
Non-Interactive Threshold BBS+ From
Pseudorandom Correlations

Sebastian Faust1, Carmit Hazay2, David Kretzler1, and Benjamin Schlosser1

1 Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de

2 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. The BBS+ signature scheme is one of the most prominent
solutions for realizing anonymous credentials. Its prominence is due to
properties like selective disclosure and efficient protocols for creating and
showing possession of credentials. Traditionally, a single credential issuer
produces BBS+ signatures, which poses significant risks due to a single
point of failure.
In this work, we address this threat via a novel t-out-of-n threshold
BBS+ protocol. Our protocol supports an arbitrary security threshold
t ≤ n and works in the so-called preprocessing setting. In this setting, we
achieve non-interactive signing in the online phase and sublinear com-
munication complexity in the offline phase, which, as we show in this
work, are important features from a practical point of view. As it stands
today, none of the widely studied signature schemes, such as threshold
ECDSA and threshold Schnorr, achieve both properties simultaneously.
To this end, we design specifically tailored presignatures that can be di-
rectly computed from pseudorandom correlations and allow servers to
create signature shares without additional cross-server communication.
Both our offline and online protocols are actively secure in the Universal
Composability model. Finally, we evaluate the concrete efficiency of our
protocol, including an implementation of the online phase. The online
protocol without network latency takes less than 15ms for t ≤ 30 and
credentials sizes up to 10. Further, our results indicate that the influ-
ence of t on the online signing is insignificant, < 6% for t ≤ 30, and the
overhead of the thresholdization occurs almost exclusively in the offline
phase.

Keywords: Threshold Signature · BBS+ · Pseudorandom Correlation
Functions · Pseudorandom Correlation Generators

1 Introduction

Anonymous credentials schemes, as introduced by Chaum in 1985 [Cha85] and
subsequently refined by a line of work [Che95, LRSW99, CL01, CL04, Cam06,
CDHK15, CKL+15, BBDE19, YAY19], allow an issuing party to create cre-
dentials for users, which then can prove individual attributes about themselves

without revealing their identities. The BBS+ signature scheme [ASM06, CDL16]
named after the group signature scheme of Boneh, Boyen, and Shacham [BBS04]
is one of the most prominent solutions for realizing anonymous credential schemes.
Abstractly speaking, a BBS+ signature over a set of attributes constitutes cre-
dentials, and the holder of such a credential can prove possession of individual
attributes using efficient zero-knowledge protocols. BBS+ signatures are par-
ticularly suited for anonymous credentials because of their appealing features,
including the ability to sign an array of attributes while keeping the signature
size constant, efficient protocols for blind signing, and efficient zero-knowledge
proofs for selective disclosure of signed attributes (without having to reveal
the signature). The importance of BBS+ is illustrated by the renewed atten-
tion in the research community [TZ23, DKL+23], several industrial implementa-
tions [Tri23, MAT23, Mic23], ongoing standardization efforts by the W3C Ver-
ifiable Credentials Group and IETF [LS23, LKWL23], and adaption in further
real-world applications [ASM06, Che09, BL10, BL11, CDL16]

In traditional credential systems, the credential issuer who is in possession
of the signing key constitutes a single point of failure. A powerful and widely
adapted tool mitigating such a single point of failure is to distribute the cryp-
tographic task (e.g., [Lin17, GG18, LN18, DKLS19, SA19, CCL+20, CGG+20,
KG20, KMOS21, ANO+22, CLT22, CGRS23] and many more) via so-called
threshold cryptography. Here, the cryptographic key is shared among a set of
servers such that any subset of t servers can produce a signature, while the
underlying signature scheme remains secure even if up to t − 1 servers are cor-
rupted. The thresholdization of digital signature schemes comes with significant
overhead in computation, communication, and round complexity. This is, in par-
ticular, the case for randomized signature schemes, where a random secret nonce
has to be generated among a set of servers. In the signing protocol, this nonce
is then used together with the shared key to produce the signature. Concretely,
for BBS+ signing, we require a distributed protocol to securely compute expo-
nentiation of the inverse of the secret key added to the random nonce.

The straightforward approach to compute the inverse is based on the inver-
sion protocol by Bar-Ilan and Beaver [BB89] and requires interaction between
the servers. In order to strengthen the protection against failure and corruption,
we assess it as likely for servers to be located in different jurisdictional and geo-
logical regions. In such a setting, any additional communication round involves
a significant performance overhead. Therefore, an ideal threshold BBS+ scheme
has a non-interactive signing phase that enables servers to respond to signature
requests without any cross-server interaction.

A popular approach in secure distributed computation to cope with the high
complexities of protocols is to split the computation into an input-independent
offline and input-dependent online phase [DPSZ12, NNOB12, WRK17a, WRK17b].
The offline phase provides precomputation material, which in the setting of a dig-
ital signature scheme is called presignatures [EGM96]. These presignatures are
produced during idle times of the system and facilitate an efficient online phase.
In recent years, Boyle et al. [BCGI18, BCG+19b, BCG+20a] put forth a novel

2

concept to generate precomputation material called pseudorandom correlation-
based precomputation (PCP). The main advantage of this concept is the gen-
eration of precomputation material in sublinear communication complexity in
the amount of generated precomputation material. Recently, this technique also
attracted interest for use in threshold signature protocols [ANO+22, KOR23].
In PCP, precomputed values are generated by a pseudorandom correlation gen-
erator (PCG) or a pseudorandom correlation function (PCF). These primitives
include a potentially interactive setup phase where short keys are generated and
distributed. Then, in the evaluation phase, every party locally evaluates on its
key and a common input. The outputs look pseudorandom but still satisfy some
correlation, such as oblivious linear evaluation (OLE), oblivious transfer (OT),
or multiplication triples.

1.1 Contribution

We propose a novel t-out-of-n threshold BBS+ signature scheme in the offline-
online model with an arbitrary security threshold t ≤ n. The centerpiece of our
protocol is the design of specifically tailored presignatures that can be directly
instantiated from PCG or PCF evaluations and can be used by servers to create
signature shares without any additional cross-server communication. This way,
our scheme simultaneously provides a non-interactive online signing phase and an
offline phase with sublinear communication complexity. Thus, our protocol is the
first threshold BBS+ signature scheme with non-interactive signing. Moreover,
even for the widely studied signature schemes ECDSA and Schnorr, no threshold
protocol exists that achieves both features simultaneously. We formally analyze
the static security of all our protocols in the Universal Composability framework
under active corruption.

We present an instantiation of the offline phase based on PCFs. Conceptually,
PCFs are better suited than PCGs for preprocessing signatures as PCFs allow
servers to compute presignatures only when needed. In contrast, PCGs require
the generation of a large batch of presignatures at once that need to be stored
on the server side. Unlike prior work using silent preprocessing in the context of
threshold signatures [ANO+22], we use the PCF primitive in a black-box way,
allowing for a modular treatment. In this process, we identify several issues in
using the PCF primitive in a black-box way, extend the definitional framework
of PCFs accordingly, and prove the security of existing constructions under the
adapted properties.

On a practical level, we provide an extensive evaluation of our protocol,
including an implementation and experimental evaluation of the online phase.
Since state-of-the-art PCF constructions lack concrete efficiency, we evaluate
our online protocol using PCG-based preprocessing. Given preprocessed presig-
natures, the total runtime of the online signing protocol is below 13.595 ms plus
one round trip time of the slowest client-server connection for t ≤ 30 signers and
message arrays of size k ≤ 10. Our benchmarks show that the influence of the
number of signers on the runtime of the online protocol is minimal; increasing
the number of signers from 2 to 30 increases the runtime by just 1.14%− 5.52%

3

(for message array sizes between 2 and 50). Further, our results show that the
cost of thresholdization occurs almost exclusively in the offline phase; a thresh-
old signature on a single message array takes 7.536 ms in our protocol, while
a non-threshold signature, including verification of the received signature, takes
7.248 ms; ignoring network delays which are the same in both settings.
We summarize our contribution as follows:

– We propose the first threshold BBS+ scheme with a non-interactive online
signing phase.

– Our scheme simultaneously achieves non-interactive online signing and sub-
linear communication in the offline phase. This combination is not achieved
by the widely studied threshold protocols for ECDSA and Schnorr.

– On a conceptual level, we specify an offline protocol based on PCFs.
– We prove the static security of our protocols in the Universal Composability

framework with active corruption.
– We extend the definitional framework of PCFs by introducing the notion of

strong reusable PCF.
– We provide an implementation and evaluation of the online phase.
– We propose a practical offline protocol based on PCGs and estimate its

efficiency.

1.2 Technical Overview

BBS+ signatures. LetG1,G2, andGT be groups of prime order p with generators
g1 ∈ G1 and g2 ∈ G2 and let map e : G1 × G2 → GT be a bilinear paring. A
BBS+ signature on a message array {mℓ}ℓ∈[k] is a tuple (A, e, s) with A =

(g1 · hs
0 ·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e for random nonces e, s ∈R Zp, secret key x ∈ Zp and a

set of random elements {hℓ}ℓ∈[0..k] in G1. To verify under public key gx2 , check if
e(A, gx2 ·ge2) = e(g1 ·hs

0 ·
∏

ℓ∈[k] h
mℓ

ℓ , g2) (see Appendix A for a formal description).

Distributed inverse calculation. The main difficulty in thresholdizing the BBS+
signature algorithm comes from the signing operation requiring the computation
of the inverse of x+ s without leaking x. This highly non-linear operation is ex-
pensive to be computed in a distributed way. Similar challenges are known from
other signature schemes relying on exponentiation (or a scalar multiplication in
additive notion) of the inverse of secret values, e.g., ECDSA [AHS20, CGG+20,

ANO+22, WMYC23, BS23]. The typical approach (cf. [BB89]) to compute M
1
y

for a group element M and a secret shared y is to separately open B = Ma and
δ = a · y for a freshly shared random a. The desired result can be reconstructed

by computing M
1
y = B

1
δ .

Since δ is the product of two secret shared values, it still is a non-linear
operation requiring interaction between the parties. Nevertheless, as δ is inde-
pendent of the actual message, several such values can be precomputed in an
offline phase. As explained next, a similar, yet more involved, approach can
be applied to the BBS+ protocol, allowing an efficient, non-interactive online
signing based on correlated precomputation material.

4

The threshold BBS+ online protocol. We describe a simplified, n-out-of-n ver-
sion of our threshold BBS+ protocol. Assume a BBS+ secret key x, elements
{hℓ}ℓ∈[0..k] in G1, a random blinding factor a ∈ Zp and n servers, each hav-
ing access to a preprocessed tuple (ai, ei, si, δi, αi) ∈ Z5

p, in the following called
presignatures, such that ∑

i∈[n]

δi = a(x+ e),
∑
i∈[n]

αi = as

for a =
∑
i∈[n]

ai, e =
∑
i∈[n]

ei, s =
∑
i∈[n]

si.
(1)

To sign a message array {mℓ}ℓ∈[k], each server computes Ai := (g1 ·
∏

ℓ∈[k] g
mℓ

ℓ)ai ·
hαi
0 and outputs a partial signature σi := (Ai, δi, ei, si). This allows the receiver

of the partial signatures to reconstruct δ, e and s and compute

A = (
∏
i∈[n]

Ai)
1
δ = ((g1 ·

∏
ℓ∈[k]

hmℓ

ℓ)a · has
0)

1
a(x+e)

such that the tuple (A, e, s) constitutes a valid BBS+ signature. Each signature
requires a new preprocessed tuple to prevent straightforward forgeries.

The specialized layout of our presignatures allows us to realize a non-interactive
signing procedure. In contrast, using plain multiplication triples, as often done
in multi-party computation protocols [Bea91, DPSZ12], would require one ad-
ditional round of communication. Further, our online protocol provides active
security at a low cost. This is achieved by verifying the received signatures and
works since the presignatures are created securely.

The preprocessing protocol. An appealing choice for instantiating the prepro-
cessing protocol is to use pseudorandom correlation generators (PCG) or func-
tions (PCF), as they enable the efficient generation of correlated random tuples.
More precisely, PCGs and PCFs allow two parties to expand short seeds to
fresh correlated random tuples locally. While the distributed generation of the
seeds requires more involved protocols and typically relies on general-purpose
multi-party computation, the seed size and the communication complexity of
the generating protocols are sublinear in the size of the expanded correlated
tuples [BCGI18, BCG+19b]. PCFs differ from PCGs by allowing parties to eval-
uate correlation tuples one by one, while PCGs expand seeds to a batch of tuples
at once.

Our protocol for the preprocessing phase uses PCFs in a black-box way. This
modular approach provides two benefits. On the one hand, it allows us to use any
PCF construction that satisfies our requirements, and on the other hand, this
modular approach enables a straightforward replacement of PCFs with PCGs.
We elaborate on the choice of using PCFs over PCG in the protocol description
in the following.

As mentioned above, PCGs output a single batch of correlation tuples at
once, which must be kept in storage. These batches need to be rather large to

5

amortize the cost of the expensive setup procedure; prior work using similar
correlations as presented in our work reports 216 - 225[ANO+22, BCG+20b]
tuples to be reasonable. In the simplified n-out-of-n setting, such a batch yields
a storage complexity of 0.02 - 8 GB, which we assess tolerable but sub-optimal.
In contrast, PCFs allow for generating individual tuples ad-hoc, removing the
necessity of storing a large amount of preprocessing material. As we do not expect
the creation of thousands of signatures in short intervals, PCFs are conceptually
better suited for preprocessing threshold signatures.

The correlated pseudorandom presignatures required by our online signing
procedure are specifically tailored to the BBS+ setting (cf. (1)). For these spe-
cific presignatures, there exist no tailored PCG or PCF constructions. Instead,
we show how to obtain these presignatures from simple correlations. Specifically,
we leverage oblivious linear evaluation (OLE) and vector oblivious linear evalu-
ation (VOLE) correlations. For both of these correlations, there exist PCG and
PCF constructions [BCGI18, BCG+19b, BCG+20a, BCG+20b, CRR21, OSY21,
BCG+22]. An OLE tuple is a 2-party correlation, in which party P1 gets random
values (a, u) and party P2 gets random values (s, v) such that a · s = u + v. A
VOLE tuple provides the same correlation but fixes s over all tuples computed
by the particular PCG or PCF instance. In these tuples, we call a and s the
input value of party P1 and P2. Further, the PCGs/PCFs used by our protocol
provide a so-called reusability feature, allowing parties to fix the input values
over several PCG/PCF instances. This feature is necessary to turn two-party
into multi-party correlations. It is achieved by extending the PCF definition
with the ability of both parties to provide parameters to the key generation. We
illustrate the feature in the following.

For computing the product of two secret shared values, a and s, the parties
use OLE correlations. Let α =

∑
i∈[n] ai ·

∑
j∈[n] sj , where ai and si are known

to party Pi. Only aisi can be locally computed by Pi. For all cross terms aisj
for i ̸= j, the parties use OLE correlations to get an additive share of that cross
term, i.e., aisj = ui,j + vi,j . By adding aisi to the sum of all additive shares
ui,j and vj,i, party Pi obtains an additive share of α. Note that the ai value
must be the same for all cross terms, so we require the OLE PCF to provide the
reusability feature. This allows party Pi to use the same input value ai in all
OLE correlations for the cross terms aisj with j ̸= i.

Using PCFs in a black-box way. Boyle et al. [BCG+20a] define pseudorandom
correlation functions (PCFs) and provide constructions for different correlations,
such as VOLE, based on function secret sharing of a family of weak pseudoran-
dom functions (PRFs). They differentiate between the security notions of weak
and strong PCFs. Similar to weak and strong PRFs, the definition of a weak
PCF considers random evaluation points, while a strong PCF allows the ad-
versary to query PCF evaluations on arbitrary values. [BCG+20a] also shows a
generic transformation from weak to strong PCF in the programmable random
oracle model.

In our work, we aim to deal with PCFs in a black-box way such that we can
instantiate our protocols with arbitrary PCFs fulfilling our requirements. These

6

requirements include the active security setting and the opportunity to reuse
inputs, as emphasized above. We rely on strong PCFs to cover active security
and allow the adversary to choose arbitrary evaluation points. While Boyle et
al. [BCG+20a] lay out the foundations for the reusability property, which they
call programmability, they define the property only in the passive security set-
ting. In the following, we highlight our new notion called strong reusable PCF
(srPCF), which captures the active security setting.

Identical to the definition of a PCF by Boyle et al. [BCG+20a], an srPCF
consists of a key generation Gen and an evaluation algorithm Eval. The reusabil-
ity feature allows both parties to specify an input to the key generation, which
is used to derive the correlation tuples. Additionally, an srPCF must satisfy four
properties. Three of these properties are stated by [BCG+20a], two of which we
slightly modified. Our new insight is the requirement of the key indistinguisha-
bility property, which we specifically introduce to cover malicious parties. The
key indistinguishability property states that the adversary cannot learn infor-
mation about the honest party’s input to the key generation, even if the input of
the corrupted party can be chosen arbitrarily. This property makes our notion
suitable for the active security setting.

We prove that the VOLE PCF construction by Boyle et al. [BCG+20a] fulfills
our new definition. Additionally, we present an extension of this construction for
OLE correlations and again show its security.

The t-out-of-n setting. So far, we discussed a setting where n-out-of-n servers
must contribute to the signature creation. However, in many use cases, we need
to support the more flexible t-out-of-n setting with t ≤ n. In this setting, the
secret key material is distributed to n servers, but only t must contribute to the
signing protocol. A threshold t ≤ n improves the flexibility and robustness of
the signing process, as not all servers must be online.

The typical approach in the t-out-of-n setting is to share the secret key
material using Shamir’s secret sharing [Sha79] instead of an additive sharing as
done above. While additive shares are reconstructed by summation, Shamir-style
shares must be aggregated using Lagrange interpolation, either on the client or
server side. In this work, we reconstruct on the server side due to technical
details of our PCF-based precomputation. Note that prior threshold signature
schemes leveraging PCF/PCGs (e.g., [ANO+22, KOR23]) achieve only n-out-of-
n, in contrast to a flexible t-out-of-n setting.

On a technical level, the challenge for client-side reconstruction is due to
(V)OLE correlations providing us with 2-party additive sharing of multiplica-
tions, e.g., ui,j + vi,j = aisj . For a product of two additively shared values
a · s, we can rewrite the product as

∑
i∈[n] ai ·

∑
i∈[n] si =

∑
i∈[n]

∑
j∈[n] aisj =∑

i∈[n]

∑
j∈[n] ui,j + vi,j . Here, ui,j and vi,j can be interpreted as additive shares

of the product. These additive shares are sufficient for the n-out-of-n setting.
However, it is unclear how (V)OLE outputs can be transformed to Shamir-style
sharing of a · s required for t-out-of-n with client reconstruction.

We, therefore, incorporate a share conversion mechanism from Shamir-style
shared key material into additively shared presignatures on the server side. Our

7

mechanism consists of the servers applying the corresponding Lagrange inter-
polation directly to the outputs of the VOLE correlation. More precisely, as
described above, each party Pi gets additive shares of the cross terms aixj and
ajxi for every other party Pj . Here, xℓ denotes the Shamir-style share of the
secret key belonging to party Pℓ. Let ci,j be the additive share of aixj , then
party Pi multiplies the required Lagrange coefficient Lj,T to this share and Li,T
to cj,i, where T is the set of t signers. The client provides the set of servers as
part of the signing request to enable the servers to compute the interpolation.
Eventually, the client receives signature shares and obtains the final signature
by performing simple additions and multiplications.

1.3 Related Work

Most related to our work are the works by Gennaro et al. [GGI19] and Doerner
et al. [DKL+23], proposing threshold protocols for the BBS+ signing algorithm.
While [GGI19] focuses on a group signature scheme with threshold issuance
based on the BBS signatures, their techniques can be directly applied to BBS+.
[DKL+23] presents a threshold anonymous credential scheme based on BBS+.
Both schemes compute the inverse using classical techniques of Bar-Ilan and
Beaver [BB89]. Moreover, they realize the multiplication of two secret shared
values by multiplying each pair of shares. While [GGI19] uses a three-round
multiplication protocol based on an additively homomorphic encryption scheme,
[DKL+23] integrates a two-round OT-based multiplier. Although the OT-based
multiplier requires a one-time setup, both schemes do not use precomputed val-
ues per signing request. This is in contrast to our scheme but at the cost of
requiring several rounds of communication during the signing. Parts of their
protocols are independent of the message that will be signed; thus, in principle,
these steps can be moved to a presigning phase. In this case, the signing phase
is non-interactive, but on the downside, the communication complexity of the
presigning phase has linear complexity. This is in contrast to our protocol, which
achieves both a non-interactive online phase and an offline phase with sublinear
complexity. In addition, both works [GGI19, DKL+23] consider a security model
tailored to the BBS+ signature scheme while we show security with respect to
a more generic threshold signature ideal functionality.

In the non-threshold setting, Tessaro and Zhu [TZ23] show that short BBS+
signatures, where the signature consists only of A and e, are also secure under
the q-SDH assumption. Their results suggest removing s to reduce the signature
size to one group element and a scalar. Like prior proofs of BBS+, their security
proof in the standard model incurs a multiplicative loss. However, they present
a tight proof in the Algebraic Group Model [FKL18]. We discuss the impact of
their work on our evaluation in Appendix K.

Another anonymous credential scheme with threshold issuance, called Co-
conut, is proposed by Sonnino et al. [SAB+19] and the follow-up work by Rial
and Piotrowska [RP22]. Their scheme is based on the Pointcheval-Sanders (PS)
signature scheme, which allows them to have a non-interactive issuance phase
without coordination or precomputation. We emphasize that the PS signature

8

scheme is less popular than BBS+ and not subject to standardization efforts.
The security of PS and Coconut is based on a modified variant of the LRSW
assumption introduced in [PS16]. This assumption is interactive in contrast to
the q-Strong Diffie-Hellman assumption on which the security of BBS+ is based.
While PS and Coconut also support multi-attribute credentials, the secret and
public key size increases linearly in the number of attributes. In BBS+, the key
size is constant. Further, PS and, therefore, the Coconut scheme relies on Type-3
pairings, while our scheme can be instantiated with any pairing type. The secu-
rity of Coconut was not shown under concurrent composition while our scheme
is analyzed in the Universal Composability framework.

Like our work, [ANO+22] and [KOR23] leverage pseudorandom correlations
for threshold signatures. [ANO+22] presents a ECDSA scheme, while [KOR23]
focuses on Schnorr signatures. [ANO+22] constructs a tailored PCG generat-
ing ECDSA- presignatures while our scheme uses existing PCGs/PCFs in a
black-box way and combines the OLE and VOLE correlations to BBS+ pres-
ignatures. Further, in contrast to our work, [ANO+22] presents an n-out-of-n
protocol without a flexible threshold. [KOR23] introduces the new notion of
a discrete log PCF and constructs a 2-party protocol based on this primitive.
In contrast to our work, [KOR23] captures only the 2-out-of-2 setting. Both
schemes [ANO+22, KOR23] require additional per-presignature communication.
Depending on the phase this communication is assigned to, the schemes either do
not provide sublinear communication in the offline phase or require two rounds
of communication in the online phase.

2 Preliminaries

Throughout this work, we denote the security parameter by λ ∈ N, the set
{1, . . . , k} as [k], the set {0, 1, . . . , k} as [0..k], the number of parties by n and a
specific party by Pi. The set of indices of corrupted parties is denoted by C ⊊ [n]
and honest parties are denoted by H = [n] \ C.

We model our protocol in the Universal Composability (UC) framework by
Canetti [Can01]. We refer to Appendix B for a brief introduction to UC. We
model a malicious adversary corrupting up to t − 1 parties. We consider static
corruption and a rushing adversary. Moreover, our protocols are in the syn-
chronous communication model.

We make use of a bilinear mapping following the definition of [BF01, BBS04].
A bilinear mapping is described by three cyclic groups (G1,G2,GT) of prime
order p, generators g1 ∈ G1, g2 ∈ G2, and a pairing e : G1 × G → GT . We call
e a bilinear map iff it can be computed efficiently, e(ua, vb) = e(u, v)ab for all
(u, v, a, b) ∈ G1 × G2 × Zp × Zp, and e(g1, g2) ̸= 1 for all generators g1 and g2.
We refer to [BF01] for a more formal specification.

9

3 Reusable Pseudorandom Correlation Function

On a high level, a pseudorandom correlation function (PCF) allows two parties to
generate a large amount of correlated randomness from short seeds. PCF extends
the notion of a pseudorandom correlation generator (PCG) in a similar way as
a pseudorandom function extends a pseudorandom generator. While a PCG
generates a large batch of correlated randomness during one-time expansion, a
PCF allows the creation of correlation samples on the fly.

A PCF consists of two algorithms, Gen and Eval. The Gen algorithm computes
a pair of short keys distributed to two parties. Then, each party can locally
evaluate the Eval algorithm using its key and public input to generate an output
of the target correlation. One example of such a correlation is the oblivious linear
evaluation (OLE) correlation, defined by a pair of random values (y0, y1) where
y0 = (a, u) and y1 = (s, v) such that v = as+ u. Other meaningful correlations
are oblivious transfer (OT) and multiplication triples.

PCFs are helpful in two- and multi-party protocols, where parties first set
up correlated randomness and then use this data to speed up the computation
[DILO22, ANO+22, KOR23].

This section presents our definition of reusable PCFs, extending the definition
of programmable PCFs from [BCG+20a], which is stated in Appendix C for
completeness. Furthermore, we state constructions of reusable PCFs and argue
why they satisfy our new definition in Appendix D.

Our modifications and extensions of the definition [BCG+20a] reflect the
challenges we faced when using PCFs as black-box primitives in our threshold
BBS+ protocol. We present our definition and highlight these challenges and
changes in the following.

3.1 Definition

As mentioned above, a PCF realizes a target correlation Y. For some correlations,
like VOLE, parts of the correlation outputs are fixed over all outputs. In the
example of VOLE, where the correlation is v = as + u over some ring R, the s
value is fixed for all correlation tuples.

Additionally, in a multi-party setting, we like PCF constructions that allow
parties to obtain the same values for parts of the correlation output in multiple
PCF instances. Concretely, assume party Pi evaluates one VOLE PCF instance
with party Pj and one with party Pk. Pi evaluates the PCF to (ai,j , ui,j) for
the first instance and (ai,k, ui,k) for the second instance. Here, we want to give
party Pi the opportunity to get ai,j = ai,k when applied on the same input. This
property is necessary to construct multi-party correlations from two-party PCF
instances.

To formally model the abovementioned properties, we define a target corre-
lation as a tuple of probabilistic algorithms (Setup,Y), where Setup takes two
inputs and creates a master key mk. These inputs enable fixing parts of the cor-
relation, e.g., the fixed value s. Algorithm Y uses the master key and an index

10

i to sample correlation outputs. The index i helps to sample the same value if
one of the Setup inputs is identical for multiple invocations.

Finally, we follow [BCG+20a] and require a target correlation to be reverse-
sampleable to facilitate a suitable definition of PCFs. In contrast to [BCG+20a],
our definition of a target correlation explicitly considers the reusability of values
over multiple invocations.

Definition 1 (Reverse-sampleable and indexable correlation with setup).
Let ℓ0(λ), ℓ1(λ) ≤ poly(λ) be output length functions. Let (Setup,Y) be a tuple of
probabilistic algorithms, such that Setup on input 1λ and two parameters ρ0, ρ1
returns a master key mk; algorithm Y on input 1λ, mk, and index i returns a

pair of outputs (y
(i)
0 , y

(i)
1) ∈ {0, 1}ℓ0(λ) × {0, 1}ℓ1(λ).

We say that the tuple (Setup,Y) defines a reverse-sampleable and indexable
correlation with setup if there exists a probabilistic polynomial time algorithm

RSample that takes as input 1λ,mk, σ ∈ {0, 1}, y(i)σ ∈ {0, 1}ℓσ(λ) and i, and

outputs y
(i)
1−σ ∈ {0, 1}ℓ1−σ(λ), such that for all mk,mk′ in the range of Setup, all

σ ∈ {0, 1} and all i ∈ {0, 1}∗ the following distributions are statistically close:

{(y(i)0 , y
(i)
1)|(y(i)0 , y

(i)
1)

$← Y(1λ,mk, i)}

{(y(i)0 , y
(i)
1)|(y′(i)0 , y

′(i)
1)

$← Y(1λ,mk′, i),

y(i)σ ← y′(i)σ , y
(i)
1−σ ← RSample(1λ,mk, σ, yσ, i)}.

Given the definition of a reverse-sampleable and indexable correlation with
setup, we define our primitive called strong reusable PCF (srPCF). Our defi-
nition builds on the definition of a strong PCF of Boyle et al. [BCG+20a] and
extends it by a reusability feature. Note that [BCG+20a] presents a separate
definition of this reusability feature for PCFs, but this property also affects the
other properties of a PCF. Therefore, we merge these definitions. Additionally,
the reusability definition of Boyle et al. works only for the semi-honest setting,
while our definition covers malicious adversaries.

A PCF must fulfill two properties. First, the pseudorandomness property
intuitively states that the joint outputs of the Eval algorithm are computationally
indistinguishable from outputs of the correlation Y. Second, the security property
intuitively guarantees the output is pseudorandom even given one key.

Similarly to the notions of weak and strong PRFs, there exist the notions of
weak and strong PCFs. For a weak PCF, we consider the Eval algorithm to be
executed on randomly chosen inputs, while for a strong PCF, we consider arbi-
trarily chosen inputs. Boyle et al. [BCG+20a] showed a generic transformation
from a weak to a strong PCF using a hash function modeled as a programmable
random oracle. We use this transformation later in constructing srPCFs.

A PCF needs to meet two additional requirements to satisfy the reusabil-
ity features. First, an adversary cannot learn any information about the other
party’s input used for the key generation from its own key. This is modeled by
the key indistinguishability property and the corresponding game in Figure 3.
In the game, the challenger samples two random values and uses one for the key

11

generation. Then, given the corrupted party’s key and the random values, the
adversary has to identify which of the two random value was used. Second, two
efficiently computable functions must exist to compute the reusable parts of the
correlation from the setup input and the public evaluation input. Formally, we
state the definition of a strong reusable PCF next.

Definition 2 (Strong reusable pseudorandom correlation function (sr-
PCF)). Let (Setup,Y) be a reverse-sampleable and indexable correlation with
setup which has output length functions ℓ0(λ), ℓ1(λ), and let λ ≤ n(λ) ≤ poly(λ)
be an input length function. Let (PCF.Gen,PCF.Eval) be a pair of algorithms with
the following syntax:

– PCF.Gen(1λ, ρ0, ρ1) is a probabilistic polynomial-time algorithm that on input
the security parameter 1λ and reusable inputs ρ0, ρ1 outputs a pair of keys
(k0, k1).

– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input
σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}n(λ) outputs a value yσ ∈
{0, 1}ℓσ(λ).

We say (PCF.Gen,PCF.Eval) is a strong reusable pseudorandom correlation func-
tion (srPCF) for (Setup,Y), if the following conditions hold:

– Strong pseudorandom Y-correlated outputs. For every non-uniform
adversary A of size poly(λ) asking at most poly(λ) queries to the oracle
Ob(·), it holds ∣∣∣∣Pr[Exps-prA (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exps-prA (λ) is as defined in Figure 1.
– Strong security. For each σ ∈ {0, 1} and non-uniform adversary A of size

poly(λ) asking at most poly(λ) queries to oracle Ob(·), it holds∣∣∣∣Pr[Exps-secA,σ (λ) = 1]− 1

2

∣∣∣∣ ≤ negl(λ)

for all sufficiently large λ, where Exps-secA,σ (λ) is as defined in Figure 2.
– Programmability. There exist public efficiently computable functions f0, f1

for which

Pr


ρ0, ρ1

$← {0, 1}∗, x $← {0, 1}n(λ)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

(a, c)← PCF.Eval(0, k0, x),

(b, d)← PCF.Eval(1, k1, x)

:
a = f0(ρ0, x)

b = f1(ρ1, x)

 ≥ 1− negl(λ).

– Key indistinguishability. For any σ ∈ {0, 1} and non-uniform adversary
A = (A0,A1), it holds

Pr[Expkey-indA,σ (λ) = 1] ≤ 1

2
+ negl(λ)

for all sufficiently large λ, where Expkey-indA,σ is as defined in Figure 3.

12

Exps-prA (λ) :

(ρ0, ρ1)← A0(1
λ)

mk← Setup(1λ, ρ0, ρ1)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)
Q = ∅
b

$← {0, 1}
b′ ← AOb(·)

1 (1λ)
if b = b′return 1
else return 0

O0(x) :

if (x, y0, y1) ∈ Q :
return (y0, y1)

else :

(y0, y1)← Y(1λ,mk, x)

Q = Q∪ {(x, y0, y1)}
return (y0, y1)

O1(x) :

for σ ∈ {0, 1} :
yσ ← PCF.Eval(σ, kσ, x)

return (y0, y1)

Fig. 1: Strong pseudorandom Y-correlated outputs of a PCF.

Exps-secA,σ(λ) :

(ρ0, ρ1)← A0(1
λ)

mk← Setup(1λ, ρ0, ρ1)

(k0, k1)← PCF.Gen(1λ, ρ0, ρ1)

b
$← {0, 1}

b′ ← AOb(·)
1 (1λ, σ, kσ)

if b = b′return 1
else return 0

O0(x) :

y1−σ ← PCF.Eval(1− σ, k1−σ, x)

return y1−σ

O1(x) :

yσ ← PCF.Eval(σ, kσ, x)

y1−σ ← RSample(1λ,mk, σ, yσ, x)

return y1−σ

Fig. 2: Strong security of a PCF.

3.2 Correlations

Our OLE correlation over ring R is given by c1 = ab + c0, where a, b, c0, c1 ∈
R. Moreover, we require a and b being computed by a weak psuedorandom
function (PRF). Formally, we define the reverse-sampleable and indexable target
correlation with setup (SetupOLE,YOLE) over ring R as

(k, k′)← SetupOLE(1
λ, k, k′) ,

((Fk(i), u), (Fk′(i), v))← YOLE(1
λ, (k, k′), i) such that

v = Fk(i) · Fk′(i) + u ,

(2)

where u, v ∈ R and F being a (PRF) with key k, k′. Note that while the
Setup algorithm for our OLE and VOLE correlation essentially is the iden-
tity function, the algorithm might be more complex for other correlations. The
reverse-sampling algorithm is defined such that (Fk′(i), Fk(i) · Fk′(i) + u) ←

13

Expkey-indA,σ (λ) :

b
$← {0, 1}

ρ
(0)
1−σ, ρ

(1)
1−σ

$← {0, 1}∗

ρ1−σ ← ρ
(b)
1−σ

ρσ ← A0(1
λ)

(k0, k1)← PCF.Genp(1
λ, ρ0, ρ1)

b′ ← A1(1
λ, kσ, ρ

(0)
1−σ, ρ

(1)
1−σ)

if b′ = b return 1
else return 0

Fig. 3: Key Indistinguishability of a reusable PCF.

RSampleOLE(1
λ, (k, k′), 0, (Fk(i), u), i) and (Fk(i), v − Fk(i) · Fk′(i)) ←

RSampleOLE(1
λ, (k, k′), 1, (Fk′(i), v), i).

In contrast to OLE, the value b is fixed over multiple correlation samples, i.e.,
c⃗1 = a⃗b+ c⃗0, where each correlation sample contains one component of the vec-
tors. We formally define the reverse-sampleable and indexable target correlation
with setup (SetupVOLE,YVOLE) over ring R as

(k, b)← SetupVOLE(1
λ, k, b) ,

((Fk(i), u), (b, v))← YVOLE(1
λ, (k, b), i) such that

v = Fk(i) · b+ u ,

(3)

where b, u, v ∈ R and F being a weak pseudorandom function (PRF) with
key k. Note that b is fixed over all correlation samples, while u and v are
not. The reverse-sampling algorithm is defined such that (b, Fk(i) · b + u) ←
RSampleVOLE(1

λ, (k, b), 0, (Fk(i), u), i) and (Fk(i), v−Fk(i)·b)← RSampleVOLE(1
λ, (k, b), 1, (b, v), i).

We state PCF constructions realizing these definitions of OLE and VOLE cor-
relations in Appendix D. The VOLE PCF construction is taken from [BCG+20a],
and the OLE PCF follows a straightforward adaptation of the VOLE PCF.

4 Threshold Online Protocol

In this section, we present our threshold BBS+ protocol. This protocol yields a
signing phase without interaction between the signers and a flexible threshold
parameter t. Moreover, we show the security of our protocol against a malicious
adversary statically corrupting up to t− 1 parties in the UC framework.

Section 4.1 states our modifications to the ideal functionality for threshold
signature schemes introduced by Canetti et al. [CGG+20]. The full functionality
is given in Appendix E. We use this functionality to prove UC security of our
scheme. To be more generic, we deliberately chose the generic threshold signa-
ture functionality by Canetti et al. [CGG+20] over a specific BBS+ functionality

14

such as the one used in [DKL+23]. Proving security under a generic threshold
functionality enables our threshold BBS+ protocol to be used whenever a thresh-
old signature scheme is required (e.g., for the construction of a more complex
protocol such as an anonymous credential system).

Our protocol uses precomputation to accelerate online signing. An intuitive
description of the precomputation used is given in Section 1.2. We formally model
the precomputation by describing our protocol in a hybrid model where parties
can access a hybrid preprocessing functionality FPrep. Section 4.2 states the hy-
brid functionality FPrep. Using a hybrid model allows us to abstract from the
concrete instantiation of the preprocessing functionality. We present a concrete
instantiation of FPrep in Section 5.

Finally, Section 4.3 formally states our threshold BBS+ protocol and provides
proof in the UC framework. We refer the reader to the technical overview in
Section 1.2 for a high-level description of our protocol.

4.1 Ideal Threshold Signature Functionality

We base our security analysis on the ideal threshold signature functionality Ftsig

of Canetti et al. [CGG+20]. We modify the functionality in the following aspects.
First, we allow the parties to specify a set of signers T during the signing request.
This allows us to account for a flexible threshold of signers instead of requiring
all n parties to sign. Second, we model the signed message as an array of mes-
sages. This change accounts for signature schemes allowing signing k messages
simultaneously, such as BBS+. Third, we remove the identifiability property, the
key-refresh, and the corruption/decorruption interface. The key-refresh and the
corruption/decorruption interface are not required in our scenario as we consider
a static adversary in contrast to the mobile adversary in [CGG+20]. Fourth, we
allow every party to sign only one message per ssid. Finally, at the end of the
signing phase, honest parties might output abort instead of a valid signature.
This modification is due to our protocol not providing robustness or identifiable
abort.

The full formal description is presented in Appendix E.

4.2 Ideal Preprocessing Functionality

The preprocessing functionality consists of two phases. First, the Initialization
phase samples a private/public key pair. Second, the Tuple phase provides cor-
related tuples upon request. In the second phase, the output values of the honest
parties are reverse sampled, given the corrupted parties’ outputs. To explicitly
model the Tuple phase as non-interactive, we require the simulator to specify
a function Tuple during the Initialization. This function defines the corrupted
parties’ output values in the Tuple phase and is computed first to reverse sample
the honest parties’ outputs.

15

Functionality FPrep

The functionality FPrep interacts with parties P1, . . . , Pn and ideal-world ad-
versary S. The functionality is parameterized by a threshold parameter t.
During the initialization, S provides a tuple function Tuple(·, ·, ·)→ Z5

p.
Initialization. Upon receiving (init, sid) from all parties,

– sample the secret key sk
$← Zp

– send pk = (gsk2) to S. Upon receiving (ok,Tuple(·, ·, ·)) from S, send pk to
every honest party.

Tuple. On input (tuple, sid, ssid, T) from party Pi where i ∈ T , T ⊆ [n] of
size t do:

– If (ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T) is stored, send (ai, ei, si, δi, αi) to Pi.
– Else, compute (aj , ej , sj , δj , αj) ← Tuple(ssid, T , j) for every corrupted

party Pj where j ∈ C ∩ T . Next, sample a, e, s
$← Zp and tuples

(aj , ej , sj , δj , αj) over Zp for j ∈ H ∩ T such that∑
ℓ∈T

aℓ = a
∑
ℓ∈T

eℓ = e
∑
ℓ∈T

sℓ = s∑
ℓ∈T

δℓ = a(sk+ e)
∑
ℓ∈T

αℓ = as
(4)

Store (sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T) and send (sid, ssid, ai, ei, si, δi, αi)
to honest party Pi.

Abort. On input (abort, sid) from S, send abort to all honest parties and
halt.

4.3 Online Signing Protocol

We formally state our threshold BBS+ protocol next and analyze its security
afterwards.

Construction 1: πTBBS+

We describe the protocol from the perspective of an honest party Pi.
Public Parameters. Number of parties n, size of message arrays k, security thresh-
old t, a bilinear mapping tuple (G1,G2,GT , p, g1, g2, e) and randomly sampled G1

elements {hℓ}ℓ∈[0..k]. Let Verifypk(·, ·) be the BBS+ verification algorithm as defined
in Appendix A.
KeyGen.

– Upon receiving (keygen, sid) from Z, send (init, sid) to FPrep and receive pk in
return.

– Upon receiving (pubkey, sid) from Z output (pubkey, sid,Verifypk(·, ·)).

16

Sign. Upon receiving (sign, sid, ssid, T ,m = {mℓ}ℓ∈[k]) from Z with Pi ∈ T and no
tuple (sid, ssid, ·) is stored, perform the following steps:

1. Send (tuple, sid, ssid, T) to FPrep and receive tuple (ai, ei, si, δi, αi).
2. Store (sid, ssid,m) and send (sid, ssid, T , Ai := (g1 ·

∏
ℓ∈[k] h

mℓ
ℓ)ai · hαi

0 , δi, ei, si)
to each party Pj ∈ T .

3. Once (sid, ssid, T , Aj , δj , ej , sj) is received from every party Pj ∈ T \ {Pi},
(a) compute e =

∑
ℓ∈T eℓ, s =

∑
ℓ∈T sℓ, ϵ =

(∑
ℓ∈T δℓ

)−1
, and A = (Πℓ∈T Aℓ)

ϵ.
(b) If Verifypk(m, (A, e, s)) = 1, set out = σ = (A, e, s). Otherwise, set out =

abort. Then, output (sig, sid, ssid, T ,m, out).

Verify. Upon receiving (verify, sid,m = {mℓ}ℓ∈[k], σ,Verifypk′(·, ·)) from Z output
(verified, sid,m, σ,Verifypk′(m, σ)).

Remark. While we simplified our UC model to capture the scenario where every
signer obtains the final signature, we expect real-world scenarios to have a dedi-
cated client which is the only party to obtain the signature. In the later case, the
signers send the partial signature in Step 2 only to the client and Steps 3a and
3b are performed by the client. We stress that in both cases the communication
follows a request-response pattern which is the minimum for MPC protocols.
Moreover, note that the (tuple, ·, ·, ·)-call to FPrep does not involve additional
communication when being instantiated based on PCGs or PCFs as done in this
work.

Theorem 1. Assuming the strong unforgeability of BBS+, protocol πTBBS+ UC-
realizes Ftsig in the FPrep-hybrid model in the presence of malicious adversaries
controlling up to t− 1 parties.

The proof is given in Appendix F.

4.4 Anonymous Credentials and Blind Signing

BBS+ signatures can be used to design anonymous credential schemes as follows.
To receive a credential, a client sends a signing request to the servers in form
of a message arry, which contains its public and private credential information.
Public parts of the credentials are sent in clear, while private information is
blinded. The client can add zero-knowledge proofs that blinded messages satisfy
some predicate. These proofs enable the issuing servers to enforce a signing
policy even though they blindly sign parts of the messages. Given a credential,
clients can prove in zero knowledge that their credential fulfills certain predicates
without leaking their signature.

Our scheme must be extended by a blind-signing property to realize the
described blueprint. Precisely, we require a property called partially blind signa-
tures [AO00]. This property prevents the issuer from learning private information
about the message to be signed.

To transform our scheme into a partially blind signature scheme, we follow
the approach of [ASM06]. Let {mℓ}ℓ∈[k] be the set of messages representing the

17

client’s credential information. Without loss of generality, we assume that mk is
the public part. In order to blind its messages, the client computes a Pedersen
commitment [Ped91] on the private messages: C = gs

′

1 ·
∏

ℓ∈[k−1] h
mℓ

ℓ for a random

s′ and a zero-knowledge proof π that C is well-formed, i.e., that the client knows
(s′, {mℓ}ℓ∈[k−1]). The client sends (T , C, π,mk) and potential zero-knowledge
proofs for signing policy enforcement to the servers. Each server Pi for i ∈ T
replies with (Ai = (g1 ·C ·hmk

k)ai ·hαi
0 , δi, ei, si). The client computes e, s, and A

as before but outputs signature (A, e, s∗ = s′+ s) which yields a valid signature.

As the blinding mechanism and the resulting signatures are equivalent in
the non-threshold BBS+ setting, we can use existing zero-knowledge proofs for
policy enforcement and credential usage from the non-threshold setting.

5 Threshold Preprocessing Protocol

We state our threshold BBS+ signing protocol in Section 4 in a FPrep-hybrid
model. Now, we present an instantiation of the FPrep functionality using pseu-
dorandom correlation functions (PCFs). In particular, our πPrep protocol builds
on PCFs for VOLE and OLE correlations. The resulting protocol consists of an
interactive Initialization and a non-interactive Tuple phase, consisting only of
the local PCF evaluations and additional local computation. We now give an
intuition of our preprocessing protocol and present formal definitions in Sec-
tion 5.1-5.3. In Section 5.4 we briefly give an intuition about instantiating our
precomputation using pseudorandom correlation generators (PCGs) instead of
PCFs.

Our preprocessing protocol consists of three steps: the first two are part of
the Initialization phase, and the third one builds the Tuple phase. First, the
parties set up a secret and corresponding public key. For the BBS+ signature
scheme, the public key is pk = gx2 , while the secret key is sk = x, which is
secret-shared using Shamir’s secret sharing, i.e., party Pi knows ski = F (i) for
a random polynomial P with P (0) = sk. This procedure constitutes a standard
distributed key generation protocol for a DLOG-based cryptosystem. Therefore,
we abstract from the concrete instantiation of this protocol and model the key
generation as a hybrid functionality FKG.

Second, the parties set up the keys for the PCF instances. The protocol uses
two-party PCFs, meaning each pair of parties sets up required instances. At the
time of writing, no PCF construction with a tailored MPC protocol for setting
up the keys exists. Therefore, we model the PCF key generation as a hybrid
functionality FSetup.

Third, every party in the signer set of a signing request executes the Tuple
phase. In this phase party Pi generates (ai, ei, si, δi, αi), where the values fulfill
correlation (4). To this end, each party samples ai, ei, si such that the ai values
constitute an additive secret sharing of a. The same holds for e and s. Then,∑

ℓ∈T αℓ = as can be rewritten as as =
∑

ℓ∈T aℓ ·
∑

j∈T sj =
∑

ℓ∈T
∑

j∈T aℓsj .
Each multiplication aℓsj is turned into additive shares using an OLE correlation,

18

i.e., c1− c0 = aℓsj . The parties use PCF instances to compute this OLE correla-
tion. Finally, party Pi locally adds aisi and the outputs of its PCF evaluations
to get an additive sharing of as. The same idea works for computing δi such
that

∑
ℓ∈T δℓ = a(sk+ e) = ask+ ae. Note that while the values a, e, s are fresh

random values for each signing request, sk is fixed. Therefore, the parties use
VOLE correlations to compute ask instead of OLE correlations.

Note that party Pi uses PCF instances for computing additive shares of aisj
and aisℓ for two different parties Pj and Pℓ. Since ai must be the same for both
products, we use reusable PCFs so parties can fix ai over multiple PCF instances.
In addition, parties evaluate the PCFs on ssid as input. As ssid is provided by
the environment, we require strong PCFs. Based on these two requirements, our
protocol relies on strong reusable PCFs defined in Section 3.

Next, we present the hybrid key generation functionality in Section 5.1 and
the hybrid setup functionality in Section 5.2. Then, we formally state and prove
our PCF-based preprocessing protocol in the (FKG,FSetup)-hybrid model in Sec-
tion 5.3.

5.1 Key Generation Functionality

We abstract from the concrete instantiation of the key generation. Therefore,
we state a very simple key generation functionality for discrete logarithm-based
cryptosystems similar to the functionality of [Wik04]. The functionality describes
a standard distributed key generation for discrete logarithm-based cryptosys-
tems and can be realized by [GJKR99, Wik04] or the key generation phase of
[CGG+20] or [DKL+23].

Functionality FKG

The functionality is parameterized by the order of the group from which the
secret key is sampled p, a generator for the group of the public key g2, and a
threshold parameter t. The key generation functionality interacts with parties
P1, . . . , Pn and ideal-world adversary S.
Key Generation:
Upon receiving (keygen, sid) from every party Pi and
(corruptedShares, sid, {skj}j∈C) from S:

– Sample random polynomial F ∈ Zp[X] of degree t− 1 such that F (j) = skj
for every j ∈ C.

– Set sk = F (0), pk = gsk2 , skℓ = F (ℓ) and pkℓ = gskℓ2 for ℓ ∈ [n].
– Send (sid, ski, pk, {pkℓ}ℓ∈[n]) to every party Pi.

5.2 Setup Functionality

The setup functionality gets random values, secret key shares, and partial public
keys as input from every party. Then, it first checks if the secret key shares and

19

the partial public keys match and next generates the PCF keys using the random
values. Finally, it returns the generated PCF keys to the parties.

At the time of writing, no PCF construction with a tailored key generation
protocol exists. Therefore, we abstract from a concrete instantiation by speci-
fying this functionality. Nevertheless, FSetup can be instantiated using general-
purpose MPC.

Functionality FSetup

Let (PCFVOLE.Gen,PCFVOLE.Eval) be an srPCF for VOLE correlations and
let (PCFOLE.Gen,PCFOLE.Eval) be an srPCF for OLE correlations. The setup
functionality interacts with parties P1, . . . , Pn.
Setup:

Upon receiving (setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)ℓ }ℓ∈[n]) from every party Pi:

– Check if gskℓ2 = pk
(i)
ℓ for every ℓ, i ∈ [n]. If the check fails, send abort to all

parties.
– Else, compute for every pair of parties (Pi, Pj):

• (kVOLE
i,j,0 , kVOLE

i,j,1)← PCFVOLE.Gen(1
λ, ρ

(i)
a , skj),

• (k
(OLE,1)
i,j,0 , k

(OLE,1)
i,j,1)← PCFOLE.Gen(1

λ, ρ
(i)
a , ρ

(j)
s), and

• (k
(OLE,2)
i,j,0 , k

(OLE,2)
i,j,1)← PCFOLE.Gen(1

λ, ρ
(i)
a , ρ

(j)
e).

– Send keys (sid, kVOLE
i,j,0 , kVOLE

j,i,1 , k
(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 ,

k
(OLE,2)
j,i,1)j ̸=i to every party Pi.

5.3 PCF-based Preprocessing Protocol

In this section, we formally present our PCF-based preprocessing protocol in the
(FKG,FSetup)-hybrid model.

Construction 2: πPrep

Let (PCFVOLE.Gen,PCFVOLE.Eval) be an srPCF for VOLE correlations and let
(PCFOLE.Gen,PCFOLE.Eval) be an srPCF for OLE correlations.
We describe the protocol from the perspective of Pi.
Initialization. Upon receiving input (init, sid), do:

1. Send (keygen, sid) to FKG.

2. Upon receiving (sid, ski, pk, {pk(i)ℓ }ℓ∈[n]) from FKG, sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e ∈ {0, 1}λ

and send (setup, sid, ρ
(i)
a , ρ

(i)
s , ρ

(i)
e , ski, {pk(i)ℓ }ℓ∈[n]) to FSetup.

3. Upon receiving (sid, kVOLE
i,j,0 , k

VOLE
j,i,1 , k

(OLE,1)
i,j,0 , k

(OLE,1)
j,i,1 , k

(OLE,2)
i,j,0 ,

k
(OLE,2)
j,i,1)j ̸=i from FSetup, output pk.

Tuple. Upon receiving input (tuple, sid, ssid, T), compute:

4. for j ∈ T \ {i}:
– (ai, c

VOLE
i,j,0) = PCFVOLE.Eval(0, k

VOLE
i,j,0 , ssid),

20

– (ski, c
VOLE
j,i,1) = PCFVOLE.Eval(1, k

VOLE
j,i,0 , ssid),

– (ai, c
(OLE,1)
i,j,0) = PCFOLE.Eval(0, k

(OLE,1)
i,j,0 , ssid),

– (si, c
(OLE,1)
j,i,1) = PCFOLE.Eval(1, k

(OLE,1)
j,i,1 , ssid),

– (ai, c
(OLE,2)
i,j,0) = PCFOLE.Eval(0, k

(OLE,2)
i,j,0 , ssid), and

– (ei, c
(OLE,2)
j,i,1) = PCFOLE.Eval(1, k

(OLE,2)
j,i,1 , ssid).

5. δi = ai(ei + Li,T ski) +
∑

j∈T \{i}

(
Li,T cVOLE

j,i,1 − Lj,T cVOLE
i,j,0 + c

(OLE,2)
j,i,1 − c

(OLE,2)
i,j,0

)
6. αi = aisi +

∑
j∈T \{i}

(
c
(OLE,1)
j,i,1 − c

(OLE,1)
i,j,0

)
Finally, output (sid, ssid, ai, ei, si, δi, αi).

Theorem 2. Let PCFVOLE be an srPCF for VOLE correlations and let PCFOLEbe
an srPCF for OLE correlations. Then, protocol πPrep UC-realizes FPrep in the
(FKG,FSetup)-hybrid model in the presence of malicious adversaries controlling
up to t− 1 parties.

We state our simulator in Appendix G, provide a sketch in Appendix H, and
the full indistinguishability proof in Appendix I.

5.4 PCG-based Preprocessing

Instead of using PCFs, we can also use PCGs to instantiate our preprocessing
phase. On a high level, our protocol presented in Section 5.3 uses VOLE and
OLE PCFs. For VOLE and OLE correlations, PCG constructions were proposed
in [BCGI18, BCG+19b, BCG+19a, SGRR19, BCG+20b, YWL+20, CRR21].
It remains to show that these constructions fulfill a notion similar to strong
reusability defined in Section 3.

In a practical setting, a PCG-based precomputation requires the parties to
perform the PCG expansion directly after the seed generation. Then, the parties
store the expanded correlation outputs and use one for each signing request.

6 Evaluation

We evaluate the online, signing request-dependent phase by implementing the
protocol, running benchmarks, and reporting the runtime and the communica-
tion complexity. For comparison, we also implement and benchmark the non-
threshold BBS+ signing algorithm. We open-source our prototype implementa-
tion to foster future research in this area3.

For the offline, signing request-independent phase, we compute the commu-
nication, storage, and computation complexity. Although PCFs are conceptually
better suited for our offline phase than PCGs, they lack efficient instantiations
(for OLE correlations). Therefore, we focus our evaluation on determining the
practicability of our protocol on a PCG-based precomputation.

3 https://github.com/AppliedCryptoGroup/NI-Threshold-BBS-Plus-Code

21

https://github.com/AppliedCryptoGroup/NI-Threshold-BBS-Plus-Code

The PCG-based precomputation follows the exact same blueprint as the
PCF-based one. The only difference is that parties evaluate the PCGs directly af-
ter setting up the keys and keep the generated preprocessing material in storage.
This evaluation corresponds to Step 4 of protocol πPrep. However, it generates
the whole batch of tuples at once and is executed for all j ∈ [n] \ {i} instead
of all j ∈ T \ {j}. During the Tuple-phase, servers now retrieve the tuple iden-
tified by ssid from storage and compute the signer-set dependent presignature
(ai, ei, si, δi, αi) exactly as Step 5 and Step 6 of πPrep. These steps cannot be
pushed to the initialization as they depend on the signer-set, which is only avail-
able upon signing request submission.

In the following, we denote the security parameter by λ, the number of servers
by n, the security threshold by t, the size of the signed message arrays by k, the
number of generated precomputation tuples byN , the order of the elliptic curve’s
groups G1 and G2 by p and assume PCGs based on the Ring LPN problem with
static leakage and security parameters c and τ , i.e., the Rc − LPNp,τ assump-
tion4. This assumption is common to state-of-the-art PCG instantiations for
OLE correlations [BCG+20b].

As [TZ23] published an optimization of the BBS+ signature scheme con-
current to our work, we repeat our evaluation, including implementation and
benchmarks, for an optimized version of our protocol and present the results in
Appendix K.

6.1 Online, Signing Request-Dependent Phase

Our implementation and benchmarks of the online phase are written in Rust
and based on the BLS12 381 curve5. Note, since the BLS12 381 curve defines
an elliptic curve, we use the additive group notation in the following. This is in
contrast to the multiplicative group notation used in the protocol description.
Our code, including the benchmarks and rudimentary tests, comprises 1,400
lines. We compiled our code using rustc 1.68.2 (9eb3afe9e).
Setup. For our benchmarks, we split the protocol into four phases: Adapt
(Steps 5 and 6 of protocol πPrep), Sign (Step 2 of πTBBS+), Reconstruct (Step 3a
of πTBBS+) and Verify (Step 3b of πTBBS+). Adapt and Sign are executed by
the servers. Reconstruct and Verify are executed by the client. Together, these
phases cover the whole online signing protocol. The runtime of our protocol is
influenced by the security threshold t and the message array size k. We per-
form benchmarks for 2 ≤ t ≤ 30 and 1 ≤ k ≤ 50. The influence of the total
number of servers n is insignificant to non-existent. Our benchmarks do not
account for network latency, which heavily depends on the location of clients
and servers. Network latency, in our protocol, incurs the same overhead as in
the non-threshold setting. It can be incorporated by adding the round-trip time
of messages up to 2kB over the client’s (slowest) server connection to the total
runtime. As the online phase of our protocol is non-interactive, we benchmark

4 For 128-bit security and N = 220, [BCG+20b] reports (c, t) ∈ {(2, 76), (4, 16), (8, 5)}.
5 We have used [Alg23] for all curve operations.

22

servers and clients individually. We execute all benchmarks on a single machine
with a 14-core Intel Xeon Gold 5120 CPU @ 2.20GHz processor and 64GB of
RAM. We repeat each benchmark 100 times to account for statistical devia-
tions and report the average. For comparability, we report the runtime of basic
arithmetic operations on our machine in Table 1 in Appendix J.

Results. We report the results of our benchmarks in Figure 4. These results
reflect our expectations as outlined in the following. The Adapt phase trans-
forming PCF/PCG outputs to signing request-dependent presignatures involves
only field operations and is much faster than the other phases for small t. The
runtime increase for larger t stems from the number of field operations scaling
quadratically with the number of signers. Signers have to compute a LaGrange
coefficient for each other signer. The computation of the LaGrange coefficient
scales with t as well. The Sign phase requires the servers to compute k+2 scalar
multiplications in G1, each taking 100 times more time than the slowest field
operation (cf. Appendix J). The Reconstruct phase involves a single G1 scalar
multiplication, field operations, and G1 additions, depending on the threshold
t. The scalar multiplication, being responsible for more than 90% of the phase’s
runtime for t ≤ 30, dominates the cost of this phase. The Verify phase requires
the client to compute two pairing operations, a single scalar multiplication in
G2, k + 1 scalar multiplications G1, and multiple additions in G1 and G2. The
pairing operations and the scalar multiplication in G2 are responsible for the
constant costs visible in the graph. The scalar multiplications in G1 cause the
linear increase. The influence of G1 and G2 additions is insignificant because
they take at most 1.4% of scalar multiplication in G1. The Total runtime mainly
depends on the size of the signed message array due to the scalar multiplications
in the signing and verification step. The number of signers, t, has only a minor
influence on the online runtime; increasing the number of signers from 2 to 30
increases the runtime by 1.14% − 5.52%. Following, the online protocol can es-
sentially tolerate any amount of servers as long as the preprocessing, which is
expected to scale worse, can be instantiated efficiently for the number of servers
and the storage complexity of the generated preprocessing material does not
exceed the servers’ capacities (cf. Section 6.2).

To measure the overhead of thresholdization, we compare the runtime of our
online protocol to the runtime of signature creation (and verification) in the non-
threshold setting in Figure 5. The overhead of our online protocol consists only
of a single scalar multiplication in G1, assuming that clients also verify received
signatures in the non-threshold setting. This observation reflects our protocol
pushing all the overhead of the thresholdization.

Communication-wise, the client has to send one signing request of size (k ·
⌈log p⌉)+(t · ⌈log n⌉) bits to each of the t selected servers. By deriving the signer
set via a random oracle, we can reduce the size of the request to (k ·⌈log p⌉). Each
selected server has to send a partial signature of size (3⌈log p⌉+ |G1|). In case of
the BLS12 381 curve, ⌈log p⌉ equals 381 bits whereas |G1| equals 762 bits. Parties
can also encode G1 elements with 381 bits by only sending the x-coordinate of
the curve point and requiring the sender to compute the y-coordinate itself.

23

10 20 30
0

200

400

t

[µs]

(a) Adapt (Server).

10 30 50
0

5

10

15

k

[ms]

(b) Sign (Server).

10 20 30
0

100

200

300

t

[µs]

(c) Reconstruct (Client).

10 30 50
0

10

20

k

[ms]

(d) Verify (Client).

10 20 30
0

5

10

15

t

[ms]

k = 1 k = 2

k = 5 k = 10

(e) Total.

Fig. 4: The runtime of individual protocol phases (a)-(d) and the total online
protocol (e). The Adapt phase, describing Steps 5 and 6 of protocol πPrep, and the
Reconstruct phase, describing Step 3a of πTBBS+, depend on security threshold
t. The Sign phase, describing Step 2 of πTBBS+, and the signature verification,
describing Step 3b of πTBBS+, depend on the message array size k.

10 20 30 40 50
0

20

40

k

[ms] Threshold (t = 10)

Plain incl. verification

Plain excl. verification

Fig. 5: The total runtime of our online protocol compared to plain, non-threshold
signing with and without signature verification in dependence of k. The number
of signers t is insignificant (cf. Figure 4e).

24

Note that our UC functionality models a scenario where every signer obtains
the final signature. Therefore, the partial signatures are sent to all other signers.
However, by incorporating a dedicated client into the model, the signers can send
the partial signatures only to the client. While we expect this to be sufficient
for real-life settings, it makes the model more messy. We emphasize that this
request-response behavior is the minimum interaction for MPC protocols. As
there is no interaction between the servers, this setting is referred to as non-
interactive in the literature [CGG+20, ANO+22].

6.2 Offline, Signing Request-Independent Phase

For the evaluation of the offline, signing request-independent phase, we focus
on a PCG-based preprocessing, analyzing the communication complexity of the
distributed PCG seed generation, the storage complexity of the PCG seeds and
the generated tuples, and the computation complexity of the seed expansions.

Existing fully distributed PCG constructions for OLE-correlations [BCG+20b,
ANO+22] do not separate between the PCG seed generation and the PCG eval-
uation phase. Instead, they merge both phases into one distributed protocol.
These distributed protocols make use of secret sharing-based general-purpose
MPC protocols optimized for different kinds of operations (binary [NNOB12],
field [DPSZ12, DKL+13], or elliptic curve [DKO+20]) as well as a special-purpose
protocol for the computation of a two-party distributed point function (DPF)
presented in [BCG+20b]. As the PCG-generated preprocessing material utilized
in [ANO+22] shows similarities to the material required by our online signing
protocol, we derive a distributed PCG protocol for our setting from theirs and
analyze the communication complexity accordingly. The analysis yields that the
communication complexity of a PCG-based preprocessing instantiating our of-
fline protocol is dominated by

26(ncτ)2 · (logN + log p) + 8n(cτ)2 · λ · logN

bits of communication per party.
Instead of merging the PCG setup with the PCG evaluation in one setup

protocol, it is also possible to generate the PCG seeds first, either via a trusted
party or another dedicated protocol, and execute the expansion at a later point
in time, e.g., when the next batch of presignatures is required. In this scenario,
each server stores seeds with a size of at most

log p+ 3cτ · (⌈log p⌉+ ⌈logN⌉)
+2(n− 1) · cτ · (⌈logN⌉ · (λ+ 2) + λ+ ⌈log p⌉)
+4(n− 1) · (cτ)2 · (⌈log 2N⌉ · (λ+ 2) + λ+ ⌈log p⌉)

bits if the PCGs are instantiated according to [BCG+20b].
When instantiating the precomputation with PCGs, servers must evaluate all

of the PCGs’ outputs at once. The resulting precomputation material occupies

log p ·N · (3 + 6 · (n− 1))

25

bits of storage. In [ANO+22], the authors report N = 94 019 as a reasonable
parameter for a PCG-based setup protocol. In [BCG+20b], the authors base
their analysis on N = 220 = 1048 576. To efficiently apply Fast Fourier Trans-
formation algorithms during the seed expansion, it is necessary to choose N such
that it divides p− 1. Figure 6 reports the storage complexity depending on the
number of servers n for different N . Note that the dependency on the number
of servers n stems from the fact that we support any threshold t ≤ n. In a n-
out-of-n settings, servers can execute Steps 5 and 6 of protocol πPrep during the
preprocessing, and hence, only store log p · 5N bits of preprocessing material.

0 10 20 30
0

2

4

6

n

[GB] N = 1048 576

N = 98 304

Fig. 6: Storage complexity of the precomputation material required for N ∈
{98 304, 1 048 576} signatures depending on the number of servers n.

The computation cost of the seed expansion is dominated by the ones of
the PCGs for OLE correlations. In [BCG+20b], the authors report the com-
putation complexity of expanding a seed of an OLE PCG to involve at most
N(ct)2(4+2⌊log(p/λ)⌋) PRG operations and O(c2N logN) operations in Zp. In
our protocol, each server Pi has to evaluate 4 OLE-generating PCGs for each
other server Pj ; one for each cross term (ai · ej), (aj · ei), (ai · sj), and (aj · si).
It follows that the seed expansion in our protocol is dominated by

4 · (n− 1) · (4 + 2⌊log(p/λ)⌋) ·N · (cτ)2

PRG evaluations and O(nc2N logN) operations in Zp.

6.3 Comparison to [DKL+23]

Independently of our work, [DKL+23] presented the first t-out-of-n threshold
BBS+ protocol. While we achieve a non-interactive online signing phase at the
cost of a computationally intensive offline phase, their protocol incorporates
a lightweight setup independent from the number of generated signatures but
requires an interactive signing protocol. In [DKL+23], the authors provide an
experimental evaluation of the interactive signing protocol, to which we will
compare our online signing in the following.6

As our implementation, their implementation is in Rust and based on the
BLS12 381 curve. When comparing the benchmarking machines, G1 and G2

6 We thank the authors of [DKL+23] for sharing concrete numbers of their evaluation.

26

10 20 30
0

10

20

t

[ms] Us

[DKL+23]

(a) LAN.

10 20 30
0

200

400

t

[ms] Us

[DKL+23]

(b) WAN.

Fig. 7: Runtime of the signing protocol of [DKL+23] compared to the network
adjusted runtime of our signing protocol in the LAN and WAN setting.

scalar multiplications are 20 − 30% faster on our machine, while signature ver-
ifications are 20% faster on their machine. Although not explicitly stated, the
numbers strongly indicate the choice k = 1 in [DKL+23]; the reported runtime
of non-threshold BBS+ signing is slightly larger than three G1 scalar multipli-
cations. Due to the interactivity of their protocol, their benchmarks incorporate
network delays for different settings (LAN, WAN). We add network delays to
our results to compare our benchmarks to theirs. All machines used in their
evaluation are Google Cloud c2d-standard-4 instances. In the LAN setting, all
instances are located at the us-east1-c zone. [DP20] reports a LAN latency of
0.146 ms for this zone. We add a delay of 0.3 ms to our results. In the WAN
setting, the first 12 instances in their benchmarks are located in the US, while
other machines are in Europe or the US. According to [Kum22], we add 100 ms
to our results for t < 13 and 150 ms for t ≤ 13.

In Figure 7, we compare the runtime, including latency, of our online signing
protocol to the runtimes reported in [DKL+23] for the LAN and the WAN
setting. The graphs show that our protocol outperforms the one of [DKL+23]
in both settings for every number of servers. The only exception is the runtime
for t = 2 in the WAN setting. This exception seems caused by an unusually low
connection latency between the first two servers and the client in [DKL+23].
The overhead of [DKL+23] is mainly caused by the two additional rounds of
cross-server interaction. This overhead rises with the number of servers as each
server has to communicate with each other servers and is especially severe in the
WAN setting.

Due to the high efficiency and non-interactivity of our online phase, our
protocol is more suited for settings where servers have a sufficiently long setup
interval and storage capacities to deal with the complexity of the preprocessing
phase. On the other hand, the protocol of [DKL+23] is more suited for use
cases with more lightweight servers, especially in a LAN environment where the
network delay of the additional communication is less significant.

27

References

AHS20. Jean-Philippe Aumasson, Adrian Hamelink, and Omer Shlomovits. A sur-
vey of ECDSA threshold signing. IACR Cryptol. ePrint Arch., 2020.

Alg23. Algorand. BLS12-381 Rust crate. https://github.com/algorand/

pairing-plus, 04 2023. (Accessed on 04/18/2023).
ANO+22. Damiano Abram, Ariel Nof, Claudio Orlandi, Peter Scholl, and Omer Shlo-

movits. Low-bandwidth threshold ECDSA via pseudorandom correlation
generators. In IEEE SP, 2022.

AO00. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind
signatures. In CRYPTO, 2000.

ASM06. Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k -TAA. In
SCN, 2006.

BB89. Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-tolerant com-
puting in constant number of rounds of interaction. In PODC, 1989.

BBDE19. Johannes Blömer, Jan Bobolz, Denis Diemert, and Fabian Eidens. Updat-
able anonymous credentials and applications to incentive systems. In CCS,
2019.

BBS04. Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures.
In CRYPTO, 2004.

BCG+19a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter
Rindal, and Peter Scholl. Efficient two-round OT extension and silent
non-interactive secure computation. In CCS, 2019.

BCG+19b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In CRYPTO, 2019.

BCG+20a. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Correlated pseudorandom functions from variable-density
LPN. In FOCS, 2020.

BCG+20b. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators from ring-lpn.
In CRYPTO, 2020.

BCG+22. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nico-
las Resch, and Peter Scholl. Correlated pseudorandomness from expand-
accumulate codes. In CRYPTO, 2022.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing
vector OLE. In CCS, 2018.

Bea91. Donald Beaver. Efficient multiparty protocols using circuit randomization.
In CRYPTO, 1991.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the
weil pairing. In CRYPTO, 2001.

BL10. Ernie Brickell and Jiangtao Li. A pairing-based DAA scheme further re-
ducing TPM resources. In TRUST, 2010.

BL11. Ernie Brickell and Jiangtao Li. Enhanced privacy ID from bilinear pair-
ing for hardware authentication and attestation. Int. J. Inf. Priv. Secur.
Integr., 2011.

BS23. Alexandre Bouez and Kalpana Singh. One round threshold ECDSA with-
out roll call. In CT-RSA, 2023.

Cam06. Jan Camenisch. Anonymous credentials: Opportunities and challenges. In
SEC, 2006.

28

https://github.com/algorand/pairing-plus
https://github.com/algorand/pairing-plus

Can01. Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In FOCS, 2001.

CCL+20. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico
Savasta, and Ida Tucker. Bandwidth-efficient threshold EC-DSA. In PKC,
2020.

CDHK15. Jan Camenisch, Maria Dubovitskaya, Kristiyan Haralambiev, and Markulf
Kohlweiss. Composable and modular anonymous credentials: Definitions
and practical constructions. In ASIACRYPT, 2015.

CDL16. Jan Camenisch, Manu Drijvers, and Anja Lehmann. Anonymous attes-
tation using the strong diffie hellman assumption revisited. In TRUST,
2016.

CGG+20. Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis,
and Udi Peled. UC non-interactive, proactive, threshold ECDSA with
identifiable aborts. In CCS, 2020.

CGRS23. Hien Chu, Paul Gerhart, Tim Ruffing, and Dominique Schröder. Prac-
tical schnorr threshold signatures without the algebraic group model. In
CRYPTO, 2023.

Cha85. David Chaum. Security without identification: Transaction systems to
make big brother obsolete. Commun. ACM, 1985.

Che95. Lidong Chen. Access with pseudonyms. In Cryptography: Policy and Al-
gorithms, 1995.

Che09. Liqun Chen. A DAA scheme requiring less TPM resources. In Information
Security and Cryptology, 2009.

CKL+15. Jan Camenisch, Stephan Krenn, Anja Lehmann, Gert Læssøe Mikkelsen,
Gregory Neven, and Michael Østergaard Pedersen. Formal treatment of
privacy-enhancing credential systems. In SAC, 2015.

CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation.
In EUROCRYPT, 2001.

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous
credentials from bilinear maps. In CRYPTO, 2004.

CLT22. Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Threshold lin-
early homomorphic encryption on Z/2kZ. In ASIACRYPT, 2022.

CRR21. Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent
VOLE and oblivious transfer from hardness of decoding structured LDPC
codes. In CRYPTO, 2021.

DILO22. Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenti-
cated garbling from simple correlations. In CRYPTO, 2022.

DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter
Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishonest
majority - or: Breaking the SPDZ limits. In ESORICS, 2013.

DKL+23. Jack Doerner, Yash Kondi, Eysa Lee, abhi shelat, and LakYah Tyner.
Threshold bbs+ signatures for distributed anonymous credential issuance.
In IEEE SP, 2023.

DKLS19. Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold
ECDSA from ECDSA assumptions: The multiparty case. In SP, 2019.

DKO+20. Anders Dalskov, Marcel Keller, Claudio Orlandi, Kris Shrishak, and Haya
Shulman. Securing dnssec keys via threshold ecdsa from generic mpc, 2020.

DP20. Rick Jones Derek Phanekham. How much is google cloud latency
(gcp) between regions? https://cloud.google.com/blog/products/

29

https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency

networking/using-netperf-and-ping-to-measure-network-latency,
June 2020. (Accessed on 05/04/2023).

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In CRYPTO,
2012.

EGM96. Shimon Even, Oded Goldreich, and Silvio Micali. On-line/off-line digital
signatures. J. Cryptol., 1996.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In CRYPTO, 2018.

GG18. Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA
with fast trustless setup. In CCS, 2018.

GGI19. Rosario Gennaro, Steven Goldfeder, and Bertrand Ithurburn. Fully dis-
tributed group signatures, 2019.

GJKR99. Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Se-
cure distributed key generation for discrete-log based cryptosystems. In
EUROCRYPT, 1999.

KG20. Chelsea Komlo and Ian Goldberg. FROST: flexible round-optimized
schnorr threshold signatures. In SAC, 2020.

KMOS21. Yashvanth Kondi, Bernardo Magri, Claudio Orlandi, and Omer Shlo-
movits. Refresh when you wake up: Proactive threshold wallets with offline
devices. In SP, 2021.

KOR23. Yashvanth Kondi, Claudio Orlandi, and Lawrence Roy. Two-round state-
less deterministic two-party schnorr signatures from pseudorandom corre-
lation functions. IACR Cryptol. ePrint Arch., 2023.

Kum22. Chandan Kumar. How much is google cloud latency (gcp) between re-
gions? https://geekflare.com/google-cloud-latency/, March 2022.
(Accessed on 05/04/2023).

Lin17. Yehuda Lindell. Fast secure two-party ECDSA signing. In CRYPTO, 2017.
LKWL23. Tobias Looker, Vasilis Kalos, Andrew Whitehead, and Mike Lodder. The

BBS Signature Scheme. Internet-Draft draft-irtf-cfrg-bbs-signatures-02,
Internet Engineering Task Force, March 2023. (Work in Progress).

LN18. Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practi-
cal distributed key generation and applications to cryptocurrency custody.
In CCS, 2018.

LRSW99. Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, and Stefan Wolf.
Pseudonym systems. In SAC, 1999.

LS23. Tobias Looker and Orie Steele. Bbs cryptosuite v2023. https://w3c.

github.io/vc-di-bbs/, May 2023. (Accessed on 05/04/2023).
MAT23. MATTR. mattrglobal/bbs-signatures: An implementation of bbs+ sig-

natures for node and browser environments. https://github.com/

mattrglobal/bbs-signatures, 04 2023. (Accessed on 04/18/2023).
Mic23. Microsoft. microsoft/bbs-node-reference: Typescript/node reference

implementation of bbs signature. https://github.com/microsoft/

bbs-node-reference, 04 2023. (Accessed on 04/18/2023).
NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and

Sai Sheshank Burra. A new approach to practical active-secure two-party
computation. In CRYPTO, 2012.

OSY21. Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier:
Homomorphic secret sharing and public-key silent OT. In EUROCRYPT,
2021.

30

https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://cloud.google.com/blog/products/networking/using-netperf-and-ping-to-measure-network-latency
https://geekflare.com/google-cloud-latency/
https://w3c.github.io/vc-di-bbs/
https://w3c.github.io/vc-di-bbs/
https://github.com/mattrglobal/bbs-signatures
https://github.com/mattrglobal/bbs-signatures
https://github.com/microsoft/bbs-node-reference
https://github.com/microsoft/bbs-node-reference

Ped91. Torben P. Pedersen. Non-interactive and information-theoretic secure ver-
ifiable secret sharing. In CRYPTO, 1991.

PS16. David Pointcheval and Olivier Sanders. Short randomizable signatures. In
CT-RSA, 2016.

RP22. Alfredo Rial and Ania M. Piotrowska. Security analysis of coconut, an
attribute-based credential scheme with threshold issuance. IACR Cryptol.
ePrint Arch., 2022.

SA19. Nigel P. Smart and Younes Talibi Alaoui. Distributing any elliptic curve
based protocol. In IMA, 2019.

SAB+19. Alberto Sonnino, Mustafa Al-Bassam, Shehar Bano, Sarah Meiklejohn, and
George Danezis. Coconut: Threshold issuance selective disclosure creden-
tials with applications to distributed ledgers. In NDSS, 2019.

SGRR19. Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana
Raykova. Distributed vector-ole: Improved constructions and implementa-
tion. In CCS, 2019.

Sha79. Adi Shamir. How to share a secret. Commun. ACM, 1979.

Tri23. Trinsic. Credential api - documentation. https://docs.trinsic.

id/reference/services/credential-service/, 04 2023. (Accessed on
04/18/2023).

TZ23. Stefano Tessaro and Chenzhi Zhu. Revisiting BBS signatures. In EURO-
CRYPT, 2023.

Wik04. Douglas Wikström. Universally composable DKG with linear number of
exponentiations. In SCN, 2004.

WMYC23. Harry W. H. Wong, Jack P. K. Ma, Hoover H. F. Yin, and Sherman S. M.
Chow. Real threshold ECDSA. In NDSS, 2023.

WRK17a. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated gar-
bling and efficient maliciously secure two-party computation. In CCS,
2017.

WRK17b. Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Global-scale secure
multiparty computation. In CCS, 2017.

YAY19. Zuoxia Yu, Man Ho Au, and Rupeng Yang. Accountable anonymous cre-
dentials. In Advances in Cyber Security: Principles, Techniques, and Ap-
plications. 2019.

YWL+20. Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and XiaoWang. Ferret:
Fast extension for correlated OT with small communication. In CCS, 2020.

A The BBS+ Signature Scheme

Let k be the size of the message arrays, G = (G1,G2,GT , p, g1, g2, e) be a bilinear
mapping tuple and {hℓ}ℓ∈[0..k] be random elements of G1. The BBS+ signature
scheme is defined as follows:

– KeyGen(λ): Sample x
$← Z∗

p, compute y = gx2 , and output (pk, sk) = (y, x).

– Signsk({mℓ}ℓ∈[k] ∈ Zk
p): Sample e, s

$← Zp, computeA := (g1·hs
0·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e

and output σ = (A, e, s).

– Verifypk({mℓ}ℓ∈[k] ∈ Zk
p, σ): Output 1 iff e(A, y ·ge2) = e(g1 ·hs

0 ·
∏

ℓ∈[k] h
mℓ

ℓ , g2)

31

https://docs.trinsic.id/reference/services/credential-service/
https://docs.trinsic.id/reference/services/credential-service/

The BBS+ signature scheme is proven strong unforgeable under the q-strong
Diffie Hellman (SDH) assumption for pairings of type 1, 2, and 3 [ASM06,
CDL16, TZ23]. Intuitively, strong unforgeability states that the attacker is not
possible to come up with a forgery even for messages that have been signed
before. We refer to [TZ23] for further details.

Optimized scheme of Tessaro and Zhu [TZ23] Concurrently to our work, Tessaro
and Zhu showed an optimized version of the BBS+ signatures, reducing the

signature size. In their scheme, the signer samples only one random value, e
$←

Zp, computes A := (g1 ·
∏

ℓ∈[k] h
mℓ

ℓ)
1

x+e , and outputs σ = (A, e). The verification
works as before, with the only difference that the term hs

0 is removed. Note that
if the first message m1 is sampled randomly, then the short version is equal to
the original version. While we describe our protocol in the original BBS+ scheme
by Au et al. [ASM06], we elaborate on the influence of [TZ23] on our evaluation
in Appendix K.

B Universal Composability Framework ([Can01])

We formally model and prove the security of our protocols in the Universal
Composability framework (UC). The framework was introduced by Canetti in
2001 [Can01] to analyze the security of protocols formally. The universal com-
posability property guarantees the security of a protocol holds even under con-
current composition. We give a brief intuition and defer the reader to [Can01]
for all details.

Like simulation-based proofs, the framework differentiates between real-world
and ideal-world execution. The real-world execution consists of n parties P1, . . . , Pn

executing protocol π, an adversary A, and an environment Z. All parties are ini-
tialized with security parameter λ and a random tape, and Z runs on some advice
string z. In this work, we consider only static corruption, where the adversary
corrupts parties at the onset of the execution. After corruption, the adversary
may instruct the corrupted parties to deviate arbitrarily from the protocol spec-
ification. The environment provides inputs to the parties, instructs them to con-
tinue the execution of π, and receives outputs from the parties. Additionally, Z
can interact with the adversary.

The real-world execution finishes when Z stops activating parties and outputs
a decision bit. We denote the output of the real-world execution by REALπ,A,Z(λ, z).

The ideal-world execution consists of n dummy parties, an ideal functionality
F , an ideal adversary S, and an environment Z. The dummy parties forward
messages between Z and F , and S may corrupt dummy parties and act on their
behalf in the following execution. S can also interact with F directly according
to the specification of F . Additionally, Z and S may interact. The goal of S is
to simulate a real-world execution such that the environment cannot tell apart if
it is running in the real or ideal world. Therefore, S is also called the simulator.

Again, the ideal-world execution ends when Z outputs a decision bit. We
denote the output of the ideal-world execution by IDEALF,S,Z(λ, z).

32

Intuitively, a protocol is secure in the UC framework if the environment can-
not distinguish between real-world and ideal-world execution. Formally, protocol
π UC-realizes F if for every probabilistic polynomial-time (PPT) adversary A
there exists a PPT simulator S such that for every PPT environment Z

{REALπ,A,Z(1
λ, z)}λ∈N,z∈{0,1}∗ = {IDEALF,S,Z(1

λ, z)}λ∈N,z∈{0,1}∗ .

C PCF Definition of [BCG+20a]

Definition 3 (Pseudorandom correlation function (PCF)). Let (Setup,Y)
be a reverse-sampleable correlation with setup which has output length func-
tions ℓ0(λ), ℓ1(λ), and let λ ≤ n(λ) ≤ poly(λ) be an input length function. Let
(PCF.Gen,PCF.Eval) be a pair of algorithms with the following syntax:

– PCF.Gen(1λ) is a probabilistic polynomial-time algorithm that on input 1λ

outputs a pair of keys (k0, k1).
– PCF.Eval(σ, kσ, x) is a deterministic polynomial-time algorithm that on input

σ ∈ {0, 1}, key kσ and input value x ∈ {0, 1}n(λ) outputs a value cσ ∈
{0, 1}ℓσ(λ).

We say (PCF.Gen,PCF.Eval) is a (weak) (N,B, ϵ)-secure pseudorandom correla-
tion function (PCF) for Y, if the following conditions hold:

– Pseudorandom Y-correlated outputs. For every non-uniform adversary
A of size B(λ), it holds∣∣∣Pr[ExpprA,N,0(λ) = 1]− Pr[ExpprA,N,1(λ) = 1]

∣∣∣ ≤ ϵ(λ)

for all sufficiently large λ, where ExpprA,N,b(λ) for b ∈ {0, 1} is as defined in
Figure 8. In particular, the adversary is given access to N(λ) samples.

– Security. For each σ ∈ {0, 1} and non-uniform adversary A of size B(λ),
it holds ∣∣Pr[ExpsecA,N,σ,0(λ) = 1]− Pr[ExpsecA,N,σ,1(λ) = 1]

∣∣ ≤ ϵ(λ)

for all sufficiently large λ, where ExpsecA,N,σ,b(λ) for b ∈ {0, 1} is as defined in
Figure 9 (again, with N(λ) samples).

We say that (PCF.Gen,PCF.Eval) is a PCF for Y if it is a (p, 1/p, p)-secure PCF
for Y for every polynomial p. If B = N , we write (B, ϵ)-secure PCF for short.

D Reusable PCF Constructions

This sections presents construction of reusable PCFs for VOLE and OLE cor-
relations as defined in Section 3.2. We first present the reusable PCF for VOLE
and then for OLE.

33

ExpprA,N,0(λ) :

mk← Setup(1λ)

for i = 1 toN(λ)

x(i) $← {0, 1}n(λ)

(y
(i)
0 , y

(i)
1)← Y(1λ,mk)

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

ExpprA,N,1(λ) :

(k0, k1)← PCF.Gen(1λ)

for i = 1 toN(λ)

x(i) $← {0, 1}n(λ)

for σ ∈ {0, 1} : y(i)
σ ← PCF.Eval(σ, kσ, x

(i))

b← A(1λ, (x(i), y
(i)
0 , y

(i)
1)i∈[N(λ)])

return b

Fig. 8: Pseudorandom Y-correlated outputs of a PCF.

ExpsecA,N,σ,0(λ) :

(k0, k1)← PCF.Gen(1λ)

for i = 1 toN(λ)

x(i) $← {0, 1}n(λ)

y
(i)
1−σ ← PCF.Eval(1− σ, k1−σ, x

(i))

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

return b

ExpsecA,N,σ,1(λ) :

(k0, k1)← PCF.Gen(1λ)

mk
$← Setup(1λ)

for i = 1 toN(λ)

x(i) $← {0, 1}n(λ)

y(i)
σ ← PCF.Eval(σ, kσ, x

(i))

y
(i)
1−σ ← RSample(1λ,mk, σ, y(i)

σ)

b← A(1λ, σ, kσ, (x(i), y
(i)
1−σ)i∈[N(λ)])

return b

Fig. 9: Security of a PCF.

34

The VOLE construction heavily builds on the constructions of [BCG+20a],
which provides only weak PCF. However, Boyle et al. presented a generic trans-
formation from weak to strong PCF using a programmable random oracle. This
transformation is also straightforwardly applicable to reusable PCFs. Therefore,
we state a weak reusable PCF in the following and emphasize that this construc-
tion can be extended to a strong reusable PCF in the programmable random
oracle model.

The following construction is taken from [BCG+20a, Fig. 22]. It builds on a
weak PRF F and a function secret sharing for the multiplication of F with a
scalar.

Construction 3: Reusable PCF for YVOLE

Let F = {Fk : {0, 1}n → R}k∈{0,1}λ be a weak PRF and FFS = (FFS.Gen,FFS.Eval)
an FSS scheme for {c·Fk}c∈R,k∈{0,1}λ with weak pseudorandom outputs. Let further

ρ0 ∈ {0, 1}λ, ρ1 ∈ R.
PCF.Genp(1

λ, ρ0, ρ1):

1. Set the weak PRF key k ← ρ0 and b← ρ1.
2. Sample a pair of FSS keys (KFFS

0 ,KFFS
1)← FFS.Gen(1λ, b · Fk).

3. Output the keys k0 = (KFFS
0 , k) and k1 = (KFFS

1 , b).

PCF.Eval(σ, kσ, x): On input a random x:

– If σ = 0:
1. Let c0 = −FFS.Eval(0,KFFS

0 , x).
2. Let a = Fk(x).
3. Output (a, c0).

– If σ = 1:
1. Let c1 = FFS.Eval(1,KFFS

1 , x).
2. Output (b, c1).

Theorem 3. Let R = R(λ) be a finite commutative ring. Suppose there exists
an FSS scheme for scalar multiples of a family of weak pseudorandom functions
F = {Fk : {0, 1}n → R}k∈{0,1}λ . Then, there is a reusable PCF for the VOLE
correlation over R, given by Construction 3.

Proof. Boyle et al. showed in their proof of [BCG+20a, Theorem 5.3] that Con-
struction 3 satisfies pseudorandom YVOLE-correlated outputs and security. Al-
though we slightly adapted our definition to consider reusable inputs, their ar-
gument still holds. Further, it is easy to see that programmability holds for
functions f0(ρ0, x) = Fρ0

(x) and f1(ρ1, x) = ρ1. Finally, key indistinguishabil-
ity follows from the secrecy property of the FSS scheme. The secrecy property
states that for every function f of the function family, there exists a simulator
S(1λ) such that the output of S is indistinguishable from the FSS keys generated
correctly using the FFS.Gen-algorithm.

To briefly sketch the proof of key indistinguishability, we define a hybrid
experiment, where inside the PCF key generation, we use S to simulate FSS keys.
These simulated FSS keys are used inside the PCF key, which is given to A1.

35

We can show via a reduction to the FSS secrecy that the original Expkey-ind game
is indistinguishable from the hybrid experiment. For the hybrid experiment, it
is easy to see that the adversary can only guess bit b′ since the simulated PCF

key is independent of ρ
(0)
1−σ, ρ

(1)
1−σ and hence also independent of b. It follows that

Pr[Expkey-indA,σ (λ) = 1] ≤ 1
2 + negl(λ).

The construction of the reusable PCF for OLE correlations follows the same
blueprint as our PCF construction for VOLE.

The following construction is generically based on a weak PRF and function
secret sharing (FSS) for products of two weak PRFs.

Construction 4: Reusable PCF for YOLE

Let F = {Fk : {0, 1}n → R}k∈{0,1}λ be a weak PRF and FFS = (FFS.Gen,FFS.Eval)
an FSS scheme for {Fk0 · Fk1}k0,k1∈{0,1}λ with weak pseudorandom outputs. Let

further ρ0, ρ1 ∈ {0, 1}λ.
PCF.Genp(1

λ, ρ0, ρ1):

1. Set the weak PRF keys k ← ρ0 and k′ ← ρ1.
2. Sample a pair of FSS keys (KFFS

0 ,KFFS
1)← FFS.Gen(1λ, FkFk′).

3. Output the keys k0 = (KFFS
0 , k) and k1 = (KFFS

1 , k′).

PCF.Eval(σ, kσ, x): On input a random x:

– If σ = 0:
1. Let c0 = −FFS.Eval(0,KFFS

0 , x).
2. Let a = Fk(x).
3. Output (a, c0).

– If σ = 1:
1. Let c1 = FFS.Eval(1,KFFS

1 , x).
2. Let b = Fk′(x).
3. Output (b, c1).

Theorem 4. Let R = R(λ) be a finite commutative ring. Suppose there exists
an FSS scheme for multiplications of two elements of a family of weak pseudo-
random functions F = {Fk : {0, 1}n → R}k∈{0,1}λ . Then, there is a reusable
PCF for the OLE correlation over R, given by Construction 4.

We omit the proof as it follows the same arguments as the proof of Theorem 3.

E Ideal Threshold Signature Functionality

Next, we state our ideal threshold functionality Ftsig, which is a modification of
the functionality proposed by Canetti et al. [CGG+20]. We explain our modifi-
cations in Section 4.1.

36

Functionality Ftsig

The functionality is parameterized by a threshold parameter t. We denote a
set of t parties by T . For a specific session id sid, the sub-procedures Signing
and Verification can only be executed once a tuple (sid,V) is recorded.
Key-generation:

1. Upon receiving (keygen, sid) from some party Pi, interpret sid = (. . . ,P),
where P = (P1, . . . , Pn).
– If Pi ∈ P, send to S and record (keygen, sid, i).
– Otherwise ignore the message.

2. Once (keygen, sid, i) is recorded for all Pi ∈ P, send (pubkey, sid) to the
adversary S and do:
(a) Upon receiving (pubkey, sid,V) from S, record (sid,V).
(b) Upon receiving (pubkey, sid) from Pi ∈ P, output (pubkey, sid,V) if it

is recorded. Else ignore the message.

Signing:

1. Upon receiving (sign, sid, ssid, T ,m = (m1, . . . ,mk)) with T ⊆ P, from
Pi ∈ T and no tuple (sign, sid, ssid, ·, ·, i) is stored, send to S and record
(sign, sid, ssid, T ,m, i).

2. Upon receiving (sign, sid, ssid, T ,m = (m1, . . . ,mk), i) from S, record
(sign, sid, ssid, T ,m, i) if Pi ∈ C. Else ignore the message.

3. Once (sign, sid, ssid, T ,m, i) is recorded for all Pi ∈ T , send
(sign, sid, ssid, T ,m) to the adversary S.

4. Upon receiving (sig, sid, ssid, T ,m, σ, I) from S, where I ⊆ T \ C, do:
– If there exists a record (sid,m, σ, 0), output an error.
– Else, record (sid,m, σ,V(m, σ)), send (sig, sid, ssid, T ,m, σ) to all

Pi ∈ T \ (C ∪I) and send (sig, sid, ssid, T ,m, abort) to all Pi ∈ T ∩I.

Verification:

Upon receiving (verify, sid,m = (m1, . . . ,mk), σ,V ′) from a party Q,
send the tuple (verify, sid,m, σ,V ′) to S and do:
– If V ′ = V and a tuple (sid,m, σ, β′) is recorded, then set β = β′.
– Else, if V ′ = V and less than t parties in P are corrupted, set β = 0

and record (sid,m, σ, 0).
– Else, set β = V ′(m, σ).

Output (verified, sid,m, σ, β) to Q.

F Proof of Theoreom 1

This section presents the proof of our online protocol, i.e., Theorem 1.

37

Proof. We construct a simulator S that interacts with the environment and the
ideal functionality Ftsig. Since the security statement for UC requires that for
every real-world adversary A, there is a simulator S, we allow S to execute A in-
ternally. In the internal execution of A, S acts as the environment and the honest
parties. In particular, S forwards all messages between its environment and A.
The adversary A creates messages for the corrupted parties. These messages are
sent to S in the internal execution. Note that this scenario also covers dummy
adversaries, which just forward messages received from the environment. An
output of S indistinguishable from the output of A in the real-world execution
is created by simulating a protocol transcript towards A that is indistinguish-
able from the real-world execution and outputting whatever A outputs in the
simulated execution. Since the protocol πTBBS+ is executed in the FPrep-hybrid
model, S impersonates the hybrid functionality FPrep in the internal execution.

We start with presenting our simulator S.

Simulator S

KeyGen.

1. Upon receiving (init, sid) from corrupted party Pj , send (keygen, sid) on
behalf of Pj to Ftsig.

2. Upon receiving (pubkey, sid) from Ftsig simulate the initialization phase

of FPrep to get pk. In particular, sample sk
$← Zp and send pk = gsk2 to A.

3. Upon receiving (ok,Tuple(·, ·, ·)) from A, send (pubkey, sid,Verifypk(·, ·))
to Ftsig.

Sign.

1. Upon receiving (sign, sid, ssid, T ,m = {mℓ}ℓ∈[k], i) from Ftsig for honest
party Pi, simulate the tuple phase of FPrep to get (ai, ei, si, δi, αi) for Pi.
Then, compute (Ai := (g1 ·

∏
ℓ∈[k] h

mℓ

ℓ)ai ·hαi
0 , δi, ei, si) and send it to the

corrupted parties in T in the internal execution.
2. Upon receiving (sign, sid, ssid, T ,m) from Z to corrupted party Pj , send

message to Pj in the internal execution an do:
(a) Upon receiving (tuple, sid, ssid, T) on behalf of FPrep from corrupted

party Pj with j ∈ T return (aj , ej , sj , δj , αj)← Tuple(ssid, T , j) to Pj .

(b) Forward (sign, sid, ssid, T ,m, j) to Ftsig and define an empty set Îj =
∅ of honest parties that received signature shares from corrupted party
Pj .

(c) Upon receiving (sid, ssid, T ,m, A′
j,i, δ

′
j,i, e

′
j,i, s

′
j,i) from Pj to honest

party Pi in the internal execution, add Pi to Îj .
3. Upon receiving (sign, sid, ssid, T ,m) from Ftsig, do:

– Use tuple (aj , ej , sj , δj , αj) to compute honestly generated
(Aj , δj , ej , sj) for Pj ∈ T ∩ C. Compute honestly generated sig-
nature σ = (A, e, s) as honest parties do using (Aℓ, δℓ, eℓ, sℓ) for
Pℓ ∈ T .

38

– For each honest party Pi recompute signature σi obtained by Pi as
honest parties do by using A′

j,i, δ
′
j,i, e

′
j,i, s

′
j,i for Pj ∈ T ∩ C.

– We define set I of honest parties that obtained no or an invalid signa-
ture. First set, I = (T \ C) \ (

⋂
j∈T ∩C Îj), i.e., add all honest parties

to I that did not receive signature shares from all corrupted par-
ties in T . Next, compute I = I ∪ {i : σi ̸= σ}, i.e., add all honest
parties that obtained a signature different to the honestly generated
signature. If there exists σi ̸= σ such that Verifypk(m, σi) = 1 and
(sig, sid, ssid, ·,m, σi, ·) was not sent to Ftsig before, output fail and
stop the execution.

– Finally, send (sig, sid, ssid, T ,m, σ, I) to Ftsig.

Verify. Upon receiving (verify, sid,m, σ,Verifypk′(·, ·)) from Ftsig check if

– Verifypk′(·, ·) = Verifypk(·, ·) ,
– (sig, sid, ssid, ·,m, σ, ·) was not sent to Ftsig before
– Verifypk(m, σ) = 1.

If the checks hold, output fail and stop the execution.

Lemma 1. If simulator S does not outputs fail, protocol πTBBS+ UC-realizes
Ftsig in the FPrep-hybrid model in the presence of malicious adversaries control-
ling up to t− 1 parties.

Proof. If the simulator S does not outputs fail, it behaves precisely as the
honest parties in real-world execution. Therefore, the simulation is perfect, and
no environment can distinguish between the real and ideal worlds.

Lemma 2. Assuming the strong unforgeability of BBS+, the probability that S
outputs fail is negligible.

Proof. We show Lemma 2 via contradiction. Given a real-world adversaryA such
that simulator S outputs fail with non-negligible probability, we construct an
attacker B against the strong unforgeability (SUF) of BBS+ with non-negligible
success probability. B simulates the protocol execution towards A like S except
the following aspects:

1. During the simulation of the initialization phase of FPrep, instead of sampling

sk
$← Zp and computing pk = gsk2 , B returns pk∗ obtained from the SUF-

challenger. Since the SUF-challenger samples the key exactly as the simulator
S, this step of the simulations is indistinguishable towards A.

2. During the Sign phase, upon receiving (sign, sid, ssid, T ,m, i) from Ftsig for
honest party Pi, the computation of signature shares of the honest parties
is modified as follows:
– Request the signing oracle of the SUF-game on message m to obtain

signature σ = (A, e, s). This signature is forwarded to Ftsig on receiving
(sign, sid, ssid, T ,m) from Ftsig.

39

– Compute (aj , ej , sj , δj , αj)← Tuple(ssid, T , j) and (Aj , ej , sj) according
to the protocol specification for every corrupted party Pj ∈ T ∩ C.

– Sample random index k
$← T \ C.

– For all honest parties except Pk sample random signature share, i.e.,

∀Pi ∈ (T \ C) \ {Pk} : (Ai, δi, ei, si)
$← (G1,Zp,Zp,Zp).

– For Pk sample random δk
$← Zp and compute ek = e −

∑
ℓ∈T \{k} eℓ,

sk = s−
∑

ℓ∈T \{k} sℓ, and

Ak =
A

∑
ℓ∈T δℓ∏

ℓ∈T \{k} Aℓ
.

It is easy to see that ei and si are sampled at random by both, S and B.
Moreover, δi is a share of a(sk + e) in the simulation by S and since the
random value a works as a random mask, it has the same distribution as
in the simulation by B. Finally, the Ai values yield a valid signature in B.
Therefore, the simulation of the Sign phase of B and S are indistinguishable
to A.
Finally, B needs to provide a strong forgery to the SUF-challenger. Here, we

use the fact that S outputs fail with non-negligible probability either in the
Sign or the Verify phase. As the interaction of B with A is indistinguishable,
B outputs fail with non-negligible probability as well. Whenever B outputs
fail, it forwards the pair (m∗, σ∗) obtained in the Sign or Verify phase to the
SUF-challenger.

It remains to show that B successfully wins the SUF-game. In order to be
a valid forgery, it must hold that (1) Verifypk∗(m

∗, σ∗) = 1 and (2) (m∗, σ∗)
was not returned by the signing oracle before. (1) is trivially true, since B only
outputs fail if this condition holds. For (2), we note that A has never seen
σ∗ as output from Ftsig, since B checks that (sig, sid, ssid, ·,m∗, σ∗, ·) was not
sent to Ftsig before. However, it might happen that B obtained σ∗ as response
to a signing request for message m∗ without forwarding it the to Ftsig (this
happens if the environment does not instruct all parties in T to sign). Since the
signing oracle samples e and s at random from Zp, the probability that σ∗ was
returned by the signing oracle is ≤ q

p , where q is the number of oracle requests
and p is the size of the field. While q is a polynomial, p is exponential in the
security parameter. Thus, the probability that σ∗ hits an unseen response from
the signing oracle is negligible in the security parameter. It follows that (m∗, σ∗)
is a valid forgery and B wins the SUF-game.

Since this contradicts the strong unforgeability of BBS+, it follows that the
probability that S outputs fail is negligible.

Combining Lemma 1 and Lemma 2 concludes the proof of Theorem 1.

G Simulator for PCF-based Precprocessing

Here, we state our simulator for proving security of our PCF-based preprocessing.
Formally, the security is stated in Theorem 2. We provide a proof sketch of

40

our indistinguishability argument in Appendix H and state the full proof in
Appendix I.

Simulator for Preprocessing S

Without loss of generality, we assume the adversary corrupts parties
P1, . . . , Pt−1 and parties Pt, . . . , Pn are honest. S internally uses adversary
A.
Initialization:

1: • Upon receiving (keygen, sid) on behalf of FKG from corrupted party
Pj , send (init, sid) on behalf of corrupted Pj to FPrep. Then, wait to
receive (corruptedShares, sid, {skj}j∈C) from A.

2: • Upon receiving pk from F , set pkj = h
skj
0 for j ∈ C and compute

pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

, where T := C ∪ {i}, for every

honest party Pi. Then, send (sid, skj , pk, {pkk}k∈[n]) to every corrupted
party Pj .

• Upon receiving (setup, sid, ρ
(j)
a , ρ

(j)
s , ρ

(j)
e , sk′j ,

{pk(j)k }k∈[n]) on behalf of FSetup from every corrupted party Pj ,

check that pk
(j)
k = pkk and hsk′j = pkj for j ∈ C and k ∈ [n]. If any

check fails, send (abort, sid) to FPrep.

Otherwise sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e and a dummy secret key share ŝki for

every honest party Pi and simulate the computation of FSetup (i.e.,
compute all the PCF keys using the values received from the corrupted
parties and the values sampled for the honest parties).

3: • Send keys (sid, kVOLE
j,ℓ,0 , kVOLE

ℓ,j,1 , k
(OLE,1)
j,ℓ,0 , k

(OLE,1)
ℓ,j,1 , k

(OLE,2)
j,ℓ,0 ,

k
(OLE,2)
ℓ,j,1)ℓ ̸=j to every corrupted party Pj .

• Send (ok,Tuple(·, ·, ·)) to F , where Tuple(ssid, T , j) computes
(aj , ej , sj , δj , αj) as follows:
First sample for every ℓ ∈ T \ {j}

((aj , c
VOLE
j,ℓ,0), ·) $← YVOLE(1

λ, (ρ(j)a , skℓ), ssid) ,

(·, (skj , cVOLE
ℓ,j,1))

$← YVOLE(1
λ, (ρ(ℓ)a , skj), ssid) ,

((aj , c
(OLE,1)
j,ℓ,0), ·) $← YOLE(1

λ, (ρ(j)a , ρ(ℓ)s), ssid) ,

(·, (sj , c(OLE,1)
ℓ,j,1))

$← YOLE(1
λ, (ρ(ℓ)a , ρ(j)s), ssid) ,

((aj , c
(OLE,2)
j,ℓ,0), ·) $← YOLE(1

λ, (ρ(j)a , ρ(ℓ)e), ssid) ,

(·, (ej , c(OLE,2)
ℓ,j,1))

$← YOLE(1
λ, (ρ(ℓ)a , ρ(j)e), ssid) .

41

Take aj , ej , sj from the samples and compute

αj = ajsj +
∑

ℓ∈T \{j}

c
(OLE,1)
ℓ,j,1 − c

(OLE,1)
j,ℓ,0 ,

δj = aj(Lj,T skj + ej)

+
∑

ℓ∈T \{j}

(
Lj,T c

VOLE
ℓ,j,1 − Lℓ,T c

VOLE
j,ℓ,0 + c

(OLE,2)
ℓ,j,1 − c

(OLE,2)
j,ℓ,0

)
.

Tuple:
Upon receiving (tuple, sid, ssid, T) from Z on behalf of corrupted party Pj ,
forward message (tuple, sid, ssid, T) to A and output whatever A outputs.

H Indistinguishability Proof Sketch of Theorem 2

We prove indistinguishability between the ideal-world execution and the real-
world execution via a sequence of hybrid experiments. We start with Hybrid0
which is the ideal-world execution and end up in Hybrid7 being identical to the
real-world execution. By showing indistinguishability between each subsequent
pair of hybrids, it follows that the ideal and real-world execution are indistin-
guishable. In particular, we show indistinguishability between the joint distribu-
tion of the adversary’s view and the outputs of the honest parties in Hybridi and
Hybridi+1 for i = 0, . . . , 6. In the following we sketch the proof outline and defer
the full proof to Appendix I.

Hybrid1: In this hybrid experiment, we inline the description of the simulator S,
the ideal functionality FPrep and the outputs of the honest parties. Since this is
only a syntactical change, the distribution is identical to the one of Hybrid0.

Hybrid2: In the second experiment, we modify the computation inside the tuple
function Tuple. Instead of using outputs of the YVOLE and YOLE correlations,
we run the PCFVOLE and PCFOLE evaluations. For running the PCF evaluations,
we use the keys sent to the corrupted parties in step 3.

This change aligns the output of the Tuple function with the tuple values of
corrupted parties if they follow the protocol specification. Note that although
the PCF keys are generated using dummy key shares for the honest parties,
the final tuple values of honest parties are reverse sampled to match the tuple
correlation using the correct secret key.

Indistinguishability between Hybrid1 and Hybrid2 can be shown via reductions
to the strong pseudorandom YVOLE-correlated output property of the PCFVOLE

primitive and to the strong pseudorandom YOLE-correlated output property of
the PCFOLE primitive, respectively. More precisely, a series of intermediate hy-
brids can be introduce, where in each hop only a single correlation output is
replaced by the output of PCF evaluations.

42

Hybrid3: Instead of sampling the secret key sk at random from Zp, we sample a
random polynomial F (x) ∈ Zp[X] of degree t− 1 such that F (j) = skj for every
j ∈ C. The secret key is then defined as sk = F (0).

Note that the adversary knows only t−1 shares of the polynomial which give
no information about sk. This is due to the information-theoretically secrecy of
Shamir’s secret sharing. It follows that Hybrid2 and Hybrid3 are indistinguishable.
Hybrid4: In this hybrid, we change the way honest parties’ secret key shares are
defined. Instead of sampling random dummy key shares, we derive the key shares
from the polynomial introduced in the last hybrid. In more detail, the key share
of honest party Pi is computed as ski = F (i). This change effects the PCF key
generation as the dummy key share is replaced by a ski.

To show indistinguishability between Hybrid3 and Hybrid4, we reduce to the
key indistinguishability property of the PCFVOLE primitive. More specifically, we
again introduce a sequence of intermediate hybrids where we only change the
secret key of a single honest party.
Hybrid5: In this hybrid, we change the computation of the honest party Pi’s

public key share pki. Instead of interpolating pki it is defined as pki = hski
0 . As

both ways are equivalent, Hybrid5 is indistinguishable from Hybrid4.
Hybrid6: Next, we get rid of the reverse-sampling of the honest parties tuple
values. Instead, we compute these values using outputs of the YVOLE and YOLE

correlations. For instance, for computing αi for an honest party Pi, we sample

((ai, c
(OLE,1)
i,ℓ,0), ·) ∈ YOLE(1

λ, (ρ(i)a , ρ(ℓ)s), x) , (5)

(·, (si, c(OLE,1)
ℓ,i,1)) ∈ YOLE(1

λ, (ρ(ℓ)a , ρ(i)s), x) , (6)

for every ℓ ∈ T and compute

αi = aisi +
∑

ℓ∈T \{i}

c
(OLE,1)
ℓ,i,1 − c

(OLE,1)
i,ℓ,0 . (7)

Similar process is done for the computation of δi and ei. A straightforward
calculation shows that resulting tuple values satisfy correlation (4). Thus, the
view of the environment is indistinguishable in Hybrid5 and Hybrid6.
Hybrid7: Now, we replace the sampling of correlation outputs for calculating
honest parties’ tuples with the evaluations of PCFs. This change is the same as
applied in Hybrid2 but now for the calculation of the honest parties’ tuples.

Indistinguishability follows the same argument as sketched in Hybrid2.
Hybrid7 is the real-world execution, which concludes the proof.

I Full Indistinguishability Proof of Theorem 2

In this section, we provide the full indistinguishability proof of Theorem 2. The
simulator is given in Appendix G.
Hybrid0: The initial experiment Hybrid0 denotes the ideal-world execution where
simulator S is interacting with the corrupted parties, ideal functionality FPrep

and internally runs real-world adversary A.

43

Hybrid1: In this hybrid, we inline the description of the simulator S, the ideal
functionality FPrep and the outputs of the honest parties. Since this is only a
syntactical change, the joint distribution of the adversary’s view and the output
of the honest parties is identical to the one of Hybrid0. We state Hybrid1 as the
starting point, and emphasize only on the changes in the following hybrids.

Hybrid1

Without loss of generality, we assume the adversary corrupts parties
P1, . . . , Pt−1 and parties Pt, . . . , Pn are honest. S internally uses adversary
A.
Initialization:

1: • Upon receiving (keygen, sid) on behalf of FKG from cor-
rupted party Pj , store (init, sid, Pj). Then, wait to receive
(corruptedShares, sid, {skj}j∈C) from A.

• Upon receiving (init, sid) from every honest party, sample the secret

key sk
$← Zp and set pk = hsk

0 . Further, set pkj = h
skj
0 for j ∈ C and

compute pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

, where T := C ∪ {i},
for every honest party Pi.

2: • Send (sid, skj , pk, {pkk}k∈[n]) to every corrupted party Pj .

• Upon receiving (setup, sid, ρ
(j)
a , ρ

(j)
s , ρ

(j)
e , sk′j ,

{pk(j)k }k∈[n]) on behalf of FSetup from every corrupted party Pj ,

check that pk
(j)
k = pkk and hsk′j = pkj for j ∈ C and k ∈ [n]. If any

check fails, honest parties output abort.

Otherwise sample ρ
(i)
a , ρ

(i)
s , ρ

(i)
e and a dummy secret key share ŝki for

every honest party Pi and simulate the computation of FSetup (i.e.,
compute all the PCF keys using the values received from the corrupted
parties and the values sampled for the honest parties).

3: • Send keys (sid, kVOLE
j,ℓ,0 , kVOLE

ℓ,j,1 , k
(OLE,1)
j,ℓ,0 ,

k
(OLE,1)
ℓ,j,1 , k

(OLE,2)
j,ℓ,0 , k

(OLE,2)
ℓ,j,1)ℓ ̸=j to every corrupted party Pj .

• Store (ok,Tuple(·, ·, ·)), where Tuple(ssid, T , j) computes
(aj , ej , sj , δj , αj) as follows:
First sample for every ℓ ∈ T \ {j}

((aj , c
VOLE
j,ℓ,0), ·) $← YVOLE(1

λ, (ρ(j)a , skℓ), ssid) , (8)

(·, (skj , cVOLE
ℓ,j,1))

$← YVOLE(1
λ, (ρ(ℓ)a , skj), ssid) , (9)

((aj , c
(OLE,1)
j,ℓ,0), ·) $← YOLE(1

λ, (ρ(j)a , ρ(ℓ)s), ssid) , (10)

(·, (sj , c(OLE,1)
ℓ,j,1))

$← YOLE(1
λ, (ρ(ℓ)a , ρ(j)s), ssid) , (11)

((aj , c
(OLE,2)
j,ℓ,0), ·) $← YOLE(1

λ, (ρ(j)a , ρ(ℓ)e), ssid) , (12)

(·, (ej , c(OLE,2)
ℓ,j,1))

$← YOLE(1
λ, (ρ(ℓ)a , ρ(j)e), ssid) . (13)

44

Then, take aj , ej , sj from the samples and compute

αj = ajsj +
∑

ℓ∈T \{j}

c
(OLE,1)
ℓ,j,1 − c

(OLE,1)
j,ℓ,0 , (14)

δj = aj(Lj,T skj + ej)

+
∑

ℓ∈T \{j}

(
Lj,T c

VOLE
ℓ,j,1 − Lℓ,T c

VOLE
j,ℓ,0 + c

(OLE,2)
ℓ,j,1 − c

(OLE,2)
j,ℓ,0

)
. (15)

• The honest parties Pt, . . . , Pn output pk.

Tuple:

– Upon receiving (tuple, sid, ssid, T) from Z on behalf of corrupted party Pj ,
forward message (tuple, sid, ssid, T) to A and output whatever A outputs.

– Upon receiving (tuple, sid, ssid, T) from Z on behalf of hon-
est party Pi, if (sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T) is stored, out-
put (sid, ssid, ai, ei, si, δi, αi). Otherwise, compute (aj , ej , sj , δj , αj) ←
Tuple(ssid, T , j) for every corrupted party Pj where j ∈ C ∩T and sample

a, e, s
$← Zp and tuples (ai, ei, si, δi, αi) over Zp for i ∈ H ∩ T such that∑

ℓ∈T

aℓ = a
∑
ℓ∈T

eℓ = e
∑
ℓ∈T

sℓ = s∑
ℓ∈T

δℓ = a(sk+ e)
∑
ℓ∈T

αℓ = as

Store (sid, ssid, T , {(aℓ, eℓ, sℓ, δℓ, αℓ)}ℓ∈T) and honest party Pi outputs
(sid, ssid, ai, ei, si, δi, αi).

Hybrid2: As a next step, we align the computation of Tuple to the behavior
of corrupted parties that behave honestly in the real-world execution. More
precisely, we replace the sampling of correlation tuples from YVOLE and YOLE with
the evaluation of the PCFVOLE and PCFOLE primitives. The strong pseudorandom
YVOLE-correlated respectively YOLE-correlated outputs property of the srPCF
primitives yield indistinguishability between Hybrid1 and Hybrid2.

To formally show this, we introduce a sequence of intermediate hybrids
Hybrid1,a to Hybrid1,f . In Hybrid1,a, we change Hybrid1 only in the generation

of the first VOLE correlation outputs, i.e., the tuple (aj , c
VOLE
j,ℓ,0) in Equation (8) is

computed as
PCFVOLE.Eval(0, k

VOLE
j,ℓ,0 , ssid). Next, in Hybrid1,b we build on

Hybrid1,a and replace the computation of the second VOLE correlation output,
i.e., Equation (9). We continue this procedure until all outputs of Equations (8) -
(13) are computed using PCF evaluations in Hybrid1,f which is equal to Hybrid2.

45

Since every equation from (8)-(13) is computed for ever ℓ ∈ T \ {j}, we
introduce additional intermediate hybrids denoted by additional subscript k ∈
{0, . . . , t − 1}. Hybrid1,a,k means that correlation sampling is replaced by PCF
evaluations for the first k parties in T \{j}. Note that Hybrid1,a,0 = Hybrid1 and
Hybrid1,f,t−1 = Hybrid2.

For the same of presentation, we show that for every k ∈ {0, . . . , t−2}, indis-
tinguishability between Hybrid1,a,k and Hybrid1,a,k+1 can be derived from strong
pseudorandom YVOLE-correlated outputs property of PCFVOLE. The argumenta-
tion for Hybrid1,b to Hybrid1,f is analogously.

We construct an adversary As−pr against the strong pseudorandom YVOLE-
correlated outputs property from a distinguisher D between Hybrid1,a,k and
Hybrid1,a,k+1. First, note that the only difference between these hybrids is the

computation of (aj , c
VOLE
j,ℓ,0). While the tuple is sampled from YVOLE(1

λ, (ρ
(j)
a , skk+1), ssid)

in Hybrid1,a,k, it is computed from PCFVOLE.Eval(0, k
VOLE
j,k+1,0, ssid) in Hybrid1,a,k+1.

As−pr simulates the hybrid experiment and sends (ρ
(j)
a , skk+1) to the secu-

rity game. Then, whenever a tuple (aj , c
VOLE
j,ℓ,0) is required, As−pr asks its oracle

Ob(ssid). Note that if b = 0, then the oracle samples the tuple from the corre-
lation and if b = 1, then the PCF is evaluation. Thus, if b = 0, the simulated
hybrid is identical to Hybrid1,a,k and otherwise it is Hybrid1,a,k+1. It is easy to
see that As−pr has the same advantage in winning the security game as D in
distingushing between Hybrid1,a,k and Hybrid1,a,k+1. Given that PCFVOLE is a
srPCF, the two hybrids are indistinguishable.
Hybrid3: In this hybrid, we change the sampling of the secret key sk. Instead
of sampling sk in step 1 from Zp, we sample a random polynomial F ∈ Zp[X]
of degree t − 1 such that F (j) = skj for every j ∈ C. Further, we define sk =
F (0). Since the polynomial is of degree t − 1, t evaluation points are required
to fully determine F (x). As the adversary knows only t − 1 shares, it cannot
learn anything about sk. In detail, for every sk′ ∈ Zp there exists a t-th share
that defined the polynomial F (x) such that F (x) = sk′. It follows that the views
of the adversary are distributed identically and hence Hybrid2 and Hybrid3 are
indistinguishable.
Hybrid4: Next, we use the polynomial F (x) sampled in step 1 to determine the
honest parties’ secret key shares. In particular, for every honest party Pi the
experiment samples ski = F (i). The secret key shares {ski}i∈H are then used
for the simulation of FSetup instead of the dummy key shares. In particular,
the correctly sampled key shares of the honest parties are used as input to
PCFVOLE.Gen whenever a secret key share of the honest party is used. Since the
experiment does not use the dummy key shares at all after these changes, we
remove them completely. Note that the sampling of the honest parties’ key shares
and the generation of the PCF keys are exactly as in the real-world execution.

Indistinguishability between Hybrid3 and Hybrid4 can be shown via a series
of reductions to the key indistinguishability of the reusability property of the
VOLE PCF. We briefly sketch the proof outline in the following. We define
intermediate hybrids Hybrid3,ℓ,k for ℓ ∈ {0, . . . , n − (t − 1)} and k ∈ [n], which
only differ in the honest parties’ key shares that are used in the generation of

46

the VOLE PCF keys. Recall that for every party Pℓ we generate a VOLE PCF
for every other party Pk, where Pℓ uses its secret key shares as input. We define
Hybrid3,ℓ,k such that the key shares derived from polynomial F (x) are used for
the first ℓ honest parties in all VOLE PCF instances and for the (ℓ+1)-th honest
party in the VOLE PCF instances with the first k other parties. For all other
VOLE PCF instances, the dummy key shares are used for the honest parties’
key shares.

Note that Hybrid3,0,0 = Hybrid3 and Hybrid3,n−(t−1),n = Hybrid4. To show in-
distinguishability between Hybrid3,ℓ,k and Hybrid3,ℓ,k+1 for every ℓ ∈ {0, . . . , n−
(t − 1)}, we make a reduction to the key indistinguishability of the reusability
property of the VOLE PCF. In particular, we construct an adversary Akey−ind

from a distinguisherDℓ which distinguishes between Hybrid2,ℓ,k and Hybrid2,ℓ,k+1.
Upon receiving the shares of the corrupted parties in the hybrid execution,
Akey−ind forwards the key share of the k + 1-th corrupted party to the secu-
rity game. Then, the security game samples two possible key shares for the

ℓ-th honest party ρ
(0)
1 , ρ

(1)
1 , uses one of them in the VOLE PCF key generation

and sends the key k1 for the corrupted party and the two possible key shares
back to Akey−ind. Next, Akey−ind continues the simulation of hybrid Hybrid3,ℓ,k or
Hybrid3,ℓ,k+1 by sampling the polynomial F (x) using the corrupted key shares

and ρ
(0)
1 . Since ρ

(0)
1 is a random value in Zp, F (x) is also a random polynomial.

Finally, Akey−ind uses k1 as the output of the simulation of FSetup.

If k1 was sampled using ρ
(0)
1 , then the simulated experiment is identical to

Hybrid3,ℓ,k+1 and otherwise it is identical to Hybrid3,ℓ,k. It is easy to see that a
successful distinguisher between these two hybrids allows to easily win the key
indistinguishability game. Since we assume the VOLE PCF to support reusabil-
ity, this leads to a contradiction. Thus, the two hybrids are indistinguishable.

Hybrid5: In this hybrid, we derive the honest parties public key shares pki from
the secret key shares ski instead of interpolating them from pk and the corrupted
shares. More precisely, in Hybrid4 the public key share of honest party Pi was
computed as

pki =
(
pk/(pk

L1,T
1 · . . . · pkL1,T

t−1)
)1/Li,T

,

where T := C ∪ {i}. In Hybrid5 the public key share is instead computed as
pki = hski

0 . We show that both definitions are equivalent.

47

To this end, note that sk =
∑

ℓ∈T Lℓ,T skℓ for every set T of size t, pk = hsk
0

and pkj = h
skj
0 for j ∈ C. Using this equation we get for T = C ∪ {i}

pki =

(
pk

pk
L1,T
1 · . . . · pkL1,T

t−1

)1/Li,T

⇔ pki =

(
hsk
0

h
L1,T sk1
0 · . . . · hL1,T skt−1

0

)1/Li,T

⇔ pki =

(
h
∑

ℓ∈T Lℓ,T skℓ
0

h
L1,T sk1
0 · . . . · hL1,T skt−1

0

)1/Li,T

⇔ pki =
(
h
Li,T ski
0

)1/Li,T

⇔ pki = hski
0

As public key shares are equivalent in both hybrids, the view of the adversary
is identical distributed. Hence, Hybrid4 and Hybrid5 are indistinguishable.

Hybrid6: In this hybrid, instead of reverse-sampling the tuple values of the honest
parties, we compute them in the same way using Equations (8)-(15).

We show that the resulting tuple outputs satisfy the same correlation as
before. In particular, we show

∑
ℓ∈T αℓ = as and

∑
ℓ∈T δℓ = a(sk+e), where a =∑

ℓ∈T aℓ =
∑

ℓ∈T F
ρ
(ℓ)
a
(x), e =

∑
ℓ∈T eℓ =

∑
ℓ∈T F

ρ
(ℓ)
e
(x) and s =

∑
ℓ∈T sℓ =∑

ℓ∈T F
ρ
(ℓ)
s
(x). First, we show

∑
ℓ∈T αℓ = as:

∑
ℓ∈T

αℓ =
∑
ℓ∈T

aℓsℓ +
∑

k∈T \{ℓ}

(c
(OLE,1)
k,ℓ,1 − c

(OLE,1)
ℓ,k,0)


=
∑
ℓ∈T

aℓsℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

(
c
(OLE,1)
k,ℓ,1 − c

(OLE,1)
k,ℓ,0

)
=
∑
ℓ∈T

aℓsℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

(
F
ρ
(k)
a

(x) · F
ρ
(ℓ)
s
(x)
)

=
∑
ℓ∈T

aℓsℓ +
∑
ℓ∈T

∑
k∈T \{ℓ}

aksℓ

=
∑
ℓ∈T

∑
k∈T

aksℓ

=
∑
ℓ∈T

ak
∑
k∈T

sℓ

= as

48

Next, we show
∑

ℓ∈T δℓ = a(sk+ e):

∑
ℓ∈T

δℓ =
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑

k∈T \{ℓ}

Lℓ,T c
VOLE
k,ℓ,1 − Lk,T c

VOLE
ℓ,k,0

+ c
(OLE,2)
k,ℓ,1 − c

(OLE,2)
ℓ,k,0

)
=
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑
ℓ∈T

∑
k∈T \{ℓ}

Lℓ,T c
VOLE
k,ℓ,1 − Lℓ,T c

VOLE
k,ℓ,0

+ c
(OLE,2)
k,ℓ,1 − c

(OLE,2)
k,ℓ,0

=
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑
ℓ∈T

∑
k∈T \{ℓ}

Lℓ,T akskℓ + akeℓ

=
∑
ℓ∈T

aℓ(Lℓ,T skℓ + eℓ) +
∑
ℓ∈T

∑
k∈T \{ℓ}

ak(Lℓ,T skℓ + eℓ)

=
∑
ℓ∈T

∑
k∈T

ak(Lℓ,T skℓ + eℓ)

=
∑
k∈T

∑
ℓ∈T

ak(Lℓ,T skℓ + eℓ)

=
∑
k∈T

ak
∑
ℓ∈T

(Lℓ,T skℓ + eℓ)

=
∑
k∈T

ak

(∑
ℓ∈T

Lℓ,T skℓ +
∑
ℓ∈T

eℓ

)
= a(sk+ e)

As the tuple values of the honest parties still satisfy the same correlation as
in Hybrid5, Hybrid5 and Hybrid6 are indistinguishable.

Hybrid7: In this hybrid, instead of sampling values from the VOLE and OLE
correlations for computing the parties’ tuple values we compute them using
the PCF instances. For instance, instead of sampling ((aj , c

VOLE
j,ℓ,0), (skℓ, c

VOLE
j,ℓ,1)) ∈

YVOLE(1
λ, (ρ

(j)
a , skℓ), x), we compute (aj , c

VOLE
j,ℓ,0)← PCFVOLE.Eval(0, k

VOLE
j,ℓ,0 , x) and

(skℓ, c
VOLE
j,ℓ,1) ← PCFVOLE.Eval(1, k

VOLE
j,ℓ,1 , x). The same modification is applied for

both OLE correlations.

Indistinguishability between Hybrid6 and Hybrid7 can be shown via a series
of reductions to the strong pseudorandom Y-correlated outputs property of the
VOLE and OLE PCF instances. The proof is analogous to the indistinguisha-
bility proof between Hybrid1 and Hybrid2. Therefore, we omit the details here.

We end up in Hybrid7 where all correlation outputs are replaced by PCF
evaluations. This holds for the calculation of honest parties outputs as well as for
the computation inside Tuple. As this hybrid does not use any reverse-sampling
anymore, we get rid of the tuple function Tuple.

Hybrid7 is identical to the real-world execution which concludes the proof.

49

J Benchmarks of Basic Arithmetic Performance

We report the runtime of basic arithmetic operations in Table 1. The presented
numbers might help the reader to assess the performance of system used for
benchmarking and provides details for comparisons.

Table 1: Runtime of basic arithmetic operations in the BLS12 381 curve on our
evaluation machine. The bit-size of the curve’s group order p is 255. The error
terms report standard deviation.

Operation Time

Zp addition 5.092 ns ±1.049 ns
Zp multiplication 32.045 ns ±1.556 ns
Zp inverse 2.713 µs ±101.973 ns
G1 addition 1.102 µs ±48.571 ns
G2 addition 3.668 µs ±96.867 ns
G1 scalar multiplication 279.146 µs ±14.763 µs
G2 scalar multiplication 0.952 ms ±0.04 µs
Pairing 2.403 ms ±56.976 µs

K Evaluation Considering [TZ23]

Concurrently to our work, Tessaro and Zhu [TZ23] proposed and proved security
of a more compact BBS+ signature scheme removing the nonce s, and hence,
reducing the signature size by one element in Zp. The proposed extension trans-
lates to our protocol in a straight-forward way as follows. We do no longer need
public parameter h0. The preprocessing protocol does not generate the shares si
or αi. When answering a signing request, the servers compute Ai differently, i.e.,
Ai := (g1 ·

∏
ℓ∈[k] h

mℓ

ℓ)ai , and do not send si. The reconstruction of a signature

ignores s and outputs the tuple (A, e). When verifying a signature, parties now
check if e(A, y · ge2) = e(g1 ·

∏
ℓ∈[k] h

mℓ

ℓ , g2). In the following we call the described
protocol as the lean version of our protocol.

For us, their optimization has the advantage of removing the necessity of the
α values computed during the preprocessing and the computation of the gsi and
gs term in the signing and verification process. In order to quantify the benefits
of this optimization, we have repeated the evaluation presented in Section 6,
including implementation and benchmarks, for the lean version of our protocol
and report the changes here. The scope of the implementation and the setup of
our benchmarks remains unchanged.

Online, Signing Request-Dependent Phase. The results of our benchmarks of the
lean version of our protocol are reported in Figure 10. The comparison to the non-
threshold protocol, also optimized according to [TZ23] is displayed in Figure 11.

50

The size of signing requests does not change in the lean version of our protocol.
The size of partial signatures sent by the servers reduces to (2⌈log p⌉+ |G1|).

10 20 30
0

200

400

t

[µs]

(a) Adapt (Server).

10 30 50
0

5

10

15

k

[ms]

(b) Sign (Server).

10 20 30
0

100

200

300

t

[µs]

(c) Reconstruct (Client).

10 30 50
0

10

20

k

[ms]

(d) Verify (Client).

10 20 30
0

5

10

15

t

[ms]

k = 1 k = 2

k = 5 k = 10

(e) Total.

Fig. 10: The runtime of individual phases (a)-(d) and the total online protocol
(e) in the protocol version optimized according to [TZ23]. The Adapt phase,
describing Steps 5 and 6 of protocol πPrep, and the Reconstruct phase, describing
Step 3a of πTBBS+, depend on security threshold t. The Sign phase, describing
Step 2 of πTBBS+, and the signature verification, describing Step 3b depend on
the message array size k.

Offline, Signing Request-Independent Phase. The communication complexity of
a distributed PCG-based preprocessing protocol instantiating the offline, signing
request-independent phase of the lean version of our protocol is dominated by a
factor of

13(ncτ)2 · (logN + log p) + 4n(cτ)2 · λ · logN.

51

10 20 30 40 50
0

20

40

k

[ms] Threshold (t = 10)

Plain incl. verification

Plain excl. verification

Fig. 11: The total runtime of the lean version of our online protocol in comparison
to plain, non-threshold signing (also optimied according to [TZ23]) with and
without signature verification in dependence of the size of the message array k.
As depicted in Figure 10e, the influence of the number of signers t is insignificant.
We choose t = 10.

In case, the preprocessing decouples seed generation from seed evaluation,
servers have to store seeds with a size of at most

log p+ 2cτ · (⌈log p⌉+ ⌈logN⌉)
+2 · (n− 1) · cτ · (⌈logN⌉ · (λ+ 2) + λ+ ⌈log p⌉)
+2(n− 1) · (cτ)2 · (⌈log 2N⌉ · (λ+ 2) + λ+ ⌈log p⌉)

bits. The expanded precomputation material occupies

log p · (1 +N · (2 + 4 · (n− 1)))

bits of storage. In Figure 12, we report the concrete storage complexity of the
preprocessing material of the lean version of our protocol when instantiating the
with N ∈ {98 304, 1 048 576} and p = 255 according to the BLS12 381 curve
used by our implementation.

The computation cost of the seed expansion is still dominated by the ones
of the PCGs for OLE correlations. However, we do no longer need the OLE-
generating PCGs for the cross terms ai · sj , and aj · si. It follows that the
computation complexity of the seed expansion in the lean version of our protocol
is dominated by

2 · (n− 1) · (4 + 2⌊log(p/λ)⌋) ·N · (ct)2

PRG evaluations and O(nc2N logN) operations in Zp.

52

0 10 20 30
0

2

4

Number of parties n

[GB] N = 1048 576

N = 98 304

Fig. 12: Storage complexity of the preprocessing material in the lean version of
our protocol required for N ∈ {98 304, 1 048 576} signatures depending on the
number of servers n.

53

	Non-Interactive Threshold BBS+ From Pseudorandom Correlations

