Threshold BBS+ From Pseudorandom
Correlations

Sebastian Faust!, Carmit Hazay?, David Kretzler!, and Benjamin Schlosser!

! Technical University of Darmstadt, Germany
{first.last}@tu-darmstadt.de
2 Bar-Ilan University, Israel
carmit.hazay@biu.ac.il

Abstract. The BBS+ signature scheme is one of the most prominent
solutions for realizing anonymous credentials. In particular, due to prop-
erties like selective disclosure and efficient protocols for creating and
showing possession of credentials. In recent years, research in cryptogra-
phy has increasingly focused on the distribution of cryptographic tasks
to mitigate attack surfaces and remove single points of failure.

In this work, we present a threshold BBS+ protocol in the preprocess-
ing model. Our protocol supports an arbitrary t-out-of-n threshold and
achieves non-interactive signing in the online phase. It relies on a new
pseudorandom correlation-based offline protocol producing preprocess-
ing material with sublinear communication complexity in the number
of signatures. Both our offline and online protocols are actively secure
under the Universal Composability framework. Finally, we estimate the
concrete efficiency of our protocol, including an implementation of the
online phase. The online protocol without network latency takes less
than 15ms for ¢ < 30 and credentials sizes up to 10. Further, our re-
sults indicate that the influence of ¢ on the online signing is insignificant,
< 6% for ¢t < 30, and the overhead of the thresholdization occurs almost
exclusively in the offline phase.

Keywords: Threshold Signature - BBS+ - Pseudorandom Correlation
Functions - Pseudorandom Correlation Generators

1 Introduction

Anonymous credential schemes are becoming increasingly important in today’s
digital world, where privacy and security are significant concerns. They were
introduced by Chaum in 1985 [Cha85| and refined by a line of work |[Che95,
LRSW99, (CL01, |CL04, Cam06, |[CDHK15, CKL" 15, BBDE19, [YAY19]. Such
schemes allow an issuing party to create credentials for users, which then can
prove specific attributes about themselves without revealing their identities. This
selective disclosure is particularly beneficial when individuals want to keep their
personal information private but still need to prove that they are authorized to
access specific resources or services. The essential properties satisfied by these
schemes are unlinkability and unforgeability. While unlinkability ensures that

verifiers cannot link two disclosures of credentials to the same identity, unforge-
ability guarantees that only the issuer can generate credentials.

The BBS+ signature scheme [ASMO6], |(CDL16] named after the group signa-
ture scheme of Boneh, Boyen, and Shacham [BBS04] is one of the most promi-
nent solutions for realizing anonymous credential schemes. BBS+ signatures are
specifically suited for anonymous credentials because of their appealing features,
including the ability to sign an array of messages while keeping the signature
size constant, efficient protocols for blind signing and proving possession of a
signature in zero knowledge, and selective disclosure. The scheme is already be-
ing implemented by companies, such as Trinsic [Tri23], MATTR |[MAT23| and
Microsoft [Mic23|, and to build applications like direct anonymous attestation
(DAA) [Che09, BL10, (CDL16|, k-times anonymous authentication [ASMO06| and
Intel SGX’s EPID |[BL11]. Recently, the scheme also attracted renewed atten-
tion in the research community |TZ23, DKL 23|. Moreover, due to the promi-
nence and real-life usage of BBS+, several organizations are actively working
on a standardized specification of it, including the W3C Verifiable Credentials
Group |LS23] and the IETF [LKWL23].

In recent years, research in cryptography has increasingly focused on the
distribution (also called thresholdization) of cryptographic tasks. One example
of this paradigm shift is the huge line of work on threshold ECDSA, including
[Lin17, [GG18|, [LN18|, [DKLS19, [SA19, [CCLT 20| [CGG 20, KMOS21] [ANOT22]
and more. Instead of running the task on a single machine, a set of servers runs
a potentially interactive protocol producing the desired output without leaking
any additional information. A major reason for this development is the increased
use of digital payment methods, which, in addition to apparent advantages,
also bring additional security risks. In a traditional, non-distributed system, an
attacker who breaks into that system gains full access to the system’s capabilities,
e.g., can authorize arbitrary payments. This is referred to as a single point of
failure. In a distributed system, single intrusions can be tolerated; the attacker
must break into various devices to access the system’s capabilities. Also, in the
context of credentials, it is highly desirable to avoid a single point of failure as
an attacker who learns the single key can create arbitrary credentials. Due to
anonymity, credentials created by the attacker cannot be detected, and due to its
use in authorizing access to potential sensible data and services, the consequences
might be severe. A thresholdization of the signing algorithm of the BBS+ scheme
allows the replacement of the single certificate issuer by a committee of issuing
servers and hence reduces the risk of an attacker getting access to sufficient secret
key material to forge credentials. Additionally, threshold BBS+ enables more
use cases, such as two-factor authentication, and supports enforcing company
policies, such as the four-eye principle.

The thresholdization of cryptographic tasks often comes with significant over-
head in computation, communication, and round complexity. This is also the
case with BBS+. The BBS+ signature algorithm requires the exponentiation
of the inverse of the secret key added to some random nonce. This operation
is highly non-linear and hence hard to distribute. A popular approach in se-

cure distributed computation to cope with the high complexities of protocols is
to split the computation into an input-independent offline and input-dependent
online phase [DPSZ12, INNOB12, WRK17a, WRK17b|. The offline phase pro-
vides precomputation material used to accelerate the online phase, which com-
putes the desired outcome efficiently. In the setting of signature schemes, we
call this precomputation material presignatures [EGM96]. In recent years, Boyle
et al. [BCGI18, [BCGT19b, BCG™20a] introduced the concept of pseudorandom
correlation-based precomputation (PCP). This concept allows the generation
of precomputation material with sublinear communication complexity in the
amount of generated precomputation material. Recently, this technique also at-
tracted interest in the realm of threshold signature protocols [ANO™22, KOR23].
In PCP, precomputed values are generated by a pseudorandom correlation gen-
erator (PCG) or a pseudorandom correlation function (PCF). These primitives
include a potentially interactive setup phase where short keys are generated
and distributed. Then, in the evaluation phase, every party locally evaluates
on its key and a common input. The resulting outputs look pseudorandom but
still satisfy some correlation, such as oblivious linear evaluation (OLE), oblivious
transfer (OT), or multiplication triples (MT). The type of correlation determines
the efficiency of the instantiations.

In this work, we explore the opportunities of designing an efficient threshold
BBS+ scheme in the PCP setting. We aim for a non-interactive online phase as
we assess it unlikely for the servers to be closely located. The major reasons for
thresholdizing the credential issuance are to avoid a single point of failure and
provide robustness, which means that the system should continue functioning
even if some servers are unavailable. When avoiding a single point of failure, we
often want to distribute the trust among several machines and involve several
legal entities, e.g., several companies, most likely not within the same local net-
work. For robustness, it makes sense to distribute the servers over a larger area
to prevent environmental influences, such as network outages, from affecting too
many servers at once.

1.1 Contribution

We propose a novel t-out-of-n threshold BBS+ signature scheme secure against
active corruption and arbitrary security threshold ¢ < n. Our threshold BBS+
scheme is the first in the offline-online model and has been developed concur-
rently and independently to the first overall threshold BBS+ signature scheme [DKLT23|.
We deliberately design preprocessing in the offline phase to achieve a non-
interactive online signing process. Upon receiving a signing request, servers reply
with a single message without additional cross-server communication.

The communication of the offline phase is restricted to the execution of a seed
generation protocol. Using techniques known as silent preprocessing, i.e., PCGs
or PCFs, we realize the seed generation protocol with sublinear complexity in
the number of signatures. Our scheme has no additional per-signature interac-
tion during the offline phase. In particular, parties expand their seeds to valid
presignatures without any communication.

While our precomputation can be instantiated with both PCGs and PCFss,
we focus on PCFs for the protocol specification. Conceptually, PCFs are bet-
ter suited for preprocessing signatures as PCFs allow servers to compute one
presignature after another. At the same time, PCGs require the generation of a
large batch of presignatures at once that need to be stored. Unlike prior work
using a silent preprocessing in the context of threshold signatures [ANO™22|, we
use the PCF primitive in a black-box way allowing for more modularity. In this
process, we identify several issues in using the PCF primitive in a black-box way,
extend the definitional framework of PCFs accordingly, and prove the security
of existing constructions under the adapted properties.

Finally, we provide an extensive evaluation of our protocol, including an im-
plementation and experimental evaluation of the online phase. The total runtime
of the online signing protocol, is below 13.595 ms plus one round trip time of
the slowest client-server connection for ¢ < 30 signers and message arrays of size
k < 10. Our benchmarks show that the influence of the number of signers on the
runtime of the online protocol is minimal; increasing the number of signers from
2 to 30 increases the runtime by just 1.14% — 5.52% (for message array sizes
between 2 and 50). Further, our results show that the cost of thresholdization
occurs almost exclusively in the offline phase; a threshold signature on a single
message array takes 7.536 ms in our protocol, while a non-threshold signature,
including verification of the received signature, takes 7.248 ms; ignoring network
delays which are the same in both settings.

1.2 Technical Overview

BBS+ Signatures. Let (G1,Ga,Gr) be a bilinear pairing of order p with gener-
ators g1 € G; and g € Go. A BBS+ signature on a message array {mg}gew is

a tuple (A, e, s) with A = (g1-hg - ILep h;"z)ﬁ for random nonces e, s €g Z,,
secret key = € Z, and a set of random G elements {h¢}e(o. .4]-

Distributed inverse calculation. The main difficulty in thresholdizing the BBS+
signature algorithm comes from the signing operation requiring the computation
of the inverse of x 4+ s without leaking x. This highly non-linear operation is
elaborate to be computed in a distributed way. Similar challenges are known from
other signature schemes relying on exponentiation (or a scalar multiplication in
additive notion) of the inverse of secret values, e.g., ECDSA |[AHS20, |CGG™20,
ANOT22, WMYC23, BS23|. The typical approach to compute My for a group
element M and a secret y is to separately open B = M® and § = a -y for a
secret shared random a based on the classical inversion protocol by Bar-Ilan and
Beaver [BB89]. The desired result can be reconstructed by computing M v = B3,

Computing § as the product of two secret shared values is still a non-linear
operation requiring interaction between the parties. Nevertheless, as § is inde-
pendent of the actual message, several such values can be precomputed in an
offline phase. As explained next, a similar, yet more involved, approach can
be applied to the BBS+ protocol allowing an efficient online signing based on
correlated precomputation material.

The threshold BBS+ protocol. We describe a simplified, n-out-of-n version of our
threshold BBS+ protocol. Assume a BBS+ secret key x, Gy elements {h¢}eo. 1)
and n servers, each having access to a preprocessed tuple (a;, e;, s;,0;, ;) € Zg,
in the following called presignature, such that

Zéi:a(ﬂc—l—e), Zai:as
]

i€[n i€[n]

fora:Zai, e:Zei, SZZSi.
i€[n]] i€[n]

i€[n

(1)

To sign a message array {my} e[, each server computes A; := (g1 'Hze[k] g7t)
hg' and outputs a partial signature o; := (e;, s;,0;, A;). This allows the receiver
of the partial signatures to reconstruct ¢, e and s and compute

A= (H Az)% = ((91 . H hznz)a . hgs)ﬁ

i€[n] Lelk]

such that the tuple (4, e, s) constitutes a valid BBS+ signature. Each signature
requires a new preprocessed tuple to prevent straightforward forgeries.

The specialized layout of our presignatures allows us to realize a non-interactive
signing procedure. Using plain multiplication triples, as often done in multi-party
computation protocols [Bea91l, [DPSZ12|, would require an additional round of
communication, which is highly undesirable. Our non-interactive signing pro-
cedure enables a highly efficient online signature creation and provides active
security at a low cost. Given that the presignatures are created securely, it is
sufficient for the signature receiver to validate the received signature to achieve
active security.

The preprocessing protocol. An appealing choice for instantiating the preprocess-
ing protocol is the promising technique of pseudorandom correlation generators
(PCQG) or functions (PCF), as they enable the efficient generation of correlated
random tuples. More precisely, PCGs and PCFs allow two parties to expand
short seeds to fresh correlated random tuples locally. While the distributed
generation of the seeds requires more involved protocols and general-purpose
multi-party computation, the seed size and the communication complexity of
the generating protocols are sublinear in the size of the expanded correlated
tuples [BCGI18, [BCGT19b].

When using PCGs, the parties must expand all the PCG’s outputs at once in
a single batch, which has to be kept in storage. These batches need to be rather
large to amortize the cost of the expensive setup procedure; prior work using
similar correlations reports 26 - 225[ANO™ 22, BCGT20b| tuples to be reason-
able. In contrast, PCFs allow for generating individual tuples ad-hoc, removing
the necessity of storing a large amount of preprocessing material. We do not
expect thousands of signatures to be issued in short intervals, so we assess PCF's
as better suited for preprocessing threshold signatures. While state-of-the-art

solutions of PCFs incur high storage costs for PCF keys, we deem them concep-
tually better suited. Moreover, the research on PCF is a young field. Thus we
expect further progress in this direction.

The correlated pseudorandom presignatures required by our online signing
procedure are specifically tailored to the BBS+ setting (cf.) For these spe-
cific presignatures, there exist no tailored PCG or PCF constructions. Instead,
we show how to obtain these presignatures from simple correlations. Specifically,
we leverage oblivious linear evaluation (OLE) and vector oblivious linear evalu-
ation (VOLE) correlations. For both of these correlations, there exist PCG and
PCF constructions [BCGI18|, [BCGT19b, BCG™20a, BCGT20bl [CRR21,|0SY 21,
BCG™22]. An OLE tuple is a 2-party correlation, in which party P; gets random
values (a,u) and party P» gets random values (s,v) such that a-s =u+v. A
VOLE tuple provides the same correlation but fixes b over all tuples computed
by the particular PCG or PCF instance. In these tuples, we call a and s the
input value of party P; and P». Further, the PCGs/PCFs used by our protocol
provide a so-called reusability feature, allowing parties to fix the input values
over several PCG/PCF instances.

If parties want to compute shares of o = Zie[n] a; - Zie[n] s;, each party P;
computes a;s; locally and uses an OLE correlation to get an additive share of
the cross terms a;s; and a;s; for j # 7. As a- and s-values are input values, they
can be fixed over several PCG/PCF instances. By summing up a;s; with all the
additive shares of the OLE relations, P; gets an additive share of «. Shares of
a-e and a -z are computed accordingly and combined to shares of a - (e + x).

Using PCFs in a black-box way. Boyle et al. [BCG™20a] define pseudorandom
correlation functions (PCFs) and provide constructions for different correlations,
such as VOLE, based on function secret sharing of a family of weak pseudo-
random functions (PRFs). They differentiate between weak and strong PCFs.
Similar to weak and strong PRFs, the definition of weak PCF considers ran-
dom inputs, while a strong PCF allows the adversary to query PCF outputs on
arbitrary inputs. [BCG™20a] also shows a generic transformation from weak to
strong PCF in the programmable random oracle model.

In our work, we aim to deal with PCF's in a black-box way such that we can
instantiate our protocols with arbitrary PCFs fulfilling our requirements. These
requirements include the active security setting and the opportunity to reuse
inputs, as emphasized above. We rely on strong PCFs to cover active security
and allow the adversary to choose arbitrary input. While Boyle et al. [BCG™20a]
lay out the foundations for the reusability property, which they call programma-
bility, they define the property only in the passive security setting. We make the
following changes to cover active security.

First, we allow the adversary to specify its input in generating PCF keys.
To capture this behavior, we introduce a new key indistinguishability property,
informally stating that the adversary cannot learn any information about the
other party’s input from its key. Second, the basic correctness and security prop-
erties must also hold if the adversary specifies its input to the key generation.
Therefore, we extend the existing definitions of these properties by the additional

power of the adversary. Note that this extension is only required for PCFs with
reusable inputs, as the adversary cannot provide input to the key generation
otherwise. As the definitions of strong PCFs and reusable PCFs are linked to-
gether, we merge them. Finally, our resulting definition of strong reusable PCF's
captures the reusability feature in the active security setting. We prove that the
VOLE PCF construction by Boyle et al. [BCG™20a] fulfills our new definition.
Additionally, we present an extension of this construction for OLE correlations
and again show its security.

The t-out-of-n setting. So far, we discussed a setting where n-out-of-n servers
must contribute to the signature creation. However, it is highly desirable for
many use cases to support the more flexible t-out-of-n setting with ¢ < n. In
this setting, the secret key material is distributed to n servers, but only ¢ must
contribute to the signing protocol. A threshold ¢ < n improves the flexibility and
robustness of the signing process, as not all servers must be online.

The typical approach in the t-out-of-n setting is to share the secret key
material using Shamir’s secret sharing [Sha79| instead of an additive sharing
as done above. While additive shares are reconstructed by summation, Shamir-
style shares must be aggregated using Lagrange interpolation, either on the
client- or server-side. While reconstruction on the client side is favorable as it
increases flexibility and reduces coordination, our PCF-based precomputation
poses challenges that urge us to reconstruct on the server side. While this design
choice is not optimal, prior threshold signature schemes leveraging PCF/PCGs
(e.g., JANOT22, KOR23|) achieves only n-out-of-n, in contrast to a flexible ¢-
out-of-n setting.

On a technical level, the challenge for client-side reconstruction is due to
(V)OLE correlations providing us with 2-party additive sharing of multiplica-
tions, e.g., u;; + v;; = a;5;. For a product of two additively shared values
a- s, we can rewrite the product as ;) @i X ie(n) Si = Dicin] 2oje(n) %iSi =
Dic[n] 2ojeln] Wi i,y Here, u; j and v; j can be interpreted as additive shares
of the product. These additive shares are sufficient for the n-out-of-n setting.
However, it is unclear how (V)OLE outputs can be transformed to Shamir-style
sharing of a - s required for t-out-of-n.

We therefore incorporate a share conversion mechanism from Shamir-style
shared key material into additively shared presignatures on the server side. Our
mechanism consists of the servers applying the corresponding Lagrange inter-
polation directly to the outputs of the VOLE correlation. More precisely, as
described above, each party P; gets additive shares of the cross terms a;x; and
ajx; for every other party P;. Let ¢; ; be the additive share of a;x;, then party P;
multiplies the Lagrange coeflicient L; 7 to this share and L; 7 to c¢;;, where T is
the set of ¢ signers. To enable the servers to compute the interpolation, the client
provides the set of servers as part of the signing request. Note that the signer
set can be obtained by hashing the message to reduce bandwidth complexity.

1.3 Related Work

Most related to our work is the work by Gennaro et al. [GGI19] and Doerner
et al. [DKL™ 23], proposing threshold protocols for the BBS+ signing algorithm.
While [GGI19] focuses on a group signature scheme with threshold issuance
based on the BBS signatures, their techniques can be directly applied to BBS+.
IDKL 23| presents a threshold anonymous credential scheme based on BBS+.
Both schemes compute the inverse using classical techniques of Bar-Ilan and
Beaver [BB89|. Moreover, they realize the multiplication of two secret shared
values by multiplying each pair of shares. While |[GGI19] uses a three-round
multiplication protocol based on an additively homomorphic encryption scheme,
IDKL™23| integrates a two-round OT-based multiplier. Although the OT-based
multiplier requires a one-time setup, both schemes do not use precomputed val-
ues per signing request. This is in contrast to our scheme, but at the cost of re-
quiring several rounds of communication during signing. In addition, they show
security in a model tailored to the BBS+ signature scheme, while we consider a
more generic threshold signature ideal functionality.

In the non-threshold setting, Tessaro and Zhu [TZ23] show that short BBS+
signatures, where the signature consists only of A and e, are also secure under
the ¢-SDH assumption. Their results suggest removing s to reduce the signature
size to one group element and a scalar. Like prior proofs of BBS+, their security
proof in the standard model incurs a multiplicative loss. However, they present a
tight proof in the Algebraic Group Model [FKL18]. We elaborate on the influence
of their work on our evaluation in Appendix [J|

A different signature scheme for anonymous credentials is proposed by Camin-
sch and Lysyanskaya [CL04|. However, these CL signatures are based on RSA.
Therefore, they have large keys, credentials, and files for revocation. Further-
more, the generation of signing keys takes a long time (10-20 seconds) due to
finding a large set of random prime numbers.

Another anonymous credential scheme with threshold issuance, called Co-
conut, is proposed by Sonnino et al. [SABT19] and the follow-up work by Rial
and Piotrowska [RP22]. Their scheme is based on the Pointcheval-Sanders (PS)
signature scheme, which is less popular than BBS+ and is secure under an inter-
active assumption similar but different to the LRSW assumption. However, the
structure of PS signatures enables a non-interactive issuance phase without co-
ordination or precomputation. While their scheme also supports multi-attribute
credentials and selective disclosure, in the case of multi-attribute credentials,
the secret and public key size increases linearly in the number of attributes. In
BBS+, the key size is constant. The security of Coconut was not shown under
concurrent composition while our scheme is analyzed in the Universal Compos-
ability framework.

Like our work, [ANO™22] and [KOR23| leverage pseudorandom correlation
for threshold signatures. [ANO™ 22| presents a ECDSA scheme, while [KOR23|
focuses on Schnorr signatures. In contrast to our scheme, [ANO™ 22| constructs a
tailored PCG, presents an n-out-of-n protocol without a flexible threshold, and
requires interaction in the presigning phase. [KOR23| introduces the new notion

of a discrete log PCF, and construct a 2-party protocol based on this primitive.
In contrast to our work, [KOR23| captures only the 2-out-of-2 setting and takes
two rounds for signing.

2 Preliminaries

Throughout this work, we denote the security parameter by A € N, the set
{1,...,k} as [K], the set {0,1,...,k} as [0..k], the number of parties by n and a
specific party by P;. The set of indices of corrupted parties is denoted by C C [n]
and honest parties are denoted by H = [n] \ C.

We model our protocol in the Universal Composability (UC) framework by
Canetti |[Can01]. We refer to Appendix [A] for a brief introduction to UC. We
model a malicious adversary corrupting up to ¢t < n parties. We consider static
corruption and a rushing adversary. Moreover, our protocols are in the syn-
chronous communication model.

2.1 Bilinear Maps

We briefly recall the basics of bilinear maps following [BF01, BBS04|. Let BGen
be a randomized algorithm that on input a security parameter A outputs a prime
p, such that log,(p) = O(k), three cyclic groups (G1, Gy, Gr) of prime order p,
generators g; of Gy and g9 of Gg, and a pairing e : G; x G — Gr.

We call e a bilinear map if the following properties hold:

— Bilinearity: For all u € G1, v € Gy and a,b € Z,, we have e(u®,v’) =
e(u,v)®.

— Non-degeneracy: For generators g1 of G; and g2 of Gs it holds that e(g1, g2) #
1. Since Gr is of prime order p, this implies that e(g1,g2) is a generator of
Gr.

— Efficiency: e can be computed efficiently in polynomial time in .

The literature differentiates between three types of pairings [GPS06): Type-1
with G1 = Go, Type-2 with G; # G2 and existence of an efficiently computable
isomorphism ¢ : Go — Gq, and Type-3 with G; # G2 and no such isomoprhism
0.

2.2 The BBS+ Signature Scheme

Let k be the size of the message arrays, G = (G1, Gz, G, p, g1, g2, €) be a bilinear
mapping tuple and {h¢}¢c[o..x) be random elements of G;. The BBS+ signature
scheme is defined as follows:

— KeyGen()\): Sample & Zy, compute y = g5, and output (pk,sk) = (y,z).

1

. $
— Signg ({me}oem € Z’;): Sample e, s < Z,, compute A := (gl-hS-HZE[k] hy't)=+e
and output o = (4, e, s).
— Verifypk({mg}ge[k] € Z’;,a): Output 1iffe(4,y-g5) = e(q1 'hS'Hee[k] hy*, g2)

The BBS+ signature scheme is proven strong unforgeable under the g-strong
Diffie Hellman (SDH) assumption for pairings of type 1, 2, and 3 [ASMOG6,
CDL16} (TZ23|. Intuitively, strong unforgeability means that the attacker is not
possible to come up with a forgery even for messages that have been signed
before. We refer to [TZ23] for further details.

Optimized scheme of Tessaro and Zhu [TZ23] Concurrently to our work, Tessaro
and Zhu showed an optimized version of the BBS+ signatures, reducing the

signature size. In their scheme, the signer samples only one random value, e &
Ly, computes A := (g1 -[Toep hzn’f)ﬁ, and outputs o = (A, e). The verification
works as before, with the only difference that the term h{ is removed. Note that
if the first message m; is sampled randomly, then the short version is equal to
the original version. While we describe our protocol in the original BBS+ scheme
by Au et al. [ASMO6], we elaborate on the influence of [TZ23] on our evaluation
in Appendix [J}

3 Reusable Pseudorandom Correlation Function

On a high level, a pseudorandom correlation function (PCF) allows two parties to
generate a large amount of correlated randomness from short seeds. PCF extends
the notion of a pseudorandom correlation generator (PCG) in a similar way as
a pseudorandom function extends a pseudorandom generator. While a PCG
generates a large batch of correlated randomness during one-time expansion, a
PCF allows the creation of correlation samples on the fly.

A PCF consists of two algorithms, Gen and Eval. The Gen algorithm computes
a pair of short keys distributed to two parties. Then, each party can locally
evaluate the Eval algorithm using its key and public input to generate an output
of the target correlation. One example of such a correlation is the oblivious linear
evaluation (OLE) correlation, defined by a pair of random values (yo,y1) where
yo = (a,u) and y; = (b,v) such that v = ab + u. Other meaningful correlations
are oblivious transfer (OT) and multiplication triples.

PCFs are helpful in two- and multi-party protocols, where parties first set
up correlated randomness and then use this data to speed up the computation
IDILO22, ANO ™22, [KOR23].

This section presents our definition of reusable PCFs, extending the definition
of a programmable PCF from [BCGT20a], which is stated in Appendix [B| for
completeness. Furthermore, we state constructions of reusable PCFs and argue
why they satisfy our new definition in Appendix [C]

Our modifications and extensions of the definition [BCG™20a| reflect the
challenges we faced when using PCFs as black-box primitives in our threshold
BBS+ protocol. We present our definition and highlight these challenges and
changes in the following.

10

3.1 Definition

As mentioned above, a pseudorandom correlation function (PCF) realizes a tar-
get correlation). For some correlations, like VOLE, parts of the correlation
outputs are fixed over all outputs. In the example of VOLE, where the corre-
lation is v = ab + u over some ring R, the b value is fixed for all correlation
tuples.

Additionally, in a multi-party setting, we like PCF constructions that allow
parties to obtain the same values for parts of the correlation output in multiple
PCF instances. Concretely, assume party P; evaluates one VOLE PCF instance
with party P; and one with party P,. P; evaluates the PCF to (a; ;,u; ;) for
the first instance and (a; x,u;) for the second instance. Here, we want to give
party P; the opportunity to get a; ; = a; 1 when applied on the same input. This
property is necessary to construct multi-party correlations from two-party PCF
instances.

To formally model the abovementioned properties, we define a target corre-
lation as a tuple of probabilistic algorithms (Setup,)), where Setup takes two
inputs and creates a master key mk. These inputs enable fixing parts of the cor-
relation, e.g., the fixed value b. Algorithm) uses the master key and an index
1 to sample correlation outputs. The index ¢ helps to sample the same value if
one of the Setup inputs is identical for multiple invocations.

Finally, we follow [BCG™20a] and require a target correlation to be reverse-
sampleable to facilitate a suitable definition of PCFs. In contrast to [BCG™20a],
our definition of a target correlation explicitly considers the reusability of values
over multiple invocations.

In the following, we formally define a reverse-sampleable and indexable cor-
relation with setup.

Definition 1 (Reverse-sampleable and indexable correlation with setup).
Let £y(N), 1(X) < poly(N) be output length functions. Let (Setup,)) be a tuple of
probabilistic algorithms, such that Setup on input 1 and two parameters po, p
returns a master key mk and Y on input 1*, mk, and index i returns a pair of
outputs (yé”,y@) € {0,1}0™ x {0,1}0:(N),

We say that the tuple (Setup,)) defines a reverse-sampleable and indexable
correlation with setup if there exists a probabilistic polynomial time algorithm
RSample that takes as input 1*, mk,o € {0,1}7y<(f) € {0,1}™) and i, and
outputs yY_)U € {0,111 such that for all mk,mk’ in the range of Setup, all
o €{0,1} and alli € {0,1}* the following distributions are statistically close:

1 7 7 7 $.
{8,y WS 4Py & Y1, mk, i)}

1 1 7 7 $.
{8y ity & Y mk, i),

v i, yi”, RSample(1*, mk, 0,y i)}

(e

Given the definition of a reverse-sampleable and indexable correlation with
setup, we define our primitive called strong reusable PCF (stPCF). Our defi-
nition builds on the definition of a strong PCF of Boyle et al. [BCG™20a] and

11

extends it by a reusability feature. Note that [BCG™20a] presents a separate
definition of this reusability feature for PCF's, but this property also affects the
other properties of a PCF. Therefore, we merge these definitions. Additionally,
the reusability definition of Boyle et al. works only for the semi-honest setting,
while our definition covers malicious adversaries.

A PCF must fulfill two properties. First, the pseudorandomness property
intuitively states that the joint outputs of the Eval algorithm are computationally
indistinguishable from outputs of the correlation). Second, the security property
intuitively guarantees the output being pseudorandomly even when knowing one
key.

Similarly to the notions of weak and strong PRFs, there exist the notions of
weak and strong PCFs. For a weak PCF, we consider the Eval algorithm to be
executed on randomly chosen inputs, while for a strong PCF, we consider arbi-
trarily chosen inputs. Boyle et al. [BCG™T20a] showed a generic transformation
from a weak to a strong PCF using a hash function modeled as a programmable
random oracle. We use this transformation later in constructing srPCFs.

A PCF needs to meet two additional requirements to satisfy the reusabil-
ity features. First, an adversary cannot learn any information about the other
party’s input used for the key generation from its own key. This is modeled by
the key indistinguishability property and the corresponding game in Figure [3
On a high level, the game captures the fact that the adversary cannot tell what
value was used by the honest party for the PCF key generation, given the key of
the corrupted party. To model this, the challenger samples two random values
and uses one for the key generation. Then, given the corrupted party’s key and
random values, the adversary has to identify which value was used. Second, two
efficiently computable functions must exist to compute the reusable parts of the
correlation from the setup input and the public evaluation input. Formally, we
state the definition of a strong reusable PCF next.

Definition 2 (Strong reusable pseudorandom correlation function (sr-
PCF)). Let (Setup,)) be a reverse-sampleable and indexable correlation with
setup which has output length functions £o(X),€1(N), and let X < n(\) < poly(X)
be an input length function. Let (PCF.Gen, PCF.Eval) be a pair of algorithms with
the following syntaz:

— PCF.Gen(1*, pg, p1) is a probabilistic polynomial-time algorithm that on input
the security parameter 1 and reusable inputs py, p1 outputs a pair of keys
(ko, k).

— PCF.Eval(o,k,,) is a deterministic polynomial-time algorithm that on input
o € {0,1}, key k, and input value x € {0,1}"N outputs a value y, €
{0, 1}~

We say (PCF.Gen, PCF.Eval) is a strong reusable (N, B, €)-secure pseudorandom
correlation function (srPCF) for (Setup,)), if the following conditions hold:

— Strong pseudorandom Y-correlated outputs. For every non-uniform
adversary A of size B(X) asking at most N(\) queries to the oracle Oy(+),

12

it holds

P () = 1] - 3| < ()
for all sufficiently large X, where Exp>” (X) is as defined in Figure .

— Strong security. For each o € {0,1} and non-uniform adversary A of size
B(X) asking at most N(X) queries to oracle Oy(+), it holds

PrlExpS(\) = 1] - 2\ <e(N)

S-sec

for all sufficiently large X\, where Exp’s (A) is as defined in Figure .
— Programmability. There exist public efficiently computable functions fy, f1
for which

po, o1 & {0,1}",

(ko, k1) = PCF.Gen(1*, pg, p1) @ = fo(po,x)
(a,c) < PCF.Eval(0, ko, z), b= fi(p1,)
(b,d) + PCF.Eval(1,kq, z)

Pr > 1 — negl(\).

— Key indistinguishability. For any o € {0,1} and non-uniform adversary

A = (Ao, A1), it holds
key-ind 1
Pr[Exppde 4 ,(A) = 1] < 5t negl(\)

for all sufficiently large A\, where Expl;eg;rlig is as defined in Figure E

We say that (PCF.Gen, PCF.Eval) is a srPCF for Y if it is a (p,1/p,p)-secure
sPCF for Y for every polynomial p. If B = N, we write (B, €)-secure sPCF for
short.

3.2 Correlations

Next, we state the correlations that are used in our preprocessing protocol. These
are the oblivious linear evaluation (OLE) and vector OLE (VOLE) correlations.
We present PCF constructions realizing these correlations in Appendix [C}

Our OLE correlation over ring R is given by ¢; = ab+ ¢g, where a,b, co, ¢ €
R. Moreover, we require a and b being computed by a weak psuedorandom
function (PRF). Formally, we define the reverse-sampleable and indexable target
correlation with setup (Setupg g, YoLe) over ring R as

(k, k') + Setupg e(1*, k, k'),
((Fr(i), u), (Fi (4),v)) < Yore(1*, (k, k'),4) such that (2)
v = Fy(i) - Fi (i) +u,

13

Exp’”(A) : Og(x) :

(po, p1) +— Ao(1%) if (z,90,y1) € Q:
mk « Setup(1*, po, p1) return (yo, y1)
(ko, k1) + PCF.Gen(1*, po, p1) ©15€
sz (yo,yl)%y(lk,mk,x)
b & (0,1} 0 =0uU{(z,y0,31)}
% (_Aob(-)(lx) return (yo,y1)
1
if b= b'return 1 O:(z)

else return 0 for o € {0,1}:

Yo < PCF.Eval(o, ko, x)

return (yo, y1)

Fig. 1: Strong pseudorandom Y-correlated outputs of a PCF.

Explio (M) : Oo(2) :
(90, p1) — Ao(1) Y1—o « PCF.Eval(l — 0, ki_o,)
mk « Setup(1*, po, p1) return yi_o
(ko, k1) < PCF.Gen (1%, po, p1)
b & {0,1} O (z) :
b ATV (1Y o ko) Yo — PCF.Eval(o, ko, z)
if b= b'return 1 Yi—o < RSample(1*, mk, o, You)
else return 0
return y1_,

Fig. 2: Strong security of a PCF.

where u,v € R and F being a (PRF) with key k, k. Note that while the Setup al-

gorithm for our OLE and also VOLE is essentially the identity function, the algo-

rithm might be more complex for other correlations. The reverse-sampling algo-

rithm is defined such that (Fy: (z), F),(1)-Fy (2)+u) < RSampleg (1%, (k, k'), 0, (F) (i), u), 1)
and

(Fk(l)7 U) — RsampleOLE(l)\v (k7 kJ)7 L, (Fk' (l‘)v U)a Z)

Next, we state the VOLE correlation. In contrast to OLE, the value b is
fixed over multiple correlation samples, i.e., ¢; = ab+ ¢j, where each correlation
sample contains one component of the vectors. We formally define the reverse-
sampleable and indexable target correlation with setup (Setupyoi g, YvoLe) over

14

Expt{z)";nd (A) :

b< {01}
$ *
P, 0, & {0,1}
pl—U <~ pglﬂo'
Po < Ao(lx)
(ko, k1) < PCF.Gen,(1*, po, p1)
b, — Al(l)\a k0'7p§0—)o'7pgl—)o')
if ¥ = breturn 1
else return 0

Fig. 3: Key Indistinguishability of a reusable PCF.

ring R as

) — SetupVOLE(l)\v ka b))
) < WvoLe(1?, (k,b),4) such that (3)
v=F(i) b+u,

(k,b
((Fk(i)a u)> (ba ”U)

where b,u,v € R and F being a weak pseudorandom function (PRF) with

key k. The reverse-sampling algorithm is defined such that (b, Fi(i) - b+ u) +

RSampleyo e (17, (k,), 0, (Fi(i),u), i) and (F (i), u) < RSampleyg g(1*, (k,b), 1, (b,v),1).
We state PCF constructions realizing these definitions of OLE and VOLE

correlations in Appendix [C}

4 Threshold Online Protocol

In this section, we present our threshold BBS+ protocol. This protocol yields a
signing phase without interaction between the signers and a flexible threshold
parameter t. Moreover, we show the security of our protocol against a malicious
adversary statically corrupting up to ¢ — 1 parties in the UC framework.
Section [4.1] states our modifications to the ideal functionality for threshold
signature schemes introduced by Canetti et al. [CGG™20]. The full functionality
is given in Appendix [D] We use this functionality to prove UC security of our
scheme. To be more generic, we deliberately chose the generic threshold signature
functionality by Canetti et al. [CGG™ 20| over a specific BBS+ functionality such
as the one used in [DKL™23|. Proving security under a generic threshold func-
tionality enables our threshold BBS+ protocol to be used whenever a threshold
signature scheme is required and not only when a BBS+ scheme is required.
Our protocol uses precomputation to accelerate online signing. An intuitive
description of the used precomputation is given in Section[I.2} We formally model
the precomputation by describing our protocol in a hybrid model where parties

15

can access a hybrid preprocessing functionality Fprep. Section @ states the hy-
brid functionality Fprep. Using a hybrid model allows us to abstract from the
concrete instantiation of the preprocessing functionality. We present a concrete
instantiation of Fprep in Section

Finally, Section[£.3]formally states our threshold BBS+ protocol and provides
proof in the UC framework. We refer the reader to the technical overview in
Section [I.2] for an intuitive description of our protocol.

4.1 Ideal Threshold Signature Functionality

We base our security analysis on the ideal threshold signature functionality Fisig
of Canetti et al. [CGGT20|. We slightly modify the functionality in the following
aspects. First, we allow the parties to specify a set of signers T during the sign-
ing request. Specifying T helps us to account for a flexible threshold of signers
instead of requiring all n parties to sign. Second, we model the signed message
as an array of messages. This change accounts for signature schemes allowing
signing k& messages simultaneously, such as BBS+. Third, we remove the iden-
tifiability property, the key-refresh, and the corruption/decorruption interface.
The key-refresh and the corruption/decorruption interface are not required in
our scenario as we consider a static adversary in contrast to the mobile ad-
versary in [CGG™20]. Should we add the following: Fourth, we allow only one
signature per ssid to prevent attacks due to same randomness used in multiple
signatures. Fifth, at the end of the signing phase, honest parties might output
abort instead of a valid signature. This modification is due to our protocol not
providing robustness or identifiable abort. The later is achieved by the protocol
of [CGG™20].
The full formal description is presented in Appendix

4.2 Ideal Preprocessing Functionality

The preprocessing functionality consists of two phases. First, the Initialization
phase samples a private/public key pair. Second, the Tuple phase provides corre-
lated tuples upon request. In this phase, the output values of the honest parties
are reverse sampled, given the corrupted parties’ outputs. To explicitly model
the Tuple phase as non-interactive, we require the simulator to specify a func-
tion Tuple during the Initialization. This function defines the corrupted parties’
output values in the Tuple phase and is computed first to reverse sample the
honest parties’ outputs.

Functionality Fprep

The functionality Fprep interacts with parties Py, ..., P, and ideal-world ad-
versary S. The functionality is parameterized by a threshold parameter t.
During the initialization, S provides a tuple function Tuple(-,-,) — Zg.
Initialization. Upon receiving (init,sid) from all parties,

16

— sample the secret key sk & Ly,

— send pk = (g5¥) to S. Upon receiving (ok, Tuple(-,-,-)) from S, send pk to
every honest party.

Tuple. On input (tuple,sid,ssid, 7) from party P, where l € 7, T C [n] of

size t do:

— If (ssid, T, {(as, €i, Si, 05, ;) }ie) is stored, send (ay, e, 1,01, o) to P.

— Else, compute (a;,e;,s;,0;,a;) < Tuple(ssid, T,j) for every corrupted

party P; where j € C N 7. Next, sample a,e,s & Z, and tuples
(aj,ej,85,0;,a;) over Z, for j € HNT such that

Eai:a Eei:e ESiZS

i€T i€T i€T
(4)
Zéi:a(sk—&—e) Zai:as
eT i€T

Store (sid, ssid, T, {(a;, €;, $i,0;, ;) }ie7) and send (sid, ssid, a;, e;, 51, 07, o)
to honest party Pj.

Abort. On input (abort,sid) from S, send abort to all honest parties and
halt.

4.3 Online Signing Protocol

We formally state our threshold BBS+ protocol next and show its security af-
terward.

Construction 1: mrggst

We describe the protocol from the perspective of an honest party P;.

Public Parameters. Number of parties n, size of message arrays k, security thresh-
old ¢, a bilinear mapping tuple (G1, G2, Gr,p, g1, g2,€) and randomly sampled G,
elements {he}oefo..x]- Let Verify, (-,-) be the BBS+ verification algorithm as defined
above.

KeyGen.

— Upon receiving (keygen,sid) from Z, send (init,sid) to Fprep and receive pk in
return.
— Upon receiving (pubkey, sid) from Z output (pubkey, sid, Verify,, (-, -)).

Sign. Upon receiving (sign,sid,ssid, 7,m = {my}¢c[x)) from Z with P; € T and no
tuple (sid, ssid) is stored, perform the following steps:

1. Send (tuple,sid,ssid, T) to Fprep and receive tuple (a;, e;, Si, 0s, ;).

2. Store (sid, ssid) and send (sid, ssid, 7, m, A; := (g1 - Hee[k] Ry RS 6y, €4, i)
to each party P; € T.

3. Once (sid,ssid, T, m, A;,d;,e;,s;) is received from every party P; € T \ {P;},

17

(a) computee =3, rer,s = persee= (Dt 52)71, and A = (Iie7A0) .
(b) If Verify,, (m, (A,e,s)) = 1, set out = o = (4, e,s). Otherwise, set out =
abort. Then, output (sig,sid,ssid, 7, m, out).

Verify. Upon receiving (verify,sid, m = {me}cx), 0, Verify,, (-,+)) from Z output
(verified,sid, m, g, Verify ,, (m, 0)).

Theorem 1. Assuming the strong unforgeability of BBS+, it holds that protocol
mreRs+ UC-realizes Fisig in the Fprep-hybrid model in the presence of malicious
adversaries controlling up to t — 1 parties.

The proof is given in Appendix [E]

4.4 Anonymous Credentials and Blind Signing

BBS+ signatures can be used to design anonymous credential schemes as follows.
To receive a credential, a client sends a signing request to the servers containing
its public and private credential information as a message array. Public parts of
the credentials are sent in clear, while private information is blinded. The client
can add zero-knowledge proofs that blinded messages satisfy some predicate.
These proofs enable the issuing servers to enforce a signing policy even though
they blindly sign parts of the messages. Once holding credentials, clients can
prove in zero knowledge that their credential fulfills certain predicates without
leaking their signature.

Our scheme must be extended by a blind-signing property to realize the
described blueprint. Precisely, we require a property called partially blind signa-
tures [AO00]. This property prevents the issuer from learning more details about
the message to be signed besides some explicitly declared public information.

To transform our scheme into a partially blind one, we follow the approach
of [ASMOG6]. Let {my}scix) be the set of messages representing the client’s cre-
dential information. Without loss of generality, we assume that my is the public
part. In order to blind its messages, the client computes a Pedersen Commit-
ment [Ped91] on the private messages: C' = gi - [eepp—r he* for a random s’
and a zero-knowledge proof 7 that C' is well-formed, i.e., that the client knows
(8", {me}eeip—1))- The client sends (7,C,m,my) and potential zero-knowledge
proofs for signing policy enforcement to the servers. Each server P; for i € T
replies with (A; = (g1 - C - h)"™")% - hg', 05, €5, 5;). The client computes e, s, and
A as before but outputs signature (A, e, s* = s’ + s) which constitutes a valid
signature.

As the blinding mechanism and the resulting signatures are equivalent in
the non-threshold BBS+ setting, we can use existing zero-knowledge proofs for
policy enforcement and credential usage from the non-threshold setting.

5 Threshold Preprocessing Protocol

We state our threshold BBS+ signing protocol in Section E| in a Fprep-hybrid
model. Now, we present an instantiation of the Fprp, functionality using pseu-

18

dorandom correlation functions (PCFs). In particular, our mprep protocol builds
on PCFs for VOLE and OLE correlations. The resulting protocol consists of an
interactive Initialization and a non-interactive Tuple phase, consisting only of
the local PCF evaluations and additional local computation. We now give an
intuition of our preprocessing protocol and present formal definitions in Sec-
tion In Section we briefly give an intuition about instantiating our
precomputation pseudorandom correlation generators (PCGs) instead of PCFs.

Our preprocessing protocol consists of three steps: the first two are part of
the Initialization phase, and the third one builds the Tuple phase. First, the
parties set up a secret and corresponding public key. For the BBS+ signature
scheme, the public key is pk = h{, while the secret key is sk = z, which is
secret-shared using Shamir’s secret sharing, i.e., party P; knows sk; = F(i) for
a random polynomial P with P(0) = sk. This procedure constitutes a standard
distributed key generation protocol for a DLOG-based cryptosystem. Therefore,
we abstract from the concrete instantiation of this protocol and model the key
generation as a hybrid functionality Fgg.

Second, the parties set up the keys for the PCF instances. The protocol uses
two-party PCFs, meaning each pair of parties sets up required instances. At the
time of writing, no PCF construction with a tailored MPC protocol for setting
up the keys exists. Therefore, we model the PCF key generation as a hybrid
functionality Fsetup-

Third, every party in the signer set of a signing request executes the Tuple
phase. In this phase party P; generates (a,e;, S;,0;, @;), where the values fulfill
correlation . To this end, each party samples a;, ¢;, s; such that the a; values
constitute an additive secret sharing of a. The same holds for e and s. Then,
Y re Q¢ = as can be rewritten as as = Y ;e A0 Y e 50 = D peT DopeT WSk
Each multiplication aysy is turned into additive shares using an OLE correlation,
i.e., c1—cg = as. The parties use PCF instances to compute this OLE correlation.
Finally, party P; locally adds a;s; and the outputs of its PCF evaluations to get
an additive sharing of as. The same idea works for computing §; such that
> ve7 0 = a(sk +e) = ask + ae. Note that while the values a,e, s are fresh
random values for each signing request, sk is fixed. Therefore, the parties use
VOLE correlations to compute ask instead of OLE correlations.

Note that party P; uses PCF instances for computing additive shares of a;s;
and a;sy, for two different parties P; and Pj. Since a; must be the same for both
products, we use reusable PCF's so parties can fix a; over multiple PCF instances.
In addition, parties evaluate the PCFs on ssid as input. As ssid is provided by
the environment, we require strong PCF's. Based on these two requirements, our
protocol relies on strong reusable PCFs defined in Section

Next, we present the hybrid key generation functionality in Section [5.1] and
the hybrid setup functionality in Section Then, we formally state and prove
our PCF-based preprocessing protocol in the (Fkg, Fsetup)-lybrid model in Sec-
tion

19

5.1 Key Generation Functionality

We abstract from the concrete instantiation of the key generation. Therefore,
we state a very simple key generation functionality for discrete logarithm-based
cryptosystems similar to the functionality of [Wik04]. The functionality describes
a standard distributed key generation for discrete logarithm-based cryptosys-
tems and can be realized by [GJKR99, [Wik04] or the key generation phase of
|ICGGT20).

Functionality Fkg

The functionality is parameterized by the order of the group from which the
secret key is sampled p, a generator for the group of the public key h, and a
threshold parameter t. The key generation functionality interacts with parties
Py, ..., P, and ideal-world adversary S.

Key Generation:

Upon receiving (keygen, sid) from every party B and
(corruptedShares,sid, {sk;};c¢) from S:

— Sample random polynomial F' € Z,[X] of degree t —1 such that F(j) = sk;
for every j € C.

— Set sk = F(0), pk = h*k, skp = F(¢) and pk, = k% for ¢ € [n].

— Send (sid, skg, pk, {pky } re[n]) to every party Pp.

5.2 Setup Functionality

The setup functionality gets random values, secret key shares, and partial public
keys as input from every party. Then, it first checks if the secret key shares and
the partial public key match and next generates the PCF keys using the random
values. Finally, it returns the generated PCF keys to the parties.

At the time of writing, no PCF construction with a tailored key generation
protocol exists. Therefore, we abstract from a concrete instantiation by speci-
fying this functionality. Nevertheless, Fsewup can be instantiated using general-
purpose MPC.

Functionality Fsetup

Let (PCFyoLe.Gen, PCFygog.Eval) be a stPCF for VOLE correlations and let
(PCFoLe.Gen, PCFpg.Eval) be a stPCF for OLE correlations. The setup func-
tionality interacts with parties Py, ..., P,.

Setup:

Upon receiving (setup, sid, pt(li), pgi), p(ei)7 sky, {pk,(j)};ge[n]) from every party P;:

— Check if hske = pkEk) for every ¢,k € [n]. If the check fails, send abort to
all parties.
— Else, compute for every pair of parties (P, P;):

o (KYOLE, kYOLE) « PCFyore.Gen(1*, pl, sk;),

20

o (KOED L OLEDY . bRy e Gen(1X, pl, pi), and

4,7,0 7 g1
o (KOED) KOy pCFoe.Gen(1%, pl, pi7).
OLE,1 OLE,1 OLE,2
- sgli X keys (sid, kYOLE, kYOLE, k(O >,k§” >,k§7]0)

)ji to every party P;.

75151

5.3 PCF-based Preprocessing Protocol

In this section, we formally present our PCF-based preprocessing protocol in the
(Fke, Fsetup)-hybrid model.

Construction 2: mpep

Let (PCFvoLe.Gen, PCFyoLe.Eval) be a srPCF for VOLE correlations and let
(PCFoLe.Gen, PCFoLe.Eval) be a stPCF for OLE correlations.

We describe the protocol from the perspective of P;.

Initialization. Upon receiving input (init,sid), do:

1. Send (keygen,sid) to Fke.
2. Upon receiving (sid, sk,, pk, {pk 9 Yren)) from Fie, sample P plD) e {0,1}*
and send (setup, sid, o p ot sks, {pk()}ke 1) to Fsetup-

3. Upon receiving (sid, k)’%ﬁk}{?}f,kﬁﬁf Dk KOS,
OLE,2)
k;ml)ji from Fserup, output pk.

Tuple. Upon receiving input (tuple,sid,ssid, 7), compute:
4. for j € T\ {i}:

(az,cY%E) = PCFyoLe.Eval(0, kY%E ssid),

— (skl,c}/l"lE) = PCFvoLe.Eval(1, k] 3 SS|d)

— (ai,c{%%") = PCFoLe.Eval(0, kEC; g ” sid),

— (s4,e9) = PCFoLe.Eval(1, k{9 FY ssid),
(ai, c06"?) = PCFoLe.Eval(0, k{0, ssid), and
— (e, = PCFote.Eval(1, k(O ssid).

5. 6 = ai(ei + LiTski) + 30 e (1) (Lz TAF — L reY9F + O Cg?j,Lg'm)

_ (OLE,1) (OLE,1)
6. i = aisi+ 3 e 3y (Cj,z‘,l ~Cij0)

Finally, output (sid, ssid, a;, €;, S;, 0s, ;).

Theorem 2. Let PCFyoLe be a srPCF for VOLE correlations and let PCFo_gbe
a srPCF for OLE correlations. Then, protocol Tprp, UC-realizes Fprep in the
(Fkas Fsetup)-hybrid model in the presence of malicious adversaries controlling
up to t — 1 parties.

We state our simulator in Appendix [F] provide a sketch in Appendix [G] and
the full indistinguishability proof in Appendix [H]

21

5.4 PCG-based Preprocessing

Instead of using PCF's, we can also use PCGs to instantiate our preprocessing
phase. On a high level, our protocol presented in Section [5.3| uses VOLE and
OLE PCFs. For VOLE and OLE correlations, PCG constructions were proposed
in [BCGI18, BCGT19b, BCGT19a, |SGRR19, BCGT20b, [YWL™20, [CRR21].
It remains to show that these constructions fulfill a notion similar to strong
reusability defined in Section

In a practical setting, a PCG-based precomputation requires the parties to
perform the PCG expansion directly after the seed generation. Then, the parties
store the expanded correlation outputs and use one for each signing request.

6 Evaluation

For the evaluation, we split our protocol into two phases: online and offline. Given
a signing request determined by the message and the signer set, the online phase
captures the signing request-dependent parts. In contrast, the offline phase covers
the signing request-independent preprocessing. This separation does not fully
reflect the protocol specification’s separation in in Key Generation and Signing.
In the protocol specificaiton, servers evaluate the PCF's on the fly as part of the
Signing protocol. However, the PCF evaluation is signing request-independent,
and hence, can be precomputed in the offline phase. Servers precompute the PCF
for upcoming requests and store the results to respond to signing requests even
faster. In the case of PCG-based preprocessing, servers evaluate the PCG directly
after seed generation. Upon receiving a signing request, the servers aggregate the
preprocessed PCF/PCG outputs to a valid signer set-dependent presignature
and use this presignature to perform the actual