work

PCPs with small soundness error. The PCP Theorem [AS98; ALMSS98] and parallel repetition
[Raz95] together imply a PCP with soundness error β, proof length nO(log 1/β), and query complexity
2. The PCP in [MR08], with the amplification in [DS14], achieves soundness error β with only two
queries, but the alphabet size is exponential in 1/β. The constructions in [AS03; RS97; MR10;
DFKRS11] achieve proof length poly(n) and query complexity O(1), with soundness error 2−(logn)α

for a constant 0 < α < 1.
The PCP in [DHK15] gets much closer to the sliding scale conjecture: it achieves soundness

error 1/poly(n), proof length poly(n) over an alphabet of size poly(n), and query complexity
polyloglog(n). The PCP is the result of naively repeating, for polyloglog(n) many times, a PCP
verifier with soundness error n−1/ polyloglog(n) and query complexity polyloglog(n). In particular,
reducing the query complexity of their main construction to O(1) would not resolve the sliding
scale conjecture, as the soundness amplification would still result in polyloglog(n) queries. Our IOP
avoids soundness amplification and directly achieves soundness error 1/poly(n) and only O(loglog n)
queries, with the potential for further optimizations.
IOPs. The last few years have seen tremendous progress on IOPs. Known IOP constructions
demonstrate that even small round complexity (typically O(1) or O(log n)) suffices to achieve small
(linear) proof length and fast (quasilinear or linear) proving time. Yet prior IOP constructions
achieve only constant soundness error (and smaller soundness error is then achieved via repetition).

The sliding-scale conjecture for IOPs can serve as a stepping stone towards the sliding scale con-
jecture for PCPs [ABCY22]: any IOP with soundness error 1/poly(n), round complexity polylog(n),
proof length poly(n), and query complexity O(1) can be transformed into a PCP with proof length
poly(n) and (roughly) the same soundness error and query complexity. At present it is unknown
whether higher round complexity (more than polylog(n)) enables a similar implication from a low-
error IOP to a low-error PCP.

Applying the transformation in [ABCY22] to Theorem 1, we obtain a PCP with soundness error
1/n, proof length nO(loglogn) over an alphabet of size poly(n), and query complexity O(loglog n).

3The bivariate Reed–Muller code RM[F, X × Y, (dX , dY)] is the set of bivariate functions f : X × Y → F that are
evaluations of polynomials with degree at most dX in the first variable and at most dY in the second variable.

3

Proximity tests for RS codes. Our proximity test for Reed–Solomon codes improves over prior
work in several ways.

The popular FRI protocol and its variants achieve a soundness error that tends to zero as the code
rate tends to zero [BBHR18; BGKS20; BCIKS20]. However, to achieve even a constant soundness
error, the FRI protocol requires round complexity Ω(log d) and query complexity Ω(log d). This is
because the protocol works (in simple terms) by reducing the problem of testing degree d to the
problem of testing degree d/2 using one round of interaction.

The Ben-Sasson–Sudan PCPP for Reed–Solomon codes [BS08] also follows a recursive structure
but each recursive step reduces the degree d to

√
d. While this leads to only O(loglog d) recursive

steps, the soundness error is 1− 1
polylog(d) even for functions that are far from the code. To compensate

for this, soundness is amplified by repetition, yielding query complexity polylog(d).
Our proximity test overcomes both of these issues, using only O(loglog d) recursive steps and

query complexity O(loglog d) while maintaining high soundness throughout. The proof length in
our protocol is slightly higher at O(|L|/ρ), compared to FRI, which has proof length O(|L|), and
[BS08], which has proof length Õ(|L|).

4

2 Techniques

We provide a high-level overview of our main result: an IOP for NP with small soundness error and
small query complexity.

Our starting point is a polynomial IOP (poly-IOP) for the NP-complete language R1CS with
constant query complexity and soundness error 1/poly(n). A poly-IOP [CHMMVW20; BFS20] is
an IOP where the (honest and malicious) prover sends as its messages univariate polynomials of
prescribed degrees over a certain finite field; the verifier has oracle access to these polynomials in
the sense that it may query the evaluation of any polynomial at any point in the field.4 High-
soundness small-query poly-IOPs for NP are known (e.g., [BCRSVW19]), and any poly-IOP with
these properties can be used to achieve Theorem 1. See Section 7 for the poly-IOP that we use.

Our goal is compile the given poly-IOP to a (standard) IOP while preserving high soundness
and increasing the query complexity as little as possible. We achieve this in two steps. First, we
show a high-soundness reduction from poly-IOP to testing proximity to Reed–Solomon codes. Then
we show a high-soundness proximity test for Reed–Solomon codes.
(1) High-soundness reduction. We reduce the problem of verifying the given poly-IOP to
testing whether a function f is a codeword in a Reed–Solomon code with degree d := O(n) and rate
ρ. In the completeness case, f is a valid codeword; in the soundness case, f is δ-far from the code
for a large (relative) distance δ = δ(ρ). Crucially, our reduction ensures that if ρ = 1/poly(n) then
δ = 1− 1/poly(n). Prior reductions only achieve constant distance δ regardless of the code rate ρ;
this precludes achieving inverse-polynomial soundness error with small query complexity q because
all queries made by a verifier testing f might, with probability O(2−q), fall inside a set where f
agrees with a low-degree polynomial. Thus, to achieve soundness error 1/poly(n) the proximity test
of f must have query complexity q = Ω(log n) which is much larger than we want.
(2) High-soundness proximity test. We construct a proximity test for Reed–Solomon codes
for degree d with query complexity O(loglog d) such that when the tested function f is at distance
δ from a Reed–Solomon code with rate ρ, the test accepts with probability at most (roughly)
max{1− δ, O(ρ1/4)}. Thus if d = O(n), ρ = 1/poly(n), δ = 1− 1/poly(n) (as in the high-soundness
reduction) then query complexity is O(loglog n) and the verifier accepts with probability at most
1/poly(n).

Unlike all prior proximity tests for RS codes, we design our proximity test in the poly-IOP model.
More precisely, we design a polynomial IOP of proximity (poly-IOPP) for Reed–Solomon codes of
degree d where the prover’s messages are polynomials of degree at most O(

√
d). We then apply the

high-soundness reduction described previously to reduce verifying the poly-IOPP into testing that
a function f Reed–Solomon codeword with degree O(

√
d). Thus, we have reduced the problem of

proving whether a function is of degree d to checking whether a related function is of degree O(
√
d).

This progress allows us to recursively apply the reduction O(loglog d) times until the degree is
constant, in which case the function’s degree can be directly checked.

This approach raises two main challenges.

• The entire reduction from testing degree d to testing
√
d must preserve distance with low error.

4Polynomial IOPs are typically used in a different context to ours, in combination with cryptographic polynomial
commitment schemes in order to construct succinct arguments. Polynomial IOPs are similar but distinct from RS-
encoded IOPs (where the prover’s messages are RS codewords over a specific domain rather than over the entire
field), which have been used in past IOP constructions (e.g., [RRR16; BCRSVW19] and others).

5

• We can afford to test only a single function of degree
√
d as testing even two functions would result,

via the recursion, in query complexity Ω(log d). The high-soundness reduction must therefore
reduce to testing a single function.

Organization. In Section 2.1, we outline how we compile a poly-IOP into an IOP using proximity
testing for Reed–Solomon codes. In Section 2.2, we describe our poly-IOP for Reed–Solomon codes.
Finally, in Section 2.3, we sketch the proof of Theorem 2, showing how to combine the tools developed
in Section 2.1 and Section 2.2 to construct a proximity test for Reed–Solomon codes.

2.1 From poly-IOPP to IOPP

We outline how to reduce testing the validity of a poly-IOP where the prover’s messages have degree
at most d to the problem of testing that a single univariate function evaluated over some domain
L is close to degree d. Crucially, if the prover is dishonest, then the resulting univariate function
is (1 − ρ1/Ω(1))-far from degree d over L, where ρ = (d + 1)/|L|. In other words, we show how to
compile a poly-IOP into a standard IOP, using a proximity test for Reed–Solomon codes. If the
proximity test has high soundness for codewords that are far from low-degree, then the resulting
IOP has high soundness.

Our transformation from a poly-IOP to a (standard) IOP is generic: it works for any poly-IOP
for a relation R even if the prover messages have different degrees. Moreover, while in this overview
we discuss only poly-IOPs, the transformation works also to transform a poly-IOPP into an IOPP.
This flexibility allows us to use this transformation to construct our protocol for NP and also to
design proximity tests in the poly-IOPP model.

Lemma 1 (informal). Suppose we have these ingredients:

• A poly-IOP for a relation R with perfect completeness, soundness error β, round complexity k,
and query complexity q, where the prover’s i-th message is a polynomial of degree at most di.5

• A proximity test for C := RS[F, L, d] for d := maxi∈[k]{di} with perfect completeness, soundness
error βprx(δ) for δ-far functions, round complexity kprx, proof length lprx, input query complexity
qprx,f , and proof query complexity qprx,π.

Then there is an IOP for R with perfect completeness, soundness error max{β, βprx(1 − ρ1/Ω(1)) +
poly(d, 1/ρ)/|F|}, round complexity O(k + kprx), proof length O(k · |L| + lprx), and query complexity
O(q+ k · qprx,f + qprx,π). Here ρ := (d+ 1)/|L| is the rate of the code C.

We describe our compiler, starting with a naive construction.
Naive attempt. For every i ∈ [k], denote by f̂i ∈ F≤di [X] the polynomial of degree at most di
sent by the prover in round k. In order to move from the poly-IOP model to the IOP model, we
need to have the prover send proof strings rather than polynomials. Hence, in round i, the prover
sends fi : L→ F, the evaluation of f̂i over the proximity test domain L; that is, fi ∈ RS[F, L, di] is
such that fi(L) = f̂i(L). The verifier acts as in the original poly-IOP, where it queries fi in place
of f̂i. Finally, the verifier runs the RS proximity test on fi in order to ensure that fi is close to an
RS codeword.

This reduction is insufficient for us for two main reasons.
5Our full theorem considers also poly-IOPs where the prover sends multiple polynomials in a single round.

6

1. If the prover sends fi that is at a constant distance from an RS codeword, we cannot hope to
simultaneously have high soundness and small query complexity, since all of the queries of the
proximity test may land in a low-degree part of the function with too large a probability.

2. In the poly-IOP model the verifier can query each f̂i at any point in the field F. In the current
approach the verifier has access to f̂i(L), which implies that we need L = F. This results in a
large proof length, and may be incompatible with the low-degree test. While we could design the
poly-IOP to be aware of the evaluation domain L, this complicates its construction and breaks
the abstraction of a simple and convenient poly-IOP model.

We get around these issues using quotienting and out of domain sampling.
Enforcing consistency via univariate function quotienting. The quotient of a function f
relative to p : S → F with S ⊆ F is defined as:

Quotient(f, S, p)(x) :=
f(x)− p̂(x)
V̂S(x)

,

where V̂S(X) :=
∏

a∈S(X − a) is the vanishing polynomial over S, and p̂ is the unique polynomial
of degree ≤ |S| − 1 such that p̂(a) = p(a) for every a ∈ S.

For a univariate polynomial f̂(X), if f̂(a) = p(a) for every a ∈ S, then f̂(X) can be written as
V̂S(X) · ĝ(X) + p̂(X) for a quotient polynomial ĝ(X) of degree at most deg(f̂) − |S|. Therefore,
if f̂(X) is low-degree and agrees with p then Quotient(f̂ , S, p)(X) is a low-degree polynomial. On
the other hand, the powerful lemma below roughly says the opposite: if all low-degree polynomials
close to a function f over domain L disagree with p, then the quotient function Quotient(f, S, p) is
far from low-degree over L.

Lemma 2. Suppose that for every polynomial f̂ of degree at most d with ∆(f, f̂(L)) ≤ δ it holds that
there exists a ∈ S where f̂(a) ̸= p(a).6 Then Quotient(f, S, p) is δ-far on L from every polynomial
of degree d− |S|.

Proof sketch. Let g := Quotient(f, S, p) and suppose towards contradiction that there exists a poly-
nomial ĝ of degree at most d− |S| that agrees with g on at least a (1− δ)-fraction of the locations
of L. Consider the “unquotiented” polynomial f̂(X) = V̂S(X) · ĝ(X) + p̂(X), which has degree at
most d. For every x where ĝ(x) = g(x), we have

f̂(x) = V̂S(x) · ĝ(x) + p̂(x) = V̂S(x) · g(x) + p̂(x) = f(x) .

It follows that f is δ-close to f̂ on L. Moreover, f̂(a) = p̂(a) = p(a) for every a ∈ S. This is a
contradiction to the assumption in the lemma statement.

Let δ := 1− ρ1/Ω(1). Suppose momentarily that for every fi the verifier has a pair (xi, yi) such
that there is at most one polynomial f̂i that is δ-close to fi and has f̂i(xi) = yi.

Under this assumption we use Lemma 2 to solve the issues with the naive compiler. Suppose
that, following the interaction, the poly-IOP verifier queries f̂i at locations Si ⊆ F. The prover sends
to the verifier a function pi : Si → F, where, in the honest case pi(t) = f̂i(t) is the result of querying
f̂i at t. The verifier checks that these query answers cause the poly-IOP verifier to accept and then,

6For a function f : D → F and set L ⊆ D, f(L) is the restriction of f to L.

7

rather than testing proximity of fi to low-degree, tests the proximity of gi := Quotient(fi, S
′
i, p
′
i)

where S′i := Si ∪ {xi} and p′i : S
′
i → F has p′i(t) = pi(t) for every t ∈ Si and p′i(xi) = yi. Observe

that the verifier can compute the value of gi at any point in L because it knows S′i and p′i and has
oracle access to fi.

By Lemma 2, if for every polynomial that is δ-close to fi there exists a point in S′i where this
polynomial disagrees with p′i, then gi is δ-far from low-degree. Since, by assumption, there is at most
one polynomial f̂i that is δ-close to fi and f̂i(xi) = yi, the only way for the prover to keep gi from
being very far from low-degree is to give answers pi that are consistent with this single polynomial
(if there are no polynomials consistent with (xi, yi) then no matter what the prover does, gi will
be very far from low-degree). If this is the case for every fi, it follows that for every fi the query
answers sent by the prover are consistent with exactly one polynomial, and so soundness holds by
security of the original poly-IOP system.

It remains to discuss how to generate the pairs ((xi, yi))i∈[k].
Out-of-domain sampling. For every fi we wish to generate (xi, yi) such that there is at most
one polynomial f̂i that is (1 − ρ1/Ω(1))-close to fi and has f̂i(xi) = yi. For this we use an “out-
of-domain sampling” technique, based on techniques of [BGKS20]. We emulate the interaction of
the poly-IOPP where, as before, in round i when the prover is supposed to send a polynomial f̂i it
instead sends fi : L → F, the evaluation of f̂i over L. Immediately following the prover’s message
the verifier samples a random point xi ← F and the prover replies with yi ∈ F where (in the honest
case) yi := f̂i(xi). The verifier then samples its random message as in the poly-IOPP, and the
protocol continues to the next round.

The Reed–Solomon code RS[F, L, di], which fi allegedly belongs to, is (δ, ℓ)-list decodable for
δ := 1− ρ1/Ω(1) and ℓ := poly(1/ρ).7 Since any pair of polynomials of degree at most di can agree
on at most di points, with probability at least 1 −

(
ℓ
2

)
· di
|F| = 1 − di·poly(1/ρ)

|F| there is no pair of
polynomials in the list-decoding of fi whose evaluations on xi are equal. If this is the case, then for
every yi sent by the prover yi is consistent with at most one degree di polynomial that is δ-close to
fi on L. Thus, except with very small probability, we have generated the desired pair (xi, yi).

Put together with the technique of quotienting, in summary, either for every i all of the queries
made by the verifier of the poly-IOP to the i-th polynomial are answered consistently with a single
polynomial f̂i, in which case proximity holds by the properties of the poly-IOP, or at least one of
the (quotiented) functions fi is (1− ρ1/Ω(1))-far from its supposed degree di, which is caught by the
low-degree test.
Reducing to testing a single function. As described so far, the transformation needs to test for
each fi that its quotiented function is close to low-degree. Since the low-degree test is typically the
least efficient part of the the proof, we would like to run it only once (in fact, saving this factor will
be crucial to eliminate blow-up in the recursive way that we use this construction). To solve this
problem we instead test the proximity of a random linear combination of the functions g1, . . . , gk.
[BCIKS20] show that the random linear combinations of functions preserves the maximum distance
of each one of the functions from their respective codes.

A technical issue that arises is that the functions being tested are of different degrees, a setting
not considered in [BCIKS20]. This issue is addressed in [BCRSVW19] by appropriately shifting
the degrees of the functions to match the maximum degree among them; however, their analysis is
limited to constant soundness. In contrast, we provide a new high-soundness analysis, by leveraging
the correlated agreement of the original functions and their shifted versions.

7A code is (δ, ℓ)-list decodable if for every function f there are at most ℓ codewords at distance at most δ from f .

8

2.1.1 Summary: compiling poly-IOPs to IOPs

We summarize our compiler from poly-IOP to IOP. Let (PPIOP,VPIOP) be the prover and verifier of
a k-round poly-IOP. In this summary, for simplicity, we assume that every polynomial f̂i sent by
the poly-IOP prover has the same degree d, and that the poly-IOP verifier makes exactly q queries
to each of the polynomials sent by the prover (so that |Si| = q for every i). The IOP is as follows.

1. For i = 1, . . . , k:
(a) The prover runs PPIOP to obtain a polynomial f̂i ∈ F≤d[X], and sends fi : L → F (the

evaluation of f̂i on L).
(b) The verifier samples xi ← F uniformly at random.
(c) The prover answers with yi := f̂i(xi).
(d) The verifier sends the message that VPIOP sends in the i-th round.

2. For every i, the prover computes the set of queries Si that VPIOP needs to make to f̂i and sends
pi : Si → F where pi(a) = f̂i(a) for every a ∈ Si.

3. The verifier samples random coefficients ξ1, . . . , ξk.
4. The prover and verifier run the proximity test for RS[F, L, d− q− 1] on the function

h(x) =
∑
i∈[k]

ξi · gi(x) ,

where gi := Quotient(fi, S
′
i, p
′
i) for S′i := Si ∪{xi} and p′i(a) = p(a) if a ∈ Si and p′i(xi) = yi. For

a query t made by the proximity test verifier to h, the verifier computes gi(t) for every i using S′i,
p′i and its access to fi and returns to the proximity test verifier the weighted sum of the results.

5. The verifier accepts if and only if VPIOP accepts given the query answers described by the functions
p1, . . . , pk and the proximity test verifier accepts.

We sketch the idea behind the proof of Lemma 1. As previously argued, with high probability
no two polynomials that are of distance δ := 1− ρ1/Ω(1) from fi have the same output on the point
xi sent by the verifier. Therefore, with high probability there is at most one polynomial that is
δ-close to fi and whose evaluation on xi is equal to yi.

If the prover answers with yi such that no polynomial that is δ-close to fi evaluates to yi on xi,
then by Lemma 2, gi will be δ-far from low-degree and consequently so will h (with high probability).
This will be caught with high probability during the proximity test. Thus we can safely assume
that there is exactly one polynomial f̂i that evaluates to yi on xi. At this point the prover sends
query answers. It has two options:

• For some i send query answers that are inconsistent with f̂i: in this case, there is no polynomial
that is δ-close to fi that agrees with p′i on every output. By Lemma 2 this implies that gi is δ-far
from low-degree, which will be caught by the proximity test.

• For every i send query answers that are consistent with f̂i: If the prover takes this strategy then
soundness of the compiled IOP holds by the soundness of the poly-IOP. Indeed, suppose that the
prover uses this strategy and causes the verifier to accept with high probability. Then we can use
the prover’s strategy to break security of the poly-IOP by list-decoding the message fi sent by the
prover and finding the (single) polynomial in the list that evaluates to yi on xi. This polynomial
must be the same one that the compiled prover is consistent with. Since these polynomials cause
the poly-IOP verifier to accept in the compiled protocol, they do so in the poly-IOP as well.

In both options the verifier will reject with high probability. We conclude that new IOP is sound.

9

2.1.2 Bonus: low-degree testing for all domains

IOPPs for RS codes typically work over specific domains with nice properties (e.g., smooth domains).
Using our compiler we develop a “domain shifting” technique, that can be used to extend the
applicability of any IOPPs for RS codes to work over any evaluation domain (provided that the
field contains a nice domain). The transformation has negligible efficiency loss.

Consider the following straightforward poly-IOPP for testing proximity to the code C := RS[F, L, d]:
given a function f to be tested, the prover sends a polynomial ĥ ∈ F≤d[X]. The verifier then picks
a← L uniformly at random, and accepts if and only if f(a) = ĥ(a).

One can readily see that the poly-IOPP has error 1−δ when testing a δ-far function f . Moreover,
this does not depend on the evaluation domain L. If we have an IOPP for testing RS codes over a
different domain L′, then we can apply Lemma 1 with the poly-IOPP for C using the IOPP for RS
codes over L′ to get an IOPP that works over L as desired. See Section 8.2 for more details.

2.2 poly-IOPP for RS codes

We sketch a poly-IOPP for the code RS[F, L, d] (evaluations on the domain L of polynomials over
the field F of degree at most d). The test works for every degree d ∈ N but requires a field that
is “nice” (that has some useful structure): we assume that F contains a multiplicative subgroup G
whose order is a power of two and where

√
|F| > |G| ≥ poly(d, |L|).

Lemma 3 (informal). There is a poly-IOPP for RS[F, L, d] with perfect completeness, soundness
error (roughly) 2

√
1− δ + poly(d, 1/ρ)/|F| for δ-far functions, round complexity O(1), and total

query complexity O(1); here ρ := (d+1)/|L|. The prover sends O(|L|/ρ) polynomials whose degrees
are at most O(

√
d).

In this sketch, we assume for simplicity that d := m2 − 1 for some m ∈ N and that L is a
multiplicative subgroup of F∗ whose order is divisible by m. Our protocol, however, works for any
degree d and evaluation domain L.

Our starting point is inspired by the PCPP of Ben-Sasson and Sudan [BS08]. We consider a
mapping of a univariate polynomial into a bivariate polynomial obtained via the following fact.

Fact 1 ([BS06]). For every f̂ ∈ F≤d[X] where d := m2 − 1 and q̂ ∈ F≤m[X] there exists a unique
bivariate polynomial Q̂ ∈ F[X,Y] with degX(Q̂) = m − 1 and degY (Q̂) ≤ m − 1 such that f̂(Z) =
Q̂(q̂(Z), Z).

Fix q̂(Z) := Zm. Define d∗ := m− 1 and let D ⊆ F× F be the set of agreement points between
f̂ and Q̂: D := {(q̂(j), j) | j ∈ L}.

Let f : L→ F be a function claimed to be in RS[F, L, d] and Q : D → F be the bivariate function
such that, for every x ∈ L, Q(q̂(x), x) = f(x). If f is the evaluation of a polynomial of degree
d then, by Fact 1, Q is the evaluation of a bivariate polynomial of individual degree d∗ (in both
variables). On the other hand, if Q agrees with a bivariate polynomial Q̂ of individual degree d∗ on
a (1 − δ)-fraction of the points of D, then the polynomial f̂(X) := Q̂(q̂(X), X) of degree at most
d∗ · deg(q̂) + d∗ = m2 − 1 = d agrees with f on a (1 − δ)-fraction of the points of L (indeed, for a
(1− δ)-fraction of L we have f̂(x) = Q̂(q̂(x), x) = Q(q̂(x), x) = f(x)).

In other words, the problem of testing proximity to Reed–Solomon codes with degree d can
be reformulated as the problem of testing proximity to bivariate Reed–Muller codes of individual
degree d∗ = O(

√
d), for a related function. Note, however, that the formulation that we get is a

10

relatively difficult one when compared to standard (bivariate) Reed–Muller testing. This is because
the domain D for which the function is given has little structure to leverage. In particular, it is not
the typical Cartesian product of two sets. We describe our approach for testing such domains next.

2.2.1 A proximity test for Q

We wish to test that a given function Q : D → F is δ-close to a bivariate polynomial with individual
degree at most d∗. Since we are in the poly-IOPP model, we can assume that messages sent by the
prover are univariate polynomials of degree at most d∗. Let µ :=

√
1− δ. By definition of D, for

every (i, j) ∈ D it holds that f(j) = Q̂(i, j). Define LX := {i | ∃ j s.t. (i, j) ∈ D} and, for every
i ∈ LX , let L(i)

Y := {j | (i, j) ∈ D} (i.e., L(i)
Y is the set of all elements j ∈ L such that jm = i over

the multiplicative subgroup L). Since L (as described in the previous section) is a multiplicative
subgroup whose order is divisible by m, each set L(i)

Y has size |D|/|LX |.
Our protocol begins with the prover sending the rows of the polynomial Q̂ corresponding to the

domains L(i)
Y ; each row is a polynomial of degree d∗. That is, the prover sends polynomials (r̂i)i∈LX

where r̂i(X) := Q̂(i,X). These rows define corresponding columns (viewing the rows as a matrix
and now looking at its columns). Specifically, we define (cj)j∈F where cj : LX → F is defined as
cj(i) := r̂i(j) for i ∈ LX . If the prover is honest, then cj is the evaluation of Q̂(·, j) ∈ F≤d∗ [X]
over LX , and so cj ∈ CX := RS[F, LX , d

∗]. Let M(i, j) = r̂i(j) = cj(i) for i ∈ LX and j ∈ F be the
description of the rows and columns as a matrix on LX × F.

While the rows of M must be low-degree polynomials (we are in the poly-IOPP model), it may
be that they do not agree with a low-degree bivariate polynomial or that they are inconsistent with
the function Q whose proximity to low-degree we are trying to test (i.e., there are many rows r̂i
where r̂i(j) ̸= Q(i, j) for many j ∈ L(i)

Y), so we have to test both properties. Moreover, we must test
for both properties simultaneously. That is, if we know that the rows of M are µ-close to low-degree
and that the rows of M are µ-close to Q, we cannot conclude Q is close to low-degree. Indeed,
in our regime µ is small (much smaller than 1/2), and thus the µ fraction for which M is close to
low-degree might be disjoint from the µ fraction that M close to Q.

In Section 2.2.2 we explain how we test consistency of the rows with a low-degree bivariate
polynomial and then in Section 2.2.3 we explain how to test consistency with Q in the same area.

2.2.2 Consistency with low-degree bivariate polynomial

We discuss how to test that the rows (and the matrix M constructed by them) are consistent with
a low-degree bivariate polynomial. Recall that the rows of M are low-degree polynomials (since we
are in the poly-IOPP model). We therefore need only show that the columns of M are consistent
with low-degree polynomials.

A natural approach to test that the columns of M are close to low-degree is to choose a random
column cj and test that it is low-degree. Since we are in the poly-IOP model, and the column cj is
meant to be the evaluation of a degree d∗ polynomial, this test can be done straightforwardly: the
prover sends to the verifier a polynomial v̂j ∈ F≤d∗ [X] that (in the honest case) is supposed to be
the polynomial whose evaluation over LX is equal to cj (i.e., v̂j(a) = cj(a) for every a ∈ LX). The
verifier samples a random point a← LX and checks that v̂j(a) = cj(a) = r̂a(j) by sampling v̂j and
r̂a(j). Since v̂j is a low-degree polynomial, passing this test ensures that cj is close to low-degree.

We next assess whether the test of choosing a random column and testing that it is close to
low-degree, as described above, suffices to show that M is close to a low-degree bivariate polynomial.

11

Does the naive approach suffice? Polishchuck and Spielman [PS94] show that if, with (large)
constant probability, a random cj is low-degree then there is a low-degree bivariate polynomial Q̂
that is at most a constant-far from M , and so a constant fraction of the rows (r̂i)i∈LX

are close to
the rows of a low-degree polynomial. In more detail, they show that there exists a constant ϵ ∈ (0, 1)
such that if M is δ-far from low degree (for small enough constant δ) then the verifier accepts in
the previously described test with probability at most 1− (ϵ · δ).

However their techniques do not apply when the verifier’s acceptance probability nears 1/2, so
they are insufficient (as we want to accept with probability at most ρ1/Ω(1) if M is 1 − ρ1/Ω(1) far
from low-degree). Moreover, even if one would extend these results for any regime, the proximity
that they achieve does not suffice for our needs. Indeed, if δ approaches 1 (as in the high-soundness
regime) then the [PS94] result would only be able to conclude that the verifier accepts with at most
a constant probability 1− ϵ.

Chiesa, Manohar, and Shinkar [CMS20] extend the analysis of this test to the low-error regime,
but at the cost of an exponentially-large field and weakening the result to a “list-decoding”-style
claim. This is also insufficient for us, as we require that the field size be polynomial. It is currently
unknown whether this test holds in the low-agreement, small-field regime with a suitable error term.

A standard approach to reduce the error is to repeat the test multiple times (i.e., test multiple
columns). Doing this naively using repetition to achieve the error bound that we want would highly
increase the query complexity. Nonetheless, we manage to test that many columns are low-degree
in one shot with constant query complexity, as we explain below.
Proximity gaps. Consider a “nice” domain H ⊆ F of order d∗. We test all of the columns specified
by H at once with O(1) queries (in the poly-IOPP model). We use the recent analysis of proximity
gaps of Reed–Solomon codes [BCIKS20]. If, with sufficient probability, a random linear combination
of the columns (cj)j∈H is close to the code CX := RS[F, LX , d

∗], then the columns (cj)j∈H are all
close to CX . In fact, they have the stronger property of correlated agreement : there is a set W ⊆ LX

such that for every j ∈ H there exists uj ∈ CX where cj(W) = uj(W). For coefficients ξ⃗ = (ξj)j∈H
let cξ⃗ =

∑
j∈H ξj · cj , and let ∆(f, g) denote the relative Hamming distance between f and g.

Theorem 4 (Proximity gap for RS codes [BCIKS20]; informal). If Pr
ξ⃗
[∆(cξ⃗, CX) ≤ 1− µ] > εgen =

O(poly(|LX |)/|F|) then there exists a set W ⊆ LX of size at least µ · |LX | such that for every j ∈ H
there exists uj ∈ CX where cj(W) = uj(W).

Thus, if we test that cξ⃗ is low-degree (by the same technique as we did for cj) for a random
vector of coefficients, then we can ensure that all of the columns are low-degree (in a correlated
manner). By the following claim, this will suffice for us to prove proximity of M to the evaluation
of a low-degree bivariate polynomial in the low-error regime.

Claim 1. If there exists W ⊆ LX on which (cj)j∈H have correlated agreement and |W | ≥ µ · |LX | ≥
d∗, then there exists a bivariate polynomial Q̂ ∈ F[X,Y] with individual degree bounded by d∗ such
that Q̂(i, Z) =M(i, Z) = r̂i(Z) for every i ∈W .

We have reduced the problem of checking proximity to the rows of a low-degree bivariate poly-
nomial to the following test: The verifier chooses random coefficients ξ⃗, and the prover sends a
polynomial v̂ claimed to be equal to the low-degree extension of the column cξ⃗. The verifier com-
pares the two at a random location in LX . This requires the verifier to compute cξ⃗(i) at some point
i. Naively, the verifier could query each column and check that their weighted sum in this location
is equal to v̂(i). This would have large query complexity, so we must find another way.

12

Univariate sumcheck. We observe that the univariate sumcheck technique and the proximity
gaps go hand-in-hand: notice that cξ⃗(i) =

∑
j∈H ξj · cj(i) =

∑
j∈H ξj · r̂i(j). Therefore, in order to

compute the weighted sum of the columns at an index i, it suffices to compute the weighted sum
of evaluations of r̂i on H. To compute this sum, we use a (weighted) univariate sumcheck protocol,
first described in [BCRSVW19].

In a univariate sumcheck protocol, the prover proves that
∑

j∈H ξj · r̂i(j) = γ, provided that
the verifier has access to r̂i, and provided that H is a multiplicative subgroup of F∗,8 both of
which can be guaranteed. Using the univariate sumcheck protocol, we can complete our test. The
standard univariate sumcheck protocol assumes the existence of a low-degree test, which is a circular
dependency in our case. However, it requires this low-degree test to hold for (roughly) the degree
of the polynomial being summed over. Thus, if we only perform the sumcheck protocol for degree
d∗ polynomials, then we can use the poly-IOP model for this (we remind the reader at this point
that the poly-IOP model will be compiled recursively to a standard IOPP).

2.2.3 Ensuring simultaneous consistency with Q

So far, we have forced the prover to send rows (r̂i)i∈LX
that are consistent with some low-degree

bivariate polynomial Q̂. The prover could still send rows that are inconsistent with Q (and are
consequently inconsistent with f). Testing this property is relatively straightforward: the verifier
chooses a row r̂i at random and compares it with Q on a random point in L

(i)
Y (the locations on

which r̂i and Q coincide).
If many rows (r̂i)i∈LX

have consistency with Q on only a small fraction of the locations, then
the verifier will reject with high probability in this test. Moreover, since every set L(i)

Y has the same
number of points, sampling a uniform i ∈ LX and then uniform j ∈ L(i)

Y is identical to sampling
a uniformly random (i, j) ∈ D (recall that D ⊆ F × F is the evaluation domain over which Q is
defined). Thus if this test passes with probability µ, it means that ∆(M(D), Q) ≤ 1 − µ where
M(D) is the matrix M described by the rows r̂i restricted to the locations in D.

Unfortunately, even though (by the previous section) a µ-fraction of the rows of M are identical
to the rows of a low-degree bivariate polynomial Q̂, we cannot infer that Q is close to Q̂. Relying
on Theorem 4, we can only infer that a (possibly small) fraction µ of the rows are consistent with
Q̂. It may be the case that all of the rows that are consistent with Q are inconsistent with Q̂. This
is exemplified by the fact that, by applying the triangle inequality, we can only conclude that Q has
distance at most 2 · (1−µ) from Q̂, which is only non-trivial if µ > 1/2, whereas we need to handle
the case of very small µ.

To solve this, the verifier could test the same row i for consistency with Q and with Q̂ (i.e., test
consistency with Q on the same row i that we run the univariate sumcheck from before). Even this
is not enough. The reason is that Theorem 4 only says that W exists, and says nothing about which
indices are contained within it. In particular, it may be the case that the rows in W are inconsistent
with Q i.e., it may be that r̂i(j) ̸= Q(i, j) for every i ∈ W and j ∈ L(i)

Y . Thus we cannot conclude
that Q is close to the bivariate polynomial Q̂. To bypass this issue, we prove a stronger version of
Theorem 4, which will give us this extra guarantee, which we call proximity gaps for subsets.
Proximity gaps for subsets. Our strengthening of Theorem 4 essentially shows that if (with
probability εgen) a random linear combination agrees with a codeword on a fixed set S, then there

8Univariate sumcheck protocols are also known for other summation domains such as additive subgroups (see,
e.g., [BCRSVW19]), but in this paper, we only use the multiplicative subgroup version.

13

exists W as in Theorem 4, with the additional guarantee that W ⊆ S.

Theorem 5 (Theorem 4.4; informal). Fix S ⊆ LX with |S| ≥ µ · |LX |. If

Pr
ξ1,...,ξ|H|

[
∃T ⊆ S
|T | ≥ µ · |LX |

: ∃u ∈ CX , u(T) =
∑

j∈H ξj · cj(T)
]
> εgen

then there exists a set W ⊆ S of size at least µ · |LX | such that for every j ∈ H there exists uj ∈ CX
where cj(W) = uj(W).

Plugging in as S the set of all rows for which there is µ-agreement with Q, we now have what
we wanted: there is a large set W where the columns (cj)j∈H have correlated agreement and also
µ-agreement with Q. Then, each one of the µ · |LX | rows r̂i in W has at least µ · |L(i)

Y | = µ · |D|/|LX |
locations where r̂i agrees with Q. By Claim 1, this applies to Q̂ as well. It follows that Q agrees
with Q̂ on at least µ2 = 1− δ of the points in D, and so Q (and consequently our original univariate
function f) is δ-close to low-degree. This suffices for our proof.

2.2.4 Summary: poly-IOPP for RS codes

Below we summarize the poly-IOPP underlying our Lemma 3. Recall that we begin with a univariate
function f and deduce from it a bivariate function Q : D → F (where D := ∪i∈LX

({i} × L(i)
Y)) on

which we test proximity.

1. The prover sends (r̂i)i∈LX
where r̂i(X) := Q̂(i,X) ∈ F≤d∗ [X].

2. The verifier samples random coefficients (ξj)j∈H .
3. The prover sends v̂ ∈ F≤d∗ [X], where in the honest case v̂(i) =

∑
j∈H ξj · r̂i(j) for every i ∈ LX .

4. The verifier samples a random i← LX .
5. The prover and verifier run the weighted univariate sumcheck protocol for “ v̂(i) =

∑
j∈H ξj ·r̂i(j)”.

6. The verifier samples a random j ← L
(i)
Y , and accepts if and only if the sumcheck verifier accepted

and r̂i(j) = Q(i, j).

Proof sketch of Lemma 3. Let µ =
√
1− δ. Suppose that the verifier accepts in the above poly-

IOPP with probability greater than 2µ+ εgen. Let the set S be the indices of the rows for which r̂i
and Q agree on (at least) a µ-fraction of L(i)

Y (the points on which they coincide), and let T ⊆ S be
the rows in S that also have v̂(i) =

∑
j∈H ξj · r̂i(j).

We bound the probability that the verifier rejects when T is small: we argue that if |T | < µ · |LX |
then the verifier accepts with probability at most 2µ. The verifier samples i← LX . With probability
at most µ, it holds that i ∈ T . If i /∈ T , either v̂(i) ̸=

∑
j∈H ξj · r̂i(j), in which case the verifier will

reject in the univariate sumcheck, or r̂i and Q agree on less than a µ-fraction of L(i)
Y , so the verifier

will choose a point on which they agree with probability at most µ.
Since, by assumption, the verifier accepts with probability at least 2µ+εgen, it follows that |T | ≥

µ · |LX | with probability greater than εgen. Consequently, by Theorem 5, there exists W ⊆ S with
|W | ≥ µ · |LX | where the columns (cj)j∈H defined by the rows (r̂i)i∈LX

have correlated agreement.
From Claim 1, we deduce that there exists a bivariate polynomial Q̂ that agrees with a µ-fraction
of rows, each of which agrees with Q on an µ-fraction of the locations. Therefore Q agrees with Q̂
on at least µ2 = 1− δ of its points.

14

We have shown that in the poly-IOPP model, we can test δ-proximity with proximity error
(roughly) 2

√
1− δ + εgen. See Section 6.2 for a formal statement and proof. In order to achieve

our IOPP for univariate polynomials (Theorem 2), we still need to compile the poly-IOPP into a
standard IOPP and apply recursion both of which add to the proximity error of the final protocol.

2.3 Testing RS codes with inverse polynomial error

We combine the tools developed in Section 2.1 and Section 2.2 in order to prove Theorem 2.
Let f : L→ F be a function claimed to be in RS[F, L, d]. We recursively reduce the degree by a

square root until it is a constant. Proximity to RS[F, L,O(1)] can then be checked directly.
For simplicity we assume that d = 22

t − 1 for t ∈ N (though this is not required in our construc-
tion) and that L is a multiplicative subgroup of F∗. In step i of the recursion, let di = 22

t−i−1 and Li

be an evaluation domain chosen such that RS[F, Li, di] has rate ρi = (di+1)/|Li| = (d+1)/|L| = ρ.
Assume that there exists a low-degree test for RS[F, L, di+1]. According to Lemma 3 there exists a
poly-IOPP for RS[F, L, di] where the prover’s messages are degree di+1 polynomials. We then com-
bine the poly-IOPP with the proximity test for RS[F, L, di+1] using the transformation of Lemma 1,
whose output is a standard IOPP for RS[F, L, di]. The soundness error of the resulting IOPP is
(roughly) 2

√
1− δ+ βprx(1− ρ1/Ω(1)) + poly(|L|)

|F| , where βprx(1− ρ1/Ω(1)) is the soundness error of the
proximity test for RS[F, L, di+1] for (1− ρ1/Ω(1))-far functions.

There are t = loglog d levels of recursion. In each layer, the soundness error is increased by
(very roughly) a ρ1/Ω(1) + poly(|L|)/|F| factor. Hence, the soundness error of the resulting IOPP
is 2
√
1− δ + loglog d · (ρ1/Ω(1) + poly(|L|)/|F|). In a more general and tight analysis we can get

the soundness error down to max
{
2
√
1− δ, ρ1/Ω(1)

}
+ poly(d,1/ρ)

|F| . In order to get soundness error

max{1−δ, ρ1/Ω(1)+ poly(d,1/ρ)
|F| } and in order to get rid of the assumption that L is a smooth subgroup

as in Theorem 2, we additionally utilize the domain-shifting technique described in Section 2.1.2.
See Section 6 for a formal proof and tight analysis.

This concludes the overview of the proof of Theorem 2.

15

3 Preliminaries

Throughout the paper, we use the “hat” symbol over function when we want to emphasize that they
are polynomials (e.g., p̂). For two functions f, g : L → F we use ∆(f, g) to denote the fractional
Hamming distance between f and g (the fraction of points in which they disagree).

3.1 Interactive oracle proofs

Interactive Oracle Proofs (IOPs) [BCS16; RRR16] are information-theoretic proof systems that com-
bine aspects of Interactive Proofs [Bab85; GMR89] and Probabilistically Checkable Proofs [BFLS91;
FGLSS96; AS98; ALMSS98], and also generalize the notion of Interactive PCPs [KR08]. Below we
describe public-coin IOPs.

Recall that a k-round public-coin IOP works as follows. In every round i ∈ [k], the verifier sends
a uniformly random message ρi to the prover; then the prover sends a proof string πi to the verifier.
After k rounds of interaction, the verifier makes some queries to the proof strings π1, . . . , πk sent by
the prover, and then decides if to accept or to reject.

In more detail, let IOP = (P,V) be a tuple where P is an interactive algorithm, and V is an
interactive oracle algorithm. We say that IOP is a public-coin IOP for a relation R with k rounds,
perfect completeness, and soundness error β if the following holds.

• Completeness. For every (x,w) ∈ R,

Pr
ρ1,...,ρk

 Vπ1,...,πk(x, ρ1, . . . , ρk) = 1

π1 ← P(x,w)
...

πk ← P(x,w, ρ1, . . . , ρk)

 = 1 .

An alternative definition exists, which allows for completeness error.

• Soundness. For every x /∈ L(R) and unbounded malicious prover P̃,

Pr
ρ1,...,ρk

 Vπ1,...,πk(x, ρ1, . . . , ρk) = 1

π1 ← P̃(ρ1)
...

πk ← P̃(ρ1, . . . , ρk)

 ≤ β .

For interactive (oracle) algorithms A and B, we denote by ⟨A(a),B(b)⟩(c) the random variable
describing the output of B following the interaction between A and B, where A is given private
input a, B is given private input b and both parties are given joint input c.
Efficiency measures. We study several efficiency measures. All of these complexity measures
are implicitly functions of the instance x.
• Rounds k: The IOP has k rounds of interaction.
• Alphabet Σ and alphabet size λ: the symbols of each πi come from the alphabet Σ, of size λ. In

this paper, the alphabet will always be a field F.
• Proof length (per round) l: the number of symbols in each proof πi.
• Queries q: the number of bits read by the verifier from π1, . . . , πk.
• Randomness r: the verifier’s i-th message ρi has length ri and r :=

∑k
i=1 ri is the total number of

random bits sent by the verifier.
• Verifier time vt: V runs in time vt measured in algebraic field operations.

16

• Decision complexity dt: Following the choice of queries, V runs in time dt to decide whether to
accept or reject.

3.2 IOPs of proximity

Let IOP = (P,V) be a tuple where P is an interactive algorithm, and V is an interactive oracle
algorithm. We say that IOP is a public-coin IOP of proximity for a relation R = {(x,w)} with k
rounds, perfect completeness, and proximity error β if the following holds.

• Completeness. For every (x,w) ∈ R,

Pr
ρ1,...,ρk

 Vw,π1,...,πk(x, ρ1, . . . , ρk) = 1

π1 ← P(x,w)
...

πk ← P(x,w, ρ1, . . . , ρk)

 = 1 .

An alternative definition exists, which allows for completeness error.

• Proximity. For every (x,w) pair where w is δ-far in relative Hamming distance from any w′

where (x,w) ∈ R and any unbounded malicious prover P̃,

Pr
ρ1,...,ρk

 Vw,π1,...,πk(x, ρ1, . . . , ρk) = 1

π1 ← P̃
...

πk ← P̃(ρ1, . . . , ρk)

 ≤ β(δ) .
An IOPP has the same parameters as an IOP, except that we let:
• qf be the number of queries made to w.
• qπ be the number of queries made to the proofs π1, . . . , πk.
Proximity testing. A proximity tester for a code C is an IOPP for the relation containing pairs
(x,w) where x are code parameters (such as, for Reed–Solomon codes, the field size, the evaluation
domain, etc.) and w ∈ C is a codeword.

3.3 Polynomial IOPs and IOPPs

A polynomial IOP (poly-IOP) is an IOP (P,V) system where the prover (both honest and malicious)
sends as its messages the evaluation of univariate polynomials over a field F. In more detail, for
every round i there is a prescribed list of mi degrees (di,j)j∈[mi]) where di,j ∈ N. During round
i, the prover (both honest and malicious) outputs mi polynomials by specifying their coefficients,
where the j-th polynomial, f̂i,j ∈ F≤di,j [X] has degree at most di,j . The verifier is then given as a
message (f̂i,j(F))j∈mi where f̂i,j(F) is the evaluation of f̂i,j over the entire field F. In more detail,
(P,V) is a public-coin poly-IOP for a relation R = {(x,w)} with k rounds, perfect completeness,
and proximity error β, where the prover sends mi polynomials in round i with degrees (di,j)j∈[mi])
if the following holds.

17

• Completeness. For every (x,w) ∈ R,

Pr
ρ1,...,ρk


Vπ1,...,πk(x, ρ1, . . . , ρk) = 1

(c
(ℓ)
1,j)j∈[m1],ℓ∈[d1,j] ← P(x,w)

∀j ∈ [m1]. f̂1,j(X) :=
∑

ℓ∈[d1,j] c
(ℓ)
1,j ·Xℓ−1

π1 := (f̂1,j(F))j∈[m1]
...

(c
(ℓ)
k,j)j∈[mk],ℓ∈[dk,j] ← P(x,w, ρ1, . . . , ρk)

∀j ∈ [mk]. f̂k,j(X) :=
∑

ℓ∈[dk,j] c
(ℓ)
k,j ·X

ℓ−1

π1 := (f̂k,j(F))j∈[mk]


= 1 .

An alternative definition exists, which allows for completeness error.

• Soundness. For every x /∈ L(R) and unbounded malicious prover P̃,

Pr
ρ1,...,ρk


Vπ1,...,πk(x, ρ1, . . . , ρk) = 1

(c
(ℓ)
1,j)j∈[m1],ℓ∈[d1,j] ← P̃

∀j ∈ [m1]. f̂1,j(X) :=
∑

ℓ∈[d1,j] c
(ℓ)
1,j ·Xℓ−1

π1 := (f̂1,j(F))j∈[m1]
...

(c
(ℓ)
k,j)j∈[mk],ℓ∈[dk,j] ← P̃(ρ1, . . . , ρk)

∀j ∈ [mk]. f̂k,j(X) :=
∑

ℓ∈[dk,j] c
(ℓ)
k,j ·X

ℓ−1

π1 := (f̂k,j(F))j∈[mk]


≤ β .

A poly-IOP has the same parameters as an IOP, except that, rather than counting the proof length,
we count the number of functions:
• m is the number of polynomials sent by the prover: m :=

∑k
i=1mi.

• qPIOP,m is the number of polynomials queried by the verifier (multiple queries to the same polyno-
mial do not add towards this value). Observe that qPIOP,m ≤ q.

When referring to the prover’s messages we will generally ignore the description of the polynomials
f̂i,j as coefficients, and simply say that the prover outputs a polynomial. Similarly, since the verifier
has oracle access to f̂i,j evaluated over the entire field, we will simply denote that it has direct oracle
access to f̂i,j .

We will also use the polynomial IOPs of proximity (poly-IOPP), which is defined similarly with
respect to IOPPs. Note that the input to the poly-IOPP is not part of the prover’s messages, and
so is not required to be the evaluation of a polynomial over the field F.

3.4 The Reed–Solomon and Reed–Muller codes

We first define error correcting codes.

Definition 3.1. An error-correcting code of length n over an alphabet Σ is C ⊆ Σn. We say
that C is a linear code if Σ = F is a field and C is a subspace of Fn.

We now define the Reed–Solomon code:

18

Definition 3.2. The Reed–Solomon code over field F, evaluation domain L ⊆ F and degree
d ∈ N is the set of evaluations over L of univariate polynomials (over F) of degree at most d:

RS[F, L, d] :=
{
f : L→ F

∣∣∣ ∃ f̂ ∈ F≤d[X] s.t. ∀x ∈ L , f(x) = f̂(x)
}

.

The rate of C is ρ := (d+ 1)/|L|.

Given a code C := RS[F, L, d] and function f : L → F, we sometimes use f̂ ∈ F≤d[X] to denote
the nearest polynomial to f on L.

Definition 3.3. For a code C ⊆ Fn, parameter γ ∈ [0, 1], and v ∈ Fn, ListC,γ(v) denotes the list of
codewords of C within relative Hamming distance at most γ from v.

We say that C is (γ, ℓ)–list decodable if |ListC,γ(v)| ≤ ℓ for every v ∈ Fn.

The following fact says that if a code is list-decodable, then any code that is a subset of it is
list-decodable with the same parameters.

Fact 3.4. If a code C ⊆ Fn is (γ, ℓ)–list decodable, then any C′ ⊆ C is (γ, ℓ)–list decodable.

The Johnson bound shows that the Reed–Solomon code is list-decodable:

Theorem 3.5 (Johnson bound). For every η ∈ (0, 1 − √ρ), the Reed–Solomon code RS[F, L, d] is
(1−√ρ− η, 1/(2η√ρ))–list decodable, where ρ is the rate of the code.

As part of our construction we will need standard IOPPs for testing the Reed–Solomon code
when the degree is constant:

Claim 3.6. Let C := RS[F, L, d] be a Reed–Solomon code where d = O(1) is a constant. There
exists a proximity test for C with the following parameters:

Proximity test to show δ proximity to C with constant degree
Proximity error 1− δ
Rounds 1
Alphabet F
Proof length O(1)
Input queries 1
Proof queries O(1)
Randomness log |F|
Verifier running time O(1)

Finally, we define the bivariate Reed–Muller code:

Definition 3.7. The (individual-degree bivariate) Reed–Muller code over field F, evaluation
domain D ⊆ F× F and degrees dX , dY ∈ N is the set of evaluations over D of bivariate polynomials
(over F × F) of degree at most dX in their first variable, and degree at most dY in their second
variable:

RM[F, D, (dX , dY)] :=
{
f : D → F

∣∣∣ ∃ f̂ ∈ F≤dX ,≤dY [X,Y] s.t. ∀ (x, y) ∈ D , f(x, y) = f̂(x, y)
}

.

3.5 Polynomial identity lemma

We extensively use the polynomial identity lemma, whose various forms are credited to (at the very
least) Schwartz, Zippel, and DeMillo and Lipton.

Lemma 3.8. For any non-zero polynomial p̂ ∈ F≤d[X] it holds that Pra←F [p̂(a) = 0] ≤ d/|F|.

19

4 Proximity generators for correlated agreement

In this section we define proximity generators, and prove facts about them.

• In Section 4.1 we define proximity generators and rehash a theorem of Ben-Sasson et al. [BCIKS20]
that shows that if it is likely that the random linear combination of functions is close to a Reed–
Solomon codeword, then these vectors have correlated agreement with the Reed–Solomon code.

• In Section 4.2, we show that this is true also when fixed on a specific subset inside the evaluation
domain. We call generators with this property strong proximity generators.

4.1 Proximity generators

A proximity generator generates coefficients whose linear combination with functions f1, . . . , fm
preserves their correlated agreement with a code.

Definition 4.1. Let C ⊆ Fℓ be a code. We say that C has a proximity generator for m func-
tions with seed length w, proximity bound ψ, error ε, and computation time t, if there exists an
t-time computable function Gen : {0, 1}w → Fm such that for every δ ∈ (0, 1 − ψ) and functions
f1 . . . , fm : [ℓ]→ F, if

Pr

∆
∑

i∈[m]

ξi · fi, C

 ≤ δ s← {0, 1}w
(ξ1, . . . ξm)← Gen(s)

 > ε(δ) ,

then there exists S ⊆ [ℓ] with |S| ≥ (1− δ) · ℓ, and

∀i ∈ [m], ∃u ∈ C, fi(S) = u(S) .

Throughout this paper we use the following claim, showing the Reed–Solomon codes have good
proximity generators.

Theorem 4.2 ([BCIKS20]). Every Reed–Solomon code C = RS[F, L, d] with rate ρ := (d + 1)/|L|
has a proximity generator for every m ∈ N with proximity bound ψ :=

√
ρ, computation time O(m),

and one of the following:

1. Seed length w = log |F|, error m · ε or,
2. Seed length w = m · log |F| and error ε

Above, ε := ε(δ) is defined as follows:

• If δ ∈
(
0, 1−ρ2

]
then:

ε(δ) :=
|L|
|F|

.

• If δ ∈
(
1−ρ
2 , 1−√ρ

)
then:

ε(δ) :=
(d+ 1)2

|F| ·
(
2 ·min

{
1 +
√
ρ− δ,

√
ρ

20

})7 = O

(
d2/ρ4

|F|

)
.

20

4.2 Strong proximity generators

We introduce the notion of strong proximity generators. Informally, a strong proximity generator
is a generator such that if the linear combination of functions weighted by its output agrees with
the Reed–Solomon code on a specific set, then this set contains an area where the functions have
correlated agreement with the code.

Definition 4.3. Let C ⊆ Fℓ be a code. We say that C has a strong proximity generator for
m functions with seed length w, proximity bound ψ, error ε and computation time t, if there exists
a t-time computable function Gen : {0, 1}w → Fm such that for every δ ∈ (0, 1 − ψ), functions
f1 . . . , fm : [ℓ]→ F and every S ⊆ L with |S| ≥ (1− δ) · |L|, if

Pr

[
∃T ⊆ S
|T | ≥ (1− δ) · |L| : ∃u ∈ C, u(T) =

∑
j∈[m] ξj · fj(T)

s← {0, 1}w
(ξ1, . . . , ξm) := Gen(s)

]
> ε .

then there exists a set W ⊆ S with |W | ≥ (1− δ) · |L| where

∀i ∈ [m], ∃u ∈ C, u(W) = fi(W) .

We show that for Reed–Solomon codes, proximity generators imply strong proximity generators
with almost the same complexity parameters:

Theorem 4.4. Let C = RS[F, L, d] be a Reed–Solomon code where |F| ≥ |L|2. Suppose that C has
a proximity generator Gen for m+ 1 functions with seed length w, proximity bound ψ, error ε, and
computation time t.

Let Gen′ : {0, 1}w → Fm be the restriction of Gen to its first m outputs. Then Gen′ is a strong
proximity generator for C for m functions with seed length w, proximity bound ψ, error ε, and
computation time t.

Theorem 4.4, when instantiated with the proximity generators of Theorem 4.2, implies that
every Reed–Solomon code over a large enough field has a strong proximity generator.

Corollary 4.5. Every Reed–Solomon code C = RS[F, L, d] with F ≥ |L|2 and rate ρ := (d+ 1)/|L|
has a strong proximity generator for every m ∈ N with proximity bound ψ :=

√
ρ, computation time

O(m), and one of the following:

1. Seed length w = log |F| and error (m+ 1) · ε or,
2. Seed length w = (m+ 1) · log |F| and error ε.

Above, ε is defined as in Theorem 4.2.

Proof of Theorem 4.4. Let δ ∈ (0, ψ) and let g : L→ F be the function described in Claim 4.6 where
g(x) = 0 for every x ∈ S. Since g is zero on S, for any ξ1, . . . , ξm+1:

ξm+1 · g(S) +
∑
i∈[m]

ξi · fi(S) =
∑
i∈[m]

ξi · fi(S) ,

and so

ε < Pr
(ξ1,...,ξm)←Gen′(Uw)

[
∃T ⊆ S
|T | ≥ (1− δ) · |L| : ∃u ∈ C, u(T) =

∑
j∈[m] ξj · fj(T)

]
= Pr

(ξ1,...,ξm+1)←Gen(Uw)

[
∃T ⊆ S
|T | ≥ (1− δ) · |L| : ∃u ∈ C, u(T) = ξm+1 · g(T) +

∑
j∈[m] ξj · fj(T)

]
,

21

where Uw is the uniform distribution over {0, 1}w.
Notice that if there exists a subset T of S of size (1− δ) · |L| such that

∃u ∈ C, u(T) = ξm+1 · g(T) +
∑
j∈[m]

ξj · fj(T) ,

then, by definition, ∆
(
ξm+1 · g +

∑
i∈[m] ξi · fi, C

)
≤ δ. So:

ε < Pr
(ξ1,...,ξm+1)←Gen(Uw)

[
∃T ⊆ S
|T | ≥ (1− δ) · |L| : ∃u ∈ C, u(T) = ξm+1 · g(T) +

∑
j∈[m] ξj · fj(T)

]

≤ Pr
(ξ1,...,ξm+1)←Gen(Uw)

∆
ξm+1 · g +

∑
i∈[m]

ξi · fi, C

 ≤ δ
 .

Since Gen is a proximity generator for m functions with proximity bound ψ and error ε: there exists
a set W ⊆ L with |W | ≥ (1− δ) · |L|,

∀i ∈ [m], ∃u ∈ C, fi(W) = u(W) ,

and there exists u ∈ C with g(W) = u(W).
Since g has g(S′) ̸= u(S′) for every u ∈ C and S′ ⊆ L where |S′| ≥ (1 − δ) · |L| and S′ ̸= S, it

follows that W ⊆ S.

Claim 4.6. Let C := RS[F, L, d] be a Reed–Solomon code with |F| ≥ |L|2. For every S with |S| ≥
(1− δ) · |L| with δ ≤ 1− 10d/|L| there exists a function g : L→ F where:

• g(x) = 0 for every x ∈ S, and
• For every S′ ⊆ L where |S′| ≥ (1− δ) · |L| and S′ ̸= S, and every u ∈ C: g(S′) ̸= u(S′).

Proof. We show the existence of such a function g via the probabilistic method. Define a distribution
G as follows: for every x ∈ S, we set g(x) = 0 and for every x ∈ L\S, we set g(x) to be a uniformly
random element in F.

Fix any set S′ ⊆ L with k := |S′| ≥ (1 − δ) · |L|, and any nonzero 0 ̸= u ∈ C. If |S′ ∩ S| > d,
then it must be that g(S′) ̸= u(S′). This follows from the fact that u vanishes on S′ ∩ S which, if
|S′ ∩ S| > d means that u ≡ 0.

Thus, assume that |S′ ∩ S| ≤ d which means that |S′ \ S| ≥ |S′| − d ≥ 9k/10 (since |S′| ≥ 10d
by the requirement on δ). Then, it holds that

Pr
g←G

[g(S′) ̸= u(S′)] = |F|−9k/10 .

We now take a union bound over all codewords u ∈ C and all sets S′. The number of codewords is
bounded by |C| ≤ |F|d+1. For any 10d ≤ k ≤ |L|, the number of sets of size k is at most

(|L|
k

)
≤ |L|k.

Thus,

Pr
g←G

[∃u ∈ C, S′ ⊆ L, |S′| = k : g(S′) = u(S′)]

≤ |F|−9k/10 · |F|d+1 · |L|k

≤ |F|−9k/10+d+1+k/2

= |F|−4k/10+d+1

= |F|−k/5 .

22

Now, taking values of k over all 10d ≤ k ≤ |L|, we get that

Pr
g←G

[∃u ∈ C, S′ ⊆ L, |S′| ≥ (1− δ) · |L| : g(S′) = u(S′)]

≤
|L|∑

k=10d

|F|−k/5

≤ 1/2 .

Since the probability is less than 1, we know that such a function g exists.

23

5 From poly-IOPs to IOPs through low-degree tests

We describe a transformation that combines a poly-IOP and an RS-code IOPP to obtain a corre-
sponding IOP. This transformation works in the high-soundness regime, while similar transforma-
tions in prior work provide at best a constant soundness error. Moreover, prior transformations only
work with RS-encoded IOPs, a weaker notion compared to poly-IOP. The resulting IOP invokes
the given RS-code IOPP only once.

The theorem below is stated for a poly-IOPP (the proximity variant of a poly-IOP) which results
in an IOPP. The regular variant follows in a straightforward way.

Theorem 5.1. Consider the following ingredients:

• (PPIOP,VPIOP) is a poly-IOPP for a relation R where the prover sends mPIOP polynomials where the
i-th polynomial is of degree di;

• (Pprx,Vprx) is an IOPP for Cprx := RS[F, Lprx, dmax] with rate ρprx := (dmax + 1)/|Lprx|;
• Gen is proximity generator for Cprx, 2 ·mPIOP functions, seed length wgen, proximity bound ψgen, error
εgen, and computation time tgen.

If maxi∈[kPIOP]{di} ≤ dmax, 0 < γ < 1 −max{ψgen, 2ρprx}, and Cprx is (γ, ℓ)–list decodable, then Con-
struction 5.6 is an IOPP (P,V) for R with the following parameters:9

poly-IOPP for R IOPP for Cprx → IOPP for R
Notation (PPIOP,VPIOP) (Pprx,Vprx) (P,V)
Proximity error βPIOP βprx max

{
βPIOP, βprx + εgen +mPIOP · dmax · ℓ2/|F|

}
Rounds kPIOP kprx 2kPIOP + kprx + 1
Alphabet F F F
Proof length mPIOP lprx O(mPIOP · |Lprx|+ qPIOP,π) + lprx
Oracle input queries qPIOP,w qprx,f qPIOP,w

Proof queries qPIOP,π qprx,π O(qPIOP,π +mPIOP · qprx,f) + qprx,π

Randomness rPIOP rprx rPIOP + kPIOP · log |F|+ wgen + rprx
Verifier running time vtPIOP vtprx O(vtPIOP +mPIOP · qprx,f) + Õ(qPIOP,π) + tgen + vtprx

Above, εgen := εgen(γ) and βprx := βprx(γ).

This section is organized as follows: (i) in Section 5.1 we discuss univariate function quotienting,
a crucial tool in our transformation; (ii) in Section 5.2 we describe our transformation and discuss
its efficiency; and (iii) in Section 5.3 we prove its completeness and proximity error.

Remark 5.2. If given an poly-IOPP where the verifier queries only qPIOP,m out of the mPIOP poly-
nomials, then Theorem 5.1 can be improved: Gen is required to be a proximity generator for only
2 · qPIOP,m functions (which may lead to changes in its other parameters), and the parameters of the
resulting IOPP are:

9Note that mPIOP counts the number of polynomials sent by the prover, while the proof length for the IOPPs for
Cprx and for R is counted in field elements.

24

poly-IOPP for R IOPP for Cprx → IOPP for R
Notation (PPIOP,VPIOP) (Pprx,Vprx) (P,V)
Proximity error βPIOP βprx max

{
βPIOP, βprx + εgen +mPIOP · dmax · ℓ2/|F|

}
Rounds kPIOP kprx 2kPIOP + kprx + 1
Alphabet F F F
Proof length mPIOP lprx O(mPIOP · |Lprx|+ qPIOP,π) + lprx
Oracle input queries qPIOP,w qprx,f qPIOP,w

Proof queries qPIOP,π qprx,π O(qPIOP,π + qPIOP,m · qprx,f) + qprx,π

Randomness rPIOP rprx rPIOP + kPIOP · log |F|+ wgen + rprx
Verifier running time vtPIOP vtprx O(vtPIOP + qPIOP,m · qprx,f) + Õ(qPIOP,π) + tgen + vtprx

Above, εgen := εgen(γ) and βprx := βprx(γ).

5.1 Univariate function quotienting

We define the quotient and unquotient of a function, the quotient of a polynomial, and prove that
quotienting preserves distance.

Definition 5.3. Let f : L → F be a function, S ⊆ L be a set, and Ans,Fill : S → F be functions.
Let Âns ∈ F≤|S|−1[X] be the (unique) low-degree polynomial extension of Ans.

• The quotient function Quotient(f, S,Ans,Fill) : L→ F is defined follows:

∀ z ∈ L , Quotient(f, S,Ans,Fill)(z) :=

Fill(z) z ∈ S
f(z)−Âns(z)∏

a∈S(z−a)
otherwise

.

• The unquotient function Unquotient(f, S,Ans) : L→ F is defined follows:

∀ z ∈ L , Unquotient(f, S,Ans)(z) := Âns(z) + f(z) ·
∏
a∈S

(z − a) .

Next we define the polynomial quotient operator, which quotients a polynomial relative to its
output on evaluation points. This quotient always yields a polynomial of lower degree.

Definition 5.4. Let f̂ ∈ F≤d[X] be a polynomial and S ⊆ L be a set. Let Âns ∈ F≤|S|−1[X] be
the unique polynomial of degree at most |S| − 1 such that Âns(a) = f̂(a) for every a ∈ S. The
polynomial quotient PolyQuotient(f̂ , S) ∈ F≤d−|S|[X] is defined as follows:

PolyQuotient(f̂ , S)(X) :=
f̂(X)− Âns(X)∏

a∈S(X − a)
.

The following claim shows that quotienting preserves distance.

Claim 5.5. Let F be a field, L ⊆ F be a domain, f, u : L → F be functions, S ⊆ F be a set, and
Ans,Fill : S → F be functions. Then:

∆(u,Quotient(f, S,Ans,Fill)) ≥ ∆(Unquotient(u, S,Ans), f) .

25

Proof. Consider the function w : L→ F:

w := Unquotient(u, S,Ans) ,

and let Z := {z ∈ L | u(z) = Quotient(f, S,Ans,Fill)(z)}. By definition ∆(u,Quotient(f, S,Ans,Fill)) =
1− |Z|/|L. For every z ∈ Z:

w(z) = Unquotient(u, S,Ans)(z)

= Unquotient(Quotient(f, S,Ans,Fill), S,Ans)(z)

= f(z) .

We therefore have that ∆(f, w) ≤ 1− |Z|/|L| = ∆(u,Quotient(f, S,Ans,Fill)).

5.2 Construction

We describe the transformation from a poly-IOPP to an IOPP, and then discuss its efficiency. For
simplicity, we assume that the poly-IOPP prover sends a single polynomial in each round, and later
discuss how to extend this construction to the case where the poly-IOPP prover sends multiple
polynomials in each round.

Construction 5.6. The (honest) IOPP prover P receives as input an instance-witness pair (x,w),
while the IOPP verifier V receives as input x and oracle access to w. They interact as follows.

1. For i = 1, . . . , kPIOP:

(a) P: Compute f̂i := PPIOP(x,w, ρ1, . . . , ρi−1) ∈ F≤di [X] (ρ1, . . . , ρi−1 were received in prior
rounds). Compute and send gi := f̂i(Lprx) ∈ RS[F, Lprx, di].

(b) V: Sample and send a random field element xi ← F.
(c) P: Compute and send yi := f̂i(xi) ∈ F.
(d) V: Sample and send ρi ← {0, 1}ri .

2. P:

(a) Compute sets (Q′i)i∈[kPIOP] where Q′i are the queries by V
w,f̂1,...,f̂kPIOP
PIOP (x, ρ1, . . . , ρkPIOP

) to f̂i.
(b) For every i ∈ [kPIOP], set Qi := Q′i ∪ {xi}.
(c) For every i ∈ [kPIOP], set f̂Q

i := PolyQuotient(f̂i, Qi) ∈ F≤di−|Qi|.
(d) Send ((Qi,Ansi,Filli))i∈[kPIOP] where Ansi : Qi → F is f̂i(Qi), and Filli : Qi → F is f̂Q

i (Qi).
[technically we may be able to get rid of sending Qi-s since the verifier can compute them itself. Just need

⋆
to decide which is cleaner to write. —Gal]

3. V:

(a) For every i ∈ [kPIOP], set the degree σi := dmax − (di − |Qi|).
(b) Sample and send s← {0, 1}wgen . Set (ξ1, . . . , ξ2kPIOP

) := Gen(s).

4. For every i ∈ [kPIOP], set hi := Quotient (gi, Qi,Ansi,Filli). This defines a function u : Lprx → F:

∀x ∈ Lprx , u(x) :=
∑

i∈[kPIOP]

ξi · hi(x) + ξ2i · xσi · hi(x) .

The parties run the interaction phase of the IOPP ⟨Pprx(Cprx, û),Vu
prx(Cprx)⟩.

26

5. V accepts if and only if the following checks pass.

(a) V
w,f̂1,...,f̂kPIOP
PIOP (x, ρ1, . . . , ρkPIOP

) = 1, where a query a to f̂i is answered by b := Ansi(a) (reject
if a /∈ Qi) and queries to w are answered by querying w directly.

(b) For every i ∈ [kPIOP], Ansi(xi) = yi.
(c) Vprx accepts in its decision phase, when V answers a query t made by Vprx to u as follows:

i. for every i ∈ [kPIOP], query gi at t;
ii. for every i ∈ [kPIOP], compute ℓi := Quotient (gi, Qi,Ansi,Filli) (t);
iii. return the value u(t) :=

∑
i∈[kPIOP]

ξi · ℓi + ξ2i · tσi · ℓi.

Remark 5.7. If the poly-IOPP prover sends multiple polynomials in each round, then the above
protocol is altered in the following ways:
• The proximity generator Gen is required to work for 2·mPIOP functions. As a result, the coefficients

generated by it are indexed until 2mPIOP, rather than 2kPIOP.
• In Item 1a, the prover sends a separate function g for each message sent.
• In Item 1c, the prover sends answers y separately for each message sent (notice that there is only

one element xi per round, even if multiple polynomials are sent).
• In Item 4, and in the remaining protocol, the function u is the weighted sum of all mPIOP functions

sent by the prover (and their degree corrections).

Complexity parameters. We analyze the complexity parameters of the new IOPP.

• Rounds. The new IOPP begins by emulating the kPIOP-round poly-IOPP and, for each such round,
the IOPP has two rounds of interaction (each poly-IOPP round is followed by an out-of-domain
sampling round). Next, the verifier sends the seed for Gen, and both parties run the kprx-round
IOPP for Cprx. This results in a total of 2kPIOP + kprx + 1 rounds.

• Proof length. For every polynomial sent by the poly-IOPP prover, the IOPP prover sends |Lprx|+
1 field elements. Next, the IOPP prover sends O(qPIOP,π) field elements to represent the list
((Qi,Ansi,Filli))i∈[kPIOP]. Finally, the IOPP prover emulates Pprx. Thus, the overall proof length
is O(kPIOP · |Lprx|+ qPIOP,π) + lprx. (This changes to O(mPIOP · |Lprx|+ qPIOP,π) + lprx if the poly-IOPP
prover sends multiple polynomials per round, and mPIOP polynomials in total.)

• Oracle input queries. The new IOPP verifier queries w only when VPIOP queries w. Hence the
number of oracle input queries is qPIOP,w.

• Proof queries. The new IOPP verifier queries (yi)i∈[kPIOP] and the list ((Qi,Ansi,Filli))i∈[kPIOP].
Moreover, each oracle input query of the low-degree test yields kPIOP queries, and each proof query
remains one proof query. The query complexity is therefore O(qPIOP,π + kPIOP · qprx,f)+ qprx,π. (This
value changes to O(qPIOP,π+mPIOP ·qprx,f)+qprx,π if the poly-IOPP prover sends multiple polynomials
per round, and mPIOP polynomials in total.)

• Randomness. The new IOPP verifier uses at most rPIOP+kPIOP ·log |F|+wgen+rprx bits of randomness.
(This value does not change if the poly-IOPP prover sends multiple polynomials per round, as
the the same random point xi be used for every message sent in the same round without affecting
the proximity error.)

• Verifier running time. The new IOPP verifier runs the poly-IOPP verifier where for every poly-
nomial sent by the prover it sends a field element, it runs the proximity generator, and the

27

low-degree test verifier. Additionally, it must interpolate Ansi in time Õ(|Qi|) order to compute
the quotients. The verifier therefore runs in time O(vtPIOP + kPIOP · qprx,f) + Õ(qPIOP,π) + tgen + vtprx.
(This value changes to O(vtPIOP + mPIOP · qprx,f) + Õ(qPIOP,π) + tgen + vtprx if the poly-IOPP prover
sends multiple polynomials in a single round since the verifier must query every function in the
proximity test.)

5.3 Completeness and soundness

We prove Theorem 5.1. We first analyze completeness and then soundness.
Completeness. Fix (x,w) ∈ R. We show that Pr[⟨P(x,w),Vw(x)⟩] = 1. Fix any transcript of
this protocol, which has the following structure:

tr =
(
((gi, xi, yi, ρi))i∈[kPIOP], ((Qi,Ansi,Filli))i∈[kPIOP], s, trprx

)
,

where trprx is a transcript of (Pprx,Vprx). Let (ξ1, . . . , ξ2kPIOP
) := Gen(s).

Perfect completeness of (PPIOP,VPIOP) implies that

V
w,f̂1,...,f̂kPIOP
PIOP (x, ρ1, . . . , ρkPIOP

) = 1

where f̂i = PPIOP(x,w, ρ1, . . . , ρi) is a polynomial of degree (at most) di; moreover, in this execution
VPIOP queries f̂i at a set Q′i ⊆ Qi.

Since P sends Ansi = f̂i(Qi), V answers every query of VPIOP consistently with the polynomials
f̂1, . . . , f̂kPIOP

, which means that V does not reject in Item 5a. Moreover, V does not reject in
Item 5b either, since Ansi(xi) = yi for each i. We are left to argue that V does not reject in Item 5c,
that is, Vprx accepts.

Observe that, by definition,

f̂Q

i (X) := PolyQuotient(f̂i, Qi)(X) =
f̂i(X)− Ânsi(X)∏

a∈Qi
(X − a)

,

and has degree at most di − |Qi|. Furthermore, observe that Filli(t) = f̂Q

i (t) for every t ∈ Qi.
Let hi be as in the protocol description and let ĥi be the interpolation of hi to a polynomial.

We argue that f̂Q

i ≡ ĥ by showing that they agree at every location, and in particular ĥ has degree
at most di − |Qi|. Observe that for every t ∈ F:

ĥi(t) := Quotient(f̂i, Qi,Ansi,Filli)(t) =

Filli(t) t ∈ Qi

f(t)−Ânsi(t)∏
a∈Qi

(t−a) otherwise
.

Hence:

• For every t ∈ Qi, ĥi(t) = Filli(t) = f̂Q

i (t).
• For every t /∈ Qi, ĥ(t) and f̂Q

i (t) are defined identically and are therefore equal.

It follows that ĥi and f̂Q

i are identical.
Since σi := dmax − (di − |Qi|), both ĥi and Xσi · ĥi have degree at most dmax. Consequently, for

any coefficients ξ1, . . . , ξ2kPIOP
, the following linear combination has degree at most dmax:

û(X) :=
∑

j∈[kPIOP]

ξi · ĥi(X) + ξ2i ·Xσi · ĥi(X) .

28

Hence u := û(Lprx) ∈ Cprx. By the perfect completeness of (Pprx,Vprx),

Pr
[
⟨Pprx(Cprx, û),Vu

prx(Cprx)⟩ = 1
]
= 1 .

Finally, V gives Vprx virtual oracle access to u, so V accepts with probability 1.
Soundness. Fix x /∈ L(R) and a malicious prover P̃ for the IOPP (P,V). A transcript of the
protocol has the following structure:

tr =
(
((gi, xi, yi, ρi))i∈[kPIOP], ((Qi,Ansi,Filli))i∈[kPIOP], s, trprx

)
.

Let (ξ1, . . . , ξ2kPIOP
) := Gen(s) and, for every i ∈ [kPIOP], let hi := Quotient(gi, Qi,Ansi,Filli). Define

the following events:

• Eout is the event that for every i there is at most one polynomial ŵi ∈ F≤di [X] with ∆(gi, ŵi(Lprx)) ≤
γ and ŵi(xi) = yi; and

• Eprx is the event that for every i there exists at least one polynomial v̂i ∈ F≤di−|Qi|[X] with
∆(hi, v̂i(Lprx)) ≤ γ.

The following claim shows that, conditioned on Eprx ∧ Eout, the probability that P̃ convinces V
is bounded by the soundness error of (PPIOP,VPIOP).

Claim 5.8. Pr[⟨P̃,Vw⟩(x) = 1 | Eprx ∧ Eout] ≤ βPIOP.

Proof. Suppose towards contradiction that the above probability is greater than βPIOP. Below we
construct a prover P̃PIOP that convinces VPIOP on x with probability greater than βPIOP, contradicting
the soundness property of (PPIOP,VPIOP). Prior to round i ∈ [kPIOP], P̃PIOP has chosen (and stored)
points x1, . . . , xi−1 and has received the messages ρ1, . . . , ρi−1 from the verifier.

P̃PIOP in round i ∈ [kPIOP]:
1. Compute gi := P̃(x1, ρ1, . . . , xi−1, ρi−1).
2. Sample xi ← F. (Pass this value on as state for the next round.)
3. Compute yi := P̃(x1, ρ1, . . . , xi−1, ρi−1, xi). If there is exactly one polynomial ŵi ∈ F≤di [X]

such that ŵi(xi) = yi and ∆(ŵi(Lprx), gi) ≤ γ then send ŵi. Otherwise abort.
4. Receive ρi from VPIOP.

We analyze the probability that P̃PIOP convinces VPIOP. We show that this probability is bounded
from below by the probability that V accepts conditioned on Eprx ∧ Eout.

Since Eprx∧Eout holds, for every i there exists a polynomial v̂i ∈ F≤di−|Qi|[X] where ∆(v̂i(Lprx), hi) ≤
γ. Consider the polynomial ŵi = Unquotient(v̂i, Qi,Ansi) ∈ F≤di [X]. Since hi := Quotient(gi, Qi,Ansi,Filli),
by Claim 5.5: ∆(ŵi(Lprx), gi) ≤ ∆(v̂i(Lprx), hi) ≤ γ.

Observe that ŵi(a) = Ansi(a) for every a ∈ Qi. In particular, ŵi(xi) = yi. Since Eout holds, ŵi

is unique, and therefore P̃PIOP sends ŵi to VPIOP.
If Eprx ∧ Eout holds and V accepts, it must be that VPIOP makes the queries in Q1, . . . , QkPIOP

and accepts the query answers in Ans1, . . . ,AnskPIOP
. For each i, the polynomial ŵi chosen by P̃PIOP

agrees with these query answers. Consequently,

Pr[⟨P̃PIOP,V
w

PIOP⟩(x) = 1] ≥ Pr[⟨P̃,Vw⟩(x) = 1 | Eprx ∧ Eout] > βIOP ,

in contradiction to the bound βPIOP on the soundness of (PPIOP,VPIOP).

29

Next we bound the probability that there exist multiple codewords consistent with the out-of-
domain samples.

Claim 5.9. Pr [¬Eout] ≤ kPIOP · dmax · ℓ2/|F|. (If the prover sends mPIOP messages overall, then this
is amended to: Pr [¬Eout] ≤ mPIOP · dmax · ℓ2/|F|.)

Proof. For every i, RS[F, Lprx, di] is (γ, ℓ)-list decodable: RS[F, Lprx, di] ⊆ Cprx and Cprx is (γ, ℓ)-list
decodable (see Fact 3.4).

Fix i ∈ [kPIOP] and consider gi : Lprx → F sent by P̃PIOP. By the polynomial identity lemma
(Lemma 3.8), two distinct of polynomials û, ŵ ∈ F≤di [X] agree on at most di points of F. There
are at most

(
ℓ
2

)
pairs of polynomials that are γ-close to gi on Lprx. It follows that the probability

over the choice of xi ← F that there exist two distinct polynomials that are γ-close to gi and agree

on xi is at most di·(ℓ2)
|F| ≤

dmax·ℓ2
|F| .

The claim follows by a union-bound over each index i ∈ [kPIOP].

Next we bound the probability that the prover P̃ convinces V when Eprx does not occur.

Claim 5.10. Pr[⟨P̃,Vw⟩(x) = 1 | ¬Eprx] ≤ εgen(γ) + βprx.

Proof. Since Eprx does not hold, there exists i ∈ [kPIOP] such that every polynomial v̂i ∈ F≤di−|Qi|[X]
has ∆(v̂i(Lprx), hi) > γ. We will argue that in this case

Pr [∆ (u, Cprx) ≤ γ] ≤ εgen(γ) . (1)

If ∆(u, Cprx) > γ, then by soundness of (Pprx,Vprx), Vprx accepts u with probability at most βprx.
Since V accepts only if Vprx accepts, it follows that V accepts with probability at most εgen(γ)+βprx.
We now show that Equation 1 holds.

Suppose towards contradiction that

Pr [∆ (u, Cprx) ≤ γ] > εgen(γ) . (2)

Recall that
u(x) :=

∑
j∈[kPIOP]

ξi · hi(x) + ξ2i · xσi · hi(x) ,

where (ξ1, . . . , ξ2kPIOP
) := Gen(s) for uniformly random seed s. Observe that 0 < γ < 1 − ψgen, and

that Gen is a proximity generator for 2 · kPIOP with proximity bound ψgen and error εgen. Therefore,
as a result of Equation 2, it holds that hi and Xσi · hi have correlated agreement with the code Cprx
on a set S of size |S| ≥ (1 − γ) · |Lprx|. Let p and q be the closest codewords that agree with hi
and Xσi · hi on S respectively and let p̂, q̂ ∈ F≤dmax [X] be the polynomials that agree with p and q.
Additionally, let p̂′i(X) := Xσi · p̂(X).

We now reach a contradiction by showing that it simultaneously holds that ∆(p̂′i(Lprx), q̂(Lprx)) ≥
1 − 2dmax/|Lprx| and that ∆(p̂′i(Lprx), q̂(Lprx)) < 1 − 2dmax/|Lprx|: [TODO: think if the factor of 2 here is

⋆
inherent —Ale]

• ∆(p̂′i(Lprx), q̂(Lprx)) ≥ 1−2dmax/|Lprx|: since every polynomial v̂i ∈ F≤di−|Qi|[X] has ∆(v̂i(Lprx), hi) >
γ, and ∆(p̂(Lprx), hi) ≤ γ, it follows that di − |Qi| < deg(p̂) ≤ dmax. Letting p̂′i(X) := Xσi · p̂(X),
we have dmax < deg(p̂′) ≤ 2dmax. Since q̂ has degree at most dmax it holds that p̂′ ̸≡ q̂. It follows that
the two polynomials can agree on at most 2dmax points, and so ∆(p̂′(Lprx), q̂(Lprx)) ≥ 1−2dmax/|Lprx|.

30

• ∆(p̂′i(Lprx), q̂(Lprx)) < 1 − 2dmax/|Lprx|: This follows from the observation that Xσi · p̂ and q̂ agree
on S, where |S| ≥ (1− γ) · |Lprx| for γ < 1− 2ρprx < 1− 2dmax/|Lprx|.

As we reached a contradiction, we can conclude that Equation 1 holds, thereby proving the claim.

Define p := Pr[Eprx ∧ Eout]. Putting together Claim 5.8, Claim 5.9, and Claim 5.10, we obtain:

Pr[⟨P̃,Vw⟩(x) = 1] = p · Pr[⟨P,Vw⟩(x) = 1 | Eprx ∧ Eout] + (1− p) · Pr[⟨P,Vw⟩(x) = 1 | ¬Eprx ∨ ¬Eout]

≤ p · βPIOP + (1− p) ·
(
Pr[⟨P̃,Vw⟩(x) = 1 | ¬Eprx] + Pr[¬Eout]

)
≤ p · βPIOP + (1− p) ·

(
βprx + εgen(γ) + kPIOP · dmax · ℓ2/|F|

)
≤ max

{
βPIOP, βprx + εgen(γ) + kPIOP · dmax · ℓ2/|F|

}
.

If the prover sends mPIOP messages overall, then this is amended to:

Pr[⟨P̃,Vw⟩(x) = 1] ≤ max
{
βPIOP, βprx + εgen(γ) +mPIOP · dmax · ℓ2/|F|

}
.

31

6 High-soundness small-query test for RS codes

We construct an IOPP for RS codes that has small soundness error and small query complexity.

Theorem 6.1. Let F be a field, G be a multiplicative subgroup of F∗ whose order is a power of two,
and L ⊆ F be a set.

If
√
|F| ≥ |G| ≥ 28 · |L| then the Reed–Solomon code C := RS[F, L, d] has an IOPP with the

following parameters:

IOPP to show δ proximity to C
Proximity error max

{
1− δ, ρ1/4 +O

(
d2·(1/ρ)4

|F|

)}
Rounds O(loglog d)
Alphabet F
Proof length O(|L|/ρ)
Oracle input queries 1
Proof queries O(loglog d)
Randomness O(loglog d · log |F|)
Verifier running time Õ(

√
d)

Above, ρ := (d+ 1)/|L| is the rate of C.

This section is organized in four parts.

• In Section 6.1 we describe a univariate sumcheck that we use as a subroutine.
• In Section 6.2 we construct a poly-IOPP for bivariate Reed–Muller codes.
• In Section 6.3 we use the above test to construct a poly-IOPP for Reed–Solomon codes of degree
d where prover messages have degree

√
d.

• In Section 6.4 we use the compiler in Section 5 to recursively transform the poly-IOPP from
Section 6.3 into a (standard) IOPP. This recursion uses the fact that the poly-IOPP has prover
messages of degree

√
d to go from degree d to degree

√
d and so on.

6.1 Weighted univariate sumcheck

We describe a poly-IOP for univariate sumcheck with weights. This protocol is a straightforward
variation of the univariate sumcheck in [BCRSVW19], and is described here for completeness.

Lemma 6.2. Let H be a multiplicative subgroup of F∗. Let f̂ ∈ F≤df [X] be a polynomial, ŵ ∈
F≤dw [X] be a weight polynomial, and σ be a claimed sum. The protocol (PΣ,VΣ) in Construction 6.3
satisfies the following properties.

• Completeness. If
∑

α∈H ŵ(α) · f̂(α) = σ then

Pr
a←F

 p̂ ∈ F≤|H|−2[X]

∧ ĥ ∈ F≤df+dw−|H|[X]

∧ Vf̂ ,p̂,ĥ
Σ (df , H, ŵ, σ, a) = 1

(p̂, ĥ)← PΣ(df , H, ŵ, σ, f̂)

 = 1 .

• Soundness. If
∑

α∈H ŵ(α) · f̂(α) ̸= σ then for every P̃:

Pr
a←F

 p̂ ∈ F≤|H|−2[X]

∧ ĥ ∈ F≤df+dw−|H|[X]

∧ Vf̂ ,p̂,ĥ
Σ (df , H, ŵ, σ, a) = 1

(p̂, ĥ)← P̃

 ≤ df + dw
|F|

.

32

The protocol has 1 message, where the prover sends 2 polynomials. The verifier queries 1 field
element from f̂ and 2 from the prover messages, uses log |F| bits of randomness, and runs in time
O(log |H|) + tw (field operations) where tw is the time to evaluate ŵ on a random field element.

Construction 6.3.

1. Interaction phase: PΣ sends the polynomials ĥ ∈ F≤df+dw−|H|[X] and p̂ ∈ F≤|H|−2[X] such that

ŵ(X) · f̂(X) ≡ ĥ(X) · V̂H(X) + (X · p̂(X) + σ/|H|) ,

where V̂H(X) :=
∏

α∈H(X − α) = X |H| − 1 is the vanishing polynomial of H.

2. Decision phase: VΣ samples a← F uniformly at random and accepts if and only if

ŵ(a) · f̂(a) = ĥ(a) · V̂H(a) + (a · p̂(a) + σ/|H|) .

Proof of Lemma 6.2. We prove completeness and then soundness. We rely on the following fact.

Fact 6.4. Let H be a multiplicative subgroup of F∗ and q̂ ∈ F≤|H|−1[X] be a polynomial. Then∑
α∈H q̂(α) = q̂(0) · |H|.

Completeness. Suppose that
∑

α∈H ŵ(α) · f̂(α) = σ. By polynomial division we can write

ŵ(X) · f̂(X) = ĥ(X) · V̂H(X) + q̂(X) ,

where ĥ ∈ F≤df+dw−|H| and q̂ ∈ F≤|H|−1. By Fact 6.4,
∑

α∈H q̂(α) = q̂(0) · |H|. Since σ =∑
α∈H ŵ(α) · f̂(α) =

∑
α∈H q̂(α), we can write:

ŵ(X) · f̂(X) = ĥ(X) · V̂H(X) + (X · p̂(X) + σ/|H|) ,

for p̂ ∈ F≤|H|−2[X]. This is precisely what is sent by PΣ. Thus, for every a ∈ F it holds that

ŵ(a) · f(a) = h(a) · V̂H(a) + (a · p(a) + σ/|H|) .

Thus, VΣ always accepts.
Soundness. Suppose that

∑
α∈H ŵ(α) · f̂(α) ̸= σ and fix a prover P̃. Let ĥ ∈ F≤df+dw−|H|[X]

and p̂ ∈ F≤|H|−2[X] be the polynomials sent by P̃. Since the sum does not hold:

ŵ(X) · f̂(X) ̸≡ ĥ(X) · V̂H(X) + (X · p̂+ σ/|H|) .

(This holds since, by using Fact 6.4, otherwise
∑

α∈H ŵ(α) · f̂(α) = σ.) Since both polynomials
have degree at most df + dw, by the polynomial identity lemma (Lemma 3.8):

ŵ(a) · f̂(a) = ĥ(a) · V̂H(a) + (a · p̂(a) + σ/|H|) ,

can hold for at most df+dw choices of a ∈ F. Hence VΣ accepts with probability at most df+dw
|F| .

33

6.2 poly-IOPP for bivariate RM codes

We construct a poly-IOPP for bivariate Reed–Muller codes.

Definition 6.5. A domain D ⊆ F× F is admissible if there exists a “row-index” domain LX ⊆ F
such that D = ∪i∈LX

({i} × L(i)
Y) where |L(i)

Y | = |L
(i′)
Y | for every i, i′ ∈ LX.

Lemma 6.6. Consider the following ingredients:

• C := RM[F, D, (dX , dY)] is a Reed–Muller code where D ⊆ F × F is an admissible domain with
row-index domain LX.

• H ⊆ F is a multiplicative subgroup of F∗.
• Gen is a strong proximity generator for CX := RS[F, LX , dX] for |H| functions with seed length
wgen, proximity bound ψgen, and error εgen.

If |F| ≥ |LX |2 and |H| ≥ dY , then Construction 6.7 is a poly-IOPP for C with the following param-
eters:

poly-IOPP to show δ < 1− ψ2
gen proximity to C

Proximity error
√
1− δ +max

{√
1− δ, dY +|H|−1

|F|

}
+ εgen

Rounds 3
Alphabet F
Number of polynomials |LX |+ 3
Oracle input queries 1
Proof queries 5
Randomness 3 log |F|+ wgen

Verifier running time O(log |H|+ t̂gen)
Max message degree max{dX , dY , |H| − 2}

Above, εgen := εgen(1 −
√
1− δ) and t̂gen is defined as follows: For a seed s and (ξj)j∈H := Gen(s),

consider the polynomial ŵ ∈ F≤|H|−1[X] where ŵ(j) = ξj for every j ∈ H. Then t̂gen is maximum
time required to compute ŵ(a) over every choice of s and a ∈ F.

Construction 6.7. Let f ∈ C := RM[F, D, (dX , dY)] be a function and f̂ be its extension to a
polynomial with individual degrees dX and dY . The honest prover P receives as input f , whereas
the verifier V is given oracle access to f .

1. P: Compute f̂ and then, for every i ∈ LX , send r̂i(X) := f̂(i,X) ∈ F≤dY [X].

2. V: Sample and send s← {0, 1}wgen .

3. P: Let (ξℓ)ℓ∈H ← Gen(s) (formally, we associate each x ∈ H with a unique index in [|H|]).
Interpolate the points of ξ⃗ to define the weight polynomial ŵ ∈ F≤|H|−1[X] such that ŵ(j) = ξj
for every j ∈ H.Send v̂ ∈ F≤dX [X] defined such that v̂(X) :=

∑
j∈H ŵ(j) · f̂(X, j).

4. V: Sample i← LX uniformly at random and send to P.

5. P and V run the interaction phase of the weighted univariate sumcheck protocol (PΣ,VΣ) (as
in Lemma 6.2) to show that

∑
j∈H ŵ(j) · r̂i(j) = v̂(i):

⟨PΣ(dY , H, ŵ, v(i), r̂i),V
r̂i
Σ (dY , H, ŵ, v(i))⟩ ,

(Notice that this does not yet require VΣ to know v̂(i) or compute or evaluate ŵ.)

34

6. V: Accept if and only if the following hold:

• Run the decision phase of the univariate sumcheck (notice that this requires querying v(i),
and another 3 internal queries, and evaluating ŵ on a random field element). Check that VΣ

accepts.
• Sample j ← L

(i)
Y := {j ∈ F | (i, j) ∈ D} uniformly at random, query r̂i(j) and f(i, j), and

check that f(i, j) = r̂i(j).

Complexity parameters. We analyze the complexity parameters of the poly-IOPP.

• Message degrees. The rows r̂i each have degree dY . The polynomial v̂ has degree at most dX .
During the univariate sumcheck protocol, the prover sends a polynomial of degree |H| − 2 and a
polynomial of degree dY .

• Rounds. The IOPP has 3 rounds.

• Number of polynomials. The prover begins by sending |LX | different polynomials (r̂i)i∈LX
. It

then sends a polynomial v and, in the univariate sumcheck, sends two additional polynomials.
Thus the prover sends a total of |LX |+ 3 polynomials as oracles to the verifier.

• Oracle input queries. The verifier queries f in one location, f(i, j).

• Queries. The verifier queries ri(j) and v(i), and an additional three queries during the sumcheck
protocol. The total proof query complexity is 5.

• Randomness. The verifier chooses s using wgen bits of randomness. It then queries i and j,
requiring log |D| ≤ 2 log |F| bits of randomness. Finally, it uses log |F| bits of randomness during
the univariate sumcheck. The total randomness is therefore 3 log |F|+ wgen.

• Verifier running time. The verifier chooses s, and O(1) field elements. It then runs the sumcheck
verifier, and makes a constant number of comparisons between field elements. The running time of
the sumcheck verifier is O(log |H|)+ t̂prx. Observe that t̂prx dominates the time required to sample
s since s is the input to Gen. The running time of the verifier is, therefore O(log |H|+ t̂prx).

Proof of Lemma 6.6. We prove completeness and then proximity.
Completeness. Fix f ∈ C. A transcript of the protocol has the following structure:

tr = ((r̂i)i∈LX
, s, v̂, (i, j), trΣ) ,

where trΣ represents the transcripts of the sumcheck protocol executions. Let (ξℓ)ℓ∈H := Gen(s).
The honest prover generates v̂ such that v̂(i) =

∑
j∈H ŵ(j) · f̂(i, j) for every i ∈ LX , where ŵ is

the extension of the coefficients (ξℓ)ℓ∈H to a degree |H|−1 polynomial. Observe that ŵ ∈ F≤|H|−1[X]
and f̂(X, j) ∈ F≤dX [X] for every j ∈ F. It follows that that v̂ ∈ F≤dX+|H|−1[X], and this will be
sent by the honest prover. For every i ∈ LX , it holds that

∑
j∈H ŵ(j) · r̂i(j) = v̂(i). In other words,

the claim for the univariate sumcheck protocol:

⟨PΣ(CΣ, H, ŵ, v̂(i), r̂i),Vr̂i
Σ (CΣ, H, ŵ, v̂(i))⟩ ,

is true. Since the univariate sumcheck is perfectly complete, VΣ will accept with probability 1.

35

Finally, it holds that r̂i(j) = f̂(i, j) for every (i, j) ∈ D. Thus no matter what point j is chosen
by the verifier, its check will pass. We conclude that V accepts with probability 1.
Proximity. Fix f , a prover P̃ and δ < 1− ψ2

gen. Set µ :=
√
1− δ and suppose that

Pr
[
⟨P̃,V⟩ = 1

]
> µ+max

{
µ,

dY + |H| − 1

|F|

}
+ εgen(1− µ) .

We show that ∆(f, C) ≤ 1− µ2 = δ.
A transcript of the protocol has the following structure:

tr = ((r̂i)i∈LX
, s, v̂, (i, j), trΣ) ,

where (r̂i)i∈LX
are polynomials of degree at most dY , v̂ is of degree at most dX , and trΣ is the

transcript of the sumcheck protocol. Let (ξℓ)ℓ∈H := Gen(s) and let c1, . . . , c|H| : LX → F be functions
such that cj(i) = r̂i(j) for every j ∈ H.

Define sets S and T ⊆ S as follows:

S :=
{
i ∈ LX |{j ∈ L(i)

Y : r̂i(j) = f(i, j)}| ≥ µ · |L(i)
Y |

}
,

and
T :=

{
i ∈ S

∑
j∈H ξj · r̂i(j) = v̂(i)

}
.

By definition, for every i ∈ T :

v̂(i) =
∑
j∈H

ξj · r̂i(j) =
∑
j∈H

ξj · cj(i) ,

We begin by showing that if T is small then the verifier is likely to reject.

Claim 6.8. Pr [⟨P,V⟩ = 1 ∧ |T | < µ · |LX |] ≤ µ+max
{
µ, dY +|H|−1

|F|

}
.

Proof. The index i is chosen uniformly at random, and so i ∈ T with probability less than µ, in
which case we cannot bound the probability that it accepts from above. On the other hand, if i /∈ T
then one of the following holds.

• v̂(i) ̸=
∑

j∈H ξj · r̂i(j): The prover and verifier run the sumcheck protocol to show that the sum
of r̂i over H is equal to v̂(i). Notice that ŵ ∈ F≤|H|−1[X] and r̂i ∈ F≤dY [X]. Therefore by the
soundness guarantee of the univariate sumcheck protocol, the verifier accepts with probability at
most (dY + |H| − 1)/|F|.

• |{j ∈ L(i)
Y : r̂i(j) = f(i, j)}| < µ·|L(i)

Y |: the verifier accepts only if it samples j with r̂i(j) = f(i, j)
which happens with probability at most µ.

Put together, we have that

Pr [⟨P,V⟩ = 1 ∧ |T | < µ · |LX |] = Pr[i ∈ T] · Pr [⟨P,V⟩ = 1 ∧ |T | < µ · |LX | | i ∈ T]

+ Pr[i /∈ T] · Pr [⟨P,V⟩ = 1 ∧ |T | < µ · |LX | | i /∈ T]

≤ µ+ (1− µ) ·max

{
µ,
dY + |H| − 1

|F|

}
< µ+max

{
µ,
dY + |H| − 1

|F|

}
.

36

It follows from Claim 6.8 that,

Pr [|T | ≥ µ · |LX |] ≥ Pr [⟨P,V⟩ = 1 ∧ |T | ≥ µ · |LX |] ≥ εgen(1− µ) .

Observe that by the definition of T ⊆ S there exists a u ∈ CX (namely, u = v̂(LX)) where u(T) =∑
j∈H ξj · cj(T). Therefore,

Pr

[
∃T ⊆ S
|T | ≥ µ · |LX |

: ∃u ∈ CX , u(T) =
∑

j∈H ξj · cj(T)
s← {0, 1}wgen

(ξℓ)ℓ∈H := Gen(s)

]
> Pr [|T | ≥ µ · |LX |]
≥ εgen(1− µ) .

Since 0 < δ < 1 − ψ2
gen and δ := 1 − µ2, it follows that 0 < 1 − µ < 1 − ψgen. Since Gen is a strong

proximity generator with proximity bound ψgen and error εgen, we conclude that there exists a set
W ⊆ S with |W | ≥ µ · |LX | such that

∀ j ∈ H, ∃u ∈ CX , u(W) = cj(W) .

We now show that there exists a bivariate polynomial Q that completely agrees with rows r̂i for
every i ∈W .

Claim 6.9. There exists a bivariate polynomial Q̂ ∈ F[X,Y] with degX(Q̂) ≤ dX and degY (Q̂) ≤ dY

such that Q̂(i, j) = r̂i(j) for every (i, j) where i ∈W and j ∈ L(i)
Y .

Proof. Let ĉ1, . . . , ĉm be polynomials where ĉi agrees with ci on W . There exist such polynomials
because

∀ j ∈ H, ∃u ∈ CX , u(W) = cj(W) .

Notice that r̂i(j) = ĉj(i) for every (i, j) ∈W ×H.
Let W ′ be the first dX rows in W (if there are less than dX rows then take all of W) and for

every i ∈ W ′ let Ii,W ′ ∈ F≤dX [Y] be the indicator polynomial where Ii,W ′(i) = 1 and Ii,W ′(j) = 0

for every j ∈W ′ \ {i}. Define the polynomial Q̂ ∈ F[X,Y]:

Q̂(X,Y) :=
∑
i∈W ′

Ii,W ′(X) · r̂i(Y) .

Notice that degX(Q̂) ≤ dX , that degY (Q̂) ≤ dY , and that Q̂(i, j) = ri(j) = ĉj(i) for every
(i, j) ∈ W ′ ×H. Since degX(Q̂), deg(ĉj) ≤ dX and Q̂(i, j) = ĉj(i) for at least dX points, it follows
that Q̂(X, j) ≡ ĉj . Due to the fact that r̂i(j) = ĉj(i) = Q̂(i, j) for every i ∈W \W ′ and j ∈ [m], it
holds that Q̂(i, j) = r̂i(j) for every (i, j) ∈W \W ′ ×H.

Finally, Q̂(i, Y) ≡ r̂i(Y) for every i ∈W , since Q̂(i, Y) and r̂i(Y) both have degree dY and agree
on |H| ≥ dY points. Therefore, Q̂(i, j) = r̂i(j) for every (i, j) where i ∈W and j ∈ L(i)

Y .

Finally, by applying Claim 6.9 and recalling that i ∈ W ⊆ S only if at least a µ-fraction of
the values j ∈ L(i)

Y has f(i, j) = r̂i(j), we have that f(i, j) = Q̂(i, j) for at least µ2 · |D| points.
Therefore, ∆(f, C) ≤ ∆(f, Q̂) ≤ 1− µ2.

37

6.3 poly-IOPP for RS codes

We construct a poly-IOPP for Reed–Solomon codes. In more detail, we show that Lemma 6.6
suffices to construct a proximity test for univariate polynomials where the prover’s messages are of
degree significantly lower than that of the original function. The following claim says that univariate
polynomials can be represented by bivariate polynomials where the degree of each variable is smaller
than that of the original polynomial. This will allow us to map the Reed–Solomon evaluation of a
polynomial to a bivariate Reed–Muller code to which we can test proximity using Lemma 6.6.

Claim 6.10 ([BS06]). Given a polynomial q̂ ∈ F[X]:

• For every f̂ ∈ F[X] there exists a unique bivariate polynomial Q̂ ∈ F[X,Y] with degX(Q̂) =⌊
deg(f̂)/deg(q̂)

⌋
and degY (Q̂) ≤ deg(q̂) − 1 such that f̂(Z) = Q̂(q̂(Z), Z). Moreover, Q̂ can be

computed efficiently given f̂ and q̂. Observe that if deg(f̂) ≤ t · deg(q̂)− 1 then degX(Q̂) ≤ t− 1.

• For every Q̂ ∈ F[X,Y] with degX(Q̂) ≤ t− 1 and degY (Q̂) ≤ deg(q̂)− 1, the polynomial f̂(Z) :=
Q̂(q̂(Z), Z) has degree deg(f̂) ≤ t · deg(q̂)− 1.

We can now state and prove the main lemma of this section:

Lemma 6.11. Consider the following ingredients:

• C := RS[F, L, d] is a Reed–Solomon code.
• q̂ ∈ F≤dq [X] is a polynomial where d := t · dq − 1 for t ∈ N and D := {(q̂(j), j) | j ∈ L} is an

admissible domain with row-index domain LX = {q̂(j) | j ∈ L}.
• H ⊆ F is a multiplicative subgroup of F∗.
• Gen is a strong proximity generator for CX := RS[F, LX , t − 1] for |H| functions with seed length
wgen, proximity bound ψgen, and error εgen.

If |F| ≥ |LX |2 and |H| ≥ dq − 1 then Construction 6.12 is a poly-IOPP for C with the following
parameters:

poly-IOPP to show δ < 1− ψ2
gen proximity to C

Proximity error
√
1− δ +max

{√
1− δ, dq+|H|−2

|F|

}
+ εgen

Rounds 3
Alphabet F
Number of polynomials |LX |+ 3
Input queries 1
Proof queries 5
Randomness 3 log |F|+ wgen

Verifier running time O(log |H|+ t̂gen)
Max message degree max{dq − 1, t− 1, |H| − 2}

Above, εgen := εgen(1−
√
1− δ) and t̂gen is defined as in Lemma 6.6.

Construction 6.12. Let f ∈ C be a function. The honest prover P receives as input f , whereas
the verifier V is given oracle access to f . Define f ′ : D → F to be the bivariate function such that
f ′(q̂(j), j) = f(j), and set dX := ⌊df/dq⌋ = t− 1 and dY := dq − 1.

38

1. The parties run the bivariate poly-IOPP (PPIOP,VPIOP) described in Lemma 6.6 to test that f ′ is
close to the Reed–Muller code RM[F, D, (dX , dY)]. For any query (q̂(t), t) ∈ D made by VPIOP to
f ′, V queries f(t) and returns the answer to VPIOP.

2. V accepts if and only if VPIOP accepts.

Proof. We prove completeness and proximity.
Completeness. If f ∈ C then, by Claim 6.10, there exists a polynomial Q̂ with degX(Q̂) ≤ dX

and degY (Q̂) ≤ dY whose evaluation on D is equal to f ′. Therefore f ′ ∈ RM[F, D, (dX , dY)]. By
the perfect completeness of the test in Lemma 6.6, it follows that VPIOP accepts with probability 1.
Consequently, V always accepts.
Proximity. Fix a function f , a prover P̃ and δ < 1 − ψ2

gen. Suppose that P̃ causes V to accept
with probability greater than

√
1− δ +max

{√
1− δ, dq + |H| − 2

|F|

}
+ εgen .

By the proximity of the poly-IOPP for RM[F, D, (dX , dY)] it follows that there exists a bivariate
polynomial Q̂ with individual degrees dX and dY such that ∆(Q̂(D), f ′) ≤ δ. Let p̂ ∈ F[X] be the
polynomial such that p̂(X) = Q̂(q̂(X), X). Observe that by Claim 6.10, deg(p̂) ≤ t · dq − 1 = df ,
and that p̂(i) = Q̂(q̂(i), i) = f ′(q̂(i), i) = f(i) for a (1− δ)-fraction of the locations. Consequently:
∆(f, C) ≤ ∆(f, p̂(L)) ≤ δ.

We derive the following corollary for Reed–Solomon codes evaluated over multiplicative sub-
groups with order that is a power of two:

Corollary 6.13. Consider the following ingredients:

• F is a field, L and H are multiplicative subgroups of F∗ where |H| divides |L|.
• Gen is a strong proximity generator for CX := RS[F, LX , t − 1] for |H| functions with seed length
wgen, proximity bound ψgen, and error εgen, where LX := {a|H| | a ∈ L} and t ∈ N.

If |F| ≥
(
|L|
|H|

)2
then there is a poly-IOPP for C := RS[F, L, t · |H|−1] with the following parameters:

poly-IOPP to show δ ≤ 1− ψ2
gen proximity to C

Proximity error
√
1− δ +max

{√
1− δ, 2 · |H|/|F|

}
+ εgen

Rounds 3
Alphabet F
Number of polynomials |L|/|H|+ 3
Input queries 1
Proof queries 4
Randomness 3 log |F|+ wgen

Verifier running time O(log |H|+ t̂gen)
Max message degree max{t− 1, |H| − 1}

Above, εgen := εgen(1−
√
1− δ) and t̂gen is defined as in Lemma 6.6.

39

Proof. We use the poly-IOPP described in Lemma 6.11 using C := RS[F, L, t · |L|−1], q̂(X) := X |H|,
the multiplicative subgroup H, and the proximity generator Gen.

Observe that, deg(q̂) = |H| and, since |H| divides |L|, LX := {a|H| | a ∈ L} has |LX | = |L|/|H|.
Let D := {(q̂(j), j) = (j|H|, j) | j ∈ L}. Since |H| divides the order of |L|, the function q̂(X) = X |H|

has exactly |H| inverses for every a ∈ LX . Therefore D is admissible.

Finally, observe that |F| >
(
|L|
|H|

)2
= |LX |2 and |H| = deg(q̂), and so all of the requirements for

Lemma 6.11 hold. The parameters follow.

6.4 Recursive construction of IOPP for RS codes

We now prove Theorem 6.1 showing an IOP of proximity for the Reed–Solomon code that is com-
patible with the inverse-polynomial soundness error regime.

6.4.1 Preliminary claims

We begin by showing that if there is an IOPP for Reed–Solomon codes with some degree, then there
is an IOPP for codes for (roughly) the degree squared.

Claim 6.14. Consider the following ingredients:

• F is a field, L and H are multiplicative subgroups of F∗ where |H| divides |L|.
• An IOPP for Cprx := RS[F, Lprx, dprx].

If |F| ≥
(
|L|
|H|

)2
and dprx ≥ |H| − 1, then there is an IOPP for C := RS[F, L, |H|2 − 1] with the

following parameters:

IOPP for Cprx → IOPP to show δ < 1− ρ proximity to C
Proximity error βprx max

{
2
√
1− δ, βprx

}
+O

(
|H|3·(1/ρ)4+d2

prx/ρ
4
prx+|H|/ρ·dprx·(1/ρprx)

2

|F|

)
Rounds kprx kprx + 7
Alphabet F F
Proof length lprx O(|Lprx| · |H|/ρ) + lprx
Oracle input queries qprx,f 1
Proof queries qprx,π O(qprx,f) + qprx,π

Randomness rprx 15 log |F|+ rprx
Verifier running time vtprx Õ(|H|+ qprx,f) + vtprx

Above, ρ := |H|2/|L|, ρprx := (dprx + 1)/|Lprx|, and βprx := βprx(1− 2
√
ρprx).

Proof. We first instantiate a poly-IOPP for C and then compile it into an IOPP. Set LX := {a|H| | a ∈
L} and CX := RS[F, LX , |H| − 1]. Observe that |LX | = |L|/|H| and that the rate of CX is ρX :=
|H|/|LX | = |H|2/|L| = ρ where ρ is the rate of C.

Consider the poly-IOPP for C described in Corollary 6.13 with t := |H| using the following
ingredients:

• The field F and multiplicative subgroups L and H (observe that |H| divides |L|).

40

• Gen is the strong proximity generator for CX , described in Item 1 of Corollary 4.5 for |H| functions,
with proximity bound√ρX =

√
ρ, seed length log |F|, and error O

(
|H|3·(1/ρX)4

|F|

)
= O

(
|H|3·(1/ρ)4
|F|

)
.

The time to compute the interpolation of the coefficients generated by Gen is t̂gen = Õ(|H|).10

Observe that |F| ≥
(
|L|
|H|

)2
and so, as a result, the requirements for Corollary 6.13 have been met.

The resulting poly-IOPP for C has the following parameters:

poly-IOPP to show δ ≤ 1− ρ proximity to C
Proximity error 2

√
1− δ +O

(
|H|3·(1/ρ)4

|F|

)
Rounds 3
Alphabet F
Number of polynomials |H|/ρ+ 3
Input queries 1
Proof queries 4
Randomness 4 log |F|
Verifier running time Õ(|H|)
Max message degree |H| − 1

Since the proof query complexity of the poly-IOPP is 4, the verifier makes queries to at most 4 of
the messages sent by the prover.

We now compile the poly-IOPP for C into an IOPP for C using Theorem 5.1 (following Re-
mark 5.2 with qPIOP,m := 4) with γ := 1− 2

√
ρprx and the following ingredients:

• The poly-IOPP for C described above;
• (Pprx,Vprx) is the IOPP for Cprx := RS[F, Lprx, dprx] described in the claim statement;
• Gen is a proximity generator for Cprx. We use the generator described in Item 2 of Theorem 4.2 for 8

functions, seed length 8 log |F|, proximity bound ψgen :=
√
ρprx, error O

(
d2prx/ρ

4
prx

|F|

)
, and computation

time O(1).

Observe that dprx ≥ |H| − 1, and so bounds the degrees of the prover messages in the poly-IOPP.
It holds that 0 < γ < 1 − max{ψgen, 2ρprx}, and, by the Johnson bound Theorem 3.5, the code
Cprx is (γ, 1/2ρprx)–list decodable. The requirements for Theorem 5.1 have therefore been met. The
resulting IOPP for C has proximity error

max
{
2
√
1− δ, βprx

}
+O

(|H|3 · (1/ρ)4 + d2prx/ρ
4
prx + |H|/ρ · dprx · (1/ρprx)

2

|F|

)
,

where βprx := βprx(1− 2
√
ρprx). Its remaining parameters are:

poly-IOPP for R IOPP for Cprx → IOPP for R
Rounds 3 kprx kprx + 7
Alphabet F F F
Proof length |H|/ρ+ 3 polynomials lprx O(|Lprx| · |H|/ρ) + lprx
Oracle input queries 1 qprx,f 1
Proof queries 4 qprx,π O(qprx,f) + qprx,π

Randomness 4 log |F| rprx 15 log |F|+ rprx
Verifier running time Õ(|H|) vtprx Õ(|H|+ qprx,f) + vtprx

10The time to compute the coefficients themselves is O(|H|). Following the computation of the |H| coefficients, the
time to evaluate the polynomial interpolating these points on a random field element is at most Õ(|H|).

41

We now use Claim 6.14 to recursively construct IOPPs for Reed–Solomon codes for any degree
of a specific structure.

Lemma 6.15. Consider the following ingredients:

• m ∈ N is a degree parameter.
• F is a field and suppose that F∗ contains a multiplicative subgroup L of order 2k.

If |F| ≥ 22k and k ≥ 2m then, letting d := 22m − 1, then Construction 6.16 is an IOPP for
C := RS[F, L, d] with the following parameters:

IOPP to show δ proximity to C
Proximity error max

{
2
√
1− δ, ρ1/4

}
+O

(
d3/2·(1/ρ)4

|F|

)
Rounds O(loglog d)
Alphabet F
Proof length O(|L|/ρ)
Oracle input queries 1
Proof queries O(loglog d)
Randomness O(loglog d · log |F|)
Verifier running time Õ(

√
d)

Construction 6.16. Let g be a generator of L. On input f : L→ F, the protocol is as follows:

1. If m < 7: P and V run the low-degree test for constant degree to described in Claim 3.6 to show
that f is close to C.

2. If m ≥ 7: Let dprx := 2m− 1 if m is even, and dprx := 2m+1− 1 otherwise, and let Lprx := ⟨g2
m−7⟩.

P and V run the IOPP described in Claim 6.14 to show proximity of f to C, with H = ⟨g2k−m⟩
and using an IOPP for Cprx := RS[F, Lprx, dprx] that is instantiated recursively.

Proof. We prove the lemma by induction on the degree exponent parameter m.
Basis. When m < 7, by Claim 3.6 we have an IOPP with the following parameters:

IOPP to show δ proximity to C with constant degree
Proximity error 1− δ
Rounds 1
Alphabet F
Proof length O(1)
Input queries 1
Proof queries O(1)
Randomness log |F|
Verifier running time O(1)

Induction step. Suppose that for every m′ < m the lemma holds. We show that this holds for
m. Let d := 22m − 1 and L be a multiplicative subset of F∗ of order 2k with |F| ≥ 22k. Define dprx,
Lprx and H as in Item 2 of Construction 6.16 with respect to m and L. Observe the following:
• |H| = 2m divides |L| = 2k;
• d = |H|2 − 1;
• dprx := 22m

′ − 1 for m′ ∈ N;

42

• |Lprx| = 2k−m+7 = O(|L|/|H|);
• O(loglog dprx + 1) = O(loglog d);
• 2−7 · ρ ≤ ρprx ≤ 2−6 · ρ.
By plugging in m′ and Lprx into the induction assumption, the code Cprx := RS[F, Lprx, dprx] has an
IOPP with the following parameters:

IOPP to show δ proximity to Cprx
Proximity error max

{
2
√
1− δ, ρ1/4prx

}
+O

(
d3/2
prx ·(1/ρprx)

4

|F|

)
Rounds O(loglog dprx)
Alphabet F
Proof length O(|Lprx|/ρprx)
Oracle input queries 1
Proof queries O(loglog dprx)
Randomness O(loglog dprx · log |F|)
Verifier running time Õ(

√
dprx)

Now apply Claim 6.14 using the IOPP for Cprx as in Item 2. The result of this is an IOPP for
C := RS[F, L, d] with d := 22m − 1 with the following parameters:

• Proximity error. The proximity error of the IOPP for Cprx, when δ = 1− 2
√
ρprx is

βprx(1− 2
√
ρprx) = max

{
2 ·
(
2 · ρ1/2prx

)1/2
, ρ1/4prx

}
+O

(
d3/2prx · (1/ρprx)

4

|F|

)

≤ max

{
2 ·
(
2 ·
(
2−6 · ρ

)1/2)1/2
,
(
2−6 · ρ

)1/4}
+O

(
d3/4 · (1/ρ)4

|F|

)

= ρ1/4 +O

(
d3/4 · (1/ρ)4

|F|

)
.

The proximity error of the resulting IOPP is

max
{
2
√
1− δ, βprx(1− 2

√
ρprx)

}
+O

(|H|3 · (1/ρ)4 + d2prx/ρ
4
prx + |H|/ρ · dprx · (1/ρprx)

2

|F|

)
= max

{
2
√
1− δ, βprx(1− 2

√
ρprx)

}
+O

(
d3/2 · (1/ρ)4

|F|

)
.

We can now plug in the value of βprx(1− 2
√
ρprx) to get error at most:

max

{
2
√
1− δ, ρ1/4 +O

(
d3/4 · (1/ρ)4

|F|

)}
+O

(
d3/2 · (1/ρ)4

|F|

)

= max
{
2
√
1− δ, ρ1/4

}
+O

(
d3/2 · (1/ρ)4

|F|

)
.

Observe that, while the poly-IOPP for C has the soundness error given only when δ < 1− ρ, the
above soundness error is greater than ρ, and so we can remove this restriction.

• Rounds. The number of rounds is O(loglog dprx) + 7 = O(loglog d).

43

• Proof length. The proof length is

O

(
|Lprx| ·

|H|
ρ

+
|Lprx|
ρprx

|
)

= O

(
|L|
|H|
· |H|
ρ

+
|L|
|H| · ρ

)
= O

(
|L|
ρ

)
.

• Oracle input queries. The verifier makes 1 query to its input.

• Proof queries. The proof query complexity is O(loglog dprx) +O(1) = O(loglog d).

• Randomness. The randomness complexity is O(loglog dprx · log |F|) + 15 log |F| = O(loglog d ·
log |F|).

• Verifier running time. The verifier running time is Õ(|H|) + Õ(
√
dprx) = Õ(

√
d).

6.4.2 Proof of Theorem 6.1

Let m be the smallest integer such that d ≤ 22m− 1 and Lprx := G, and set dprx := 22m− 1. Observe
that d ≤ dprx < 4d, that |Lprx| ≥ 28 · |L|. We apply Theorem 8.2 with the following ingredients:

• The Reed–Solomon code C := RS[F, L, d].
• The IOPP for Cprx := RS[F, Lprx, dprx] described in Lemma 6.15. Notice that the rate of Cprx is
ρprx := (dprx + 1)/|Lprx| ≤ 2−6 · ρ.

• The proximity generator for Cprx described in Item 2 of Theorem 4.2 for 2 functions with seed
length 2 log |F|, proximity bound √ρprx, error O

(
d2prx·(1/ρprx)4

|F|

)
and computation time O(1).

• γ := 1− 2
√
ρprx.

Observe that d ≤ dprx, that 0 < γ < 1 − max{√ρprx, 2ρprx} and that, by the Johnson bound Theo-
rem 3.5, Cprx is (γ, 1/2ρprx)–list decodable. We can therefore apply Theorem 8.2 to get an IOPP for
C with the following parameters:

• Proximity error. The proximity error of the IOPP for Cprx, when δ = 1− 2
√
ρprx is

βprx(1− 2
√
ρprx) = max

{
2
√
1− (1− 2

√
ρprx), ρ

1/4
prx

}
+O

(
d3/2prx · (1/ρprx)

4

|F|

)

≤ max

{
2 ·
(
2 ·
(
2−6 · ρ

)1/2)1/2
,
(
2−6 · ρ

)1/4}
+O

(
d3/2 · (1/ρ)4

|F|

)

= ρ1/4 +O

(
d3/2 · (1/ρ)4

|F|

)
.

The proximity error of the resulting IOPP is therefore at most

max

{
1− δ, βprx(1− 2

√
ρprx) +O

(
d2prx · (1/ρprx)

2

|F|

)}
= max

{
1− δ, ρ1/4 +O

(
d2 · (1/ρ)4

|F|

)}
.

• Rounds. The number of rounds is O(loglog dprx) + 1 = O(loglog d).

44

• Proof length. The proof length is O (|Lprx|+ |Lprx|/ρprx) = O(|L|/ρ).

• Oracle input queries. The verifier makes 1 query to its input.

• Proof queries. The proof query complexity is O(loglog dprx) + 1 = O(loglog d).

• Randomness. The randomness complexity is O(loglog dprx · log |F|) + O(log |F|) = O(loglog d ·
log |F|).

• Verifier running time. The verifier running time is Õ(
√
dprx) +O(1) = Õ(

√
d).

45

7 High-soundness IOP for NP

We show that NP has an IOP with small soundness error and small query complexity. We first
state our result, which will depend on a poly-IOP for NP, which we describe in Section 7.1.

The NP-complete language of choice for our IOP is the R1CS relation:

Definition 7.1. The R1CS relation RR1CS is the set of all pairs ((F, k, n,m,A,B,C, u), w) where F
is a finite field, k, n,m ∈ N denote the number of inputs, variables and number of non-zero entries
respectively, A,B and C are n× n matrices over F, u ∈ Fk and w ∈ Fn−k such that for all i ∈ [n] n∑

j=1

Ai,j · zj

 ·
 n∑

j=1

Bi,j · zj

 =

n∑
j=1

Ci,j · zj ,

where z := (u,w) ∈ Fn. Here m is the maximum number of non-zero entries in A, B and C.

Our main theorem is an IOP for R1CS with inverse-polynomial soundness error and loglog query
complexity:

Theorem 7.2. Let n, t ∈ N and β ∈ (0, 1) be parameters and F be a field. If F∗ contains a
multiplicative subgroup G whose order is a power of two and

√
|F| ≥ |G| ≥ 28 ·n ·β−17/8t then there

is an IOP for RR1CS over the field F with n inputs with the following parameters:

IOP for R1CS

Soundness error β
Rounds O(loglog n)
Alphabet F
Proof length O

(
t · n · β−1/t

)
Queries O(t · loglog n)
Randomness O(t · loglog n · log |F|)
Verifier running time Õ(t · (m+ n))

Proof. We combine the poly-IOP for R1CS described in Lemma 7.3, with Theorem 8.1, setting
ρ := β1/2t/16. This yields an IOP for R1CS with the following parameters:

• Proximity error. The proximity error of the IOP is

β := max

{
O

(
n

|F|

)
, max

{
2ρ1/2, ρ1/4

}
+O

(
n2 · (1/ρ)4

|F|

)}
= ρ1/4 +O

(
n2 · (1/ρ)4

|F|

)
= O

(
β1/8t +

n2 · β−2/t

|F|

)
= O(β1/8t) ,

where the first equality follows since ρ < 1/16, and so 2ρ1/2 < ρ1/4 and the final equality follows
from the fact that |F| ≥ Ω(n2 · β2/t · β1/8t).

• Rounds. The number of rounds is O(loglog n).

46

• Proof length. The proof length is O(n/ρ2) = O(n/β1/t).

• Proof queries. The proof query complexity is O(loglog n).

• Randomness. The randomness complexity is O (loglog n · log |F|).

• Verifier running time. The verifier running time is O(n+m) + Õ(
√
n) = O(n+m).

Finally, we repeat the protocol O(t) times in parallel to get the soundness error down from O(β1/8t)
to β.

7.1 poly-IOP for R1CS

In this section we construct a poly-IOP for R1CS with inverse-polynomial soundness error. This is
a simplified version of the poly-IOP for R1CS described in [BCRSVW19].

Lemma 7.3. There exists a poly-IOP for the NP-complete relation R1CS with the following param-
eters:

poly-IOP for R1CS

Soundness error 2 · (n− 1)/|F|
Rounds 2
Alphabet F
Number of polynomials 11
Queries 14
Randomness 3 log |F|
Verifier running time Õ(m+ n)
Max message degree n− 1

We describe the construction:

Construction 7.4. Given a field F let H be a subgroup of F∗ of order n. We sometimes refer to
elements of H as elements in [|H|], formally, this is done by defining a bijection between the two
and using it as appropriate to translate between the two domains. Let Hin ⊆ H be the subset of
order |Hin| = k that corresponds to the indices {1, . . . , k}. Finally, let V̂H be the unique non-zero
polynomial of degree at most n− 1 that is 0 on H. Define V̂Hin

similarly with regards to Hin.
On input an R1CS instance ((F, k, n,m,A,B,C, v), w), where the prover is given the entire

instance, and the verifier is given (F, k, n,m,A,B,C, v), the protocol proceeds as follows:

1. P: send the polynomials f̂A, f̂B, f̂C , ĥ, f̂w ∈ F≤|H|−1[X] defined as follows:

(a) let z := (u,w) ∈ Fn. For every M ∈ {A,B,C}, f̂M is the unique polynomial with f̂M (X) :=
Mz(X) for every x ∈ H.

(b) ĥ(X) := f̂A(X)·f̂B(X)−f̂C(X)

V̂H(X)
.

(c) f̂w(X) := w(X)−û(X)

V̂Hin(X)
where û is the unique degree n − 1 polynomial that is equal to u on

Hin and 0 on Haux.

2. V: choose r ← F uniformly at random and send to P. Define the following:

(a) p̂r ∈ F≤|H|−1[X] is the unique polynomial such that p̂r(x) := rx for every x ∈ H.

47

(b) for every M ∈ {A,B,C}, q̂M,r ∈ F≤|H|−1[X] is the unique polynomial such that q̂M,r(X) :=∑
a∈H M⊤(α,X) · rX for every x ∈ H.

3. P and V execute the poly-IOP for univariate sumcheck (Lemma 6.2) for every M ∈ {A,B,C}
(in parallel and with shared randomness) to show that∑

α∈H
p̂r(α) · f̂M (α)− q̂M,r(α) · f̂z(α) = 0 .

where if VΣ makes a query α to f̂z, V returns f̂z(α) := f̂w(α) · V̂Hin
(α)+ û(α) by making a single

query to f̂w, where û is defined as before.

4. V: sample a ← F and accepts if and only if the sumcheck verifier accepted in every execution
and f̂A(a) · f̂B(a)− f̂C(a) = ĥ(a) · V̂H(a).

Proof of Lemma 7.3. We prove completeness, then soundness, and finally analyze complexity mea-
sures. Completeness and soundness rely on the fact that for every r ∈ F it holds that:∑

α∈H
p̂r(α) · f̂M (α)− q̂M,r(α) · f̂(α) =

∑
α∈H

rα · f̂M (α) +
∑
α∈H

∑
β∈H

rα ·M⊤(α, β) · f̂z(α)

=
∑
α∈H

rα · f̂M (α) +
∑
α∈H

∑
β∈H

rα ·M⊤(β, α) · f̂z(β)

=
∑
α∈H

f̂M (α)−
∑
β∈H

M⊤(β, α) · f̂z(β)

 · rα
=
∑
α∈H

f̂M (α)−
∑
β∈H

M(α, β) · f̂z(β)

 · rα (3)

Completeness. Fix an instance ((F, k, n,m,A,B,C, u), w) ∈ RR1CS. Since Az + Bz − Cz = 0 it
holds that the polynomial f̂A(X) · f̂B(X)− f̂C(X) is zero over H, and therefore the polynomial V̂H
divides it. Therefore the polynomial

ĥ(X) =
f̂A(X) · f̂B(X)− f̂C(X)

V̂H(X)
,

is well defined. It holds that f̂A(a) · f̂B(a) − f̂C(a) = ĥ(a) · V̂H(a) for every a ∈ F. Consequently,
the verifier will always accept during its check that f̂A(a) · f̂B(a)− f̂C(a) = ĥ(a) · V̂H(a).

We now show that the verifier will accept with probability 1 in the sumcheck executions. Con-
sider M ∈ {A,B,C} and fix r ∈ F. The sumcheck protocol checks that∑

α∈H
p̂r(α) · f̂M (α)− q̂M,r(α) · f̂(α) = 0 .

48

By Equation 3 and by plugging in the definition of f̂z we can rewrite

∑
α∈H

p̂r(α) · f̂M (α)− q̂M,r(α) · f̂z(α) =
∑
α∈H

f̂M (α)−
∑
β∈H

M(α, β) · f̂z(β)

 · rα
=
∑
α∈H

f̂M (α)−
∑
β∈H

M(α, β) ·
(
f̂w(β) · V̂Hin

(β) + û(β)
) · rα

=
∑
α∈H

(
f̂M (α)−Mz(α)

)
· rα

= 0 .

It follows that the sumcheck verifier will accept with probability 1.
Soundness. Fix an instance (F, k, n,m,A,B,C, u) /∈ L(RR1CS) and a prover P̃. Let f̂A, f̂B, f̂C , ĥ, f̂w ∈
F≤|H|−1[X] be the polynomials sent by the prover, and set f̂z(X) := f̂w(X) · V̂Hin

(X) + û(X).
If it holds that

f̂A(X) · f̂B(X)− f̂C ̸= ĥ(X) · V̂H(X) ,

then, by the Lemma 3.8, V with probability at least 1− (|H| − 1)/|F| over the choice of a← L:

f̂A(a) · f̂B(a)− f̂C(a) ̸= ĥ(a) · V̂H(a) ,

causing V to reject.
Suppose, then, that

f̂A(X) · f̂B(X)− f̂C(X) = ĥ(X) · V̂H(X) ,

which means that f̂A(x) · f̂B(x) = f̂C(x) for any x ∈ H. Let z(x) := f̂z(x) for every x ∈ H.
Notice that z = (u,w) ∈ Fn for some w. Since (F, k, n,A,B,C, u) /∈ L(RR1CS), it holds that for
some α ∈ H, (Az)(α) + (Bz)(α) ̸= (Cz)(α). Since f̂A(x) · f̂B(x) = f̂C(x) for any x ∈ H, it follows
that for some M ∈ {A,B,C}, f̂M (X) is not the extension of Mz, i.e., there exists α ∈ H where
f̂M (α) ̸= (Mz)(α).

Define ĝ as follows:

ĝ(X) :=
∑
α∈H

f̂M (α)−
∑
β∈H

M(α, β) · f̂(β)

 ·Xα .

Since f̂M (α) ̸= Mz(α) for some α ∈ H, ĝ is not the zero polynomial. Moreover, the degree of ĝ is
at most |H| − 1. Thus, with probability at least 1− (|H| − 1)/|L| over the choice of r, ĝ(r) ̸= 0. If
this is the case, by Equation 3 we can write

0 ̸= ĝ(r) =
∑
α∈H

f̂M (α)−
∑
β∈H

M(α, β) ·
(
f̂w(β) · V̂Hin

(β) + û(β)
) · rα

=
∑
α∈H

p̂r(α) · f̂M (α)− q̂M,r(α) · f̂(α) .

It follows that the sumcheck claim is false, in which case the sumcheck verifier VΣ will reject with
probability at least 1− (|H| − 1)/|L|.

49

We conclude that V accepts with probability at most 2(|H| − 1)/|L| = 2 · (n− 1)/|L|.
Complexity parameters. We analyze the complexity parameters of the IOP.

• Rounds. The protocol has two rounds.

• Number of polynomials. The IOP prover sends 11 polynomials: f̂A, f̂B, f̂C , ĥ, f̂w constitute 5, and
each of the 3 sumcheck claim requires the prover to send 2 polynomials.

• Queries. V makes 14 queries to prover messages: it makes one query to each f̂A, f̂B, f̂C , f̂w
during the the sumcheck executions, and one query to each of 6 internal messages in the sumcheck
protocols (2 for each execution) and one query to each f̂A, f̂B, f̂C , ĥ in its final test.

• Randomness. V uses 3 log |F| bits of randomness: it chooses r ∈ F, uses log |F| bits of randomness
in the sumcheck protocols, and chooses a ∈ F.

• Verifier running time. The verifier runs in time Õ(m+ n).

• Max message degree. Each of the polynomials f̂A, f̂B, f̂C , ĥ, f̂w has degree at most n − 1. The
messages sent during the univariate sumcheck protocol have degrees n− 1 and n− 2. Therefore
the maximal degree is n− 1.

50

8 Applications

In this section we describe further applications of our theorems:

• In Section 8.1 we plug in our proximity test for Reed–Solomon codewords into the generic compiler
described in Section 5, giving a compiler from poly-IOPPs to IOPPs that can be used with any
poly-IOPP.

• In Section 8.2 we show that, using our techniques, a proximity test for Reed–Solomon codes that
works on specific evaluation domains can be adapted to work for any evaluation domain.

• In Section 8.3 we give a high-soundness small-query proximity test for bivariate Reed–Muller
codes.

8.1 poly-IOPPs to IOPPs

In this section we utilize our proximity test for Reed–Solomon codes to compile any poly-IOPP
(resp. poly-IOP) into an IOPP (resp. IOP).

Theorem 8.1. Let relation R be a relation that has an poly-IOPP with polynomials over field
F, maximal prover message degree dmax where the prover queries at most qPIOP,m functions and let
0 < ρ < 1 be a parameter.

If F∗ contains a multiplicative subgroup G whose order is a power of two and
√
|F| ≥ |G| ≥

28 · dmax+1
ρ then there is an IOPP for R with the following parameters:

poly-IOPP for R → IOPP for R
Proximity error βPIOP max

{
βPIOP, max

{
2ρ1/2, ρ1/4

}
+O

(
d2·(1/ρ)4

|F|

)}
Rounds kPIOP 2kPIOP +O(loglog dmax)
Alphabet F F
Proof length mPIOP (polynomials) O

(
dmax

ρ ·
(
mPIOP +

1
ρ

)
+ qPIOP,π

)
Oracle input queries qPIOP,w qPIOP,w

Proof queries qPIOP,π O(qPIOP,π + qPIOP,m + loglog dmax)
Randomness rPIOP rPIOP + (kPIOP + qPIOP,m +O(loglog dmax)) · log |F|
Verifier running time vtPIOP O(vtPIOP) + Õ(qPIOP,m +

√
dmax)

Proof. Let L ⊆ F be a domain with |L| = (dmax+1)/ρ, and let C := RS[F, L, dmax] be a Reed–Solomon
code whose rate is ρ. We apply Theorem 5.1 with the following ingredients:

• The poly-IOPP for R given in the theorem statement.
• The IOPP for C given by Theorem 6.1. Observe that

√
|F| ≥ |G| ≥ 28 · |L|.

• The proximity generator given by Item 2 of Theorem 4.2 for 2qPIOP,m functions with proximity
bound √ρ, seed length 2qPIOP,m · log |F|, error O

(
d2max·(1/ρ)4
|F|

)
and computation time O(qPIOP,m).

• γ := 1− 2
√
ρ.

The resulting IOPP for R has the following parameters:

• Proximity error. The proximity error of the IOPP for C, when δ = 1− 2
√
ρ is

βprx(1− 2
√
ρ) = max

{
2ρ1/2, ρ1/4 +O

(
d2max · (1/ρ)4

|F|

)}
.

51

The proximity error of the resulting IOPP is therefore at most

max

{
βPIOP, βprx(1− 2

√
ρ) +O

(
d2prx · (1/ρprx)

2

|F|

)}
= max

{
βPIOP, max

{
2ρ1/2, ρ1/4

}
+O

(
d2 · (1/ρ)4

|F|

)}
.

• Rounds. The number of rounds is 2kPIOP +O(loglog dmax) + 1 = 2kPIOP +O(loglog dmax).

• Proof length. The proof length is O(mPIOP·|L|+qPIOP,π+|L|/ρ) = O
(
dmax
ρ ·

(
mPIOP +

1
ρ

)
+ qPIOP,π

)
.

• Oracle input queries. The verifier makes qPIOP,w queries to its input.

• Proof queries. The proof query complexity is O(qPIOP,π + qPIOP,m + loglog dmax).

• Randomness. The randomness complexity is rPIOP + (kPIOP + qPIOP,m +O(loglog dmax)) · log |F|.

• Verifier running time. The verifier running time is O(vtPIOP + qPIOP,m + kPIOP) + Õ(qPIOP,π +√
dmax) = O(vtPIOP) + Õ(qPIOP,m +

√
dmax).

8.2 IOPPs for RS codes over every domain

In this section we show that if there is a proximity test for RS[F, L∗, d∗] for a specific domain, then
there is a proximity test for RS[F, L, d] for every evaluation domain L∗ and d ≤ d∗.

Theorem 8.2. Consider the following ingredients:

• A Reed–Solomon code C := RS[F, L, d].
• An IOPP (Pprx,Vprx) for Cprx := RS[F, Lprx, dprx]. with rate ρprx := (dprx + 1)/|Lprx|.
• Gen is proximity generator for Cprx, 2 functions, seed length wgen, proximity bound ψgen, and error
εgen.

If d ≤ dprx, 0 < γ < 1−max{ψgen, 2ρprx} and Cprx is (γ, ℓ)–list decodable, then there is an IOPP for C
with the following parameters:

IOPP for Cprx → IOPP for C
Proximity error βprx max

{
1− δ, βprx + εgen + dprx · ℓ2/|F|

}
Rounds kprx kprx + 3
Alphabet F F
Proof length lprx O(|Lprx|) + lprx
Oracle input queries qprx,f 1
Proof queries qprx,π O(qprx,f) + qprx,π

Randomness rprx rprx + wgen + 2 log |F|
Verifier running time vtprx vtprx + tgen +O(1)

Above, εgen := εgen(γ) and βprx := βprx(γ).

Proof. We first present a poly-IOPP for C and then apply Theorem 5.1 with this poly-IOPP, using
(Pprx,Vprx) as the Reed–Solomon proximity test. Details follow.

The poly-IOPP is as follows: given a function f : L→ F,

52

1. PPIOP: compute and send f̂ ∈ F≤d[X], the extension of f to a degree d polynomial.
2. V: sample a a← F uniformly at random and accept if and only if f(a) = f̂(a).

We analyze the parameters of the poly-IOPP described above:

• Completeness. If f ∈ C := RS[F, L, d] then the interpolation done by PPIOP will be successful, and,
by definition, f(a) = f̂(a) for every a ∈ L. Therefore, VPIOP will accept with probability 1.

• Proximity. Consider a function f with ∆(f, C) ≥ δ. By definition, for every ĝ ∈ F≤d[X] that
could be sent by the prover, we have that ĝ and f agree on at most 1 − δ of the points of L.
Hence, f(a) = ĝ(a) with probability at most 1− δ, and so the verifier accepts with probability at
most 1− δ.

• Message degrees. The prover sends a single polynomial of degree at most d.
• Complexity parameters. Randomness complexity log |L|, input-query complexity 1, proof-query

complexity 1, and verifier running time O(1) field operations.

We now apply Theorem 5.1 with dmax := dprx and γ to the poly-IOPP described above using the
IOPP (Pprx,Vprx) and the proximity generator Gen. It holds that d ≤ dprx = dmax, that 0 < γ <
1−max{ψgen, 2ρprx}, and, that Cprx is (γ, ℓ)–list decodable. We can therefore apply Theorem 5.1. The
parameters of the resulting IOPP follow.

8.3 Testing bivariate RM codes with inverse polynomial error

In this section we show a proximity test for (individual-degree) bivariate Reed–Muller codes:

Theorem 8.3. Let F be a field, G be a multiplicative subgroup of F∗ whose order is a power of
two, and D ⊆ F× F be an admissible domain with row-index domain LX (as per Definition 6.5). If√
|F| ≥ |G| ≥ 212 · (dmax + 1)/ρX then the bivariate Reed–Muller code C := RM[F, D, (dX , dY)] has

an IOPP with the following parameters:

IOPP to show δ proximity to C
Proximity error max

{
2
√
1− δ, ρ1/4X

}
+O

(
d2
max·(1/ρX)4

|F|

)
Alphabet F
Rounds O(loglog dmax)

Proof length O
(

dmax·|LX |
ρX

)
Oracle input queries 1
Proof queries O(loglog dmax)
Randomness O(loglog dmax · log |F|)
Verifier running time Õ(dY +

√
dmax)

Above, dmax := max{dX , dY } and ρX := (dX + 1)/|LX |.

Proof. We begin by instantiating a poly-IOPP for the code C using Lemma 6.6 with the following
ingredients:

• The Reed–Muller code C := RM[F, D, (dX , dY)].
• H ⊆ G is a multiplicative subgroup of F∗ whose order is a power of two with dY ≤ |H| < 2dY .
• Gen is the strong proximity generator for CX := RS[F, LX , dX] described in Item 1 of Theorem 4.4

for |H| functions with seed length log |F|, proximity bound √ρX , and error O
(
d2X ·(1/ρX)4

|F|

)
. The

computation time of computing the interpolation polynomial of the coefficients output by the
proximity generator is Õ(|H|) = Õ(dY).

53

Notice that |F| ≥ |LX |2 and |H| ≥ dY , and so the requirements for Lemma 6.6 have been met. The
resulting poly-IOPP for C has the following parameters:

poly-IOPP to show δ < 1− ρX proximity to C
Proximity error 2

√
1− δ +O

(
dY +d2

X ·(1/ρX)4

|F|

)
Rounds 3
Alphabet F
Number of polynomials |LX |+ 3
Oracle input queries 1
Proof queries 5
Randomness 4 log |F|
Verifier running time Õ(dY)
Max message degree max{dX , 2dY − 1}

Notice that the query complexity of the poly-IOPP is 5, and so the number of polynomials queried
by the verifier is at most qPIOP,m := 5.

We now compile the above poly-IOPP for C into an IOPP for C using Theorem 8.1, with
ρ := 1

16 · ρX . Observe that F∗ contains a multiplicative subgroup G whose order is a power of two
and

√
|F| ≥ |G| ≥ 28 · dmax+1

ρ , and so the requirements for Theorem 8.1 have been met. The resulting
IOPP has the following parameters:

• Proximity error. The proximity error of the resulting IOPP is therefore at most

max

{
βPIOP, max

{
2ρ1/2, ρ1/4

}
+O

(
d2max · (1/ρ)4

|F|

)}
≤ max

{
βPIOP, ρ

1/4
X +O

(
d2max · (1/ρX)

4

|F|

)}
= max

{
2
√
1− δ +O

(
dY + d2X · (1/ρX)

4

|F|

)
, ρ

1/4
X +O

(
d2max · (1/ρX)

4

|F|

)}
≤ max

{
2
√
1− δ, ρ1/4X

}
+O

(
d2max · (1/ρX)

4

|F|

)
,

where the first equality follows since ρ := 1
16 · ρX , and so 2ρ1/2 < ρ4 < ρ

1/4
X . Observe that, while

the poly-IOPP soundness error holds only when δ < 1 − ρX , the resulting soundness error is
greater than ρX , and so we can remove this requirement.

• Rounds. The number of rounds is 10 +O(loglog dmax) = O(loglog dmax).

• Proof length. The proof length is O
(
dmax
ρ ·

(
|LX |+ 1

ρ

)
+ 5
)
= O

(
dmax·|LX |

ρX

)
.

• Oracle input queries. The verifier makes 1 queries to its input.

• Proof queries. The proof query complexity is O(5 + 5 + loglog dmax) = O(loglog dmax).

• Randomness. The randomness complexity is 4 log |F| + (3 + 5 +O(loglog dmax)) · log |F| =
O(loglog dmax · log |F|).

• Verifier running time. The verifier running time is Õ(dY) + Õ(5 +
√
dmax) = Õ(dY +

√
dmax).

54

poly-IOPP for R → IOPP for R
Proximity error βPIOP max

{
βPIOP, max

{
2ρ1/2, ρ1/4

}
+O

(
d2·(1/ρ)4

|F|

)}
Rounds kPIOP 2kPIOP +O(loglog dmax)
Alphabet F F
Proof length mPIOP (polynomials) O

(
dmax

ρ ·
(
mPIOP +

1
ρ

)
+ qPIOP,π

)
Oracle input queries qPIOP,w qPIOP,w

Proof queries qPIOP,π O(qPIOP,π + qPIOP,m + loglog dmax)
Randomness rPIOP rPIOP + (kPIOP + qPIOP,m +O(loglog dmax)) · log |F|
Verifier running time vtPIOP O(vtPIOP) + Õ(qPIOP,m +

√
dmax)

55

Acknowledgments

Gal Arnon is supported in part by a grant from the Israel Science Foundation (Grant No. 2686/20),
by the Simons Foundation Collaboration on the Theory of Algorithmic Fairness, and by the Israeli
Council for Higher Education (CHE) via the Weizmann Data Science Research Center. Alessandro
Chiesa is supported in part by the Ethereum Foundation. Eylon Yogev is supported by an Alon
Young Faculty Fellowship, by the Israel Science Foundation (Grant No. 2893/22), and by the BIU
Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office.

References

[ABCY22] Gal Arnon, Amey Bhangale, Alessandro Chiesa, and Eylon Yogev. “A Toolbox for Bar-
riers on Interactive Oracle Proofs”. In: Proceedings of the 20th Theory of Cryptography
Conference. TCC ’22. 2022, pp. 447–466.

[ACY22a] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “A PCP Theorem for Interactive Proofs”.
In: Proceedings of the 41st Annual International Conference on Theory and Application of
Cryptographic Techniques. EUROCRYPT ’22. 2022, pp. 64–94.

[ACY22b] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “Hardness of Approximation for Stochas-
tic Problems via Interactive Oracle Proofs”. In: Proceedings of the 37th Annual IEEE Con-
ference on Computational Complexity. CCC ’22. 2022, 24:1–24:16.

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof
verification and the hardness of approximation problems”. In: Journal of the ACM 45.3
(1998). Preliminary version in FOCS ’92., pp. 501–555.

[AS03] Sanjeev Arora and Madhu Sudan. “Improved Low-Degree Testing and its Applications”.
In: Combinatorica 23.3 (2003). Preliminary version appeared in STOC ’97., pp. 365–426.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: a new characterization
of NP”. In: Journal of the ACM 45.1 (1998). Preliminary version in FOCS ’92., pp. 70–122.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed–Solomon In-
teractive Oracle Proofs of Proximity”. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming. ICALP ’18. 2018, 14:1–14:17.

[BCG20] Jonathan Bootle, Alessandro Chiesa, and Jens Groth. “Linear-Time Arguments with Sub-
linear Verification from Tensor Codes”. In: Proceedings of the 18th Theory of Cryptography
Conference. TCC ’20. 2020, pp. 19–46.

[BCGGHJ17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Hajiabadi, and
Sune K. Jakobsen. “Linear-Time Zero-Knowledge Proofs for Arithmetic Circuit Satisfiabil-
ity”. In: Proceedings of the 23rd International Conference on the Theory and Applications
of Cryptology and Information Security. ASIACRYPT ’17. 2017, pp. 336–365.

[BCGRS17] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, Michael Riabzev, and Nicholas Spooner.
“Interactive Oracle Proofs with Constant Rate and Query Complexity”. In: Proceedings of
the 44th International Colloquium on Automata, Languages and Programming. ICALP ’17.
2017, 40:1–40:15.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. “Quasilinear-Size
Zero Knowledge from Linear-Algebraic PCPs”. In: Proceedings of the 13th Theory of Cryp-
tography Conference. TCC ’16-A. 2016, pp. 33–64.

56

[BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. “Prox-
imity Gaps for Reed–Solomon Codes”. In: Proceedings of the 61st Annual IEEE Symposium
on Foundations of Computer Science. FOCS ’20. 2020, pp. 900–909.

[BCL22] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. “Zero-Knowledge IOPs with Linear-
Time Prover and Polylogarithmic-Time Verifier”. In: Proceedings of the 41st Annual In-
ternational Conference on Theory and Application of Cryptographic Techniques. EURO-
CRYPT ’22. 2022, pp. 275–304.

[BCRSVW19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: Proceedings of
the 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’19. 2019, pp. 103–128.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In:
Proceedings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computa-
tions in polylogarithmic time”. In: Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing. STOC ’91. 1991, pp. 21–32.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs from DARK Com-
pilers”. In: Proceedings of the 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020, pp. 677–706.

[BGHSV06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
“Robust PCPs of Proximity, Shorter PCPs, and Applications to Coding”. In: SIAM Journal
on Computing 36.4 (2006), pp. 889–974.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. “DEEP-FRI: Sam-
pling Outside the Box Improves Soundness”. In: Proceedings of the 11th Innovations in
Theoretical Computer Science Conference. ITCS ’20. 2020, 5:1–5:32.

[BGLR93] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. “Efficient Probabilistically Checkable
Proofs and Applications to Approximations”. In: Proceedings of the 25th Annual ACM
Symposium on Theory of Computing. STOC ’93. 1993, pp. 294–304.

[BN22] Sarah Bordage and Jade Nardi. “Interactive Oracle Proofs of Proximity to Algebraic Ge-
ometry Codes”. In: Proceedings of the 37th Annual IEEE Conference on Computational
Complexity. CCC ’22. 2022, 30:1–30:45.

[BS06] Eli Ben-Sasson and Madhu Sudan. “Robust locally testable codes and products of codes”.
In: Random Structures and Algorithms 28.4 (2006), pp. 387–402.

[BS08] Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”. In: SIAM
Journal on Computing 38.2 (2008). Preliminary version appeared in STOC ’05., pp. 551–
607.

[Bab85] László Babai. “Trading group theory for randomness”. In: Proceedings of the 17th Annual
ACM Symposium on Theory of Computing. STOC ’85. 1985, pp. 421–429.

[Ben+17] Eli Ben-Sasson et al. “Computational integrity with a public random string from quasi-
linear PCPs”. In: Proceedings of the 36th Annual International Conference on Theory and
Application of Cryptographic Techniques. EUROCRYPT ’17. 2017, pp. 551–579.

[CHMMVW20] Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah Vesely, and Nicholas
Ward. “Marlin: Preprocessing zkSNARKs with Universal and Updatable SRS”. In: Pro-
ceedings of the 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’20. 2020.

57

[CMS20] Alessandro Chiesa, Peter Manohar, and Igor Shinkar. “On Axis-Parallel Tests for Tensor
Product Codes”. In: Theory of Computing 16 (2020), pp. 1–34.

[CY21a] Alessandro Chiesa and Eylon Yogev. “Subquadratic SNARGs in the Random Oracle Model”.
In: Proceedings of the 41st Annual International Cryptology Conference. CRYPTO ’21.
2021, pp. 711–741.

[CY21b] Alessandro Chiesa and Eylon Yogev. “Tight Security Bounds for Micali’s SNARGs”. In:
Proceedings of the 19th Theory of Cryptography Conference. TCC ’21. 2021, pp. 401–434.

[DFKRS11] Irit Dinur, Eldar Fischer, Guy Kindler, Ran Raz, and Shmuel Safra. “PCP Characteriza-
tions of NP: Toward a Polynomially-Small Error-Probability”. In: Computational Complex-
ity 20.3 (2011), pp. 413–504.

[DHK15] Irit Dinur, Prahladh Harsha, and Guy Kindler. “Polynomially Low Error PCPs with poly-
loglog n Queries via Modular Composition”. In: Proceedings of the 47th Annual ACM
Symposium on Theory of Computing. STOC ’15. 2015, pp. 267–276.

[DS14] Irit Dinur and David Steurer. “Analytical approach to parallel repetition”. In: Proceedings
of the 46th Annual ACM Symposium on Theory of Computing. STOC ’14. 2014, pp. 624–
633.

[Din07] Irit Dinur. “The PCP theorem by gap amplification”. In: Journal of the ACM 54.3 (2007),
p. 12.

[FGLSS96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. “Interactive
proofs and the hardness of approximating cliques”. In: Journal of the ACM 43.2 (1996).
Preliminary version in FOCS ’91., pp. 268–292.

[GLSTW23] Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby.
“Brakedown: Linear-time and field-agnostic SNARKs for R1CS”. In: Proceedings of the 43rd
Annual International Cryptology Conference. CRYPTO ’23. 2023.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of inter-
active proof systems”. In: SIAM Journal on Computing 18.1 (1989). Preliminary version
appeared in STOC ’85., pp. 186–208.

[KR08] Yael Kalai and Ran Raz. “Interactive PCP”. In: Proceedings of the 35th International
Colloquium on Automata, Languages and Programming. ICALP ’08. 2008, pp. 536–547.

[MR08] Dana Moshkovitz and Ran Raz. “Two-query PCP with subconstant error”. In: Journal of
the ACM 57 (5 2008). Preliminary version appeared in FOCS ’08., pp. 1–29.

[MR10] Dana Moshkovitz and Ran Raz. “Sub-Constant Error Probabilistically Checkable Proof of
Almost-Linear Size”. In: Computational Complexity 19.3 (2010), pp. 367–422.

[Mie09] Thilo Mie. “Short PCPPs verifiable in polylogarithmic time with O(1) queries”. In: Annals
of Mathematics and Artificial Intelligence 56 (3 2009), pp. 313–338.

[Mos19] Dana Moshkovitz. Sliding Scale Conjectures in PCP. 2019.

[PS94] Alexander Polishchuk and Daniel A. Spielman. “Nearly-linear size holographic proofs”. In:
Proceedings of the 26th Annual ACM Symposium on Theory of Computing. STOC ’94.
1994, pp. 194–203.

[RR20] Noga Ron-Zewi and Ron Rothblum. “Local Proofs Approaching the Witness Length”. In:
Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science.
FOCS ’20. 2020, pp. 846–857.

[RR22] Noga Ron-Zewi and Ron D. Rothblum. “Proving as Fast as Computing: Succinct Argu-
ments with Constant Prover Overhead”. In: Proceedings of the 54th ACM Symposium on
the Theory of Computing. STOC ’22. 2022, pp. 1353–1363.

58

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. “Constant-Round Interactive Proofs
for Delegating Computation”. In: Proceedings of the 48th ACM Symposium on the Theory
of Computing. STOC ’16. 2016, pp. 49–62.

[RS97] Ran Raz and Shmuel Safra. “A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP”. In: Proceedings of the 29th Annual
ACM Symposium on Theory of Computing. STOC ’97. 1997, pp. 475–484.

[RVW13] Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. “Interactive proofs of proximity:
delegating computation in sublinear time”. In: Proceedings of the 45th ACM Symposium
on the Theory of Computing. STOC ’13. 2013, pp. 793–802.

[Raz95] Ran Raz. “A parallel repetition theorem”. In: Proceedings of the 27th Annual ACM Sym-
posium on Theory of Computing. STOC ’95. 1995, pp. 447–456.

[XZZPS19] Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papamanthou, and Dawn
Song. “Libra: Succinct Zero-Knowledge Proofs with Optimal Prover Computation”. In:
Proceedings of the 39th Annual International Cryptology Conference. CRYPTO ’19. 2019,
pp. 733–764.

59

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Techniques
	2.1 From poly-IOPP to IOPP
	2.2 poly-IOPP for RS codes
	2.3 Testing RS codes with inverse polynomial error

	3 Preliminaries
	3.1 Interactive oracle proofs
	3.2 IOPs of proximity
	3.3 Polynomial IOPs and IOPPs
	3.4 The Reed–Solomon and Reed–Muller codes
	3.5 Polynomial identity lemma

	4 Proximity generators for correlated agreement
	4.1 Proximity generators
	4.2 Strong proximity generators

	5 From poly-IOPs to IOPs through low-degree tests
	5.1 Univariate function quotienting
	5.2 Construction
	5.3 Completeness and soundness

	6 High-soundness small-query test for RS codes
	6.1 Weighted univariate sumcheck
	6.2 poly-IOPP for bivariate RM codes
	6.3 poly-IOPP for RS codes
	6.4 Recursive construction of IOPP for RS codes

	7 High-soundness IOP for NP
	7.1 poly-IOP for R1CS

	8 Applications
	8.1 poly-IOPPs to IOPPs
	8.2 IOPPs for RS codes over every domain
	8.3 Testing bivariate RM codes with inverse polynomial error

	Acknowledgments
	References

