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Abstract. Protecting secret keys from malicious observers in untrusted envi-

ronments is a critical security issue. White-box cryptography suggests software
protection by hiding the key in the white-box setting. One method for hid-

ing the key in the cipher code is through encoding methods. Unfortunately,

encoding methods may be vulnerable to algebraic attacks and side-channel
analysis. Another technique to hide the key is (M,Z)-space hardness approach

that conceals the key into a large lookup table generated with a reliable small

block cipher. In (M,Z)-space-hard algorithms, the key extraction problem
in the white-box setting turns into a key recovery problem in the black-box

setting. One of the problems for (M,Z)-space-hard algorithms is improving
run-time performance. In this study, we aim to improve the run-time perfor-

mance of the existing white-box implementations. We propose an LS-design

based white-box algorithm with better run-rime performance than space-hard
SPNbox algorithm. Moreover, an LS-design based table creation method is de-

signed. When we compare the run-time performance of our method with the

SPNbox algorithm, we obtain 28% improvement for white-box implementation
and 27% for black-box implementation for 128-bit block size. The LS-design

based method is also used for 256-bit block size in the white-box setting.

1. Introduction

Protecting the secret key of a cryptographic algorithm is a major problem in
white-box attack conditions. In the white-box attack conditions, the attacker can
observe the internal details of the encryption process. White-box cryptography is
a software protection method for devices in untrusted environments that preserves
the secret key in the algorithm layers.

The white-box DES [11] for DRM applications in 2002 and the white-box AES [12]
in 2003 were proposed by Chow et al. In the white-box AES, the key is embedded
in the Sbox, and encoding methods are used to hide the algorithm layers. Unfortu-
nately, white-box AES was broken by algebraic attacks [2, 23]. Some other variants
have been proposed that were secure against the applied algebraic attacks [25, 34]
but were also broken [15, 30].

ASASA structure based memory-hard white-box algorithm against code-lifting
attacks has been proposed by Biryukov et al. [3]. The ASASA structure consists of
nonlinear layer S and affine layer A. The code-lifting attacks enable the attacker to
use the algorithm as a large key outside the device. Although the proposed white-
box method is not secure against key recovery attacks, the memory-hard algorithms
inspired the idea of space-hard white-box algorithms.

Key words and phrases. White-box cryptography, Space-hard ciphers, Software protection,
LS-design, Efficiency.
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1.1. (M,Z)-Space Hard Ciphers. The (M,Z)-space hard white-box ciphers aim
to provide security using a reliable small block cipher instead of internal and exter-
nal coding throughout the algorithm phases. A large lookup table is created with
this small block cipher. Thus, the secret key is embedded in this table, which is
used as a substitution box in the nonlinear layer. In this case, the key extraction
issue in the white-box setting becomes a key recovery issue in the black-box setting.
The first (M,Z)-space hard white-box algorithm proposed by Bogdanov and Isobe
is Space [6], based on the Feistel structure, which hides the key in the F function.

The incompressibility of the table, where the key is embedded, is a critical secu-
rity notion against code-lifting attacks [16]. Weak (M,Z)-space hardness is defined
to resist these attacks. The generated key-based tables must be updated regularly
according to this definition to ensure security in the white-box setting.

Definition 1.1 (Weak (M,Z )-space hardness [6]). A white-box block cipher is
called weak (M,Z)-space hard if it is not possible to encrypt a randomly selected
text with a probability greater than 2−Z until the leakage size from the table is
reached to M bits.

The SPN-based (M,Z)-space hard cipher SPNbox was suggested by Bogdanov
et al. [7] to improve Space’s run-time performance. To achieve efficiency, they used
a lightweight MDS matrix in the linear layer of the white-box algorithm. SIMD
instructions were used to improve performance in the implementation. Moreover, an
efficient key-based table generation method was proposed using AES components.

Another SPN-based cipher WARX was proposed by Liu et al. [31] to improve the
performance of white-box and black-box implementations using addition, rotation,
xor (ARX) operations. The table creation method in WARX was inspired by the
lightweight SPARX [17] algorithm. They also proposed using a randomMDSmatrix
in the linear layer of the white-box algorithm to reduce the round number.

Other than these (M,Z)-space hard algorithms, Feistel-based WhiteBlock [19],
FPL [28] and Galaxy [27], Even-Mansur structure based WEM [10] and SPN-based
Yoroi [26] were proposed to accelerate run-time performance while keeping the
security strength of the white-box algorithms.

1.2. Our Contribution. Creating reliable key-based tables and updating these
tables are fundamental security notions for the space-hard white-box algorithms.
At the same time, accelerating the run-time performance of white-box/black-box
algorithms becomes important, as efficiency is as essential as security in real-world
applications. Lightweight MDS matrices were preferred in SPN-based white-box
algorithms since they provide higher security strength with less computational cost.

This study aims to propose a new space-hard white-box algorithm that is han-
dling lightweight components other than MDS matrices utilized in the current al-
gorithms. With this motivation, the linear components of the NIST Lightweight
competition [22] candidate Spook [1] were found suitable for an efficient space-hard
white-box algorithm without reducing the security level. A new (M,Z)-space hard
white-box algorithm based on LS-design [20] is implemented in this paper to ac-
celerate the run-time performance of the existing algorithms. Also, a new table
creation method based on LS-design is proposed to take advantage of the bitslice
implementation against side-channel analysis.

The details of the LS-design based white-box algorithm and the new table cre-
ation method are explained in Section 2. The security issues for the table creation
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method and the white-box algorithm are detailed in Section 3. The run-time per-
formance results are stated in Section 4.

2. An LS-Design Based White-Box Block Cipher

LS-design based algorithms [20, 24] aim to prevent differential side-channel anal-
ysis with bitslice implementations. With this scope, we propose an LS-design based
white-box algorithm and table construction method to take advantage of security
considerations along with the run-time performance improvement. We give the
specifications of our algorithm below.

2.1. Specifications of WBI. The LS-design based white-box algorithm is imple-
mented with 32-bit word and 128/256-bit key and block sizes. The round trans-
formation of the algorithm is implemented to 128-bit subblocks. One round of the
algorithm consists of a table-based nonlinear layer, a bitslice linear layer, and a
round constant layer.

2.1.1. Nonlinear layer. The nonlinear layer is implemented as a key-dependent sub-
stitution box generated by a small-scale block cipher. This small block cipher is
also based on the LS-design approach with a 32-bit block size. The details of the
small block cipher are given in Table Construction part 2.2.

2.1.2. Linear Layer. The linear layer Lbox is taken from the lightweight design
Spook [1]. Lbox is applied to two 32-bit state words to increase the branch number
to 16. The internal operations are specified as in Table 1.

Table 1. Lbox

u = x⊕ (x ≪ 12); v = y ⊕ (y ≪ 12);
u = u⊕ (u ≪ 3); v = v ⊕ (v ≪ 3);
u = u⊕ (x ≪ 17); v = v ⊕ (y ≪ 17);
t = u⊕ (u ≪ 31); z = v ⊕ (v ≪ 31);
u = u⊕ (z ≪ 26); v = v ⊕ (t ≪ 25);
u = u⊕ (t ≪ 15); v = v ⊕ (z ≪ 15)

Since the round transformation of the implementation is applied to 128-bit
blocks, an additional linear component, Dbox, is used to diffuse 128-bit blocks
to each other for 256-bit block size. The Dbox has left-rotate and xor operations
shown in Table 2. Each word of one subblock is rotated to the left and xored to
the corresponding state of the other subblock.

Table 2. Dbox

x = x⊕ (y ≪ 15);
y = y ⊕ (x ≪ 19)
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2.1.3. Round Constants. Round constants are generated from a 4-bit LFSR with
the feedback polynomial f(x) = x4 + x3 + 1. Each bit of the LFSR output is
rotated left by the round number and xored with the corresponding word in the
state. For 256-bit block size, an additional round constant layer is implemented
after the Dbox layer. Round constants are generated from 8-bit LFSR with the
feedback polynomials f(x) = x8 + x5 + x3 + x+ 1.

2.2. Table Construction. The block size of the table construction algorithm is
32-bit, and the state is taken as an (8×4)-bit grid as shown in Figure 1. The round
transformation of the algorithm has a key addition layer, a nonlinear layer as a
substitution box, a bitslice implemented linear layer, and a round constant layer.
The nonlinear layer tSbox is applied to two concatenated 4-bit columns, while the
linear layer tLbox is applied to 8-bit rows. The round constants are generated
with an 8-bit LFSR. The algorithm consists of 12/16 rounds to provide 128/256-bit
security.

tLbox

tSbox

Figure 1. State of the Input

2.2.1. tSbox. The 8-bit tSbox is taken from Scream-v3 algorithm [21], the second
round candidate of CAESAR [13] competition. The tSbox has differential proba-
bility 2−5, and linear probability 2−2, while the algebraic degree is 6. The tSbox
consists of three steps based on the Feistel structure. The first and third steps are
almost perfect nonlinear (APN) functions, and the second step is a permutation
with differential uniformity 4. Details of the Feistel structures are stated in Table 3.

2.2.2. tLbox. The linear layer tLbox is taken from Mysterion algorithm [24]. The
permutation is a recursive MDS matrix obtained from an [16, 8, 9]F24

MDS code
with the branch number 9. The recursive MDS matrix is constructed by calculat-
ing the k-power of the complementary matrix in the field F2q . In the Mystreion
algorithm, the companion matrix M is taken as

M=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 8 3 f 5 f 3 8


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Table 3. tSbox.

Step 1

x0 = (s1 & s2)⊕ s0
x1 = s1 ⊕ s3
x2 = s2 ⊕ x0

s4 = s4 ⊕ ((s3 ⊕ x2) & (s2 ⊕ x1))
s5 = s5 ⊕ x2

s6 = s6 ⊕ (s3 & x0)
s7 = s7 ⊕ (x1 & x2)

Step 2

x0 = (s4 & s5)⊕ s6
x1 = (s5 | s6)⊕ s7
x2 = (s7 & x0)⊕ s4
x3 = (s4 & x1)⊕ s5
s0 = s0 ⊕ x0

s2 = s2 ⊕ x1

s1 = s1 ⊕ x2

s3 = s3 ⊕ x3

Step 3

x0 = ¬((s1 & s2)⊕ s0)
x1 = s1 ⊕ s3
x2 = s2 ⊕ x0

s4 = s4 ⊕ ((s3 ⊕ x2) & (s2 ⊕ x1))
s5 = s5 ⊕ x2

s6 = s6 ⊕ (s3 & x0)
s7 = s7 ⊕ (x1 & x2)

The MDS matrix and its inverse are computed as 8-power of the companion
matrix M for q = 4 with the reduction polynomial p(x) = x4 + x+ 1.

M8=



1 8 3 f 5 f 3 8
8 d 3 2 1 4 4 f
f 9 f 9 4 b 6 5
5 1 6 9 b 2 4 8
8 9 a 7 7 a 9 8
8 4 2 b 9 6 1 5
5 6 b 4 9 f 9 f
f 4 4 1 2 3 d 8


(M8)−1=



8 d 3 2 1 4 4 f
f 9 f 9 4 b 6 5
5 1 6 9 b 2 4 8
8 9 a 7 7 a 9 8
8 4 2 b 9 6 1 5
5 6 b 4 9 f 9 f
f 4 4 1 2 3 d 8
8 3 f 5 f 3 8 1


2.2.3. Round Keys. The round keys are generated using extendable output function
(XOF) SHAKE [18] with the master key. For the 128-bit security case, the 128-
bit master key is expanded to 384-bit for twelve rounds. Similarly, the 256-bit
master key is expanded to a 512-bit key for 16 rounds of 256-bit security level.
The extended outputs are divided into 32 bits, and the state is xored with the
corresponding round key in the addroundkey layer.
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2.2.4. Round Constants. Round constants are generated with an 8-bit LFSR with
the feedback polynomial p(x) = x8 + x6 + x5 + x4 + 1. The output of the LFSR is
divided into 32 subwords of length 8, and the subwords are taken as round constants.
The state is xored with the corresponding round constant in the addroundconstant
layer.

2.3. Implementation Details. In the table creation method, each element of the
field F32

2 is encrypted with the LS-design based small block cipher. At the beginning
of the algorithm, the input is reordered with the bitslice function as the concate-
nating 4-bit columns, as shown in the grid structure. After round transformations,
it is sorted in initial order with the unbitslice function. We applied the bitslice and
unbitslice functions only once to improve run-time performance, rather than each
tsbox and tlbox layers. The pseudo-code of the table construction method is given
in the Algorithm 1.

In the implementation, the nonlinear layer tsbox is pre-computed and used as
a substitution box. Matrix multiplication is applied in the linear layer tlbox. The
xtime function for the finite field multiplication is defined as:

(((x) << (1))⊕ ((((x) >> (3))&1) · (0x13)))

Depending on the matrix values, the xtime function is applied to 4-bit inputs up
to 3 times in succession. The size of these pre-computed xtime values is 192 bits.

Algorithm 1 Table Construction

1: INPUT: x ∈ (F32
2 )

2: OUTPUT: x
3: x← bitslice(x)
4: for i = 0 to tr do
5: x← addroundkey(x, key[i])
6: x← tsbox(x)
7: x← tlbox(x)
8: x← addroundconstant(x)
9: end for

10: x← unbitslice(x)

The white-box algorithm is implemented for 128-bit and 256-bit block sizes.
The round transformation is applied to 128-bit blocks for each case. The generated
table T is used as a substitution box in the nonlinear layer. Bitslice implemented
linear layer lbox takes two 32-bit inputs and is applied twice in one round. The
order of the lbox entries is chosen according to the round number to increase the
diffusion effect. Additional linear layer and round constants are applied to diffuse
128-bit blocks to each other in 256-bit block size. The pseudo-code of the white-box
implementation is given in Algorithm 2.

Round numbers for the white-box implementations’ 128-bit and 256-bit block
sizes are calculated as 12 and 14, respectively. One round of 128-bit white-box
implementation has 24 ·xor+24 · or from lbox, and 4 ·xor operations from add−rc.
Hence, the total computational cost of the white-box implementation is 336 ·xor+
288·or operations. Similarly, one round of the 256-bit block has 48·xor+48·or from
lbox, 8 · xor and 8 · or operations from dbox, and 16 · xor operations from add−rc.
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Algorithm 2 White-Box Implementation (WBI)

1: INPUT: xi ∈ (F32
2 ), i ∈ {0, · · · , 4 · n− 1}, T-Table

2: OUTPUT: xi ∈ (F32
2 ), i ∈ {0, · · · , 4 · n− 1}

3: for i = 0 to R-1 do
4: for j = 0 to 4·n-1 do
5: xj ← T (xj)
6: end for
7: for j = 0 to n-1 do
8: (x4·j , x4·j+1+(j&1))← lbox(x4·j , x4·j+1+(j&1))
9: (x4·j+2−(j&1), x4·j+3)← lbox(x4·j+2−(j&1), x4·j+3)

10: (x4·j , · · · , x4·j+3)← add−rc((x4·j , · · · , x4·j+3), i)
11: end for
12: if n==2 then
13: (x0 · · ·x4·n)← dbox(x0 · · ·x4·n)
14: for j = 0 to n-1 do
15: (x4·j , · · · , x4·j+3)← add−drc((x4·j , · · · , x4·j+3), i)
16: end for
17: end if
18: end for

Therefore, the total computational cost of the 256-bit white-box implementation is
1008 · xor + 784 · or operations.

The only difference in the black-box implementation is that the table construc-
tion algorithm, which is used in the nonlinear layer, is implemented instead of used
as a pre-computed table. The pseudo-code of the black-box algorithm is given in
Algorithm 3.

3. Security

The security strength of the table creation method and the LS-design based
white-box algorithm are evaluated against black-box and white-box attacks.

3.1. The Security of Table Construction Method. The table construction
method is analyzed against the known black-box attacks. Also, the structural
attacks based on the faulty construction of LS-design are discussed for our design
method.

3.1.1. Differential and Linear Cryptanalysis. The LS-design is based on WTS ap-
proach [14]. The linear and differential probability are formalized in [20] as,

(3.1) Prdiff(2r) ≤ Prmax
diff (S)r·B(L)

and

(3.2) Prlin(2r) ≤ Prmax
lin (S)r·B(L)

The differential and linear probability of the tSbox is 2−5 and 2−2, and the
branch number of the tLbox is 9. From Equation 3.1 and 3.2, the table generation
method provides 128-bit security after eight rounds and 256-bit security after 14
rounds. Also, according to the MILP method in [32], there are 54 active tSboxes
for twelve rounds and 72 active tSboxes for 16 rounds. Hence, the method resists
differential and linear attacks with the determined round numbers.
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Algorithm 3 Black-Box Implementation (BBI)

1: INPUT: xi ∈ (F32
2 ), i ∈ {0, · · · , 4 · n− 1}, T-Table

2: OUTPUT: xi ∈ (F32
2 ), i ∈ {0, · · · , 4 · n− 1}

3: for i = 0 to R-1 do
4: for j = 0 to 4·n-1 do
5: xj ← bitslice(xj)
6: for i = 0 to tr do
7: xj ← addroundkey(xj , key[i])
8: xj ← tsbox(xj)
9: xj ← tlbox(xj)

10: xj ← addroundconstant(xj)
11: end for
12: xj ← unbitslice(xj)
13: end for
14: for j = 0 to n-1 do
15: (x4·j , x4·j+1+(j&1))← lbox(x4·j , x4·j+1+(j&1))
16: (x4·j+2−(j&1), x4·j+3)← lbox(x4·j+2−(j&1), x4·j+3)
17: (x4·j , · · · , x4·j+3)← add−rc((x4·j , · · · , x4·j+3), i)
18: end for
19: if n==2 then
20: (x0 · · ·x4·n)← dbox(x0 · · ·x4·n)
21: for j = 0 to n-1 do
22: (x4·j , · · · , x4·j+3)← add−drc((x4·j , · · · , x4·j+3), i)
23: end for
24: end if
25: end for

3.1.2. Slide Attacks. Slide attacks [4, 5] exploit the algorithm’s high degree of self-
similarity vulnerability regardless of the round numbers. A different round constant
is used to prevent slide attacks in every round of the table construction algorithm.

3.1.3. Algebraic Attacks. Algebraic attacks aim to recover the encryption key by
solving the multivariate algebraic equations of the encryption system. The upper
bound for the maximum algebraic degree for a block cipher is given in [9, 8]. There-
fore, at least three rounds are required to reach the algebraic degree 31 against the
attacks.

3.1.4. Structural Attacks. The invariant subspace attacks [29] and the nonlinear
invariant attacks [33] are applied against LS-design algorithms. Both attacks rely
on the vulnerability of using the weak key and sparse constants in the algorithms.
Our table generation method is resistant to such attacks, as a different round key,
generated by a reliable key derivation function, is used in each round. Also, round
constants are generated with an LFSR instead of random sparse numbers.

3.2. The Black-Box Security. The encryption algorithm is analyzed against dif-
ferential and linear cryptanalysis, slide and structural attacks in the black-box
environment.
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3.2.1. Differential and Linear Cryptanalysis. The branch number of the linear layer
is 16, and the algorithms are applied in 12/14 rounds. According to Equation 3.1
and 3.2, the desired security levels against differential and linear attacks are pro-
vided.

3.2.2. Other Attacks. The round constants are generated with an LFSR against
slide attacks and LS-design based structural attacks. The reliability of the table
creation method provides security against algebraic and related attacks.

3.3. The White-box Security. Key extraction and code-lifting security are the
most fundamental security considerations for white-box algorithms. The key ex-
traction security is related to the reliability of the table construction algorithm. The
leak limit in (M,Z)-space hardness against code lifting attacks is used to determine
the white-box algorithm’s round number. Hence, key extraction and code-lifting
security are detailed for our white-box design.

3.3.1. Key Extraction Security. In space-hard ciphers, key extraction security is
vital since the secret key is hidden in the lookup table used in the nonlinear layer.
Therefore, key recovery attacks are needed to extract the key from the table cre-
ated with a small block cipher in the black-box setting. The white-box algorithm
is as resistant to key extraction attacks as is the reliability of the small-block ci-
pher against key recovery attacks [6]. The key extraction security of our white-box
implementation depends on the table creation method. The table creation method
is designed to be secure against known attacks. Also, the purpose of bitslice im-
plementation is to prevent side-channel attacks. Therefore, our LS-design based
white-box implementation is secure against the key extraction attacks.

3.3.2. Code Lifting Security. In space-hard ciphers, the secret key is embedded in
the lookup table, like a large device key. If an attacker retrieves the table from the
device, he gets the encryption key. Therefore, incompressible tables must be utilized
to prevent code lifting attacks [16]. Using a reliable small-block cipher to construct
the lookup table provides incompressible tables for white-box implementation. On
the other hand, since malicious sides observe the device in an untrusted environ-
ment, the table can be leaked piece by piece. According to the weak (M,Z)-space
hardness definition, the table must be renewed when the leakage limit is reached.

The round number of the white-box algorithm is calculated according to the
maximum achievable security (MAS) size determined by the leakage limit in the
weak (M, Z)-space hardness definition. The MAS size is defined as keysize −
log2(tablesize) in [19, 10, 31]. We have taken the MAS size by the leak size for
white-box algorithms as keysize − log2(leaksize) to calculate the round number
more precisely. The round numbers are computed with the Equation (3.3)

(3.3) r =
log2(L)− keysize

n · log2(
L+ 1

T
)

,

where L is size of leakage, T is the table size, and n is the number of lookup table
usage in a round. According to Equation 3.3, the white-box implementation requires
at least 12/14 rounds to provide 96-bit/221-bit MAS strength for 128-bit/256-bit
block size.
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4. Performance Results

The run-time performance of the white-box and black-box implementations was
compared with the SPNbox-32 algorithm. The algorithms are stated in the Github
page 1, run on randomly generated 3072 bytes messages with 100000 cycles and -O3
optimization on a laptop equipped with x86-64 architecture, a 2.80 GHz Intel Core
i7-1165G7 CPU and 8 GB DDR4-3200 RAM. The performance results are given in
Table 4 for white-box implementation and in Table 5 for black-box implementation.

According to the performance results in Table 4, white-box Clyde is 28% faster
than SPNbox-32, and white-box Shadow is 15% faster than SPNbox-32.

Table 4. Performance results of the WBI.

Algorithm Key Size Round MAS WBI in Cycle

(per byte)

SPNbox-32 128 16 128 138
Cylde 128 12 96 99
Shadow 256 14 221 117

The run-time performance of the black-box implementation was compared with
the black-box SPNbox-32. SPNbox’s method is implemented in 16 rounds for 128-
bit security in the table creation, while our LS-based design is in 12 rounds. For the
256-bit security level, our table creation method is applied in 16 rounds. According
to performance results in Table 5, the run-time performance of black-box Clyde
is 27% faster than black-box SPNbox-32. Nevertheless, black-box Shadow is 26%
slower than black-box SPNbox-32.

Table 5. Performance results of the BBI.

Algorithm Key Size Table Cycle

(per byte)

SPNbox-32 128 SPNbox 1801
Clyde 128 LS-design 1317
Shadow 256 LS-design 2272

5. Conclusion

White-box cryptography aims to provide software security for devices in un-
trusted environments where the key security cannot be provided by hardware tools
such as TPM or TEE. In white-box cryptography, the key is embedded in encryp-
tion algorithm layers by appropriate methods. Using encoding methods has not
provided security against key extraction attacks until now. However, (M,Z)-space-
hard algorithms suggest hiding the secret key in a large lookup table handling a
small block cipher. One of the issues of these ciphers is to improve the run-time
performance of white-box and black-box implementations. This study proposes a
new LS-design based white-box algorithm and table construction method. With

1https://github.com/hkcryp/wbc
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this white-box algorithm, we have performance improvement as 28% for white-box
implementation and 27% for black-box implementation with a 128-bit block size.
Moreover, we propose an LS-design based white-box algorithm for 256-bit block
size using the suggested table creation method.
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17. Daniel Dinu, Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, Johann Großschädl, and Alex
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