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Abstract DuckyZip is a provably honest global linking service which
links short memorable identifiers to arbitrarily large payloads (URLs, text,
documents, archives, etc.) without being able to undetectably provide dif-
ferent payloads for the same short identifier to different parties. DuckyZip
uses a combination of Verifiable Random Function (VRF)-based zero
knowledge proofs and a smart contract in order to provide strong security
guarantees: despite the transparency of the smart contract log, observers
cannot feasibly create a mapping of all short identifiers to payloads that
is faster than O(n) classical enumeration.
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1 Introduction

As the internet landscape continues to evolve, so does the demand for efficient
and secure web tools. One of these widely used tools is the URL shortening
service, which turns lengthy URLs, like those from Google Maps, into concise
links. These services have been particularly useful for social media platforms, QR
codes, and any other medium where space is a precious commodity.

URL shortening services can be considered one example of a service that is
entrusted to provide a mapping between a short identifier and a payload. In the
case of URL shorteners, the payload is a URL. The trust model is such that users
expect that the service will always map the short identifier to the same payload.
However, this is not currently guaranteed by any URL shortener or similar web
service.

To give other examples, the same trust model applies to the following services:

– Pastebin: A service that provides a mapping between a short identifier and a
text payload.

– Keybase: A service that provides a mapping between a short identifier and a
public key payload.

– OneDrive: A service that provides a mapping between a URL (or credentials)
and a file payload.



All of these services could potentially present different payloads to different
users from the same short identifier.

To address these concerns, this paper presents DuckyZip, a novel global
linking service which is provably honest without revealing knowledge of any short
identifier or linked payload: despite the transparency of the smart contract log,
observers cannot feasibly create a mapping of all short identifiers to payloads
that is faster than O(n) classical enumeration, thanks to a Verifiable Random
Function (VRF)-based zero knowledge proof. The following sections of this paper
will provide a comprehensive examination of DuckyZip’s mechanics, its use of
smart contracts and VRF, and how may help establish a new security standard
for global linking.

2 DuckyZip Design
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Figure 1. DuckyZip protocol description. Here, Alice is shortening a payload and
sending the short identifier to Bob so that he may obtain the linked payload using
DuckyZip, while also being able to verify the payload’s authenticity via smart contract
calls and local VRF execution.

DuckyZip depends on two cryptographic components:

– Authenticated append-only log: a smart contract is a self-executing con-
tract with the terms of the agreement directly written into code that resides
and operates on a blockchain network. These contracts automatically enforce
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and execute the agreed-upon conditions, facilitating, verifying, and enforcing
the negotiation or performance of a contract without a need for a third-party
intermediary.

– Verifiable Random Function (VRF): a type of pseudorandom function
where the owner of a private key can generate a proof to verify the authenticity
of the output, given a specific input. The verifiable aspect means that any
party, with the public key, the input, and the proof, can validate the output,
but they can’t predict it without the private key.

2.1 Designing the Distributed Append-Only Log

Certificate Transparency (CT) [1] attempts to enforce honesty with regards
to SSL certificate issuance by having a number of certificate authorities and
browser vendors maintain independent cryptographically authenticated append-
only logs of all issued SSL certificates. This served as the initial inspiration for our
design. However, since we do not possess the resources of Google or its certificate
authority partners, we are unable to team up with a bunch of companies and are
constrained to a smart contract on a public blockchain.

DuckyZip’s smart contract contains the following data structures:

– VRF public keys: gk0 and gk1.
– Key-value store: VRF(k0, shortID) −→ VRF(k1, BLAKE3(payload)).

2.2 The Need for a VRF

A natural question that may arise could relate to the need for a VRF in the first
place. Why not just use the smart contract to map short identifiers to payload
hashes?

While this would indeed accomplish DuckyZip’s main goal of honest global
linking, the open nature of a smart contract’s state would cause DuckyZip’s entire
history of short identifiers to payload mappings to become public knowledge in
real time. This could violate user privacy, since it allows anyone to see all the
payloads that are being submitted

Our goal, therefore, is to make it so that retrieving a list of mappings from
short identifiers to arbitrarily large payloads is no less onerous in DuckyZip’s
case than it is in that of traditional web services: namely, the adversary would
have to try all short identifiers one by one, resulting in a classical O(n) cost.

A naive approach towards accomplishing this could be to simply replace
the mapping of shortID→ payload with H(shortID)→ H(payload), where H is a
secure hash function [2]. Realizing that such an approach is insufficient, one could
propose to replace H with a maximally memory-hard password hashing function
such as scrypt [3, 4]. The VRF approach however provides stronger still security
guarantees than the latter approach, without the associated performance impact.

We use the simple VRF construction proposed by Melara, Blankstein, Bon-
neau, Felten and Freedman [5], which we summarize here: for a group G with a
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generator g and of primer order q, the prover chooses a random k
$←− (1, q). The

VRF also depends on two hash functions modeled as random oracles:

1. A hash function which maps to curve points H1 : ?→ G.
2. A hash function which maps to integers: H2 : ?→ (1, q).

The VRF is then defined as v = VRFk(m) = H1(m)k.
To prove the correctness of the VRF output:

1. Prover chooses r
$←− (1, q) and transmits the values (v, s, t) where:

– v = VRFk(m) = H1(m)k

– s = H2(g, h, G, v, gr, hr)
– t = r − s · k (mod q)

2. Verifier then checks that s = H2(g, h, G, v, gt ·Gs, H1(m)t · vs)

2.3 DuckyZip’s Protocol

DuckyZip’s operation can be described through the simple protocol shown in
Figure 1:

1. Alice sends a payload to DuckyZip.
2. DuckyZip generates a pseudorandom short identifier, commits a set of VRF

proofs to the smart contract, and sends the short identifier back to Alice.
3. Alice sends the short identifier to Bob.
4. Bob accesses the short identifier and obtains the payload from DuckyZip.
5. Bob is then free to query the smart contract and to independently verify

the existence and correctness of VRF proofs linked to DuckyZip’s VRF keys
and the short identifier/linked payload relevant to this instantiation of the
protocol.

2.4 Practical Considerations

Some practical considerations relevant to the above protocol components:

– Smart contract platform: we deploy the smart contract on the Optimism
Layer 2 Ethereum platform [6] in order to minimize gas cost.

– Trustless smart contract querying: On both DuckyZip’s side and the
client side, the relatively new Helios Ethereum light client [7] may be used in
order to carry out smart contract calls without needing to trust a third-party
service (such as Infura) and without needing to run a full node locally.

– Write-once key-values: DuckyZip’s smart contract does not accept duplicate
dictionary entries for the same short identifier by not accepting the same VRF
outputs. This works because same-key VRF outputs are deterministic.

– Short identifier search space: In practice, a short identifier would be a
13-character string selected out of the set of allcase alphanumeric characters.
This gives us a reasonably large search space for the short identifier strings
((26 · 2 + 10)13 ≈ 280) while still allowing the full short identifier to fit in a QR
code without needing to increase the QR code’s resolution.
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3 Conclusion

This paper introduced DuckyZip, a first-of-its-kind, provably honest global linking
service, offering robust security guarantees. Leveraging zero-knowledge proofs
based on Verifiable Random Functions (VRFs) and Ethereum’s smart contract
platform, DuckyZip is designed to prevent the selective provision of different
payloads for the same short identifier. Our design ensures that the mapping from
short identifiers to arbitrarily large payloads is confidential and authenticated,
offering a significant improvement in user privacy.

Future work could involve further optimization of the DuckyZip system,
and exploring its integration into existing web infrastructure. We also envisage
extending the techniques used in this paper to other internet tools that may be
vulnerable to similar types of attacks.

Furthermore, cost can be an issue: even when using the Optimism Layer 2
Ethereum smart contract platform, the above approach can reach up to $0.20
USD per submission. In the future, we may investigate a Merkle tree structure
to potentially optimize smart contract storage costs.

A working implementation of DuckyZip is available at https://ducky.zip,
along with its source code.
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