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Abstract. Isogeny-based cryptography is one of the candidates for post-
quantum cryptography. In 2023, Kani’s theorem breaks some isogeny-
based schemes including SIDH, which was considered as a promising
post-quantum scheme. Though Kani’s theorem damaged isogeny-based
cryptography, some researchers try to dig into the applications of Kani’s
theorem. A FESTA trapdoor function is an isogeny-based trapdoor func-
tion that is one trial to apply Kani’s theorem to cryptography.
The claim of this paper is that there is an adaptive attack if the FESTA
trapdoor function is used without checking whether the matrix in the
input is correct. In this paper, we provide an adaptive attack for FESTA
trapdoor functions using a specific oracle. Our attack reveals the secret
key of the function. This oracle may be constructed if FESTA trapdoor
functions are used in the wrong way (i.e., without the checking process of
the matrix). As an example, we explain that our attack can be adapted
to a possible PKE scheme based on FESTA trapdoor functions in the
wrong way.
Our attack cannot be adapted to IND-CCA PKE schemes named FESTA
proposed in the FESTA original paper.

1 Introduction

Public key cryptography is an important technology for today’s information
society. In particular, we use RSA [18] and Elliptic Curve Cryptography [14,12]
to keep our information secure. However, Shor showed that quantum computers
with sufficient ability can break these cryptosystems [20]. Therefore, we need to
construct new cryptosystems that resist attacks using quantum computers. We
call such cryptography post-quantum cryptography (PQC).

Isogeny-based cryptography is one of the candidates for post-quantum cryp-
tography. Isogeny-based cryptography attracts interest from some cryptogra-
phers due to its compactness and mathematical structures. Indeed, SIKE [1],
which is an isogeny-based key encapsulation scheme based on SIDH [10], re-
mained as an alternative candidate in the 4th round of the NIST PQC stan-
dardization process [16].

In 2023, some studies break SIDH and cryptosystems related to SIDH [3,13,19].
These studies use Kani’s theorem [11] that describes the relationship between an
isogeny diagram of elliptic curves and an isogeny of abelian varieties of dimension
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2. Although CSIDH (an isogeny-based key exchange scheme) [4] and SQISign
(an isogeny-based digital signature scheme) [6] and some other schemes do not
be broken by these attacks, it was a sore point for isogeny-based cryptography.

On the other hand, Kani’s theorem leads to some novel isogeny-based schemes.
In 2023, Dartois, Leroux, Robert, and Wesolowski proposed a novel isogeny-
based digital signature SQISignHD [5]. This new signature is based on Kani’s
theorem and is more compact than SQISign. Moreover, Basso, Maino, and Pope
proposed a novel isogeny-based trapdoor function and a public key encryption
(PKE) scheme based on this trapdoor function FESTA (Fast Encryption from
Supersingular Torsion Attacks) [2]. FESTA is also based on Kani’s theorem and
is expected to lead to a next-generation isogeny-based PKE scheme instead of
SIDH. To dig the applications of these new schemes and to analyze their security
are important tasks for isogeny-based cryptography.

1.1 Contribution

In this paper, we show that there is an adaptive attack if the FESTA trapdoor
function is used in the wrong way. For SIDH, there are several studies of adap-
tive attacks (e.g., [8,7]). We construct a similar attack to them for the FESTA
trapdoor function when it used in the wrong way.

We show that if there is a specific oracle O, an adversary can reveal the
secret key of the FESTA trapdoor functions. As a part of the input of a FESTA
trapdoor function, there is a 2× 2-regular matrix in a fixed set Mb. Usually, we
check whether this 2 × 2-matrix belongs to Mb in computing the inverse map
of the trapdoor function. We show in this paper that there is a situation that
we can construct O for a possible scheme not checking the inclusivity of this
matrix. Because we need to check the ciphertexts in the IND-CCA secure PKE
schemes named FESTA proposed in [2], these IND-CCA secure schemes are not
threatened by our attack directly.

2 Preliminaries

In this section, we introduce some mathematical concepts and facts.

2.1 Abelian varieties and isogenies

This subsection provides some knowledge about abelian varieties and isogenies.
Refer to [15] and [21] for more detail.

Let k be a field. We denote the characteristic of k by ch(k). Let A be an
algebraic variety over k. If A has a group structure compatible with its structure
as an algebraic variety, we call A an abelian variety. If the dimension of A is 1,
we call A an elliptic curve. Let d be an integer. The d-torsion subgroup of A is
a subgroup of A defined as {P ∈ A | dP = 0}. We denote this group by A[d]. If
d is coprime to ch(k), then it holds that

A[d] ∼= (Z/dZ)2 dimA.
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Suppose that ch(k) = p for a prime number p. Let E be an elliptic curve. If
it holds that E[p] = {0}, we call E a supersingular elliptic curve. If an abelian

variety A satisfies A ∼=
∏dimA

i=1 Ei for supersingular elliptic curves E1, . . . , EdimA,
we call A a superspecial abelian variety.

Let A and B be abelian varieties. An isogeny ϕ : A → B is a morphism
between A and B such that ϕ is surjective, ϕ is a group morphism, and the kernel
of ϕ is a finite subgroup of A. LetG be a finite subgroup of A. There is a separable
isogeny ϕ : A → B with kerϕ = G. Moreover, an image variety B is unique up to
isomorphism. We denote by A/G a representative of an isomorphism class of B. If
A is of dimension 1 or 2, there are well-known algorithms to compute an isogeny
A → A/G from given A and G (e.g., [23] and [22]). For an isogeny ϕ1 : A → B,

there is an isogeny ϕ̂1 satisfying ϕ̂1 ◦ ϕ1 = deg ϕ1 and ϕ1 ◦ ϕ̂1 = deg ϕ1. We call
ϕ̂1 the dual isogeny of ϕ1.

2.2 Kani’s theorem

In this subsection, we introduce Kani’s theorem provided in [11]. Kani’s theorem
describes the relationship between an isogeny of products of two elliptic curves
and an isogeny diamond of elliptic curves.

Definition 1 (Isogeny diamond). Let E0 be an elliptic curve. Let G1 and
G2 be finite subgroups of E0 such that gcd(#G1,#G2) = 1. Then, there is the
following diagram:

E0
ϕ1 //

ϕ2

��

E0/G1

[ϕ1]∗ϕ2

��
E0/G2

[ϕ2]∗ϕ1// E0/⟨G1, G2⟩

Here, an isogeny ϕ1 (resp. an isogeny ϕ2) is a separable isogeny with kerϕ1 = G1

(resp. kerϕ2 = G2), and an isogeny [ϕ2]∗ϕ1 (resp. an isogeny [ϕ1]∗ϕ2) is a
separable isogeny with ker [ϕ2]∗ϕ1 = ϕ2(G1) (resp. ker [ϕ1]∗ϕ2 = ϕ1(G2)). We
call this diagram an isogeny diamond.

Theorem 1 (Kani’s theorem [11]). Suppose that there is an isogeny dia-
mond:

E0
ϕ1 //

ϕ2

��

E1

[ϕ1]∗ϕ2

��
E2

[ϕ2]∗ϕ1// E3

Then, there is an isogeny Φ : E2 × E1 → E0 × E3 defined as

Φ =

(
ϕ̂2 −ϕ̂1

[ϕ2]∗ϕ1 [ϕ1]∗ϕ2

)
with kerΦ = ⟨(deg ϕ1P, ϕ1 ◦ ϕ̂2(P )) | P ∈ E2[deg ϕ1 + deg ϕ2]⟩.
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3 FESTA trapdoor function

This section introduces an overview of a FESTA trapdoor function [2].

3.1 Construction

The following diagram shows the overall picture of FESTA trapdoor functions.

E0

ϕA

''
ϕA,1//

ϕ1

��

ẼA

ϕA,2 // EA
ϕ2

��

(
Pb

Qb

) (
RA

SA

)
= A

(
ϕA(Pb)
ϕA(Qb)

)
E1 E2(

R1

S1

)
= B

(
ϕ1(Pb)
ϕ1(Qb)

)
[ϕ1◦ϕ̂A,1]∗(ϕ2◦ϕA,2) ..

(
R2

S2

)
= B

(
ϕ2(RA)
ϕ2(SA)

)
[ϕ2◦ϕA,2]∗(ϕ1◦ϕ̂A,1)qqE

We first provide a brief explanation. Notations are the same as in the above
diagram. To set up the trapdoor function, we first compute ẼA, EA, and (RA, SA).
Here, a matrix A belongs to a set Mb that is defined as a commutative subgroup
of a 2 × 2-linear group over Z/2bZ (e.g., the set of regular circulant matrices).
Let EA, RA, SA be published. We define a function fEA,RA,SA

as

fEA,RA,SA
(B, ϕ1, ϕ2) = (E1, (R1, S1), E2, (R2, S2)).

Let (A, ϕA,1, ϕA,2) be a secret key. We call fEA,RA,SA
a FESTA trapdoor func-

tion. One who knows the secret key can compute the inverse map of the function
as follows. Note that AB = BA. By using Kani’s theorem and the matrix A−1,
we can compute an isogeny E1 × E2 → ẼA × E, and we can get ϕ1 and ϕ2.
Finally, using ϕ1 and solving Discrete Logarithm Problem by Pohlig-Hellman
algorithm [17], we can detect the matrix B.

We explain more details of FESTA trapdoor functions:

Public parameter: Let d1, d2, dA,1, dA,2 be odd integers such that they are
pairwise coprime. Let m1,m2, d be integers such that

m2
1dA,1d1 +m2

2dA,2d2 = 2b.

Define a prime p as p = 2bd1d2(dA,1dA,2)sff − 1, where f is a small positive
integer and (dA,1dA,2)sf is the square-free part of dA,1dA,2. Let E0 be a
supersingular elliptic curve over Fp2 whose j-invariant is not 1728 or 0. Let
{Pb, Qb} be a basis of E0[2

b]. Define Mb as a commutative subgroup of a
2× 2-linear group over Z/2bZ.
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Public key: We compute a dA,1-isogeny ϕA,1 : E0 → ẼA and a dA,2-isogeny

ϕA,2 : ẼA → EA. Denote ϕA,2 ◦ϕA,1 by ϕA. Take a random matrix A in Mb.
We compute (

RA

SA

)
= A

(
ϕA(Pb)
ϕA(Qb).

)
Finally, publish (EA, RA, SA) as a public key, and keep (A, ϕA,1, ϕA,2) as a
secret.

FESTA trapdoor function: Let ϕ1 be a d1-isogeny mapping from E0 to E1,
and ϕ2 be a d2-isogeny mapping from EA to E2. Let B be a matrix in Mb.
Compute (R1, S1) and (R2, S2) such that(

R1

S1

)
= B

(
ϕ1(Pb)
ϕ2(Qb)

)
,

(
R2

S2

)
= B

(
ϕ2(RA)
ϕ2(SA)

)
.

Output (E1, (R1, S1), E2, (R2, S2)).
Inverse map: We first compute t(R′

2, S
′
2) = A−1 · t(R2, S2). Since AB = BA,

it holds that (
R′

2

S′
2

)
= B

(
ϕ2(ϕA(Pb))
ϕ2(ϕA(Qb))

)
.

Therefore, from Kani’s theorem, the group

⟨(m2dA,2d2R1,m1d1R
′
2), (m2dA,2d2S1,m1d1S

′
2)⟩

is the kernel of the (2b, 2b)-isogeny Φ : E1 × E2 → ẼA × E defined as

Φ =

(
m1ϕA,1 ◦ ϕ̂1 −m2ϕ̂A,2 ◦ ϕ̂2

m2[ϕ1 ◦ ϕ̂A,1]∗(ϕ2 ◦ ϕA,2) m1[ϕ2 ◦ ϕA,2]∗(ϕ1 ◦ ϕ̂A,1)

)
.

Hence, we can get ϕ1 and ϕ2 by computing Φ. If the image of Φ is not a prod-
uct of two elliptic curves, we output ⊥. Finally, we compute (ϕ̂1(R1), ϕ̂1(S1))
and find a matrix B such that(

ϕ̂1(R1)

ϕ̂1(S1)

)
= d1B

(
Pb

Qb

)
by Pohlig-Hellman algorithm. If B ̸∈ Mb, we output ⊥. If B ∈ Mb, we
output (B, ϕ1, ϕ2).

3.2 Example for PKE based on FESTA trapdoor functions

This subsection introduces one easy public key encryption scheme based on a
FESTA trapdoor function. This example relates to our attack model. See [2] for
more secure and concrete PKE schemes based on the functions.

All notations are the same as in the previous subsection. Bob (sender) tries
to send a message to Alice (recipient).

Public parameters: Take the same parameters as those of a FESTA trapdoor
function. In addition, take one basis {P,Q} of E0[d1].
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Public key: Alice computes ϕA and (RA, SA), and publishes (EA, RA, SA).
She keeps (A, ϕA,1, ϕA,2) as a secret.

Encryption: Bob takes a plaintext µ from Z/d1Z. He computes an isogeny
ϕ1 with kerϕ1 = ⟨P + µQ⟩. He takes ϕ2 and B at random. He computes
fEA,RA,SA

(B, ϕ1, ϕ2) and sends it to Alice as a ciphertext.
Decryption: Alice detects ϕ1 by computing the inverse map of fEA,RA,SA

. It
provides a plaintext µ.

4 Adapted attack for FESTA trapdoor functions

In this section, we explain the method to attack FESTA trapdoor functions
under our attack model.

4.1 Attack model

In this subsection, we explain the attack model that we consider. We use the
FESTA notation (the same notation in Section 3).

The goal of the adversary is to reveal the secret key of the FESTA trapdoor
function fEA,RA,SA

(i.e., ϕA,1, ϕA,2, and A).
Let {P1, Q1} be a basis of E1[2

b], and {P2, Q2} be a basis of E2[2
b]. We

assume that the adversary can access the following oracle O′:

O′(E1, (P1, Q1), E2, (P2, Q2)) =

{
1 (if (E1 × E2)/G ∼= ẼA × E)

0 (otherwise)
,

where
G = ⟨(m2dA,2d2P1,m1d1P

′
2), (m2dA,2d2Q1,m1d1Q

′
2)⟩

for t(P ′
2, Q

′
2) = A−1 · t(P2, Q2).

There are some situations of attacks related to this assumption. For example,
we can consider an attack for a public key encryption scheme in Section 3.2 under
the following setting:

1. The recipient does not compute B in the decryption process.
2. The adversary has access to a decryption oracle.

The adversary takes a ciphertext corresponding to (E1, (P1, Q1), E2, (P2, Q2))
and sends it to the decryption oracle. If the decryption oracle returns a plaintext
µ, the adversary knows (E1 × E2)/G ∼= ẼA × E, and if it fails to output the
correct plaintext µ or refuses the encryption, it knows the ciphertext is incorrect.
Therefore, we can construct the oracle O′ from the decryption oracle.

From the Kani’s theorem, the kernel of the (2b, 2b)-isogeny E1×E2 → ẼA×E

is ⟨(m2dA,2d2P,m1ϕ2 ◦ ϕA ◦ ϕ̂1(P )) | P ∈ E1[2
b]⟩. Since the number of isomor-

phism classes of superspecial abelian varieties is ≈ p3 if p ≥ 7 (see [9, Theorem
3.3]), we can define the oracle O that is heuristically equivalent to O′ as follows:

O(E1, (P1, Q1), E2, (P2, Q2)) =

1

(
if

(
P ′
2

Q′
2

)
=

1

d1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
P1

Q1

))
0 (otherwise)

,
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where t(P ′
2, Q

′
2) = A−1 · t(P2, Q2). Hence, we assume that the adversary can

access the oracle O.

Remark 1. One possible countermeasure of the use of the oracle O is to use Weil
pairing. Note that we have

e2b(B · t(ϕ1(Pb), ϕ1(Qb))) = e2b(Pb, Qb)
deg ϕ1 detB,

e2b(B · t(ϕ2(RA), ϕ2(SA)) = e2b(Pb, Qb)
deg ϕ2 deg ϕA detA detB.

Therefore, a simple strategy of the countermeasure is to check if

e2b(P1, Q1)
deg ϕ2 deg ϕA detA = e2b(P2, Q2)

deg ϕ1 .

This strategy, however, does not work to prevent the use of the oracle O. By
direct computation, if it holds that

A−1

(
P2

Q2

)
=

1

deg ϕ1
ϕ2 ◦ ϕA ◦ ϕ̂1

(
P1

Q1

)
,

then we have

e2b(P1, Q1)
deg ϕ2 deg ϕA deg ϕ1

−1

= e2b(P2, Q2)
detA−1

.

Then, checking by Weil pairing does not work, and the oracle O outputs 1.

4.2 Settings

We use the same notation in Section 3.
Put A−1 as

A−1 =

(
γ δ
δ γ

)
.

Let γ0, . . . , γb−1, δ0, . . . , δb−1 are values in {0, 1} such that

γ = γ02
0 + γ12

1 + · · ·+ γb−12
b−1,

δ = δ02
0 + δ12

1 + · · ·+ δb−12
b−1.

By Robert’s attack [19], detecting A−1 reveals the secret key of the FESTA
trapdoor fucntion; therefore, it is suffice to detect values γ0, . . . , γb−1, δ1, . . . , δb−1

to attack FESTA trapdoor functions. Thus, we assume that the adversary tries
to detect these values instead of the secret key.

We also assume that Mb is the group of regular circulant matrices over
Z/2bZ. I.e.,

Mb =

{(
α β
β α

) ∣∣∣∣ α, β ∈ Z/2bZ, α2 − β2 ∈ (Z/2bZ)×
}
.

Let the correct input be

B

(
ϕ1(Pb)
ϕ1(Qb)

)
, B

(
ϕ2(RA)
ϕ2(SA)

)
.
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In our adaptive attack, the adversary sends incorrect inputs based on the above
input to the oracle O. Here, the adversary should generate a new input in each
case that it accesses to O (and it is possible in our attack strategy). However,
for simplicity, we fix the correct input as above in the next subsection.

4.3 Strategy

In this subsection, we explain the strategy of our adaptive attack.

Step 0: The goal of this step is to reveal γ0, δ0 and 2b−1ϕA(Pb). Algorithm 1
shows the outline of this step.

The adversary takes a random point P0 ∈ EA of order 2, and sends to the
oracle O

B

(
ϕ1(Pb)
ϕ1(Qb)

)
, B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(P0)
ϕ2(P0)

)
instead of the correct input. Then, it holds that

A−1

(
B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(P0)
ϕ2(P0)

))
= B

(
ϕ2(ϕA(Pb))
ϕ2(ϕA(Qb))

)
+ (γ + δ)

(
ϕ2(P0)
ϕ2(P0)

)
.

Therefore, if γ0+ δ0 ≡ 0 (mod 2), then O outputs 1, and if γ0+ δ0 ≡ 1 (mod 2),
then O outputs 0.

The adversary takes three points P0, P1, P2 ∈ EA of order 2. The adversary
tries to judge which of three points is 2b−1ϕA(Pb).

Case of γ0 + δ0 ≡ 0 (mod 2): From the definition of the matrix A, we have
γ0 = δ0 = 1. The adversary sends to the oracle O

B

(
ϕ1(Pb)
ϕ1(Qb)

)
+

(
2b−1ϕ1(Pb)
2b−1ϕ1(Pb)

)
, B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

)
for i = 0, 1, 2. Then we have

A−1

(
B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
= B

(
ϕ2(ϕA(Pb))
ϕ2(ϕA(Qb))

)
+

(
ϕ2(Pi)
ϕ2(Pi)

)
Therefore, if Pi is 2b−1ϕA(Pb), then O outputs 1, and if Pi ̸= 2b−1ϕA(Pb),
then O outputs 0. Therefore, by sending three incorrect inputs to the oracle
O, the adversary can guess 2b−1ϕA(Pb).

Case of γ0 + δ0 ≡ 1 (mod 2): The adversary sends to the oracle

B

(
ϕ1(Pb)
ϕ1(Qb)

)
+

(
2b−1ϕ1(Pb)

0

)
, B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

)
for i = 0, 1, 2. Then if γ0 = 1, we have

A−1

(
B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
= B

(
ϕ2(ϕA(Pb))
ϕ2(ϕA(Qb))

)
+

(
ϕ2(Pi)

0

)
,
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and if δ0 = 1, we have

A−1

(
B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
= B

(
ϕ2(ϕA(Pb))
ϕ2(ϕA(Qb))

)
+

(
0

ϕ2(Pi)

)
.

Therefore, if γ0 = 1 and Pi = 2b−1ϕA(Pb), then O outputs 1, and if not, it
outputs 0. Therefore, the adversary gets (γ0, δ0) and 2b−1ϕA(Pb) if γ0 = 1
by sending three incorrect inputs to O. If the oracle O outputs 0 for every
three inputs, it holds that γ0 = 0. In this case, the adversary additionally
sends to the oracle O

B

(
ϕ1(Pb)
ϕ1(Qb)

)
+

(
0

2b−1ϕ1(Pb)

)
, B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

)
for i = 0, 1, 2. Then it holds that

A−1

(
B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
= B

(
ϕ2(ϕA(Pb))
ϕ2(ϕA(Qb))

)
+

(
0

ϕ2(Pi)

)
.

Therefore, the adversary can guess 2b−1ϕ1(Pb) by sending three incorrect in-
puts. Consequently, the adversary can get (γ0, δ0) and 2b−1ϕ1(Pb) by sending
six incorrect inputs.

From the above processes, the adversary reveals γ0, δ0 and 2b−1ϕA(Pb) by send-
ing at most seven incorrect inputs to O.

Step k (1 ≤ k ≤ b − 1): The goal of this step is to reveal γk, δk and
2b−k−1ϕA(Pb). We assume that the adversary already knows γ0, . . . , γk−1, δ0, . . . , δk−1

and 2b−k−2ϕA(Pb). The outline of this step is in Algorithm 2.
The adversary defines a 2× 2-matrix Ck over Z/2bZ as

Ck =

k−1∑
i=0

2i
(
γi δi
δi γi

)
.

It holds that

A−1 = Ck + 2k
(
γk δk
δk γk

)
+ 2k+1D,

where D is a 2× 2-matrix over Z/2bZ. Therefore, we have

2b−k−1I2 = 2b−k−1CkA+ 2b−1

(
γk δk
δk γk

)
A,

where I2 is the identity matrix. Hence, it holds that

2b−k−1

(
ϕA(Pb)
ϕA(Qb)

)
= 2b−k−1Ck

(
RA

SA

)
+ 2b−1

(
γk δk
δk γk

)(
RA

SA

)
.

From this equality, the adversary can get 2b−k−1ϕA(Pb) if it knows γk and δk.
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From now on, we assume that the adversary tries to reveal γk and δk.
The adversary takes four points P0, P1, P2, P3 of order 2k+1 such that 2Pi =
2b−k−2ϕA(Pb) for i = 0, 1, 2, 3. The adversary sends to the oracle O four incor-
rect inputs

B

(
ϕ1(Pb)
ϕ1(Qb)

)
+Ck2

b−k−1

(
ϕ1(Pb)
ϕ1(Pb)

)
, B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)
ϕ2(Pi)

)
for i = 0, 1, 2, 3. Then, it holds that

A−1

(
B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)
ϕ2(Pi)

))
= B

(
ϕ2(ϕA(Pb))
ϕ2(ϕA(Qb))

)
+ (γk + δk)2

k

(
ϕ2(Pi)
ϕ2(Pi)

)
+Ck

(
ϕ2(Pi)
ϕ2(Pi)

)
.

If γk + δk ≡ 0 (mod 2) and Pi = 2b−k−1ϕA(Pb), then O outputs 1, and if not, it
outputs 0. Hence, if O outputs 1 for one of four incorrect inputs, it holds that
γk + δk ≡ 0 (mod 2), and if it outputs 0 for all these inputs, then γk + δk ≡ 1
(mod 2). Consequently, the adversary can detect γk + δk mod 2 by sending the
above four incorrect inputs to O.

Case of γk + δk ≡ 0 (mod 2): The adversary sends to the oracle O

B

(
ϕ1(Pb)
ϕ1(Qb)

)
+Ck2

b−k−1

(
ϕ1(Pb)

0

)
, B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

)
for i = 0, 1, 2, 3. Note that γk = δk. Then, we have

A−1

(
B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
= B

(
ϕ2(ϕA(Pb))
ϕ2(ϕA(Qb))

)
+ γk2

k

(
ϕ2(Pi)
ϕ2(Pi)

)
+Ck

(
ϕ2(Pi)

0

)
.

If γk = 0 and Pi = 2b−k−1ϕA(Pb), then O outputs 1, and if not, it outputs
0. Therefore, if O outputs 0 for all these incorrect inputs, then γk = δk = 1,
and if it outputs 1 for one of them, it holds that γk = δk = 0. Hence, the
adversary can reveal γk and δk by sending four incorrect inputs to O.

Case of γk + δk ≡ 1 (mod 2): The adversary sends to the oracle O

B

(
ϕ1(Pb)
ϕ1(Qb)

)
+ 2b−1

(
ϕ1(Pb)

0

)
+Ck2

b−k−1

(
ϕ1(Pb)

0

)
,

B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

)
for i = 0, 1, 2, 3. Then it holds that

A−1

(
B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
= B

(
ϕ2(ϕA(Pb))
ϕ2(ϕA(Qb))

)
+ 2k

(
γkϕ1(Pi)
δkϕ1(Pi)

)
+Ck

(
ϕ2(Pi)

0

)
.



The wrong use of FESTA trapdoor functions leads to an adaptive attack 11

Therefore, the oracleO ouputs 1 if and only if γk = 1 and Pi = 2b−k−1ϕA(Pb).
Hence, if O outputs 0 for all four incorrect inputs, then γk = 0 and δk = 1,
and if it outputs 1 for one of them, then γk = 1 and δk = 0. Thus, the
adversary can reveal γk and δk by sending four incorrect inputs to O.

In summary, the adversary can get γk and δk (and 2b−k−1ϕA(Pb)) by sending
eight incorrect inputs to O.

From the above steps, the adversary can know the matrix A in at most 8b− 1
queries to the oracle O.

Remark 2. As noted in Section 4.1, we need to assume that the recipient does
not compute B in the decryption process. Indeed, the incorrect input

B

(
ϕ1(Pb)
ϕ1(Qb)

)
+Ck2

b−k−1

(
ϕ1(Pb)
ϕ1(Pb)

)
, B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)
ϕ2(Pi)

)
leads the matrix

B+ 2b−k−1Ck

(
1 0
1 0

)
,

and this matrix does not belong to Mb.

It is future work to research the existence of an adaptive attack even if Alice
checks whether B ∈ Mb.

5 Conclusion

We showed that an adaptive attack might be considered if the FESTA trapdoor
function was used in the wrong way. This attack reveals its secret key.

For our attack, we need an oracle that decides whether one who knows the se-
cret key of FESTA trapdoor functions can compute the correct (2b, 2b)-isogeny
from the given input. As an example, we show that this oracle can be con-
structed under a specific PKE scheme that uses the FESTA trapdoor function
in the wrong way (i.e., a recipient does not check if B ∈ Mb in the decryption
process). The IND-CCA secure PKE schemes named FESTA proposed in [2] is
not attacked by our adaptive attack directly.
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Algorithm 1 Step 0 of our adaptive attack for FESTA trapdoor functions

Require: The public parameter and public key of FESTA (p,E0, Pb, Qb, EA, RA, SA)
Ensure: γ0, δ0 ∈ {0, 1} and 2b−1ϕA(Pb)
1: P0, P1, P2 ← points of order 2 in EA

2: B ← a random matrix inMb

3: ϕ1 ← a random d1-isogeny mapping from E0 to E1

4: ϕ2 ← a random d2-isogeny mapping from EA to E2

5: k ← O

(
E1,B

(
ϕ1(Pb)
ϕ1(Qb)

)
, E2,B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(P0)
ϕ2(P0)

))
6: if k = 1 then
7: γ0, δ0 ← 1, 1
8: for i = 0, 1, 2 do

9: l ← O

(
E1,B

(
ϕ1(Pb)
ϕ1(Qb)

)
+

(
2b−1ϕ1(Pb)

2b−1ϕ1(Pb)

)
, E2,B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
10: if l = 1 then
11: P ← Pi

12: end if
13: end for
14: else
15: γ0 ← 0
16: for i = 0, 1, 2 do

17: l ← O

(
E1,B

(
ϕ1(Pb)
ϕ1(Qb)

)
+

(
2b−1ϕ1(Pb)

0

)
, E2,B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
18: if l = 1 then
19: P ← Pi

20: γ0, δ0 ← 1, 0
21: end if
22: end for
23: if γ0 = 0 then
24: γ0, δ0 ← 0, 1
25: for i = 0, 1, 2 do

26: l ← O

(
E1,B

(
ϕ1(Pb)
ϕ1(Qb)

)
+

(
0

2b−1ϕ1(Pb)

)
, E2,B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
27: if l = 1 then
28: P ← Pi

29: end if
30: end for
31: end if
32: end if
33: return γ0, δ0, P
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Algorithm 2 Step k of our adaptive attack for FESTA

Require: The public parameter and public key of FESTA (p,E0, Pb, Qb, EA, RA, SA)
and γ0, . . . , γk−1 and δ0, . . . , δk−1 and 2b−k−2ϕA(Pb)

Ensure: γk, δk ∈ {0, 1} and 2b−k−1ϕA(Pb)
1: P0, P1, P2, P3 ← points in EA such that 2Pi = 2b−k−2ϕA(Pb)

2: Ck ←
∑k−1

i=0 2i
(
γi δi
δi γi

)
3: B ← a random matrix inMb

4: ϕ1 ← a random d1-isogeny mapping from E0 to E1

5: ϕ2 ← a random d2-isogeny mapping from EA to E2

6: ϵ ← 1
7: for i = 0, 1, 2, 3 do

8: k ← O

(
E1,B

(
ϕ1(Pb)
ϕ1(Qb)

)
+Ck2

b−k−1

(
ϕ1(Pb)
ϕ1(Pb)

)
, E2,B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)
ϕ2(Pi)

))
9: if k = 1 then
10: ϵ ← 0
11: end if
12: end for
13: if ϵ = 0 then
14: γk, δk ← 1, 1
15: for i = 0, 1, 2, 3 do

16: k ← O

(
E1,B

(
ϕ1(Pb)
ϕ1(Qb)

)
+Ck2

b−k−1

(
ϕ1(Pb)

0

)
, E2,B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
17: if k = 1 then
18: γk, δk ← 0, 0
19: end if
20: end for
21: else
22: γk, δk ← 0, 1
23: for i = 0, 1, 2, 3 do

24: k← O

(
E1,B

(
ϕ1(Pb)
ϕ1(Qb)

)
+ 2b−1Ck2

b−k−1

(
ϕ1(Pb)

0

)
+Ck2

b−k−1

(
ϕ1(Pb)

0

)
, E2,B

(
ϕ2(RA)
ϕ2(SA)

)
+

(
ϕ2(Pi)

0

))
25: if k = 1 then
26: γk, δk ← 1, 0
27: end if
28: end for
29: end if

30:

(
P
Q

)
← 2b−k−1Ck

(
RA

SA

)
+ 2b−1

(
γk δk
δk γk

)(
RA

SA

)
31: return γk, δk, P
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