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Abstract—Recent works in amortized sublinear PIR have
demonstrated great potential. Despite the inspiring progress,
existing schemes in this new paradigm are still faced with
various challenges and bottlenecks, including large client stor-
age, high communication, poor practical efficiency, need for
non-colluding servers, or restricted client query sequences. We
present simple and lightweight amortized sublinear stateful
private information retrieval schemes without these drawbacks
using new techniques in hint construction and usage. Our
scheme can work with two non-colluding servers or a single
server. Our schemes achieve close to optimal amortized or on-
line response overhead, which is only two or four times that of
simply fetching the desired entry without privacy. Our schemes
have practical efficiency. For an 8 GB database with 32-byte
entries, each query of our two-server scheme consumes 34 KB
of communication and 2.7 milliseconds of computation, and
each query of our single-server scheme consumes amortized
47 KB of communication and 4.5 milliseconds of computation.
These results are one or more orders of magnitude better than
prior works.

1. Introduction

Private Information Retrieval (PIR) [14] allows a client
to fetch an entry from a public database on a server without
revealing which entry the client is interested in [14]. An
efficient PIR scheme enables many privacy-preserving ap-
plications, such as password check [7], safe browsing [24],
anonymous communication [32], [8], private media stream-
ing [21].

Despite decades of research [14], [25], [12], [17], [19],
[18], [20], [30], [81, [71, [33], [31], PIR protocols are still
quite expensive, especially in the single-server setting that
does not assume the existence of non-colluding servers. This
is due in large part to a well-known fundamental barrier that
limits the practical efficiency of conventional PIR schemes:
The amount of server computation will inevitably be linear
in the size of the database. Intuitively, a PIR scheme must
ask the server to touch every single entry in the database;
otherwise, the server learns that the entry the client is
looking for is not one of the untouched entries.

Several directions have been explored to circumvent this
fundamental barrier. A promising and fruitful recent attempt
has been the paradigm of stateful PIR, first proposed by

Patel, Persiano, and Yeo [36]. In this paradigm, the client
stores hints (hence called stateful) and uses these hints to
speed up queries. The hints, usually in the form of parities
of subsets of database entries, need to be retrieved privately.
This is done in an offline phase that can be fairly expensive
or may even require downloading the entire database. After
an expensive offline phase, the client can make many online
queries cheaply before having to rerun the offline phase.
With two non-colluding servers, the offline phase can even
be one-time, meaning the client can make unlimited on-
line queries afterward. This makes the stateful PIR scheme
very efficient in an amortized sense after sufficiently many
queries. Although the Patel-Persiano-Yeo scheme still in-
curred linear server computation per query, the stateful PIR
paradigm proves promising.

Corrigan-Gibbs and Kogan [16] give the first stateful
PIR scheme with amortized sublinear server computation.
Follow-up works continue to make further improvements
and unlock more potential of this paradigm [37], [24],
[15], [26], [39], [27], [40]. Despite the inspiring progress,
however, existing amortized sublinear stateful PIR schemes
are still faced with various challenges, including large client
storage, high communication, and subpar practical effi-
ciency. Many schemes also have to resort to heavy-weight
theoretical tools [37], [26], [39], parallel repetition [37],
[15], [26], [39], or restricted client query sequences [40].
This paper aims to propose simple and practical amortized
sublinear stateful PIR schemes without the aforementioned
drawbacks.

Overview of existing amortized sublinear stateful PIR.
To better explain our techniques and contributions, let us
go over a brief overview of the blueprint of amortized
sublinear stateful PIR by Corrigan-Gibbs and Kogan [16].
The client privately retrieves hints in an offline phase. Each
hint involves a subset S of v/N random distinct indices
within [0, N — 1] where N is the number of entries in the
database. For each hint, the client stores the subset S and
the corresponding parity €, g DB[i] where DB[:] is the i-th
entry of the database, and €p represents XOR. In the online
phase, if the client wants to retrieve the ¢-th entry, it finds a
subset S that contains 4. Since the client stores the parity of
entries in S, ideally, it just needs to ask the server for the
parity of entries in .S\ {7}, from which it can easily recover
DBJ[i].



TABLE 1. Comparison with recent practical amortized sublinear stateful PIR schemes. Request size and client computation are measured
in words of size A or log IN. Response size, client storage, and server computation are measured in database entry size (response is hence
a blowup over the insecure baseline). Major performance bottlenecks are marked in red.

Number of Amortized communication Storage Amortized computation

Scheme Servers Request Response Client Client Server
Corrigan-Gibbs-Kogan [16] 2 O(\VN) o) O(\2V/N) O(\VN) O(M/N)
Kogan-Corrigan-Gibbs [24] 2 O(log N) o(1) O(N) O(V'N) O(VN)
Lazzaretti-Papamathou [27] 2 O(log N) = O(V/N) ! O(M\WN) O(VN) O(V'N)

This paper 2 O(VN) o(1) O(M\WN) O(VN) O(VN)
Corrigan-Gibbs-Henzinger-Kogan 2 [15] 1 O(M/N) O(N) O(\2V/N) O(M/N) O(M/N)
Zhou et al. 3 [40] 1 O(V'N) O(VN) O(M\WN) O(VN) O(VN)

This paper 1 O(WN) O(N/) O(MWN) O(VN) O(VN)

! Lazzaretti and Papamathou [27] can invoke an extra single-server PIR to reduce the asymptotic response overhead, but a variant without
this second PIR gives better practical efficiency and makes a more fair comparison.
2 Zhou et al. [40] requires client queries to have no adversarial influence, making it weaker than standard PIR.

However, with the above high-level strategy, the client
always sends the server a subset that does not contain the
queried index ¢. This is insecure because the server learns
that the queried entry is not one of those in S\ {i}. To fix
this problem, Corrigan-Gibbs and Kogan suggest that the
client occasionally removes an index other than ¢ from S.
However, when the client does so, the client loses the ability
to retrieve the queried entry ¢. To compensate for this loss
of correctness, A instances of their protocol are executed
in parallel to achieve an exponentially small (in \) failure
probability. This blows up all efficiency metrics (communi-
cation, computation, and client storage) by a factor of A\ and
renders the scheme impractical.

Kogan and Corrigan-Gibbs [24] and Lazzaretti and Pa-
pamathou [27] give two ways to avoid this A factor blowup.
Both schemes have notable drawbacks. First, both schemes
require two non-colluding servers, and there is no clear
way to extend them to single-server stateful PIR. Zhou
et al. [40] adapt the Lazzaretti-Papamathou scheme to a
single server but can only handle client queries that are
not adversarially influenced. While this restriction may be
justifiable in certain scenarios, it is not always valid and is
a big departure from the standard PIR model.

Second, both schemes make sacrifices on efficiency.
The Kogan-Corrigan-Gibbs scheme [24] requires the client
to pay either Q(N) storage or Q(NN) computation per
query, both of which are clearly undesirable. The Lazzaretti-
Papamathou scheme [27] incurs a response overhead of
O(v/N) on every query (and Zhou et al. inherit this re-
sponse overhead). This large response overhead would be
prohibitive for databases with large entries. Though this
problem could be mitigated by invoking another regular
(i.e., not stateful), most likely lattice-based, single-server
PIR scheme, that would not be efficient in practice. We will
explain this in more detail in Section 5.

Our results. In this paper, we propose new techniques
in hint construction and usage and obtain simple and
lightweight amortized sublinear stateful PIR schemes. Our
new hint system eliminates the aforementioned leakage as-
sociated with removing the queried index, thus obviating the
need for parallel repetition. We give both two-server and

single-server versions of our stateful PIR scheme. The two-
server version has a constant amortized response overhead —
to be concrete, four times that of simply fetching the desired
entry without privacy — while maintaining sublinear client
storage and sublinear client computation. The single-server
version achieves O(v/N/\) amortized response overhead
and a constant online response that is twice that of fetching
the desired entry without privacy.

Table 1 gives a comparison with recent practical
amortized sublinear PIR schemes in terms of asymp-
totic efficiency. We exclude schemes that rely on heavy
theoretical tools, such as those based on oblivious lo-
cally decodable codes [13], [11], [28] or privately punc-
turable/programmable pseudorandom functions [37], [26],
[39]. The three major performance bottlenecks in prior
works are marked in red: \ factor repetition, @(v/N) re-
sponse overhead, and linear client storage. Our schemes
avoid all three bottlenecks.

As a result, our scheme enjoys good concrete efficiency.
Take for example an 8 GB database consisting of 228
entries where each entry is 32 bytes. Our two-server scheme
requires 60 MB of client storage, and consumes 34 KB
of communication and 2.7 milliseconds of computation. In
comparison, existing two-server schemes require either over
1 GB of client storage or over | MB of communication.

For the same database, our single-server scheme requires
100 MB of client storage, and consumes 47 KB of com-
munication and 4.5 milliseconds of computation, amortized
per query. In comparison, a state-of-the-art single-server
scheme has to weaken correctness and still needs more than
7x of the communication and 5x of the computation than
our scheme. The best prior schemes that do not weaken
correctness would be at least two orders of magnitude more
expensive.

2. Model and Preliminary

Private Information Retrieval (PIR). Given a database DB
of N entries and a query index ¢, the client wants to privately
retrieve the ¢-th entry in the database. A PIR protocol should
satisfy the following two properties.



« Correctness: If the client and the server correctly execute
the protocol, then the client retrieves the queried entry.
o Privacy: The server learns nothing about the client’s
query index.
The privacy requirement of PIR can be more rigorously
captured by a game between the server, who is also the
adversary, and the client. The game resembles the standard
message indistinguishability game for encryption.
1) The server picks two indices ¢ and #’, and send them
to the client.
2) The client flips a coin b < {0,1}. The client queries
index 4 if b =0 and queries index ¢’ if b = 1.
3) The server tries to guess b.
If the server can guess b correctly with 0.5 + € probability
where € is non-negligible, then the server wins, and the PIR
protocol is insecure.

Stateful PIR. We now extend the above PIR definition with
a single query to stateful PIR that deals with a sequence of

queries.
Given a database DB of N entries and a sequence
of query indices I = [iy,12,13,...], the client makes any

(polynomial) number of queries one by one, and privately
retrieve the ¢;-th entry in the database at the end of the j-th
query. A stateful PIR protocol should satisfy the following
two properties.

« Correctness: If the client and the server correctly execute
the protocol, then the client retrieves the i;-th entry in the
database at the end of the j-th query.

o Privacy: The server learns nothing about the client’s
sequence of query indices.

Similarly, the privacy requirement of stateful PIR can be
more rigorously captured by a game between the client and
the server.

1) The server picks two sequences of query indices I and
I’ of equal length and send them to the client.

2) The client flips a coin b <— {0,1}. The client queries
sequence I if b = 0 and queries index I’ if b = 1.

3) The server tries to guess b.

If the server can guess b correctly with 0.5 + € probability
where € is non-negligible, then the server wins, and the
stateful PIR protocol is insecure.

Note that we let the server choose the two sequences of
query indices it wants to distinguish, similar to the indis-
tinguishability game for encryption. Likewise, correctness
should also hold for any query sequence, including ones
that are chosen by the adversary. We could make the server
(adversary) even more powerful by letting it choose the
query sequences adaptively, i.e., it can choose the next pair
of query indices after interacting with the client for the
previous query in the sequence. Likewise, correctness can
also be stated for any adaptively constructed sequence. Most
existing stateful PIR schemes, including ours, are correct
and secure even for adaptively constructed sequences of
queries.

Pseudorandom functions. We assume the server is com-
putationally bounded. We will make use of pseudorandom

functions (PRF). PRF is one of the most common crypto-
graphic primitives and can be instantiated from any one-
way function, including the standardized and widely used
AES block cipher and SHA cryptographic hash functions.
A PREF takes a secret key and an input. For convenience,
we will omit writing the secret key since there should be no
confusion in our schemes that the client holds the secret key
(and shares the secret key with one of the servers in the two-
server setting). The input to the PRF is often a concatenation
of multiple values. For example, a PRF call in our algorithms
will be written as PRF(x || y || 2).

3. Algorithms

3.1. Overview of the New Hint System

The key idea is a new type of hint that eliminates the
information leakage due to the absence of the queried index.
This immediately obviates the need for parallel repetition
because there will be no (non-negligible) correctness failure.
Our techniques can be applied to the original sublinear
scheme of Corrigan-Gibbs and Kogan [16] as well as the
partition-based hints of Lazzaretti and Papamathou [27]. Be-
cause the partition-based hints offer advantages in compact
hint storage and fast membership testing, we will describe
our techniques on top of the partition-based hints. In this
context, our techniques help avoid the large responses and
the need for non-colluding servers of the partition paradigm.

A database of size N is divided into /N partitions each
of size v/N. For convenience, we assume Vv/N is an even
integer. The database can always be padded to the square
of the next even integer with very small extra overhead. Let
R denote the following distribution: first select \/N /241
random distinct partitions (i.e., sample without replacement)
out of the v/N total partitions; then pick one random index
from each of these v N /2 + 1 partitions. In other words, a
sample from R consists of /N /2 + 1 random indices from
VN /2 + 1 random partitions, one index per partition.

A hint in our algorithm consists of a sample from R and
its corresponding parity. The client needs to store M hints
(M will be specified later). For each ;7 = 0,1,2,..., M —
1, the client samples S; < R and stores S; along with
_ics, DBIi] as one hint. Usage of the hint also resembles
previous works in principle. When the client makes a query
to the i-th entry of the database, the client looks for a hint
whose subset S; contains index 4. The client sends S; \ {i}
to the server. The server returns the parity for .S; \ {¢}. The
client easily recovers DBJi] since it has been storing the
parity for S;. We need M = M/N where ) is a security
parameter so that a subset containing the queried index can
be found with all but exponentially small (in \) probability.

Eliminating the leakage. Now we tackle the main challenge
mentioned in Section 1. With the approach described so
far, the subset sent by the client involves v/N /2 random
partitions and contains one random index from each of them.
However, since the client always removes the queried index,
the subset sent by the client will not contain any index from
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Figure 1. An illustration of the hint system and the client’s request. The
database has N = 36 entries and is divided into v/N = 6 partitions. Each
hint selects v/ N /2 + 1 = 4 random partitions and picks a random index
from each. The queried index is removed to produce the real subset. A
dummy subset is constructed by picking one random index from each of
the remaining three partitions.

the partition that the queried entry belongs to. Thus, the
server learns that the queried entry is definitely not in any
of these /N /2 partitions the client sent.

Our main idea to address this leakage is for the client to
additionally send a dummy subset that contains one random
index from each of the other v/N /2 partitions. The client
also randomly permutes the two subsets, so the server cannot
tell apart the real one from the dummy one. This perfectly
hides which partition contains the queried entry. In fact,
the client’s request now reveals no information about the
queried entry. The client sends two subsets, each covering
VN /2 partitions. A random index is picked from each
partition, so we only need to ensure that the groupings of
the partitions leak no information. To this end, the dummy
subset bundles the partition of interest with VN /2—1 other
random partitions, and the real subset covers the remaining
VN /2 partitions. This is indistinguishable from a purely
random arrangement that would anyway group the partition
of interest with v/N /2 — 1 other random partitions.

The online phase. The online phase of our stateful PIR
protocol follows naturally from the above hint system. Upon
an input query index i, the client finds a hint whose subset
contains the query index ¢. The client removes i from the
subset (this is the real subset). The client then constructs
a dummy subset that consists of one random index from
each partition not represented in the real subset. The client
now sends the two subsets, permuted, to the server. Figure 1
illustrates this process.

The server returns the two parities corresponding to the
two subsets. The client discards the dummy parity and uses

the real subset parity to recover the desired entry. As a result,
the response overhead of our scheme is close to optimal:
only twice that of simply fetching the desired entry without
privacy.

Hint replenishment and the offline phase. After each
query in the online phase, the client needs to replenish
one hint since it has just consumed one. Moreover, the
replenished hint must follow the same distribution as the one
just consumed, i.e., contains index ¢ in the subset. How we
carry out the hint replenishment and how we run the offline
phase depend on whether we assume a single server or two
non-colluding servers. We will describe the two variants
later in the section.

3.2. Details of Hints and Online Phase

Sampling a subset of exact size. A step that warrants
more clarification is how we sample a subset of size exactly
V/N/2 + 1 out of the /N partitions. For reasons that will
become clear later and involve hint replenishment, we will
first sample a subset of size exactly v/ N /2 and then supply
one extra index.

We start with the first step to sample half of the parti-
tions. We will compute a pseudorandom value using PRF
for each hint-partition combination, i.e.,

v = PRF(“select” || j || k)

for the k-th partition of a hint with ID j. The prefix “select”
is added because we later need another pseudorandom value
for each hint-partition combination. Then, for each hint 7,
we compute the list of v, for all partitions, i.e.,

Vj = [Uj’(),’l}j,l, Vj2,y--- 7vj,\/ﬁ—1}‘

We then find a cutoff value 9; such that exactly v/ N /2
elements in V; are smaller than ©; and exactly vN/2
elements in V; are larger than ©;. A natural choice of ¥,
is the median of V;. Since we assume /N is an even
integer, the median is the average of two elements in V.
This median 9; can be used to divide V; into two equal-
sized halves. We save this cutoff median value alongside its
hint ID for each hint. This will give us an efficient method
to check if a partition is selected by the hint, using O(1)
time and O(1) client storage per hint.

Next, we need to pick one more index to a hint to make
its subset size v/N/2 + 1. To this end, we need to find a
random partition among the v/N /2 unselected partitions. An
easy and effective way to do so is to simply keep picking
random partitions and checking if the partition is already
selected. Once hitting an unselected partition, a random
index is picked from it as the extra index.

Hint storage. Each hint is stored as a tuple (j,0;,¢e;, P;)
where j is a unique hint ID, ©; is the cutoff median value,
e; is the extra index, and P; is the parity.

With the hint construction and storage details in place,
we can now give more details of the algorithm for the online
phase, as is shown in Algorithm 2.



Finding a suitable hint. Upon input query index i, the client
computes the partition ¢ that index 7 belongs to, i.e., { =
|i/v/N |. The client then goes through the hints to find one
whose subset contains ¢. There are two cases a hint’s subset
contains 4. A straightforward case is that the extra index e;
equals . The other case is the selection process involving
the median cutoff. For each hint j, the client computes v; ,
and checks if v;, is smaller than 9;. If so, it means hint j
selects partition ¢, and the client further checks if index i is
picked from partition . This is done by computing a second
PRF output as a pseudorandom offset for the partition,

rj¢ = PRF(“offset” || j || £),

and checking if 7; = i mod /N. If two of the two checks
above pass, or if the extra index e; equals 7, then index 7 is
included in the subset of hint j.

We remark that this step showcases the benefit of
partition-based hints: the partitioning allows us to test in
O(1) time whether a hint’s subset includes a particular
index, as we only need to check the corresponding partition.

Constructing and encoding the two subsets. After finding
a hint that contains the query index ¢, it is straightforward
to reconstruct the hint’s subset. The client then removes
the query index ¢ from the real subset. The client also
constructs a dummy subset that contains one random index
from each partition that is not in the real subset. Note that a
random index (possibly ¢) will be drawn from the partition
of interest. This index will certainly be part of the dummy
subset, but the server cannot tell which subset is the dummy
one once the client permutes the two subsets.

Although we write our pseudocode to send two subsets
following the convention in the literature, we remark that
there is an equivalent and more compact way to encode the
two subsets. We can use a bit vector b = [bg, b1, ..., b /5]
and an offset vector r = [rg,71,...,7 ;_4]. The offset
vector encodes which index is picked from each partition.
Concretely, s, = 7 + kv/N is the index picked from
partition k. The bit vector encodes whether each partition
is part of the first or the second subset. In other words, let
So and S denote the two subsets of indices that the client
would have sent in the pseudocode of Algorithm 2. Then,
sk € Sp if by = 0 and s, € Sy if by = 1. We note again
that the two subsets are permuted by the client, so the real
subset may be either Sy or Sy, with half-half probability.

It is not hard to see that this encoding is equivalent to
sending Sy and S; as done in the pseudocode of Algo-
rithm 2, but is slightly more efficient. Sending Sy and S;
directly would cost v/Nlog N bits. The encoding using b
and r costs VN + \/Nlog\/ﬁ = (\/N/2 + 1)log N bits,
roughly reducing the client’s request size by half.

3.3. The Two-Server Scheme

When there are two non-colluding servers, we use one
server for the offline phase and hint replenishment, and use
the other server for the online queries. The offline phase only
needs to run once at the beginning of the entire protocol to

help the client start with sufficiently many hints. After that,
the client invokes hint replenishment on the fly, i.e., during
each online query. Pseudocode of the complete two-server
stateful PIR protocol is given in Algorithms 1, 2 and 3.

The offline phase. The offline phase is shown in Algo-
rithm 1 and is fairly straightforward. The client initiates the
offline phase by sending the offline server its PRF evaluation
key. This allows the offline server to fully construct the hints.
For each hint, exactly half of the partitions are selected using
the cutoff median method described in Section 3.2, and a
random index is picked from each selected partition. After
that, an extra index is picked from a partition that has not
been selected yet. The offline server can easily compute the
parity of these entries. Lastly, the offline server sends to the
client the cutoff, the extra index, and the parity for each
hint. The client stores all these hints. This completes the
offline phase.

Hint replenishment. To replenish a hint after querying
index ¢, the client asks the offline server to start Algorithm 3.
Since the offline server has the PRF evaluation key, it can
construct a new hint using the next available hint ID, similar
to what it did in the offline phase. But there are two new
catches. First, the offline server does not add the extra index
because the client would like to add index ¢, the index that is
just queried, as the extra index, to make sure the replenished
hint follows the same distribution as the consumed one, i.e.,
has 7 in the subset. Second, we do not want the offline server
to learn the new hint’s subset, because that would reveal
some information to the offline server about the query the
client just made. Therefore, we let the offline server compute
the parities for both halves, and send both parities to the
client, along with the new hint ID and median cutoff.

Upon receiving the above from the offline server, the
client chooses the half that does not select the partition of
¢ as the real half. To do so, the client may have to redefine
the operator < for this hint. In other words, the client stores
a bit that indicates whether this hint chooses all partitions
whose pseudorandom values (v 7 ) are smaller or larger than
the median cutoff. This essentially permutes the two halves
and makes them indistinguishable to the offline server. The
client then adds index ¢ to the hint’s subset as the extra index
and adds DB[i] (which the client has just retrieved) to the
parity. The new hint is now fully constructed and replaces
the consumed hint.

3.4. The Single-Server Scheme

Hint replenishment using backup hints. With a single
server, we no longer have the luxury of replenishing a hint
on the fly. Instead, we will use the idea of backup hints
from [15]. The client retrieves additional backup hints in the
offline phase, so that the client can replenish a hint during
the online phase without contacting the server. Since backup
hints will eventually run out, the offline phase needs to be
run periodically. Pseudocode of our complete single-server
stateful PIR protocol is given in Algorithms 4, 2 and 5.



Algorithm 1 The offline algorithm with two non-colluding servers, run by the offline server

1:
2:

A A

9:
10:
11:

for j=0,1,2,...,.M —1do
Initializes parity P; = 0
Compute V; = [v0,v;1, 05,2, -,0; /] Where vj ) = PRF(“select” || j || k)
Find the median 9; of V; as the cutoff for selection
S={k|vjr <0} > the set of partitions selected by this hint
Pj = @),csDB[rjx + kv/N| where r; ) = PRF(“offset” || j || k) > one random index per selected partition
Set the extra index e; to a random index from a random partition not in S
Pj = P; © DBJe,]
Send (7, 7;, e;, P;) to the client to be stored
end for
Set J = M, the next available hint ID > J will be strictly increasing

Algorithm 2 The online algorithm, run by the client

Input: queried index ¢ > Vj k,Tj,ks Nj, D, €4, Pj as defined in Algorithm 1 or 4
¢ =|i/V/N| > £ is the partition that ¢ belongs to
Find main hint j such that v;, < 9; and 7;, == ¢ mod VN > hint j contains ¢
Initialize S =@ and S’ =) > S will be the real subset and S’ will be the dummy subset
for k=0:vN —1do
if Vik < ’lA)j then
S=SU{rjr+kVN}
else if e; belongs to partition k then
S=5SUuU {ej}
else
S' = 8" U{rand() + kv/N} > add a random index from partition k to the dummy subset
end if
. end for
S=5\{i} > remove the queried index from the real subset
. 8" =8"U{rand() + v/ N} > add a random index from partition ¢ to the dummy subset
Send (S, 5’) or (5',S) to the server with half-half probability > permute the real and dummy subsets
Receive the two subset parities P and P’ from the server > in the order S and S’ are sent

Return P @ P; as DB

Replenish a hint that contains index 4 from partition ¢ using Algorithm 3 or 5

Algorithm 3 The hint replenish algorithm with two non-colluding servers, run by the offline server and the client

1:

e A AN i

10:
11:

Use the next available hint ID J > The client asks the offline server to start hint replenishment
Initializes parity Py = P}, =0

Compute V; = [vj0,071,V5.2- - - ,U.]_’\/ﬁfl]

Find the median v; of V;

S:{k|v‘],k <17J}

P;=@,csDBlrk + kvVN] > recall 7; , = PRF(“offset” || j || k)
Pj = @jgs PBlrk + kVN]
Send J, 97, Py, P} to the client > The rest of the algorithm is run by the client
if vy, > 07 then > pick the half that does not select partition ¢
P; =P}
Set a bit to redefine < to be “greater than” for this hint > Algorithm 2 should check this bit and interpret <

accordingly for each hint, but we omitted these details in Algorithm 2 for readability of the pseudocode
end if

: Replace hint j with new hint (J, 0,14, Py & DBJi]) > add ¢ as the extra index to the new hint J




Algorithm 4 The streaming offline algorithm with a single server, run by the client

1: for j=0,1,2,...,1.5M — 1 do

2: Initialize parity P; = 0, and additionally initialize PJ{ =0ifj>M

> M main hints and 0.5M pairs of backup hints
> backup hints come in pairs

3 Compute V; = [v0,v;1,05,2,-.,0; /5] Where v = PRF(“select” | j || k)

4 Find and store the median ¥; of V; as the cutoff for partition selection

5: if 7 < M then > main hints
6: Set the extra index e; to a random index from a random partition not in {k | v, < 9,}

7 end if

8: end for

9: for k=0:vN —1do

10: Download DB[kV/N : (k + 1)/N — 1] from the server

11: for y =0,1,2,...,1.5M — 1 do

> download partition k

12: x = DBJ[r;x + kv/N] where r; , = PRF(“offset” || j || k) > a pseudorandom entry is picked from partition k
13: if v, < 0; then > partition k is selected by hint j
14: P,=P oz

15: else if j > M then

16: Pl=P oz > also construct the backup hint in the pair
17: end if

18: if e;/vV/N| == k then > the extra index e; is in partition k
19: P; =P & DB[@j]

20: end if

21: end for

22: end for

Algorithm 5 The hint replenish algorithm with a single server, run by the client

1: Let J be the ID of the next unused pair of backup hints

: if vy > 0y then
P; =P}

Set a bit to redefine < to be “greater than” for this hint

2

3

4

5: end if

6: hj =J

T e5 =1

8: P, = P; ¢ DBJi]

9: Replace hint j with backup hint (J, 0,4, P; & DBJ[i])

> pick the half that does not select partition ¢

> Algorithm 2 checks this bit to interpret <

> add ¢ as the extra index to the new main hint J

In the offline phase, the client retrieves not only the
AN primary hints but also Av/N backup hints. A backup
hint does not have the extra index and thus contains one
fewer index in its subset than a main hint. After the client
makes a PIR query for index ¢, it finds a backup hint that
does not select ¢’s partition. The client then adds index ¢ to
the subset as the extra index and adds DBJ[i] to the parity.
The new subset and parity now form a regular main hint
that follows the same distribution as the consumed one, i.e.,
has ¢ in the subset.

A simple strategy is to have A\v/N independent backup
hints. Then, there are in expectation 0.5\v/N backup hints
that skip any given partition. So the client can make close
to, but fewer than, 0.5AvN (say 0.4\/N ) online queries
before having to run the offline phase again. Even if the
client keeps querying entries from the same partition, it will
not run out of backup hints that skip that partition, except
for exponentially small (in A\v/N) probability.

A more clever strategy is to have backup hints in pairs,
similar in spirit to the two-server hint replenishment al-
gorithm. This is the strategy taken in the pseudocode of

Algorithm 5. From a backup hint ID J, the client computes
V; as well as the cutoff ©;. The cutoff v; divides the
partitions into two equal-sized halves. The client will store
the parities corresponding to both halves. When it is time to
replenish a hint that contains index ¢, the client picks the half
that does not select the partition ¢ that index i belongs to,
and then adds ¢ as the extra index. Similar to the two-server
scheme, the client needs to store a bit indicating whether
< is redefined to be “greater than” for this hint. This way,
the client only needs to use one pair of backup hints per
query, as one of the two halves will definitely suffice for
a replenishment. The client can now store A\\/N /2 pairs of
backup hints, and can make exactly \v/N /2 online queries
before having to run the offline phase again.

Offline phase. In the offline phase, the client needs to
retrieve main hints and backup hints in a private manner.
This can be done in a few ways. The simplest and most
practical way is perhaps to stream the entire database, one
partition at a time. The pseudocode of the streaming offline
phase is given in Algorithms 4. The extra index of each
main hint can be sampled in the same way as described in



Section 3.2: keep picking a random partition and checking
if it is already selected. This is now done by the client prior
to streaming the database. After downloading a partition,
it is straightforward to use v;; and 7; to determine, for
each main or backup hint j, which index, if any, should
be drawn from the current partition k. For each main hint,
the client also checks if its extra index is from the current
partition. For each backup hint pair, the client updates the
parity corresponding to the correct half, based on whether
vj % 18 smaller or larger than the median cutoff.

3.5. Correctness and Privacy Analysis

We will focus first on the very first query after the offline
phase and then extend the analysis to subsequent queries.

Correctness. For correctness, we need to prove that, upon
an input query index ¢, the client will be able to find with
overwhelming probability a hint whose subset includes 7. To
this end, we first observe the following simple fact.

Lemma 1. Each hint in our construction has at least ——

. . : . 2VN
probability of containing a particular index.

Proof. For a hint to contain a particular index ¢, the
hint must select the partition ¢ belongs to and also
pick ¢ from that partition. The former happens with
(VN/2+1)/v/N > 1/2 probability (the plus one is due
to the extra index), and the latter happens with 1/v/N
probability. O

For correctness to be violated, none of the A\v/N main
hints contains the query index. This happens with less than

(1— ﬁ))\‘/ﬁ < e~*/2 probability.

Privacy. We need to prove that the two subsets sent by the
client reveal no information about the query index. We will
carry out the proof assuming the PRF is perfectly random.
The privacy of our PIR protocol is then reduced to the
pseudorandomness of the PRF.

It is more convenient to reason about privacy with the
more compact encoding described in Section 3.2. Recall
that the client sends a bit vector b grouping partitions into
two subsets along with an offset vector r encoding the
index picked from each partition. First, observe that the
offset vector r consists of pseudorandom values that are
independent of the query index.

« For partitions not selected by the hint, a fresh pseudo-
random dummy offset is used (Line 11 of Algorithm 2).

o For the partition that contains the query index %, ¢ is
removed and is replaced with a fresh pseudorandom
dummy offset (Line 15 of Algorithm 2).

o For the remaining partitions that are selected by the
hint, the offsets are picked pseudorandomly during the
offline phase, and this is the first (and only) time they
are revealed to the (online) server.

Thus, from the (online) server’s perspective, all v/ offsets
are fresh, pseudorandom, and independent of the query
index.

The crux of the proof is to show that the bit vector b
reveals no information about the query index. Formally, we
will prove that the distribution of b is not affected by, and
hence reveals no information about, the query index.

Lemma 2. For any two query indices i and i’, Pr(b | i) =
Pr(b | ).

Proof. Let £ denote the partition index 7 belongs to and ¢’
denote the partition index ¢’ belongs to. When the query
index is 4, an index from partition £ is added to the dummy
subset. For the client to send b, two events must happen.
First, the bit b, represents the dummy subset (as opposed to
the opposite bit 1 — by). This happens with 1/2 probability.
Second, besides partition ¢, the set of partitions selected
by this hint are those marked by the opposite bit, i.e.,
T = {k | by # by}. Since each hint selects /N /2+ 1 parti-
tions at random, the probability for the other v/N /2 selected
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partitions to happen to be those in T'is 7 = (%;21)

These two events are independent, so Pr(b | i) = 7/2. By
the exact same argument, we have

Pr(b|i')=17/2=Pr(b | ). O

Lemma 2 is sufficient to establish the privacy of our
protocol. But to make things more explicit, we can derive
the following simple facts from Lemma 2.

Pr(b) = Z Pr(b | i) - Pr(i) = 7/2- Z Pr(i) = 7/2.

Thus, for any query index ¢,

Pr(i | b) = Pr(i,b) _ Pr(b | ) - Pr(i)

Pr(b) Pr(b)

The fact that Pr(i | b) = Pr(¢) for all ¢ means that observing
b does not change an observer’s prior on the query index;
in other words, b does not reveal any information about the
query index. Therefore, the server will have no advantage
in distinguishing the two queries in the privacy game.

= Pr(4).

Extension to subsequent queries. The above completes the
correctness and privacy proofs for the first query after the
offline phase. It remains to extend the proofs to subsequent
queries. For this step, we need to show that after a query
consumes and replenishes a hint, the distribution of the main
hints remains the same. Then, our privacy proof above would
apply directly to all subsequent queries, and the correctness
failure probability over a sequence of queries can be upper
bounded by a simple union bound.

Let H; ;, be the random variable that represents the index
from partition % selected by hint j. If hint j does not select
from partition k, H;; = L. Then, the main hints are fully
described by the following matrix of random variables.

%
IE Hy Hy Hy /54
H, Hip Hiy 1 Hy /x4
H= , = . ) :
Hy s Hyvo Hy-1n -0 Hy g v



Let H represent the main hints before the current query
and let H' represent the main hints after the current query.
We want to show that H' and H are identically distributed.

Each hint (row vector) in H is drawn from the distribu-
tion R described in Section 3.1. Let R; be the distribution
of a hint conditioned on the event that it contains index 4.
Let R_; be the distribution of a hint conditioned on the
event that it does not contains index .

Suppose we scan the main hints from 0 to M — 1 to
look for the query index i. Each hint independently has a
probability ¢ = VN/241 LN to contain 7: partition ¢ needs
to be selected and ¢ needs to be picked from partition ¢. Let
J be the hint consumed. J follows a geometric distribution
with parameter q. (The event that no hint contains ¢ is a
negligible one, and for convenience we can assume no hint
is consumed or replenished in that case.) We thus have

Pr(J > j) = (1—¢q)’*,

Pr(J =j) = (1-q)q
j—1

Pr(J <j)=)Y (1-q)'q=1-(1—g).
1=0

Both the consumed and the replenished hint J follow
distribution R;. All the other hints are unmodified. More-
over, all the hints prior to J follow distribution R_;, and
all the hints after J follow distribution R.

Let us now focus on any particular hint 7 in H’. Given
the distribution of J, we can think of hint j in H’ to
be sampled in the following manner: with 1 — (1 — ¢)J
probability, sample from R; for the remaining (1 — ¢)’
probability, sample from R; with probability ¢ and sample
from R_; with probability (1 — ¢)*+.

Observe that the g vs. 1—q ratio is exactly the likelihood
that an original hint in H does vs. does not contain index ¢,
or equivalently, follows R; vs. R _;. Thus, every hint j in H’
follows the same distribution as the hint j in H. This shows
that the main hints after a query are identically distributed
as they are before the query. Then, by transitivity, the main
hints at any point are identically distributed as their original
states right after the offline phase. Therefore, our correctness
and privacy proofs apply to all subsequent queries.

3.6. Efficiency Analysis

The two-server scheme. The offline phase costs O(AV/N)
communication and O(AN) computation at the offline
server. But because the offline phase runs only once, these
costs do not factor into the amortized costs after sufficiently
many queries are made. Hence, the amortized cost of our
two-server scheme only depends on the online phase and
the hint replenishment step. The online request size is
(vVN/2 +1)log N bits using the compact encoding of the
two subsets. The online response overhead is O(1), or 4x
to be precise since the online server and the offline server
both send back two parities.

The expected client computation cost of the client is
O(v/N) due to searching for a hint and reconstructing the

hint’s subset. Because each hint has at least 5~ probability
of containing a particular index by Lemma 1, the client will
find a suitable hint after checking 2v/N hints in expectation
(and each check takes O(1) time). The computation cost of
the server is O(v/N) due to computing the parities. These
give the results in Table 1.

The single-server scheme. The online phase is very sim-
ilar to the two-server scheme: each online query costs
O(V/N) bits in request, O(1) overhead in response, O(v/N)
client computation, and O(v/N) server computation. The
streaming offline phase costs N communication and O(AN)
computation, and needs to be run every 0.5A\/N online
queries. This leads to the single-server results in Table 1.
The only difference from the two-server case is that the
response overhead is O(v/N/)), because the O(N) offline
communication is amortized over 0.5Av/N online queries.

4. Evaluation

4.1. Implementation Details

We implemented our scheme in C++. Due to the sim-
plicity of our schemes, the two-server version of our imple-
mentation comprises about 600 lines of code and the single-
server version comprises about 500 lines of code. We set
the parameter A\ to 80. We use AES as the pseudorandom
function. We use CryptoPP’s implementation of AES, which
leverages Intel’s AES-NI instructions. We break up a single
128-bit AES output into four to eight pseudorandom num-
bers (i.e., v; and r;j in the algorithms) across different
hints or partitions to save computation.

We use 32-bit numbers for elements in V; to save client
storage and computation. It is worth noting that this gives
rise to a corner case where two or more elements in V; are
equal to the median. (Equal elements occur with negligible
probability if we use a full 128-bit PRF output for each
element in V;.) When this happens, the median alone does
not give a way to evenly divide V; into two equal-sized
halves. We could add additional metadata to handle this
corner case, but because this corner case happens with a very
small probability, we simply consider such a hint invalid and
discard it. We have omitted the handling of this corner case
from the pseudocode for code readability.

The concrete implementation of the median finding pro-
cedure also warrants more explanation. We take advantage
of the fact that elements of V; are drawn from a uniform
random distribution. This allows us to filter out elements
that are too large or too small, i.e., outside two heuristic
bounds. We keep count of the number of filtered elements.
Suppose we filter out X small elements. We then use
introselect [35] or a similar linear time selection algorithm
to find the (v/N/2— X —1)-th and (v/N/2— X)-th smallest
elements among the remaining elements. These will be the
two middle elements that give the median of V;. With
appropriate bounds, the probability that we filter out one of
these two elements is very small. (And when that happens,
we simply consider this hint invalid and discard it.) We



think of the random values as 32-bit fixed-point numbers
between 0 and 1, and choose the two filtering bounds as
% + %. In expectation, this filters out 7/8 of the elements.
The probability that one of the middle elements is filtered
out is 6 x 10~ for a database of size 22°, and this probability
keeps decreasing with the size of the database.

When log N does not exceed 32, we use 32-bit integers
for the extra indices. The hint IDs in our single-server
version can also use 32-bit numbers since they will reset
periodically upon offline phases. In the two-server version,
however, hint IDs can grow unbounded, so we use 64-bit
integers for them.

4.2. Experimental Setup

Baselines. We compare with several practical two-server
and single-server schemes. We briefly describe each baseline
with its pros and cons below. Two-server baselines include:

o The protocol of Boyle, Gilboa, and Ishai [10] based on
distributed point functions (DPF). This is the state-of-
the-art two-server PIR scheme that uses linear server
computation. It has a logarithmic request size and a
constant response overhead. We use their C++ imple-
mentation [2].

o The protocol of Kogan and Corrigan-Gibbs for check-
lists [24]. This is the first two-server amortized sub-
linear PIR scheme that has been implemented. Their
scheme has a logarithmic request size and a constant
response overhead but requires either linear client com-
putation or linear client storage. Their implementation
in Go [1] uses linear client storage.

o TreePIR by Lazzaretti and Papamathou [27]. This is
the state-of-the-art two-server amortized sublinear PIR
scheme. Their scheme uses sublinear client storage and
client computation and has a logarithmic request size.
The downside of their scheme is the O(v/N) response
overhead. We use their implementation in Go [6].

Single-server baseline schemes include:

o Spiral PIR by Menon and Wu [31]. This is the state-
of-the-art single-server single-query PIR. It is based on
lattice-based leveled FHE and needs to perform a linear
amount of homomorphic operations at the server. We
use their C++ implementation [5].

« SimplePIR by Henzinger et al. [22]. This is a single-
server stateful PIR scheme that still uses linear server
computation. We use their implementation in Go [4].

« Piano PIR by Zhou et al. [40]. This is a single-server
variant of TreePIR and inherits the O(v/N) response
overhead of TreePIR. It requires the client’s queries to
have no adversarial influence and thus is weaker than
a standard (stateful) PIR scheme defined in Section 2.
We use their implementation in Go [3].

Experimental setup. We run all experiments on an AWS
mb5.8xlarge instance equipped with a 3.1 GHz Intel Xeon
processor and 128 GB RAM. Our instance runs Ubuntu
22.04, GCC 11.3, and GO 1.18. We run our scheme and all
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baselines with a single thread. We analyze the performance
of our scheme and the baseline schemes under databases
with varying entry counts and entry sizes. We first test
databases with 220, 224 and 228 entries while fixing the
entry size to 32 bytes. We then fix the database to 22° entries
and test different entry sizes, specifically 8 and 256 bytes.

4.3. Evaluation Results

Two-server schemes. Table 2 gives a performance com-
parison of two-server PIR and stateful PIR schemes. The
offline phases of the three stateful PIR schemes are run
only once, so their amortized per-query costs are simply
the online costs after sufficiently many queries are made.
The checklist implementation crashed in our last experiment,
so their results for the 64 GB database are missing. The
DPF implementation does not support 256-byte entries, so
its computation result for the 64 GB database is estimated.

DPF-PIR requires no offline phase or client storage. It
also has efficient communication ranging from 0.91 KB to
1.52 KB in our tests. Its computation is linear in database
size, and grows from 2.5 ms on a 32 MB database to
5960 ms on a 64 GB database. This makes the DPF-
PIR very efficient in all aspects for small databases but
costly in computation for large databases. In comparison,
the three stateful PIR schemes require offline phases and
client storage, and in return, achieve orders of magnitude
lower per-query computation.

The checklist scheme boasts the lowest communication
cost among the schemes we test. It also has a low online
computation cost that is comparable to our scheme. Its
biggest downside is the linear client storage. This cost is
manageable for small databases but becomes prohibitive
for large databases. For example, on the 8 GB database,
Checklist’s client storage is over 1 GB, about one-eighth of
the entire database and > 20x of TreePIR and our scheme.

TreePIR requires the smallest client storage among the
three but has a large per-query communication cost that is
two orders of magnitude larger than our scheme. Its per-
query computation is also around 3.8 — 12.8x slower than
our scheme. We also test TreePIR with an extra single-server
PIR call (not shown in the table). Its communication would
improve to around 30 KB but its computation would worsen
to hundreds of milliseconds (refer to Spiral result in Table 3
and the discussion in Section 5).

Overall, our scheme achieves a balance of low client
storage, low communication, and low computation for all
database parameters, by avoiding major bottlenecks in pre-
vious schemes such as linear client storage, linear server
computation, or high communication.

Single-server schemes. Table 3 gives a performance com-
parison of single-server PIR and stateful PIR schemes. The
amortized per-query cost of Piano and our scheme are cal-
culated as the offline cost divided by the number of queries
supported per offline, plus the online cost. Spiral has no
offline phase and SimplePIR has a one-time offline phase,
so their amortized per-query costs are simply the online



TABLE 2. Comparison of two-servers PIR schemes.

Database Client Storage Offline Online
Parameters (MB) Comm. (MB) Compute (s) | Comm. (KB) Compute (ms)
DPF-PIR - - - 0.91 2.5
Checklist 220 32-byte entries 7.07 2.88 33 0.50 0.17
TreePIR 32 MB in total 2.88 2.88 1.0 65.9 0.45
This paper 3.76 3.76 23 2.26 0.12
DPF-PIR - - - 1.1 47
Checklist 224 32-byte entries 78.60 11.53 73 0.56 0.72
TreePIR 512 MB in total 11.53 11.53 23 262.6 49
This paper 15.04 15.04 41 8.64 0.54
DPF-PIR - - - 1.21 182.4
Checklist 228 8-byte entries 1085.27 11.53 1394 0.52 1.9
TreePIR 2 GB in total 11.53 11.53 398 262.6 20
This paper 30.16 30.16 636 34.0 2.19
DPF-PIR - - - 1.31 745
Checklist 228 32.-byte entries 1119.74 46.14 1141 0.64 1.8
TreePIR 8 GB in total 46.14 46.14 430 1049.6 14
This paper 60.16 60.16 842 34.1 2.7
DPF-PIR 228 256-byte entries - - - 1.52 5960
TreePIR 64 GB in total 369.09 369.09 1843 8389.6 67
This paper 340.16 340.16 2242 35.0 5.23
TABLE 3. Comparison of the single-server schemes.
Database Client Storage Offline Online Amortized per query
Parameters (MB) Comm. (MB) Compute (s) | Comm. (KB) Compute (ms) | Comm. (KB) Compute (ms)
Spiral - - - 28 767 28 767
SimplePIR 220 32-byte entries 20.9 20.9 4.8 40 14 40 14
‘ Piano 32 MB in total 6.64 32 10 20 0.79 22.30 1.5
This paper 6.25 32 4 2.18 0.14 2.99 0.25
Spiral - - - 34.0 3177 34.0 3177
SimplePIR 224 32-byte entries 86.8 86.6 154 168 103 168 103
Piano 512 MB in total 29.28 512 182 80 2.6 87.69 5.3
This paper 25 512 65 8.56 0.62 11.76 1.0
Spiral - - - 34.5 8427 34.5 8427
SimplePIR  22% 8-byte entries 173.4 173.4 623 338 319.1 338 319.1
Piano 2 GB in total 73.875 2048 3186 128 8.5 134.6 18
This paper 40 2048 989 34.02 24 37.22 39
Spiral - - - 35.0 30273 35.0 30273
SimplePIR 228 32-byte entries 352.98 352.98 failed 688 1123 688 1123
Piano 8 GB in total 126.75 8192 3449 320 10 346.38 21
This paper 100 8192 1146 34.06 2.7 46.86 45
Piano 228 256-byte entries 620.25 65536 4495 2112 24 2323.05 38
This paper 64 GB in total 660 65536 2743 345 42 136.9 8.4

costs after sufficiently many queries are made. Spiral and
SimplePIR crashed in our last experiment, so their results
for the 64 GB database are missing. The SimplePIR imple-
mentation offline phase also failed for the 8 GB database;
luckily, their implementation provides a way to test online
efficiency without running the offline phase (and naturally,
without correctness).

Spiral’s communication cost remains relatively stable at
different database parameters. Its linear server computation,
however, is expensive even for small databases and becomes
prohibitive for large databases. Concretely, its per-query
computation is over 3 seconds for a 512 MB database and
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over 30 seconds for an 8 GB database. In comparison, our
scheme is thousands of times faster than Spiral in per-query
computation, e.g., just 4.5 milliseconds on the same 8 GB
database. In terms of per-query communication, our scheme
is better than Spiral on small databases but becomes worse
on large databases due to the Q(v/N) request size.

SimplePIR’s server online computation is a constant
factor better than Spiral’s, but it is still linear and still
very expensive for large databases. Piano, being a sublinear
scheme, addresses the server computation bottleneck, but it
has to weaken the correctness guarantee of PIR. SimplePIR
and Piano also introduce a new bottleneck in communication



since they both have Q(v/N) online response overhead.
Concretely, for an 8 GB database, the per-query commu-
nication cost is 688 KB for SimplePIR and 346 KB for
Piano.

Our scheme achieves much better communication and
computation than the other two stateful PIR schemes. Con-
cretely, compared with Piano, our amortized communication
is 3.6 — 17x better, our amortized computation is 4.5 — 6x
better, and we achieve these improvements while providing a
stronger correctness guarantee. Compared with SimplePIR,
the state-of-the-art scheme that provides the same standard
PIR correctness, our scheme is 9 — 14x better in commu-
nication and hundreds of times faster in computation.

Our single-server scheme does have a drawback (shared
by Piano): offline communication is very high for large
databases due to streaming the whole database. Even though
this can be amortized over many online queries, it is still
undesirable as it significantly delays the very first query.

5. Related Works

Private Information Retrieval (PIR) is first introduced
by Chor et al. [14]. There is an extensive list of works on
both multi-server PIR and single-server PIR. Since this work
focuses on the two-server and single-server settings, we will
focus on these two settings in this section and omit schemes
that require three or more servers.

Single-query PIR with linear server computation. Re-
search on PIR started with the simplest and most stan-
dard variant: a client has a single entry to fetch from
the server. We call it single-query PIR. Chor et al. [14]
gives the first single-query PIR scheme. Their scheme uses
multiple non-colluding servers and provides information-
theoretic security. With two servers, the communication
cost of their scheme is O(N'/3). Subsequent works have
improved the communication cost of two-server PIR with
both information-theoretic security [18] and computational
security [20]. In particular, Gilboa and Ishai give a two-
server computational PIR scheme based on distributed point
functions. Their scheme has a polylogarithmic communica-
tion cost and is also reasonably fast in terms of computation.

Kushilevitz and Ostrovsky give the first single-server
single-query PIR protocol [25] based on Additively Ho-
momorphic Encryption (AHE). Several subsequent works
improve the asymptotic communication cost using various
techniques and assumptions [12], [17], [19]. But Sion and
Carbunar [38] observe that these schemes in practice often
perform worse than downloading the entire database due to
the prohibitive cost of applying number-theory-based AHE
to the entire database.

Recent practical single-server single-query PIR
schemes [30], [8], [7], [33], [31] have switched from AHE
to lattice-based leveled Fully Homomorphic Encryption
(FHE) to reduce the computation cost. These schemes
boast much better server computation than their early
AHE counterparts, though server computation can still be a
major bottleneck when the database is large. State-of-the-art
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schemes in this category achieve good communication
overhead when the database entry is large (on the order
of kilobytes). But for databases with small entries,
the communication overhead is very high because the
ciphertexts of lattice-based encryption are quite large,
usually on the order of tens of kilobytes, no matter how
small the underlying plaintext is.

All of the above schemes, multi-server and single-server
ones alike, require linear server computation. As mentioned,
this is unavoidable in the most standard single-query PIR
model. This is formalized by Beimal, Ishai, and Malkin [9]
as a lower bound that any PIR scheme on an N-entry
database must incur Q(N) computation at the server. To
our knowledge, three avenues have been explored in an
attempt to circumvent the linear server computation barrier.
We review them next.

PIR with database preprocessing. In the same paper
that established the (V) server computation lower bound,
Beimel, Ishai, and Malkin [9] also show that the lower
bound can be circumvented by preprocessing and encoding
the database offline. This approach is also taken by a line of
works known as doubly efficient PIR [13], [11], [28]. These
efforts have so far remained largely theoretical because they
have to significantly blow up server storage (superlinearly or
by the number of clients), require heavyweight theoretical
tools (such as oblivious locally decodable codes or virtual-
blackbox obfuscation), or suffer from both drawbacks.

Batch PIR vs. stateful PIR. The other two avenues to
circumvent the linear server computation barrier both as-
sume the client has many entries to fetch from the server.
One is called batch PIR [23], [8], and the other is what we
call stateful PIR [36], [16]. They provide opportunities for
substantial efficiency improvements through amortization.
While the total cost (to fulfill all queries) is still subject to
the fundamental barriers, the per-query cost may now be
made much lower.

The difference between these two variants of PIR is that
batch PIR assumes the client has many queries to execute
in one go, while in contrast, stateful PIR assumes that the
client generates queries sequentially (e.g., the client decides
what the next query is after receiving the response for
its previous query). This can be formally captured by the
adaptive version of the stateful PIR in Section 2. Note that
batch PIR is an easier problem than stateful PIR because the
client can always send a batch of queries one by one, but
it cannot batch chronologically sequential (and potentially
causal) queries.

Since the focus of this paper is on stateful PIR, we
review batch PIR only briefly for completeness. Ishai et
al. [23] propose the first batch PIR scheme (and called it
amortized PIR in their paper) using batch codes. Angel
et al. [8] gives the first practical batch PIR scheme using
cuckoo hashing. The Angel et al. scheme nicely amortizes
the linear server computation cost: it costs O(N) server
computation to fulfill all the queries in the batch, no matter
how large the batch is. But their scheme does not amortize
the response overhead: O(b) ciphertexts must be sent back



for a batch of b queries. Mughees and Ren [34] give a batch
PIR scheme that further amortizes the response overhead
over the batch using vectorized FHE where a single cipher-
text can hold as many queried entries as what can fit.

Stateful PIR. Patel, Persiano, and Yeo [36] propose the
paradigm of stateful PIR in which the client retrieves hints
privately in an offline phase and later uses these hints to
speed up online queries. At some level, this offline phase
can also be viewed as a preprocessing step. But a crucial
difference is that this offline preprocessing step does not
alter the server’s database in any way, and hence requires
no extra server storage. The original work of Patel, Persiano,
and Yeo was less ambitious. Their goal was to replace the
linear homomorphic encryption operations with linear PRF
evaluations, and was not to circumvent the linear server
computation bound. But it did not take long for amortized
sublinear stateful PIR schemes to emerge.

Corrigan-Gibbs and Kogan [16] give the first amortized
sublinear stateful PIR scheme. Their scheme initially works
in the two-server setting and is later extended to the single-
server setting [15].

The schemes of Corrigan-Gibbs et al. [16], [15] have
Q(A/N) request size. A number of works resort to pri-
vately puncturable/programmable pseudorandom functions
(PRF) to improve the request size asymptotically, first in
the two-server setting [37] and later in the single-server
setting [39], [26]. These works are mostly theoretical at the
moment because privately puncturable/programmable PRFs
are heavyweight theoretical tools and do not have practical
instantiations.

It is also worth noting that there is a more pressing
performance bottleneck than the request size, namely, the
parallel repetitions. All of the above works [16], [15], [37],
[39], [26] allow a small probability of a correctness failure.
Thus, their scheme must be repeated A times in parallel
to make the correctness failure probability negligible. This
will blow up all efficiency metrics, including request size,
response size, client storage, client computation, and server
computation. To our knowledge, none of the above schemes
has been implemented.

Practical amortized sublinear stateful PIR. Two recent
works give methods to eliminate this correctness failure
and hence avoid the parallel repetitions [24], [27]. Both
works make use of (non-private) puncturable PRFs, which
do have practical instantiations. As we have mentioned,
both schemes only work for the two-server setting and have
no clear path to be extended to the single-server setting.
Moreover, both schemes come with substantial efficiency
losses. The Kogan-Corrigan-Gibbs scheme [24] requires
either ©(N) client storage or ©(NN) client computation per
query. Since the motivation of stateful PIR is to avoid linear
server computation, it is hard to justify shifting a linear cost
to the client, which is often more resource-constrained.
The Lazzaretti-Papamathou scheme [27] increases the
response overhead to ©(y/N). This large response overhead
is usually more problematic than a large request size because
requests are measured in log N-sized words (usually less
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than 32 bits), while the responses are measured in the
database entry size, which can be hundreds of bytes or
more. Lazzaretti and Papamathou note that the response
overhead blowup can be mitigated, in theory, by invoking
an extra single-server single-query PIR. However, this would
not be efficient in practice. Lazzaretti and Papamathou have
already observed in their experiments [27] that this extra
PIR can be the performance bottleneck even with a state-
of-the-art construction like Spiral [31]. Unfortunately, they
still significantly underestimate how costly such a strategy
is. First of all, state-of-the-art FHE-based PIR constructions
perform a one-time preprocessing of the database using
Number-Theory Transform (NTT) [8], [7], [33], [31]. Since
the ©(N)-sized response is computed by the server based
on the query, this NTT step will have to be performed on
the fly at the end of each query. This will make FHE-
based PIR an order of magnitude slower. Secondly, this
extra FHE-based PIR would again suffer from the large
ciphertext size of lattice encryption. Lastly, we note that
FHE-based PIR has other drawbacks such as the typical key-
dependent security and several megabytes of server storage
per client, both resulting from the substitution keys for query
(de-)compression.

Despite the shortcomings in the response overhead and
the need for two servers, the Lazzaretti-Papamathou scheme
introduces an elegant technique that is crucial for our work.
Their scheme uses a more structured hint construction where
the database is divided into equal-sized partitions, and each
subset consists of one index per partition. These partition-
based hints are more amenable to succinct pseudorandom
representations and faster membership testing. They hence
enable more space-efficient hint storage and offline process-
ing. Our work adopts their partition-based hints.

Zhou et al. [40] adapt the Lazzaretti-Papamathou scheme
to a single server. But to do so, they had to weaken the
correctness guarantee of PIR and require that the query
sequence is not influenced by the adversary. To elaborate,
they also use the backup hint technique, but each backup
hint is specific to a particular partition. As a result, they
require the queries in the sequence to be balanced across
all partitions. To do so, they let the server permute the
entire database and publish the permutation key. They then
require that the client’s query sequence is independent of the
server’s permutation. This assumption may be justifiable in
some use cases but not always. It is not hard to conceive
scenarios in which the client’s query sequence is influenced
by an untrusted third party. Because the server’s permutation
is public, this third party can make their PIR scheme lose
correctness, even if the server is honest. If a PIR-based
system behaves differently when a query fails, a correctness
failure can also lead to a privacy violation.

6. Conclusion

We have presented simple and lightweight stateful PIR
schemes with amortized sublinear communication and com-
putation for both the two-server and single-server settings.
Our schemes avoid the major performance bottlenecks in



prior works: parallel repetition, linear client storage, and
large response overhead.

Our schemes also have drawbacks that call for further
studies. An obvious one is the Q(v/N) request size. There
exist techniques to reduce the request size, but the challenge
is to do so without sacrificing other aspects of the algo-
rithm. A limitation shared by all existing amortized sublinear
schemes is that the O(\v/N) client storage, while sublinear,
is still quite large in practice. An indirect consequence is
that the single-server offline phase cannot do much better
than streaming the whole database when the client needs so
many hints. Other general challenges involving stateful PIR
include how to handle updates to the database and how to
support queries by keywords, and recent works have already
started looking into these directions [24], [29].
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