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1 Introduction

Private Information Retrieval (PIR) allows a client to fetch an entry from a public database on a server
without revealing which entry the client is interested in [1]. Recent works in amortized sublinear PIR have
made strides and demonstrated great potential. Despite the inspiring progress, the new paradigm is still faced
with various challenges, including large client storage, expensive offline phases, high communication, and poor
practical efficiency. Many schemes have to resort to heavy-weight theoretical tools, non-colluding servers,
parallel instances, or restricted client query sequences. This paper proposes a simple and practical single-
server sublinear PIR scheme with a small response overhead and without the aforementioned drawbacks.

Most amortized sublinear PIR schemes follow the blueprint of Corrigan-Gibbs and Kogan [3]. The client
privately retrieves hints in an offline phase. Each hint involves a subset S of

√
N random distinct indices

within [1, N ] where N is the number of entries in the database. For each hint, the client stores the subset S
and the corresponding parity

∑
i∈S DB[i] where DB[i] is the i-th entry of the database and the summation

represents XOR. In the online phase, if the client wants to retrieve i-th entry, it finds a subset S that contains
i. Since the client stores the parity of entries in S, ideally, it just needs to ask the server for the parity of
S \ {i}, from which it can easily recover DB[i].

However, the above high-level strategy, the client always sends the server a subset that does not contain
the queried index i. This is insecure because the server learns that the queried entry is not one of those in
S \{i}. To fix this problem, Corrigan-Gibbs and Kogan suggest that the client occasionally removes an index
other than i from S. In this case, the client loses the ability to retrieve the queried entry i. To compensate
for this loss of correctness, λ instances of their protocol are executed in parallel to achieve an exponentially
small (in λ) failure probability. This blows up all efficiency metrics (communication, computation, client
storage) by a factor of λ and renders the scheme impractical.

Lazzaretti and Papamathou [5] give a clever way to avoid the λ blowup using partition-based hints.
Their scheme requires two non-colluding servers. Zhou et al. [7] adapt their scheme to a single server but
can only handle client queries that are not adversarially influenced. While this restriction may be valid in
certain scenarios, it does not always hold true and is a big departure from the standard PIR model. Another
drawback of Lazzaretti and Papamathou (and inherited by Zhou et al.) is that the response blowup becomes
O(
√
N), which would be prohibitive for databases with large entries. Though this problem could in theory

be mitigated by invoking another regular single-server PIR scheme, that would not be efficient in practice.
In this paper, we propose new techniques in hint construction and usage and obtain a simple and

lightweight single-server sublinear PIR. Our scheme has small amortized response and close to optimal
online response, which is only twice that of simply fetching the desired entry without privacy. Our scheme
does not require parallel instances and supports arbitrary client query sequences.

Table 1 gives a comparison with recent practical amortized sublinear PIR schemes in terms of asymptotic
efficiency. We exclude schemes that require heavy theoretical tools such as CHK22 [2] and ZLTS23 [6] which
require gate-by-gate FHE and privately programmable pseudorandom functions, respectively. Our scheme
also enjoys good concrete efficiency. For a 128 GB database with 64-byte entries, each query consumes only
117 KB of communication and 7.5 milliseconds of computation, amortized.
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Table 1: Comparison with recent amortized practical sublinear PIR schemes.

Number of Amortized communication Storage Amortized computation
Scheme Servers Request Response Client Client Server

CK20 [3] 2 O(λ
√
N) O(λ) O(λ2

√
N) O(λ

√
N) O(λ

√
N)

KC21 [4] 2 O(logN) O(1) O(λ
√
N) O(N) O(

√
N)

LP23 [5] 2 O(logN) O(
√
N) 2 O(λ

√
N) O(

√
N) O(

√
N)

ZPSZ23 3 [7] 1 O(
√
N) O(

√
N) O(λ

√
N) O(

√
N) O(

√
N)

This paper 1 O(
√
N) O(

√
N/λ) O(λ

√
N) O(

√
N) O(

√
N)

1 Request size and client computation are measured in words of size λ or logN . Response, client storage, and
server computation are measured in entry size (also making response a blowup over the insecure baseline).

2 LP23 [5] can invoke a second PIR to reduce response, but a variant without this second PIR gives better
practical efficiency and makes a more fair comparison.

3 ZPSZ23 [7] requires client queries to have no adversarial influence, making it weaker than standard PIR.

2 Algorithm

The new hint. The key idea is a new type of hint that eliminates the information leakage due to the
absence of the desired index. This immediately obviates the need for parallel instances. Applied to the
partition-based hints [5], it avoids the large responses and works with a single server. For convenience, we
will directly describe our idea on top of the partition framework. A database of size N is divided into

√
N

partitions each of size
√
N . For now, we assume

√
N is an even integer.

Let R denote the following distribution: first select
√
N/2 + 1 random partitions (without replacement)

out of the
√
N total partitions; then pick one random index from each of these

√
N/2 + 1 partitions. In

other words, a sample from R consists of
√
N/2 + 1 random indices from

√
N/2 + 1 random partitions, one

index per partition.
A hint in our algorithm consists of a sample from R and its corresponding parity. Similar to previous

works, the client needs to store M hints (M is specified later). For each j = 1, 2, . . . ,M , the client samples
Sj ← R and stores Sj along with

∑
i∈Sj

DB[i] as one hint. Usage of the hint resembles previous works in
principle. When the client requests entry i, the client looks for a subset Sj that contains i. The client sends
Sj \ {i} to the server. The server returns the parity for Sj \ {i}. The client easily recovers DB[i] since it has

been storing the parity for Sj . Similar to previous works, we need M = λ
√
N where λ is a security parameter

so that a subset containing the requested index can be found with overwhelming (in λ) probability.

Eliminating the leakage. Now we tackle the main challenge mentioned in the introduction. With the
approach described so far, the subset sent by the client involves

√
N/2 random partitions and contains one

random index from each of them. However, since the client always removes the requested index from the
subset, the server now learns that the desired entry is definitely not in any of these

√
N/2 partitions.

Our main idea to address this leakage is for the client to additionally send a dummy subset that contains
one random index from each of the other

√
N/2 partitions. The client also randomly permutes the two

subsets, so the server cannot tell apart the real one from the dummy one. This perfectly hides which
partition contains the desired entry. In fact, the client’s request now reveals no information about the
desired entry. The client sends two subsets, each covering

√
N/2 partitions. A random index is picked from

each partition, so we only need to ensure that the groupings of the partitions leak no information. To this
end, the dummy subset bundles the partition of interest with

√
N/2−1 other random partitions, and the real

subset covers the remaining
√
N/2 partitions. This is indistinguishable from a purely random arrangement

that would anyway group the partition of interest with
√
N/2− 1 random partitions.

The following modifications to our protocol are natural from the above idea. The client now sends the
two subsets, permuted, to the server. The server returns the two parities corresponding to the two subsets.
The client discards the dummy parity and uses the real subset parity to recover the desired entry. As a
result, the online response size of our scheme is already close to optimal.
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Hint replenishment. After each online PIR request, the client needs to replenish one hint since it has
consumed one. Moreover, the replenished hint must follow the same distribution as the one just consumed.
This can be done similarly as in [2] using backup hints. In the offline phase, the client retrieves not only
the λ

√
N primary hints but also λ

√
N backup hints. A backup hint contains one fewer index than a main

hint in its subset. After the client makes a PIR query for entry i, it finds a backup hint that contains no
index from i’s partition. The client then adds i to the subset and DB[i] (which the client has just retrieved)
to the parity. The new subset and parity now form a regular hint that follows the same distribution as the
consumed one, i.e., has i in the subset. The client can make ≈ λ

√
N/2 online queries between two offline

phases. Even if the client keeps requesting entries from the same partition, it will not run out of backup
hints that skip that partition, except for negligible (in

√
N) probability.

Further simplification to the hints. So far, we have been assuming that the subset of every hint has a size
exactly

√
N/2+ 1. Sampling such a subset pseudorandomly can be done in theory but causes inconvenience

for practice. We observe that the hint construction rule can be relaxed as follows. To construct a backup
hint, for each partition, pick a random index from it or skip it with half-half probability independently. To
get a main hint, pick one extra random index from a random skipped partition. Put in another way, a subset
now has size D + 1 where D is a binomial random variable, i.e., the number of selected partitions if each
partition is selected independently with half probability.

With this change, the real subset has size D where D follows the aforementioned binomial distribution.
The dummy subset’s size is

√
N −D and follows the same binomial distribution. Once permuted, the real

subset and the dummy subset are indistinguishable. The security of the PIR scheme is thus unaffected.

Offline phase. In the offline phase, the client needs to retrieve main hints and backup hints in a private
manner. This can be achieved in a few ways. The simplest and most practical way is perhaps to stream the
entire database, one partition at a time. With the independent partition selection rule, we just need a few
pseudorandom bits and numbers to determine, for each main or backup hint, which index, if any, should
be drawn from the current partition. This streaming offline phase costs N communication and O(λN)
computation; amortized over ≈ λ

√
N/2 online queries, these give the results in Table 1.

Pseudocode of the complete algorithm is given in Algorithms 1 and 2.

3 Evaluation

We implement our algorithm in C++. We use AES as the pseudorandom function and use Intel’s AES-NI
instructions. A 128-bit PRF output provides randomness for up to eight hints. Our implementation uses a
single thread. The parameter λ is set to 80. We evaluate our algorithm by running the client and simulating
the server on an Intel Core i7-9750H CPU at 2.60 GHz. Table 2 gives a comparison with ZPSZ23 [7] in
terms of concrete storage, communication, and computation costs.

Table 2: Comparison with ZPSZ23 [7]. “Am.” stands for amortized.

Storage Communication Computation
Scheme Database at Client Am. Offline Online Offline (Am.) Online

ZPSZ23 2 GB (228 8-byte) 75 MB 6.6 KB 128 KB 3369 s (10.6 ms) 9.0 ms
This paper 2 GB (228 8-byte) 30 MB 3.2 KB 30 KB 376 s (0.7 ms) 1.7 ms

ZPSZ23 100 GB (230.6 64-byte) 719 MB 120.5 KB 900 KB 356 min (24.6 ms) 33.3 ms
This paper 128 GB (231 64-byte) 681 MB 51 KB 66 KB 77 min (2.2 ms) 5.3 ms

1 ZPSZ23 results are taken from Table 1 in their paper [7], which also reports local evaluation results.
2 We compare our results for a 128 GB database with their results for a 100 GB database.
3 While offline communication is identical for the two schemes (streaming the database), our amortized offline commu-
nication is smaller because we support more online queries per offline phase.
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Algorithm 1 The steaming offline algorithm

for each main or backup hint j do
Set unique hint ID hj = j
Initialize parity Pj = 0
For a main hint, set the extra index ej to a random index from a random unselected partition

end for

for k = 0 :
√
N − 1 do

Download DB[k
√
N : (k + 1)

√
N − 1] from the server ▷ download partition k

for each main or backup hint j do
(b, r)← PRF(hj , k) ▷ b is a random bit, r is a random offset within 0 to

√
N − 1

if b == 1 then ▷ partition k is selected
Pj = Pj ⊕ DB[r + k

√
N ] ▷ index r is picked from partition k

else if j is a main hint AND ⌊ej/
√
N⌋ == k then ▷ ej is in partition k

Pj = Pj ⊕ DB[ej ]
end if

end for
end for

Algorithm 2 The online algorithm

Input: requested index i

ℓ = ⌊i/
√
N⌋ ▷ ℓ is the partition that i belongs to

Find main hint j such that ej == i or b · (r + ℓ
√
N) == i where (b, r)← PRF(hj , ℓ) ▷ hint j contains i

Initialize S = ∅ and S′ = ∅ ▷ S will be the real subset and S′ will be the dummy subset
for k = 0 :

√
N − 1 do

(b, r)← PRF(hj , k)
if b == 1 then

S = S ∪ {r + k
√
N}

else if ej belongs to partition k then
S = S ∪ {ej}

else
S′ = S′ ∪ {rand() + k

√
N} ▷ add a random index from partition k to the dummy subset

end if
end for
S = S \ {i} ▷ remove the requested index from the real subset
S′ = S′ ∪ {rand() + ℓ

√
N} ▷ add a random index from partition ℓ to the dummy subset

Send (S, S′) or (S′, S) to the server with half-half probability ▷ permute the real and dummy subsets
Receive the two subset parities P and P ′ from the server ▷ in the order S and S′ are sent
Return P ⊕ Pj as DB[i]

Find backup hint j′ such that b == 0 where (b, )← PRF(j′, ℓ) ▷ backup hint j′ skips partition ℓ
hj = j′

ej = i
Pj = Pj′ ⊕ DB[i] ▷ promote backup hint j′ to be main hint j by adding i
Delete backup hint j′
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