
Faster Amortized FHEW bootstrapping using Ring
Automorphisms⋆

Gabrielle De Micheli1, Duhyeong Kim2, Daniele Micciancio1, and Adam Suhl1

1 University of California, San Diego
2 Intel

January 28, 2023

Abstract. Amortized bootstrapping offers a way to simultaneously refresh many ciphertexts of a fully
homomorphic encryption scheme, at a total cost comparable to that of refreshing a single ciphertext.
An amortization method for FHEW-style cryptosystems was first proposed by (Micciancio and Sorrell,
ICALP 2018), who showed that the amortized cost of bootstrapping n FHEW-style ciphertexts can
be reduced from Õ(n) basic cryptographic operations to just Õ(nϵ), for any constant ϵ > 0. However,
despite the promising asymptotic saving, the algorithm was rather inpractical due to a large constant
(exponential in 1/ϵ) hidden in the asymptotic notation. In this work, we propose an alternative amor-
tized boostrapping method with much smaller overhead, still achieving O(nϵ) asymptotic amortized
cost, but with a hidden constant that is only linear in 1/ϵ, and with reduced noise growth. This is
achieved following the general strategy of (Micciancio and Sorrell), but replacing their use of the Nuss-
baumer transform, with a much more practical Number Theoretic Transform, with multiplication by
twiddle factors implemented using ring automorphisms. A key technical ingredient to do this is a new
“scheme switching” technique proposed in this paper which may be of independent interest.

1 Introduction

Fully Homomorphic Encryption (FHE) schemes support the evaluation of arbitrary programs on
encrypted data. Since a first solution to the problem was proposed in [6], FHE has become both
a central tool in the theory of cryptography, and an attractive cryptographic primitive to be used
to secure privacy sensitive applications. Still, improving the efficiency of these schemes is a major
obstacle to the use of FHE in practice, and a very active area of research.

All reasonably efficient currently known constructions of FHE are based on the “Ring Learning
With Errors” (RingLWE) problem [12,15]. There are two main approaches to design FHE schemes
based on Ring LWE: the one pioneered by the BGV cryptosystem and its variants (e.g., see [3,7,8])
and the one put forward by the FHEW cryptosystem and follow up work (e.g., see [2,4,5].) In BGV,
ring operations are directly used to implement (componentwise) addition and multiplication of ci-
phertexts encrypting vectors of values. The ability to simultaneously work on all the components of
a vector (at the cost of a single cryptographic operation) makes these schemes very powerful. The
downside is that they also require fairly large parameters, leading to stronger security assumptions
(namely, the hardness of approximating lattice problems within superpolynomial factors), a very
slow bootstrapping procedure, and complex programming model. By constrast, in FHEW, cipher-
texts are simple LWE encryptions (which offer native support only for homomorphic addition,)
while Ring LWE is used only internally, to implement a special “functional bootstrapping” proce-
dure that, given an encryption of m, produces a (bootstrapped) encryption of f(m), for a given

⋆ Research supported in part by the Swiss National Science Foundation Early Postdoc Mobility Fellowship, Intel
Crypto Frontiers award, and NSF Award 1936703.

function f . The combination of linearly homomorphic LWE addition and functional bootstrapping
still allows to perform arbitrary computations: for example, as originally done in [5], one can repre-
sent bits x, y ∈ {0, 1} as integers modulo 4, and then implement a (universal) NAND boolean gate
as an addition followed by a (functional bootstrapping) rounding operation ⌊(x+ y+2 mod 4)/2⌋.
The FHEW approach has several attractive features: (1) since bootstrapping is performed after
every operation, gates can be arbitrarily composed, leading to a very simple and easy to use pro-
gramming model; (2) since we only need to bootstrap basic LWE ciphertexts supporting a single
homomorphic addition, the scheme can be instantiated with much smaller parameters; (3) in turn,
this leads to weaker security assumptions (hardness of approximating lattice problems within poly-
nomial factors), and substantially simpler and faster bootstrapping, orders of magnitude faster than
BGV.

However, the lower speeds of BGV bootstrapping are largely compensated by its ability to
encrypt and operate on many values (encrypted as a vector) at the same time, allowing, for example,
to simultaneously bootstrap thousands of ciphertexts. This drastically reduces the amortized cost
of BGV bootstrapping, and making it still preferable to FHEW in terms of overall performance in
many settings.

In an effort to bridge the gap between the two approaches, a method to amortize FHEW
bootstrapping was proposed in [14]. The suggested method consists in combining several (say n)
FHEW/LWE input ciphertexts into a single RingLWE ciphertext, and then perform FHEW-style
bootstrapping on a single RingLWE ciphertext. This results in a major asymptotic performance
improvement, reducing the amortized cost of FHEW bootstrapping from O(n) homomorphic mul-
tiplications to just O(nϵ), for any fixed constant ϵ > 0. Unfortunately, the method of [14] is rather
far from being practical, due in large part to a large constant 2O(1/ϵ) hidden in the asymptotic
notation.

Challenges, Results and Techniques In this paper we propose a variant of the bootstrapping
procedure of [14] with similar asymptotics, but substantially smaller multiplicative overhead. In
particular, we reduce the amortized cost of FHEW bootstrapping from 2O(1/ϵ) ·nϵ to just (1/ϵ) ·nϵ.
In other words, we achieve a similar asymptotic cost O(nϵ) (for any constant ϵ > 0), but with an
exponentially smaller constant hidden in the asymptotic notation.

The main challenge faced by [14] was the use of RingGSW registers to implement the homo-
morphic fourier transform required to bootstrap a RingLWE ciphertext. These registers, introduced
in [5], encrypt messages in the exponent as Xm. This allows to implement homomorphic addition
using some form of ciphertext multiplication Xm0 ·Xm1 = Xm0+m1 , but other homomorphic oper-
ations required by FFT/NTT algorithms (like subtraction and constant multiplication by so-called
“twiddle factors”) are much harder, seemingly requiring homomorphic division and exponentia-
tion on ciphertexts. This is addressed in [14] by using the Nussbaumer transform, a variant of the
FFT/NTT algorithm that does not require multiplication by twiddle factors. Unfortunately, the
use of the Nussbaumer transform in [14] also introduces a 2O(1/ϵ) factor in the running time, making
the algorithm impractical.

Methods to perform homomorphic multiplication in the exponent (i.e., exponentiation by a
constant) are known, using automorphisms, and have been used in connection to the bootstrapping
of FHEW-like cryptosystems [2, 11], but they only work for RingLWE ciphertexts, making them
inapplicable to the RingGSW ciphertexts required by [14]. In this paper we introduce three technical
innovations that allow to overcome these issues:

2

– We introduce a new RingLWE-to-RingGSW “scheme switching” procedure, which allows us to
transform RingLWE ciphertexts into equivalent RingGSW ones. The method seems of indepen-
dent interest and may find applications elsewhere

– We design a new variant of the amortized FHEW bootstrapping of [14] that operates on
RingLWE registers, rather than RingGSW. This allow us to implement multiplication by arbi-
trary twiddle factors using the automorphism techniques of [2, 11], and instantiate the amor-
tized FHEW bootstrapping framework with a standard (homomorphic) FFT/NTT computa-
tion, which carries a much smaller overhead. Then, when RingGSW registers are required, we
resort to our scheme switching procedure to convert RingLWE to RingGSW on the fly.

– We replace the power-of-two cyclotomic rings [5,11,14] and circulant rings [2] used by previous
FHEW bootstrapping algorithms, with prime cyclotomics. This requires a new error analy-
sis for prime cyclotomics, which we describe in this paper. (Error analysis for power-of-two
cyclotomic and circulant rings is comparatively much easier.) This speeds up and simplifies
various steps of our bootstrapping procedure, e.g., by supporting a standard radix 2 FFT (as
opposed to the radix 3 Nussbaumer transform of [14]), and completely bypassing the problem
that automorphisms only exists for invertible exponents [11].

One important problem that still remains open is that of reducing the noise growth in amortized
FHEW bootstrapping. Just as in previous work [14], the ciphertext noise of our bootstrapping
procedure increases multiplicatively at every level of the FFT/NTT computation. In order to keep
the RingLWE noise (and underlying lattice inapproximability factors) polynomial, this requires
to limit the recursive depth of the FFT/NTT algorithms to a constant. This is the reason why
both [14] and our work only achieve O(nϵ) amortized complexity, rather than the O(log n) one
would expect from a full (O(log n)-depth) FFT algorithm. In practice, this limits the recursive
depth to a small constant, typically just two levels or so. Further improving amortized FHEW
boostrapping, allowing the execution of a homomorphic FFT with O(log n) levels is left as an open
problem.

Related and Concurrent work: Ring automorphisms have been used in many other works aimed
at improving the efficiency of lattice cryptography based on the RingLWE problem, most notably
the evaluation of linear functions in HElib [10] and algebraic trace computations [1]. Our use of
automorphisms is most closely related to [11], which recently used them to improve the performance
of FHEW (sequential, non-amortized) bootstrapping. In a concurrent and independent work [9],
an algorithm very similar to ours is presented. The algorithm achieves essentially the same results,
improving the cost of amortized FHEW bootstrapping from 2O(1/ϵ) ·n1/ϵ to (1/ϵ) ·n1/ϵ. The overall
structure of the algorithm is very similar, using automorphisms to replace the Nussbaumer trans-
form in [14] with a standard FFT. However, the algorithms differ in some technical details. For
example, while [9] uses the circular rings [2], we use prime cyclotomics, which results in marginally
smaller ciphertexts. Another difference is that while [9] extends the automorphism multiplication
technique to work directly on RingGSW ciphertexts, we center our FFT algorithm aroung RingLWE
registers (which are smaller than RingGSW by a factor 2) and convert them to RingGSW only when
necessary using our new scheme switching technique.

2 Preliminaries

We start by recalling some fundamental notions and definitions that will be used in this work.

3

2.1 Cyclotomic rings and embeddings

Given a positive integer N , the N th cyclotomic polynomial is defined as ΦN (X) =
∏

i∈Z∗
N
(X −ωi

N)

for ωN = e2πi/N ∈ C the complex N th principal root of unity. The N th cyclotomic ring is defined as
RN = Z[X]/ΦN (X). In this work, we will consider the dth cyclotomic ring modulo q, for d a power-

of-2, defined as Rd = Zq[X]/Φd(X) ≃ Zϕ(d)
q . Each element of this ring corresponds to a polynomial

a ∈ Rd of degree less than ϕ(d) and with coefficients taken modulo q. There exist various ways
of representing a ring element. One can first map the polynomial a(X) =

∑
i≤ϕ(d) ai · Xi to its

vector of coefficients (a1, a2 · · · , aϕ(d)) ∈ Zϕ(d)
q . This is known as the coefficient embedding. The

norm of any ring element then refers to the ℓ2 norm of the corresponding vector in the coefficient
embedding.

Another representation of a ring element is with its canonical embedding σ : K → Cn which
endows K, the dth cyclotomic number field, with a geometry. Note that the ring of integers of
K corresponds to the dth cyclotomic ring Z[X]/Φd(X). We know that K has exactly ϕ(d) ring
homomorphisms, also called embeddings, σi : K → C. The canonical embedding is then defined
as the map σ(a) = (σi(a))i∈Z∗

d
for a ∈ K. The norm usually considered when using the canonical

embedding is the ℓ∞ norm ||σ(a)||∞ = maxi |σi(a)|. More generally, for any a ∈ K and any
p ∈ [1,∞], the ℓp norm is defined as ||a||p = ||σ(p)||p. Since the σi are ring homomorphisms, we
then have for any a, b ∈ K the inequality ||a · b||p ≤ ||a||∞ · ||b||p.

Working with prime cyclotomics, or more generally with non-power-of-two cyclotomics can
be rather cumbersome, in particular, when considering the canonical embedding and not just the
coefficient embedding. We know that any two embeddings are related to each other by a fixed linear
transformation on Rd. For power-of-2 cyclotomics, the transformation is even an isometry and thus
the coefficient and canonical embeddings are equivalent up to a

√
d factor. In this work, we will be

working with both Rd, the d
th cyclotomic ring modulo q for which we will use the notation Rin and

the qth cyclotomic modulo Q for a prime q and a positive integer Q > 0, which we will denote Rreg.
The latter is a prime cyclotomic ring where the two embeddings cannot be easily interchanged.
This will in particular affect the error growth analysis as we later explain in Section 3.2.

2.2 Encryption schemes and operations

We recall definitions and notations for the standard LWE encryption scheme used in the boot-
strapping algorithm. We also extend our description to the ring version of LWE and introduce two
related schemes, GadgetRLWE and RGSW, both used in our algorithm.

LWE: Consider some positive integers n and q. Let sk ← χ be a secret key sampled from a
distribution χ and m ∈ Z a message. The LWE encryption of the message m under the secret key
sk is given by

LWEq,sk(m) = [aT , b] ∈ Z1×(n+1)
q ,

where a ← Zn
q , b = −a · sk+ e+m ∈ Zq and e ← χ′ is the error, sampled from a distribution χ′,

and ciphertexts are represented as row vectors.

RLWE: The ring version of LWE considers the ring Rq. Let sk← χ be a secret key sampled from
a distribution χ and m ∈ Rq a message. The RLWE encryption of the message m under the secret
key sk is given by

RLWEq,sk(m) = [a,b] ∈ Rq
1×2,

4

where a← Rq and b = −a · sk+ e+m and ei ← χ′ for each coefficent ei of the error. When the
context is clear, we do not specify the modulus q or the secret key sk.

Gadget RLWE or RLWE’ Consider a gadget vector v = (v0, v1, · · · , vk−1). Gadget RLWE or
equivalently refered to as RLWE’ is expressed as a vector of RLWE ciphertexts of the form

RLWE′
sk(m) = (RLWEsk(v0 ·m),RLWEsk(v1 ·m), · · · ,RLWEsk(vk−1 ·m)) ∈ Rk×2

q

i.e., matrices with k rows, each representing a basic RLWE ciphertext. We remark that RLWE
ciphertext can be regarded as a special case of RLWE′ instantiated with a trivial gadget v⃗ = (1).
So, anything we say about RLWE′ applies to RLWE as well.

RingGSW Given a message m ∈ Rq, we define

RGSWsk(m) = (RLWE′
sk(sk ·m),RLWE′

sk(m)) ∈ Rq
2k×2.

We now summarize the operations that can be done with the different schemes presented above
and focus in particular on the operations used in our algorithm. The main operation in our al-
gorithm that serves as a building block for other operations is the scalar multiplication by arbi-
trary ring elements. In order to compute this multiplication, one uses RLWE’ with gadget vector
v = (v0, v1, · · · , vk−1). The scalar multiplication is denoted as R ⊙ RLWE′ and corresponds to
⊙ : R× RLWE′ → RLWE defined as

t⊙ RLWE′
sk(m) :=

k−1∑
i=0

ti · RLWEsk(vi ·m)

= RLWEsk

(
k−1∑
i=0

vi · ti ·m

)
= RLWEsk(t ·m)

where
∑

i viti = t is the gadget decomposion of t into “short” vectors ti, for an appropriate notion
of “short” depending on the gadget v. Each operation performed with ciphertexts increases the
error. When performing many of these operations, as in our bootstrapping algorithm, it is crucial
to keep track of the error growth. More details will be given in Section 3.2. For now, we simply
state that each error ei in RLWEsk(vi ·m), after the scalar multiplication, becomes

∑k−1
i=0 ti · ei.

The RLWE and RLWE′ schemes only support multiplication by constant values. In order to
obtain multiplication by ciphertexts, we need to consider the RGSW scheme. Let us now consider
the multiplication ⋆ : RLWE× RGSW→ RLWE defined as

RLWEsk(m1) ⋆ RGSWsk(m2) := a⊙ RLWE′
sk(s ·m2) + b⊙ RLWE′

sk(m2)

= RLWE′
sk(a · s ·m2 + b ·m2)

= RLWEsk(m1 ·m2 + e1 ·m2)

for RLWE(m1) := (a,b). The output of this multiplication is an RLWE ciphertext encrypting the
message m1 ·m2 + e ·m2. The error thus additively increases by e1 ·m2. If the error term e1 ·m2

is sufficiently small, then this approximately results in an RLWE encryption of the product of the
two messages.

5

This multiplication can be extended to RLWE′ ciphertext multiplication ⋆′ : RLWE′×RGSW→
RLWE′ defined as

RLWE′
sk(m1) ⋆

′ RGSWsk(m2)

:= (RLWEsk(v0 ·m1) ⋆ RGSWsk(m2), · · · ,RLWEsk(vk−1 ·m1) ⋆ RGSWsk(m2))

≈ RLWE′
sk(m1 ·m2).

Each component RLWEsk(vi ·m1) ⋆ RGSWsk(m2) of the result has the same error growth as a ⋆
operation in the RLWE ⋆RGSW case. In particular, it includes an error term e1,i ·m2 that requires
the second message m2 to be small.

The ⋆′ operation corresponds to k times the ⋆ operations, and thus a total of 2k ⊙ operations.

2.3 Using ring automorphisms

Similarly as in [11], we use ring automorphisms to perform scalar multiplication with registers.
Recall that an automorphism is a bijective maps from the ring R to itself such that for a given
t ∈ Z∗

q , we have a(X) 7→ a(Xt).

Automorphism in RLWE and RLWE′: Consider the following RLWE ciphertext (a(X),b(X))
which encrypts a given messagem(X) under a certain key sk, i.e., (a(X),b(X)) = RLWEsk(m(X)).
We also consider a switching key akt = RLWE′

sk(sk(X
t)), which is used to map ciphertexts [a,b]

from key sk(Xt) to sk. Given an automorphism ψt : R → R such that a(X) 7→ a(Xt), we recall
the procedure Evalauto given in [11]:

1. apply ψt to each of the RLWE components. One obtains

(a(Xt),b(Xt)) = RLWEsk(Xt)(m(Xt))

2. apply a key switching function
[a,b] 7→ a⊙ akt + [0,b]

to obtain a ciphertext RLWEsk(X)(m(Xt))

The same application can be done on RLWE′ ciphertexts. The only difference comes during
the second step where we require k key switching, one for each RLWE ciphertext. The only R ⊙
RLWE′ operation comes from key switching. Hence, for automorphism on RLWE, we have a single
R ⊙ RLWE′ operation and when considering automorphisms on RLWE′ we have k R ⊙ RLWE′

operations, where k is the length of the gadget.

2.4 Homomorphic operations on registers

Following the FHEW framework, we use cryptographic registers that encrypt a Zq element “in
the exponent”. In other words, a register storing m ∈ Zq is an encryption of Xm ∈ Rreg. In
our algorithm, the encryption scheme will sometimes be RLWE′ and sometimes RGSW. Some
operations require one scheme or the other. In order to perform some of these operations, we will
need to scheme-switch from RLWE′ to RGSW. We describe our scheme-switching technique in
Section 3.1. In our bootstrapping algorithm, we will primarily use three operations on registers,
i.e., either RLWE′ or RGSW ciphertexts. We have already mentioned these operations and recall
them now:

6

– ⋆′ : RLWE′×RGSW → RLWE′ multiplications: this operation allows to multiply two cipher-
texts, which in the exponent acts like and addition.

– Scheme-switching: this operation converts an RLWE′ register into an RGSW register.
– Automorphisms: this operation allows us to multiply the exponent of a RLWE′ ciphertext by

some (known) value, and correponds to multiplication by a constant.

Note that automorphisms can only operate on RLWE′ registers, not an RGSW ones. (This is
because RGSW does not directly support the key switching operation required by the second step
of the homomorphic automorphic application algorithm. See Section 3.1 for details.) On the other
hand, multiplication requires one of the two registers to be in RGSW format. The scheme switching
operation is used to combine the two operations, keeping all registers in RLWE′ form, and convert
them to RGSW only when required for multiplication.

In order to analyse the performance and the correctness of our algorithm we will analyse these
three operations in terms of number of R ⊙ RLWE′ operations needed to compute them and the
related error growth (see Table 2).

2.5 Standard and primitive (inverse) FFT

We only mention in this paper some relevant facts about FFT algorithms that are useful for our
algorithm. Note that when refering to FFT and related algorithms, we actually refer to the Number
Theoretic Transform (NTT) algorithm.

An FFT algorithm can either evalute a polynomial at all N th roots of unity for a given N or
only the primitive ones. The former case is refered to as a standard/cyclic FFT whereas the latter
case is called a primitive/cyclotomic FFT. In the case of a standard FFT, the inverse direction
reconstructs from these evaluations a polynomial mod XN − 1. When multiplying two polynomials
a(x) and z(x) modulo a cyclotomic polynomial, using a standard FFT (and its inverse) requires
a “final reduction” step to take polynomials modulo (XN − 1) to polynomials modulo ΦN (X).
This “final reduction” increases the multiplicative depth of the circuit and, in our case, prevents
some useful optimizations (namely, using RLWE instead of RLWE′ in the last FFT layer as we will
explain in Section 4.2). We can avoid the final reduction step by using a primitive/cyclotomic FFT,
which we recall only evaluates the polynomials at the primitive N th roots of unity ωi for i ∈ Z∗

N .
The inverse FFT then reconstructs from these evaluations a polynomial modulo the N th cyclotomic
polynomial ΦN (X). We note however that, unlike with a standard FFT, the forward and inverse
directions are not interchangeable. We focus the rest of the discussion on the case of power-of-two
cyclotomics (which is the case we will use in this paper) where N = d = 2log2 N , and ϕ(d) = d/2.
For the forward direction, let 0 ≤ i < ϕ(d) = d/2, and ω be a primitive dth root of unity. Then the

Fourier coefficients f̂ := (f̂0, f̂1, ..., f̂d/2) of a polynomial f(X) =
∑d/2−1

i=0 fi ·Xi (mod Xd/2+1) are
computed as

f̂i :=

d/2−1∑
j=0

fjω
(2i+1)j ,

and the inverse FFT of f̂ can be computed as

ˆ̂
fℓ :=

2

d
·
d/2−1∑
i=0

f̂iω
−(2i+1)ℓ =

2

d
· ω−ℓ

d/2−1∑
i=0

f̂iω
−2iℓ

7

for each 0 ≤ ℓ < d/2 and output
ˆ̂
f(X) =

∑d/2−1
i=0

ˆ̂
fi ·Xi. It is easy to verify that these operations

are inverses of each other, i.e.,
ˆ̂
f = f . The FFT also preserves both addition and multiplication,

i.e., ̂̂f + ĝ = f + g and ̂̂f ◦ ĝ = f · g where ◦ denotes the component-wise multiplication of input
vectors. Moreover, one notices that the inverse operation can be computed as a standard/cyclic
length-ϕ(d) FFT (using ω−2 as the ϕ(d)th root of unity) followed by a multiplication by a power of
ω.

In this work, we mainly focus on homomorphic computation of the inverse FFT (while the
forward FFT is done in cleartext), so the constant multiplication by 2/d becomes a (minor) com-
putational overhead. We can easily remove this overhead by moving the constant from the inverse
FFT to the forward FFT. If we move the constant 2/d, we get

FFT(f)i :=
2

d
· f̂i =

2

d
·
d/2−1∑
j=0

fjω
(2i+1)j ,

FFT−1(FFT(f))ℓ :=
d

2
· F̂FT(f)ℓ =

d/2−1∑
i=0

FFT(f)iω
−(2i+1)ℓ.

In this case, FFT−1 is still the inverse of FFT and addition is preserved in the same manner. How-
ever, note that there is a slight difference in multiplication: FFT−1(FFT(f) ◦ ĝ) = FFT−1(FFT(f ·
g)) = f · g.

In our algorithm, we will consider partial (primitive) FFT, denoted by PFT, where instead of
reducing modulo (X − ζ) (i.e., evaluating the polynomials at X = ζ, we reduce modulo (Xk − ζ).
In this reduction, an Xi term will not interact with an Xj term unless i ≡ j mod k. Hence, an
equivalent description of a partial FTT is doing k FFTs in parallel, each with 1/k as many terms.
More precisely, one FFT will operate on the terms which are 0 modulo k, one FFT on just the
terms that are 1 modulo k, and so on. This also applies to the inverse direction. In our algorithm,
we will thus divide by ϕ(d)/k and not ϕ(d).

2.6 Summary of notations

We summarize the notations used throughout the paper in Table 1. For simplicity of exposition,
in this paper we use a standard power-of-B gadget (1, B,B2, . . . , BdB−1). In practice, this can be
replaced by a CRT gadget which typically supports more efficient implementation.

3 Novel techniques

In this section, we introduce some novel techniques related to scheme switching and error analaysis.
We first introduce a new variant of scheme-switching. We then introduce an error analysis in the
context of prime cyclotomics. Indeed, our algorithm will use a prime cyclotomic for the registers,
whereas common FHE schemes use power-of-2 cyclotomic rings for which the error analysis differs,
as we will explain.

3.1 RLWE′ to RGSW scheme switching

When an automorphism is applied to a ciphertext, it modifies both the encrypted message and
the encryption key. (This applies to RLWE, RLWE’ and RGSW ciphertexts alike.) Therefore, in

8

Notation Description

Modulus qplain Ciphertext modulus for standard LWE.
q Prime ciphertext modulus for input RLWE ciphertext. Plaintext modulus for registers.
Q Ciphertext modulus used in RLWE′ /RGSW registers.

Rings Rin dth cyclotomic ring (mod q),
Zq [x]

Φd(x)
≃ Zϕ(d)

q .

d power-of-2 degree of Rin.
Rreg qth prime cyclotomic ring mod Q used by the registers.

FFT k degree at which we stop the partial FFT.
ϕ(d) the number of Plain-LWE ciphertexts that are packed into an RLWE ciphertext; the number

of coefficients in an Rin element; the number of coefficients in the input polynomial of the
FFT; the number of registers in any layer of the IFFT; the number of registers output by
the IFFT.

N = ϕ(d)/k the number of degree-(k − 1) polynomials output by the partial FFT.
ω ∈ Zq a primitive (d/k)th root of unity in Zq for use in the FFT.
ri radix for FFT layer.
ℓ number of FFT layers.

Secret keys sp ∈ Znplain+1
qplain Plain LWE secret key.

z ∈ Rin RLWE secret key for the input (packed) RLWE ciphertext.
s ∈ Rreg RGSW secret key used for registers.

Gadget decomposition B Base for the powers-of-B gadget used in registers.
dB ⌈logB(Q)⌉, the length of the PowersOfB gadget.

Error variance σ2
⊙ The (expected) factor by which an Rreg ⊙RLWE′ operation scales up the error variance in

a ciphertext.
σ2
⊙,RGSW The resulting error variance of the ⊙ operation on each RLWE′ component of RGSW(m2).

σ2
⊙,eval key The resulting error variance of the ⊙ operation on the evaluation key with error variance

σ2
eval key.

σ2
⊙,aut key The resulting error variance of the ⊙ operation on the automorphism key RLWE′

sk(ψ(sk)).
σ2
in The error variance of the input to an operation.

Table 1. Summary of notations used in the paper

order to use automorphisms to operate homomorphically on ciphertexts, one needs a method to
switch back to the original key. For RLWE and RLWE’ ciphertexts, this is provided by a standard
key switching operation as described in the previous section. However, for RGSW encryption,
this does not quite work. The reason is that a RGSW encryption can be interpreted as a pair of
RLWE’ ciphertexts encrypting m and m · sk. The first component does not pose any problem, as
it can be transformed using a standard RLWE’ key switching operation. However, key switching
cannot be directly applied to the second component, because it encrypts a key-dependent message
m · sk. So, RGSW key-switching would require not only to modify the encryption key, but also
to change the message from m · sk to m · sk’, where sk’ is the new key. For this reason, key
switching (and homomorphic automorphism evaluation), is directly applicable only to RLWE and
RLWE’ ciphertexts. On the other hand, RGSW ciphertexts are required to perform homomorphic
multiplications when both multiplicands are encrypted. We address this problem by providing a
method to convert RLWE’ ciphertexts to RGSW ones, which we call scheme switching. Let us now
describe how this is done.

Since RGSWsk(m) = (RLWE′
sk(sk ·m),RLWE′

sk(m)) and we are given RLWE′
sk(m), we just

need a way to compute RLWE′
sk(sk ·m). To do so, we will use RLWE′

sk(sk
2) given as part of the

evaluation key. We will operate in parallel on each of the RLWEsk(vi ·m) ciphertexts that make up
the RLWE′

sk(m) ciphertext, lifting each RLWEsk(vi ·m) to RLWEsk(vi · sk ·m). More precisely,
for each RLWEsk(vi ·m) := (a,b), we compute

a⊙ RLWE′
sk(sk

2) + (b, 0).

9

By regarding (b, 0) as a noiseless RLWE encryption of b · sk under the secret key sk, this compu-
tation gives RLWEsk(a · sk2 + b · sk) = RLWEsk((a · sk + b) · sk) = RLWEsk((vi ·m + e) · sk).
Hence we do get RLWEsk(vi · sk ·m) as desired, but with an additional error e · sk scaled up by sk
from the input RLWE′ ciphertext error e. We will choose the secret key sk with small norm (e.g.,
binary) so that this multiplicative error growth remains small. More details about the full error
growth for this scheme switching will be given in Section 3.2.

When our scheme switching method is used in conjuction with key switching, it allows a small
optimization. Say we are given a RLWE′

sk’(m), and we want to turn it into a RGSW encryption
under sk. This can be done in two steps, by first performing key-switching to RLWE′

sk(m), and
then using the scheme switching key RLWE′

sk(sk
2) to compute RLWE′

sk(m ·sk). The optimization
consists in using a modified scheme switching key RLWE′

sk(sk
′ · sk) to turn the input ciphertext

(encrypted under sk′) directly into RLWE′
sk(m · sk), performing key switching sk’ → sk and

homomorphic multiplication by sk at the same time. Notice that the running time is about the same
as before because we still need another key switching sk’ → sk to compute the other component
of the output RGSW ciphertext. However, combining key switching and multiplication in a single
operation allows to slightly reduce the noise growth. In order to give a more modular presentation,
we will ignore this optimization in the description of our algorithm.

3.2 Error growth in prime cyclotomics

Analysing the error growth in bootstrapping algorithms is crucial for the correctness of the scheme
as it allows to set the proper modulus sizes and show the implementation can be run with concrete
parameters. It is a standard practice in lattice cryptography to estimate the error growth during
homomoprhic operations under the heuristic assumption that the noise in ciphertexts behaves like
independent gaussian (or subgaussian) random variables, with standard deviation that depends on
the computation leading to the ciphertext. In order to fairly compare our algorithm to previous
work, in this paper we use a similar technique and compute the total error estimation based on
the error variance introduced by a single Rreg ⊙ RLWE′ operation. In previous works, where a
power-of-2 cyclotomic is being used, this value is equal to 1

12dBqB
2σ2input where B is the base for

the power-of-B gadget, dB is the length of the gadget and σ2input is the error variance of the input
RLWE′ ciphertext considered. Because Rreg is a prime cyclotomic, the analysis of this variance
differs in our case as we do not directly have a bound on the ℓ∞ norm in the canonical embedding
of a ring element for which we know a bound on each coefficient. We thus propose the following
theorem.

Theorem 1. For an odd prime q and a positive integer Q, let Rreg be the qth cyclotomic ring
modulo Q used for registers, and dB be the length of the gadget decomposition. For an RLWE′

ciphertext defined over Rreg, the error variance of the result of a single Rreg ⊙ RLWE′ operation
is bounded by

σ2⊙ ≤ 2dBqσ
2
rσ

2
input,

where σ2input is the error variance of the input RLWE′ ciphertext, and σ2r is the variance of the
gadget decomposition of the input Rreg ring element.

Proof. We model an element r ∈ Rreg as sampled uniformly at random — this is a reasonable
model because in our algorithm the Rreg elements always either come from a ciphertext (and hence
are uniform) or are simply an integer constant (leading to even smaller error growth). The gadget

10

decomposition of r ∈ Rreg, denoted G−1(r), then consists of dB ring elements r1, . . . , rdB (which
we model as independently distributed). Note that we will use in our algorithm a balanced base-B
digit decomposition but we leave the decomposition unspecified here for sake of generality. We
model the error vector e⃗RLWE′ = (e1, . . . , edB) where each component is the error of each RLWE
ciphertext in the input RLWE′ ciphertext, as independent random variables with variance σ2input.
The output error can then be computed as an inner product

eoutput = ⟨G−1(r), e⃗RLWE′⟩ =
dB∑
i=1

ri · ei.

We will start by considering a single multiplication vi := ri · ei (mod Φq(X)). Recall that ri and ei
are both ring elements of Rreg, i.e., polynomials of degree q − 2 (as Rreg = ZQ[X]/(Φq(X)) and
Φq(X) = 1 +X + · · ·+Xq−1). We want to compute the variance of each coefficient of

vi = (ri,0 + ri,1X + · · ·+ ri,q−2X
q−2) · (ei,0 + ei,1X + · · ·+ ei,q−2X

q−2) (mod Φq(X)).

For simplicity of notation in the formulas below, we will consider ri and ei to be polynomials of
degree q− 1 (instead of q− 2) with leading coefficients 0, i.e., the trivial terms ri,q−1 = ei,q−1 := 0.
By computing ri · ei (mod Xq − 1) first and then taking the result modulo Φq(X), we can easily

obtain the ℓth coefficient of vi, which we denote v
(ℓ)
i , for 0 ≤ ℓ ≤ q − 2. First, note that the ℓth

coefficient of v′i := ri · ei (mod Xq − 1) is given by

v
′(ℓ)
i =

q−1∑
j=0

ri,j · ei,ℓ−j ,

where the subscripts of e are defined modulo q, i.e., ei,ℓ−j := ei,q+ℓ−j if ℓ < j. Then, since Xq−1 =
−Xq−2 − · · · − 1 mod Φq(X), the ℓth coefficient of vi modulo Φq(X) is computed as

v
(ℓ)
i = v

′(ℓ)
i –v

′(q−1)
i =

q−1∑
j=0

ri,j · (ei,ℓ−j − ei,q−j−1).

Let X
(ℓ)
i,j := ri,j · (ei,ℓ−j − ei,q−j−1) for 0 ≤ j ≤ q− 1 and hence v

(ℓ)
i =

∑q−1
j=0X

(ℓ)
i,j . Since ri,q−1 = 0 is

a constant value, we trivially have that var(X
(ℓ)
i,q−1) = 0. When 0 ≤ j ≤ q − 2, the variance of each

X
(ℓ)
i,j equals to

var(X
(ℓ)
i,j) = var(ri,j) · var(ei,ℓ−j − ei,q−j−1) =

{
σ2rσ

2
input if j = 0 or ℓ+ 1

2σ2rσ
2
input else

.

The first variance corresponds to the case where var(ei,ℓ−j − ei,q−j−1) = var(ei,ℓ−j) as ei,q−j−1 = 0
when j = 0 or when var(ei,ℓ−j − ei,q−j−1) = var(ei,q−j−1) as var(ei,ℓ−j) = 0 when j = ℓ + 1. Since

var
(∑q−1

j=0X
ℓ
i,j

)
=
∑q−1

j=0 var(X
(ℓ)
i,j) + 2

∑
0≤j<k<q cov(X

(ℓ)
i,j , X

(ℓ)
i,k), it now suffices to compute the

covariance of each pair. We will first consider the special case where k = j + ℓ+ 1 as it is the only

case where common terms appear between X
(ℓ)
i,j and X

(ℓ)
i,k . Indeed, we have that for k = j + ℓ+ 1,

X
(ℓ)
i,k = ri,j+ℓ+1 · (ei,−j−1 − ei,q−j−ℓ−2),

11

where ei,−j−1 = ei,q−j−1 also appears in X
(ℓ)
i,j . However, due to the distributive property of covari-

ance, it holds that

cov(X
(ℓ)
i,j , X

(ℓ)
i,k) = −cov(ri,j · ei,q−j−1, ri,j+ℓ+1 · ei,q−j−1) = 03.

In all other cases we trivially have cov(Xℓ
i,j , X

(ℓ)
i,k) = 0 since Xℓ

i,j and Xℓ
i,k are independent. Note

that there exist two j indices (j = 0, ℓ + 1) satisfying var(X
(ℓ)
i,j) = σ2rσ

2
input when 0 ≤ ℓ < q − 2,

while there exists only one such j index (j = 0) when ℓ = q− 2. As a result, we obtain the variance

of v
(ℓ)
i as

var(v
(ℓ)
i) =

q−1∑
j=0

var(X
(ℓ)
i,j) =

{
(2q − 4)σ2rσ

2
input if 0 ≤ ℓ < q − 2

(2q − 3)σ2rσ
2
input if ℓ = q − 2

.

Finally, the variance of each coefficient of eoutput denoted by σ2⊙ is bounded by 2dBqσ
2
rσ

2
input. ⊓⊔

Corollary 1. For an odd prime q and a positivie integer Q, let Rreg be the qth cyclotomic ring
modulo Q used for registers, and dB be the length of a balanced base-B gadget decomposition with
uniform coefficients in [−B/2, B/2). For an RLWE′ ciphertext defined over Rreg, the error variance
of the result of a single Rreg ⊙ RLWE′ operation is bounded by

σ2⊙ ≤
B2

6
dBqσ

2
input.,

where σ2input is the error variance of the input RLWE′ ciphertext.

Proof. If one considers a balanced base-B digit decomposition of r ∈ Rreg which consists of dB
ring elements r1, . . . , rdB whose coefficients are each uniform in [−B/2, B/2), then the variance of
the gadget decomposition of the input Rreg ring element satisfies σ2r = B2/12. By replacing this
value in the upper bound for σ2⊙ given in Theorem 1, we get

σ2⊙ ≤
B2

6
dBqσ

2
input.

⊓⊔

Remark 1. Note that the variance σ2⊙ considered for error analysis in power-of-2 cyclotomic is

σ2⊙ = B2

12 dBNσ
2
input, (see [11, Section 4.2]), where N is a power of two and the 2N th cyclotomic

ring is considered. Interestingly, our analysis for prime cyclotomic rings only shows a difference by
a factor 2.

Error growth in previous operations We now describe the error growth for the main operations
used in our algorithm as a function of σ2⊙.

3 In general, it holds that cov(XY,XZ) = E(X2)E(Y)E(Z)−E(X)2E(Y)E(Z) for any random variables X, Y and
Z. Therefore, if E(Y) = E(Z) = 0, then cov(XY,XZ) = 0.

12

RGSW×RLWE′ multiplication: Recall that a multiplication between RLWE′
sk(m1) and RGSWsk(m2) =

(RLWE′
sk(m2),RLWE′

sk(sk ·m2)) is computed as a ⊙ RLWE′
sk(sk ·m2) + b ⊙ RLWE′

sk(m2) for
each RLWE component (a,b) of RLWE′

sk(m1). From this description, we easily see that two ⊙
computations are performed to which should be added the error coming from the RGSW ciphertext
itself multiplicatively. Finally, as already mentioned when describing the operation, the error also
additively increases by eRLWE′ ·m2. Since m2 is a monomial, we simply add σ2

RLWE′ . Therefore,
the total error variance is equal to 2σ2⊙,RGSW +σ2RLWE′ where σ2⊙,RGSW denotes the resulting error
variance of the ⊙ operation on each RLWE′ component of RGSW(m2).

RLWE’-to-RGSW Scheme Switching: Recall that the operation can be described as (b, 0) + a ⊙
RLWE′

sk(sk
2) for each RLWE component (a,b) of the input RLWE′ ciphertext. There are two

sources of error. Firstly, an additive error growth comes from the ⊙ operation in a⊙RLWE′
sk(sk

2).
Since RLWE′

sk(sk
2) is a fresh encryption that comes from the evaluation key, the error variance is

relatively small. We thus have an additive error growth with variance σ2⊙,eval key which denotes the

resulting error variance of the ⊙ operation on the evaluation key with error variance σ2eval key.

Secondly, a multiplicative error growth comes from the fact that the existing error in the RLWE′

ciphertext gets scaled by sk. The secret key sk is not a scalar but rather a ring element and recall
we work in a prime cyclotomic. We know the error variance scales by a factor of no more than
ℓ1(sk), where the norm is with respect to the canonical embedding for sk.

Combining these two sources of error under the assumption that each coefficient of sk is bi-
nary/ternary, then the error variance of the output is ℓ1(sk) · σ2RLWE′ + σ2⊙,eval key.

RLWE’ Automorphism: Applying an automorphism ψ itself does not change the error. The fol-
lowing key-switching operation however introduces an additive error growth with variance σ2⊙,aut key

which denotes the resulting error variance of the⊙ operation on the automorphism key RLWE′
sk(ψ(sk)).

We summarize these error growth in Table 2.

Operation Computation
(for each RLWE (a,b) of RLWE′)

#R⊙ RLWE′ Error Variance

RLWE′×RGSW a⊙RLWE′
sk(s ·m2)+b⊙RLWE′

sk(m2) 2k 2σ2
⊙,RGSW + σ2

RLWE′

SchemeSwitch a⊙ RLWE′
sk(sk

2) + (b, 0) k ℓ1(sk) · σ2
RLWE′ + σ2

⊙,eval key

Automorphism ψ(a)⊙ RLWE′
sk(ψ(sk)) + (0, ψ(b)) k σ2

RLWE′ + σ2
⊙,aut key

Table 2. Summary of register operations with ⊙ operation count and error growth.

4 Description of the algorithm

The overall algorithm, at a high level, can be subdivided into various steps:

– Step 1: a packing step takes as input ϕ(d) LWE ciphertexts and “combines” them into a single
RLWE ciphertext (a,b) ∈ Rin ×Rin.

13

– Step 2: a homomorphic decryption of the RLWE ciphertext consists in computing (an encryption
of) the ring element (a · z + b) ∈ Rin, homomorphically, given (as a bootstrapping key) a
encryption of z.

– Step 3: an msbExtract step recovers the ϕ(d) LWE ciphertexts with reduced noise.

Step 1 and Step 3, except for the use of different rings, are very similar to previous work [14]. We
describe the 3 steps in detail with a particular emphasis on Step 2 which is the main novelty of
this paper.

4.1 Packing

The very first step of bootstrapping procedure consists in taking a set of LWE ciphertexts and
pack them into a single RLWE ciphertext. More precisely, the packing algorithm takes as input
ϕ(d) LWE ciphertexts encrypting messages mi ∈ Z as well as an RLWE′ encryption RLWE′(si)

of each coefficients of the plain LWE secret key sp = (s0, s1, · · · , snplain
) ∈ Znplain+1

qplain , in the dth
cyclotomic ring with modulus qplain and outputs (a,b) ∈ Rin×Rin encrypting the messagem(X) =∑

imiX
i−1. The pseudo-code is given in Algorithm 1.

Algorithm 1 Ring packing

Input: ϕ(d) plain LWE ciphertexts (⃗ai, bi) ∈ Znplain
qplain × Zqplain , RLWE′(si)

Output: RLWE ciphertext in Rin.
for 0 ≤ i < nplain do

let ri = a0,i + a1,iX + a2,iX
2 + · · ·+ aϕ(d)−1,iX

ϕ(d)−1 in (Rin)qplain .
end for
r′ = (0, (b0 + b1X + b2X

2 + · · ·+ bϕ(d)−1X
ϕ(d)−1)) ▷ (Noiseless RLWE′ ciphertext)

ct← r′ +
∑nplain−1

i=0 ri ⊙ RLWE′(si)
return ModSwitchqplain→q(ct)

For simplicity, we first built a ring ciphertext ct modulo qplain (i.e., the original input modulus)
and then switch the modulus to q. Alternatively, one can directly compute a ring ciphertext modulo
q by using a packing key {RLWE′(si)}i already encrypted under modulus q. The packing key
may also use a different gadget (e.g., the power-of-two gadget, instead of powers-of-B) than other
ciphertexts used later in the algorithm.

Since this part of the algorithm is essentially identical to previous work [14], we omit these
details, and move on to the second step.

4.2 Linear step

This step of the algorithm takes as input a single RLWE ciphertext (a,b) ∈ Rin
2 and outputs ϕ(d)

RLWE ciphertexts, each encrypting a coefficient of (a · z+b) ∈ Rin (recall that an element of Rin

is a polynomial of degree ϕ(d)). It can be further subdivided into two computations: a (homomor-
phic) polynomial multiplication between a and (an encryption of) z, where each coefficient of the
polynomials (describing the key z, all intermediate results, and the final ring element)is a distinct
ciphertext, and the addition of the ring element b. We now provide a detailed explanation of these
computations along with a pseudo-code of the various steps of the algorithm.

14

An FFT-based polynomial multiplication. For this step, the algorithm uses a standard FFT-
based method summarized in Figure 4.2. More precisely, we perform the following steps:

a

z
2.

1.
FFT(a)

ẑ ⋆
3.

FFT(a · z) a · z
FFT−1

4.

FFT(a · z) = FFT(a) ⋆ ẑ

Fig. 1. High level description of the linear step of our algorithm. The notation ⋆ refers to pointwise multiplication.
The boxed information refers to encrypted data where homomorphic operations are required. Each step i. is described
in more details in the paper.

1. Compute a partial FFT of a ∈ Rin, i.e., PFT(a) in cleartext form. Let k − 1 be the degree of
the polynomials outputted by PFT. Note that a full (non-partial) FFT would have k = 1 as
the algorithm recurses until the input polynomial is reduced modulo all ϕ(d) linear factors of
Φd(X). When computing PFT, the algorithm outputs ϕ(d)/k polynomials of degree k− 1 (and
hence does not recurse all the way down to the linear factors). In other words, this corresponds
to evaluating the CRT isomorphism

Zq[X](
Xd/2 + 1

) ≃ (Zq[X]

(Xk − ζ0)

)
× · · · ×

(
Zq[X](

Xk − ζϕ(d)/k−1

))

where the ζi are the solutions to (ζk)ϕ(d) = −1, namely the primitive (d/k)−th roots of unity
modulo q. This step thus outputs a list of ϕ(d)/k polynomials {ãi}0≤i<ϕ(d)/k, where each ãi = a

mod (Xk − ζi) is a polynomial with k coefficients. Note that this computation is done in the
clear, and thus no homomorphic operations are needed.

Recall that when computing an inverse PFT, one must divide the polynomials ãi by ϕ(d)/k
(mod q). In order to be able to compute this division in the clear rather than homomorphically,
this step can be done now (Refer to Section 2.5). Hence the polynomials are updated to ãi ←
ãi/(ϕ(d)/k) (mod q).

2. The evaluation key contains RGSW registers of PFT(z). Similarly as before, let z̃i = z mod (Xk−
ζi), where each z̃i is a polynomial with k coefficients. Let z̃

(j)
i be the jth coefficient of z̃i. Then

the evaluation key contains the list of RGSW
(
X z̃

(j)
i

)
for 0 ≤ i < ϕ(d)/k and 0 ≤ j < k.

3. We now want to homomorphically compute PFT(a · z) from PFT(a) and the RGSW registers
of PFT(z). Note that the polynomial multiplication in Rin corresponds to component-wise
multiplication in PFT representation, i.e., PFT(a·z) = (ã0·z̃0, ã1·z̃1, ..., ãϕ(d)/k−1·z̃ϕ(d)/k−1). For
ease of notation, let us fix i (we drop the subscript i) and consider a single multiplication of ã :=∑k−1

j=0 ãjX
j and z̃ :=

∑k−1
j=0 z̃jX

j modulo (Xk−ζ). More precisely, we want to homomorphically
compute

(ã0 + ã1X + · · ·+ ãk−1X
k−1)(z̃0 + z̃1X + · · ·+ z̃k−1X

k−1) mod (Xk − ζ).

15

where each coefficient z̃j is encrypted as an RGSW register.
Each coefficient of the resulting product can be computed as follows. For j = 0, · · · , k − 1, the
j-th coefficient of v := ã · z̃ is equal to

vj = z̃0ãj + z̃1ãj−1 + · · ·+ z̃j−1ã1 + z̃j ã0 + ζ (z̃j+1ãk−1 + z̃j+2ãk−2 + · · ·+ z̃k−1ãj+1) ,

which corresponds to the inner product taken between the vector of coefficients z⃗ = (z̃0, · · · , z̃k−1)
of the polynomial z̃ and the new vector c⃗ = (ãj , ãj−1, . . . , ã0, ζãk−1, . . . , ζãj+1). We emphasize
again the fact that the coefficients of c⃗ are in the clear, whereas the coefficients of z⃗ are not.
So, it is easy to multiply c⃗ by ζ.
Without loss of generality, let us assume all the coefficents ci of c⃗ are nonzero and thus invertible.
(Here we use the fact that q is a prime. So, all nonzero elements are invertible modulo q and
multiplication (in the exponent) can be implemented using an automorphism of the prime
cyclotomic ring.) Then we can compute the inner product in a telescoping manner as

vj =
((
. . .
((
z̃0c0c

−1
1 + z̃1

)
c1c

−1
2 + z̃2

)
c2c

−1
3 + . . .

)
ck−2c

−1
k−1 + z̃k−1

)
ck−1.

This will end up being the most efficient way to compute this inner product homomorphically.
Let us now explicit how one coefficient corresponding to a monomial Xj can be computed
homomorphically (this computation will have to be repeated for all k coefficients of a single
product as well as for all ϕ(d)/k pairs of (ãi, z̃i) polynomials).
(a) Let accum be an RLWE′ register, initialized as RLWE′ (X z̃0

)
from the evaluation key.

(b) For j′ ∈ [0, . . . , k − 2], update accum as follows:

i. Apply the automorphism that sends X to X
c′jc

−1
j′+1 .

ii. Do an RLWE′×RGSW multiplication with RGSW
(
X z̃j′+1

)
from the evaluation key.

(c) Finally apply the automorphism that sends X to Xck−1 , then the output is RLWE′ (Xvj).
Since we repeat (a)-(c) for every coefficient of ãi · z̃i for 1 ≤ i ≤ ϕ(d)/k, the output of this step
consists of ϕ(d) RLWE′ registers of the form{

RLWE′
(
Xv

(j)
i

)}
0≤i<ϕ(d)/k,0≤j<k

,

where v
(j)
i denotes the j-th coefficient of vi := ãi ·z̃i (mod Xk−ζi). This procedure is illustrated

in Figure 2, and the corresponding pseudo-code for component-wise multiplication is given in
Algorithm 3.

4. We now have the encryption of PFT(a · z). It thus remains to perform the inverse of PFT,
denoted by PFT−1, in order to recover the resulting polynomial product a · z, more specifically
RLWE encryptions of the coefficients of a · z.
Recall from Section 2.5 that the inverse of a primitive FFT of length N (using a 2Nth root of
unity ω) can be computed by first taking a standard FFT of length N using ω−2 as the Nth
root of unity, then multiplying the ith term by ω−i. Moreover, a partial FFT of length ϕ(d) that
reduces modulo (Xk − ζ) is equivalent to k full FFTs of length N = ϕ(d)/k done in parallel,
and the same remains true for the inverse (see section 2.5 for details about the equivalence).
Hence, to homomorphically compute PFT−1, we will
(a) Split the ϕ(d) registers output by the pointwise multiplication step into k groups of size

N : each group corresponds to the coefficients of the monomial Xj for 0 ≤ j ≤ k − 1 of all
ϕ(d)/k polynomials.

16

RLWE′(z̃0) Aut. Mult Aut. · · · Mult Aut. vj

z̃1 z̃k−1

Fig. 2. Homomorphic computation of aXj coefficient for pointwise multiplication. A single line corresponds to RLWE’
ciphertexts and a double line to RGSW ciphertexts. Aut. stands for automorphisms and Mult. for multiplication.
Boxed values are encrypted values.

Algorithm 2 Pointwise multiplication between polynomials ã and z̃.

1: Input: A set of degree-(k − 1) polynomials {ãi}0≤i<N , {RGSW(X z̃
(j)
i)}0≤i<N,0≤j<k for N := ϕ(d)/k, ω: the

2N -th root of unity mod q
2: Output: ϕ(d) RLWE′ ciphertexts
3: REG← [0, . . . , 0]
4: for all 0 ≤ i < N do
5: ζ ← ω2i+1

6: Let ⃗̃a = (ãi,0, ãi,1, ..., ãi,k−1) ▷ ãi :=
∑k−1

j=0 ãi,jX
j

7: for all 0 ≤ j < k do
8: c⃗← (ãi,j , ãi,j−1, . . . , ãi,0, ζãi,k−1, ζãi,k−2, . . . ζãi,j+1)

9: accum← RLWE′(X z̃
(0)
i)

10: for j′ ← 0, 1, . . . , k − 2 do
11: accum← EvalAut(accum, cj′c

−1
j′+1)

12: accum← MulRGSW(RGSW(z̃
(j′+1)
i), accum)

13: end for
14: accum← EvalAut(accum, ck−1) ▷ accum = RGSW(X(ãi·z̃i)(j))
15: REG[ik + j]← accum
16: end for
17: end for
18: output REG ▷ Register of all coefficients of ãi · z̃i for 0 ≤ i < N

17

(b) Homomorphically perform a standard (not primitive) length-N FFT in the forward direction
on each group of size N , using ω−2 as the Nth root of unity. Overall, this step corresponds
to computing k FFTs. We refer the reader to Section 2.5 for more details on the equivalence
between partial FFT modulo Xk − ζ and k-parallel standard FFT.

(c) Multiply (homomorphically, via an automorphism) the ith output register in each group
by ω−i, for all i from 1 to N − 1. More specifically, we apply the automorphism X 7→
Xω−i

, corresponding to multiplication by ω−i in the exponent, followed by a key switching
operation.

The following algorithms provide pseudocodes for the above procedure to compute the homo-
morphic PFT−1. More specifically, Algorithm 3 describes step (a) and then calls Algorithm 4
for each of the groups of registers. Algorithm 4 describes a primitive length-N (inverse) FFT
for a single group of size N , consisting of a standard (cyclic) FFT (step (b)) as well as the
multiplication by ω−i (step (c)). It remains to describe more precisely what happens in the

Algorithm 3 IFFT stage of bootstrapping (BootstrapIFFT)

1: Input: a list of ϕ(d) registers REG, k,N, a list of radices {ri}0≤i<ℓ, and ω
Require: ω a primitive 2Nth root of unity mod q,

∏
0≤i<ℓ ri = N , and kN = ϕ(d) = len(REG)

2: for all 0 ≤ j < k do
3: REG[j, k + j, . . . , (N − 1)k + j]← N-IFFT(REG[j, k + j, . . . , (N − 1)k + j], {ri}, ω)
4: end for

Algorithm 4 Primitive length-N IFFT for a single group of size N (N-IFFT)

1: Input: List of RLWE′ registers REG = {RLWE′(X(ãi·z̃i)(j))}0≤i<N for some fixed 0 ≤ j < k, list of radices
{ri}0≤i<ℓ, primitive 2Nth root of unity ω modulo q.

2: Output: list of RLWE registers REG = {RLWE(X(ai·zi)(j))}0≤i<N .
3: let ω′ = ω−2

4: REG← FFT(REG, {ri}0≤i<ℓ, ω
′) ▷ Step 4-(b)

5: for i← 1, . . . N − 1 do
6: REG[i]← EvalAut(REG[i], ω−i) ▷ Step 4-(c)
7: end for
8: return REG

(cyclic) FFT call, line 4 of Algorithm 4.

Recall that FFT is a recursive algorithm that follows the structure of a remainder tree, see the
procedure FFT given in Algorithm 6. We will now focus on what happens in a single layer of the
FFT as described in the second procedure FFT Layer in Algorithm 6.

At a single layer: Let ri be the radix used for the i-th FFT layer for 0 ≤ i < ℓ. Then,
for Ri :=

∏
i≤i′<ℓ ri, the inputs to the i-th FFT layer are the coefficients of N/Ri polynomials

modulo (XRi−ω′j) (for varying values of j), each with Ri coefficients.4 Hence this corresponds to
a total of N coefficients, i.e., N registers. The outputs are the coefficients of N/Ri+1 polynomials

4 When i = 0, it starts with a single input polynomial modulo XN − ω0.

18

modulo (XRi+1−ω′j′) ranging over all j′ such that ri ·j′ ≡ j mod N . Note that the total number
of coefficients remains the same, i.e., we still have N registers.

Let us now consider a single input polynomial (out of N/Ri), i.e., one of the nodes in the
remainder tree, and describe what computations are needed to produce the children nodes.
This subroutine is described in Algorithm 5, called FFT Subroutine and is repeated for every
node (meaning polynomial) of the layer, hence N/Ri times. We illustrate the reduction of this
polynomial via an example to better describe the operations needed in this subroutine.

Algorithm 5 FFT Subroutine

1: Input: Radix r which divides R for R | N , index j, and RLWE′ ciphertexts {cti}0≤i<R storing coefficients of a
single polynomial mod (xR − ω′j)

2: Output: r tuples each of which consists of index j′ such that r · j′ ≡ j mod N , and R/r RLWE′ ciphertexts
3: for all 0 ≤ i < R−R/r do
4: cti ← SwitchToRGSW (cti)
5: end for
6: if this is the final FFT layer then
7: for all R−R/r ≤ i < R do
8: let S = Q

4
▷ 4 is the plaintext modulus after bootstrapping

9: cti ← S ⊙ cti ▷ cti is now RLWE instead of RLWE′

10: end for
11: end if
12: let {j′0, ..., j′r−1} = the set of all j′’s satisfying rj′ ≡ j mod N
13: for all 0 ≤ v ≤ r − 1 do
14: let ζ = ω′j′v

15: for all 0 ≤ i < R/r do
16: accum[v][i]← ctR−R/r+i

17: for κ← [2, 3, ..., r] do
18: accum[v][i]← EvalAut(accum, ζ)
19: accum[v][i]←MulRGSW (ctR−κ·R/r+i, accum)
20: end for
21: end for
22: end for
23: output r tuples (j′v, accum[v]) for 0 ≤ v < r

Example 1. We describe in this example the reduction from an input polynomial to a single
child node for the simple radix-2 FFT. Assume we have as input a polynomial of the form

g0 + g1X + g2X
2 + g3X

3 + g4X
4 + g5X

5 + g6X
6 + g7X

7

and we want to reduce it modulo (X2−ζ). Similarly as for pointwise multiplication, it is possible
to compute the coefficient terms for each monomial Xj . In our example, we would have constant
coefficient

g0 + ζg2 + ζ2g4 + ζ3g6

and X coefficient

g1 + ζg3 + ζ2g5 + ζ3g7.

In the remainder tree, this operation would have to be repeated for r different values of ζ, in
particular for this example, four different values.

19

Algorithm 6 Full radix-r standard FFT (FFT)

1: procedure FFT({REG}, {ri}0≤i<ℓ, ω
′)

2: state← {(N,REG)} ▷ List of tuples
3: for i in [0, 1, ..., ℓ− 1] do
4: state← FFT Layer(ri, ω

′, state)
5: end for
6: return REG
7: end procedure

8: procedure FFT Layer(ri, ω
′, list of tuples)

9: Input: N/Ri tuples of the form (j, {ctj,0, . . . , ctj,Ri−1}), where each ctj,v is an RLWE′ ciphertext
10: ▷ ctj,v represents the v-th coefficient of a polynomial mod (XRi − ω′j)
11: Output: N/Ri+1 tuples of the form (j′, {ctj′,0, . . . , ctj′,Ri+1−1}).
12: ▷ Each input j has ri corresponding outputs j′ such that ri · j′ ≡ j mod N .
13: ▷ ctj′,v represents the v-th coefficient of a polynomial mod (xRi+1 − ω′j′)
14: for all (j, {ctj,0, . . . , ctj,Ri−1}) in input do
15: FFT Subroutine({ctj,0, . . . , ctj,Ri−1}, ri, j, ω′)
16: end for
17: end procedure

The homomorphic circuit to perform this reduction is illustrated in Figure 3. We recall that the
input coefficients gi (both in the example and in Figure 3) correspond to registers, in particular
RLWE′ ciphertexts. The main operations needed for a reduction are scheme-switching for most
of the coefficients, multiplication by a power of ζ, which can be done using automorphisms, and
addition which corresponds to RLWE′×RGSW multiplications.

Remark 2. The scheme switches at the beginning of the circuit convert RLWE′ ciphertexts to
RGSW ciphertexts for all coefficients except the last. As mentioned previously, the circuit for the
same coefficients is performed for various values of ζ. For all these cases, the scheme-switching
operations need only to be performed once (as the coefficients do not change) and thus the cost
will be amortized.

Details of this subroutine are given in Algorithm 5. Algorithm 6 provides the pseudocode for
all ϕ(d) registers (FFT Layer) as well as the full FFT algorithm where all layers are considered
(FFT).
One can note from Algorithm 5 that the case of the last layer of the FFT slightly differs (see
line 6). Indeed, it is possible to optimize the running-time of the FFT algorithm by modifying
the nature of the elements considered in the very last layer of the FFT. Indeed, one can notice
that the outputs of the IFFT only need to be RLWE ciphertexts, not RLWE′ ciphertexts.
Hence, one can save operations by using RLWE registers instead of RLWE′ registers when
possible. While RLWE cannot be scheme-switched to RGSW without blowing up the error, we
can modify the last IFFT layer to use RLWE instead of RLWE′ for the registers that do not
get scheme-switched (this corresponds to accum in Algorithm 5 or gr in Figure 3). Concretely,
each of the ϕ(d)/r non-scheme-switched RLWE′ ciphertexts would be converted to RLWE by an
R⊙RLWE′ operation with R element ⌈Q/4⌋, where 4 is the plaintext modulus the msbExtract
stage expects.

This concludes the description of the homomorphic computation of a · z. The output of this multi-
plicative step is thus ϕ(d) RLWE registers, each encrypting a coefficient of a · z ∈ Rin.

20

g0 g1 gr−1 gr· · ·

SW SW SW

Aut.

Mult

· · ·
Aut.

Mult

Aut.

Mult

Fig. 3. One layer of FFT for a single input polynomial. A single line corresponds to RLWE ciphertexts and a double
line to RGSW ciphertexts. SW stands for scheme-switching, Aut. for automorphisms and Mult for multiplication.

Adding b From the previous step, we have obtained registers encoding the coefficients of a · z.
We also have the polynomial b in the clear. In order to obtain registers encoding the coefficients
of a · z + b, we add b via fixed rotations, i.e., scaling the ciphertext by a monomial. Concretely,
to add a coefficient bi to a register RLWE(X(a·z)i), we simply scale the RLWE ciphertext by Xbi

resulting in RLWE(X(a·z+b)i). Since Xbi has norm 1, it does not increases the noise of the register.
We thus now have ϕ(d) registers encoding the coefficients of a · z+ b, as expected. This concludes
the linear step of the algorithm.

4.3 msbExtract

The linear step outputs ϕ(d) RLWE registers each encrypting Q
4X

ci , where each ci ∈ Zq is a noisy
(un-rounded) decryption of the ith input ciphertext. We now operate separately on each register
(and drop the subscript i) in order to recover from each register a plain-LWE encryption of f(c),
for some function f that applies rounding and allows for computation. Output ciphertexts have
plaintext modulus 4; to compute NAND gates, it suffices for f(c) to be 1 for c ∈ [−q/8, 3q/8) and
0 elsewhere (we refer to [13] for more details). Focusing on a single register (a,b) ∈ Rreg

2, we have

b(X) = −a(X) · s(X) + e(X) +
Q

4
m(X) (mod Q,Φq(X))

where m(X) = Xc. Looking at a single coefficient of these polynomials, the ring product a(X)·s(X)
will become a vector inner product between the coefficients of s and some permuted coefficients of
a. Because we use prime q, these polynomials are degree ≤ q−2, and Xq−1 ≡ −1−X−· · ·−Xq−2.
Note that, as for error growth, the fact that we consider prime cyclotomics instead of power-of-2
cyclotomics slightly changes the setting. We get for a single coefficient

21

bi = −ais0 − ai−1s1 − · · · − a0si − 0 · si+1 − aq−2si+2 − aq−3si+3 − · · · − ai+2sq−2

+ aq−2s1 + aq−3s2 + · · ·+ a2sq−3 + a1sq−2

+
Q

4
mi + ei

which can be re-written as

Q

4
mi + ei = bi + {(ai, ai−1, . . . , a0, 0, aq−2, aq−1, . . . , ai+2)

− (0, aq−2, aq−1, . . . , a1)} · (s0, s1 . . . , sq−2)

For 0 ≤ i ≤ q − 2, letting a⃗i denote the above vector (ai, ai−1 − aq−2, . . . , ai+2 − a1), we then have
that (a⃗i, bi) is an LWE encryption with noise ei under secret key sp = (s0, . . . , sq−2) of message mi.
Note that mi is 1 if c = i, −1 if c = q−1, and 0 otherwise. To produce an encryption of f(c), which
should be 1 for c ∈ (−q/8, 3q/8) and 0 elsewhere, we simply sum the relevant (a⃗i, bi):

q−2∑
i=⌈7q/8⌉

(a⃗i, bi) +

⌊3q/8⌋−1∑
i=0

(a⃗i, bi)

taking care to ensure the number of summands is 3 mod 4, so that when c = q − 1 the sum is 1
mod 4 as desired. (When q ≡ 1 mod 8, this will be the case for the summation written above.)

This gives us an LWE encryption with plaintext modulus 4 and ciphertext modulus Q under a
key sp ∈ Zq−1. To conclude bootstrapping, we can keyswitch back to the orignal plain LWE secret
key, and modulus switch back down to the original (much smaller than Q) ciphertext modulus.

5 Analysis

In order to evaluate the performance of our algorithm, we analyse its running-time as well as the
error growth. We will first show that our homomorphic decryption procedure takes no more than
O ((k + r · ℓ)ϕ(d)dB) homomorphic operations.

5.1 Counting homomorphic operations

We will evaluate the efficiency of our algorithm by first measuring the time complexity in terms
of the number of R⊙ RLWE′ operations performed. We have already summarized in Section 3.2,
Table 2 the number of R⊙RLWE′ operations needed for the main operations used in our scheme:
scheme switching, automorphisms (with key switching) and RGSW×RLWE′. We now describe the
number of R⊙ RLWE′ operations for the various steps of our algorithm.

Pointwise multiplication Based on the description given in Section 4.2, we have the follow-
ing analysis. For a single coefficient Xj in the computation of the inner product, our algorithm
performed k automorphisms and (k − 1) RGSW×RLWE′ multiplications. Hence the number of
R⊙RLWE′ operations per register is (3k− 2)dB. This computation needs to be repeated for all k
coefficients of a single product and for ϕ(d)/k pairs of (ãi, z̃) polynomials. Thus the total number
of R⊙RLWE′ operations for the entire pointwise multiplication algorithm is (3k− 2)ϕ(d)dB. This
result is summarized in Table 3.

22

Partial inverse FFT Based on the description given in Section 4.2, considering a single reg-
ister and a single radix-r layer of FFT, the algorithm computes (r − 1) automorphisms, (r − 1)
RGSW×RLWE′ multiplications but only amortized (1 − 1/r) scheme switches as explained in
Section 4.2. Thus the total number of operations per layer is(

(r − 1) + 2(r − 1) +

(
1− 1

r

))
ϕ(d)dB =

(
3r − 2− 1

r

)
ϕ(d)dB

operations. This result is summarized in Table 3.

Last layer of IFFT optimization: Recall that the outputs of the IFFT only need to be RLWE
ciphertexts and not RLWE′ ciphertexts. This allowed us to optimize the cost of the last layer
of the IFFT by using RLWE registers instead of RLWE′ registers when possible. By using this
modification, the multiplications and automorphisms in this layer will use a factor of dB fewer
operations. Thus the total number of operations for the last layer is only(

(r − 1) + 2(r − 1) + (1/r) +

(
1− 1

r

)
dB

)
ϕ(d) =

(
3r − 3 +

1

r
+ dB

(
1− 1

r

))
ϕ(d).

This result is summarized in Table 3.

After the last layer: Recall that the very last step of the homomorphic partial IFFT is to multiply
the ith output register in each group by ω−i, via an automorphism that sendsX toXω−i

. Operation-
wise, this corresponds to one automorphism per register. Since with the last-layer optimization the
registers are RLWE instead of RLWE′, this corresponds to ϕ(d) operations in total.

Adding b Recall that to add bi to the register RLWE(X(a·z)i), we simply scaled the RLWE
ciphertext by Xbi . No R⊙ RLWE′ operations are involved. This result is summarized in Table 3.

Steps of the algorithm R⊙ RLWE′ operations

Partial FFT of a –

Pointwise multiplication (3k − 2)ϕ(d)dB

Partial IFFT (per layer) (3r − 2− 1
r
)ϕ(d)dB

Last layer of IFFT (3r − 3 + 1
r
+ dB(1− 1

r
))ϕ(d)

Last IFFT step ϕ(d)

Adding b –

Table 3. Summary of R⊙ RLWE′ operation count.

5.2 Error growth

Similarly as for the operation count, we have already summarized in Section 3.2, Table 2 the error
growth coming from the scheme switching, automorphisms (with key switching) and RGSW×RLWE′

23

operations. We now describe the error growth resulting from the various steps of our algorithm based
on the error variance for each of these operations and the operation count described in the previous
section.

Pointwise multiplication Recall from the description given in Section 4.2 that the algorithm
starts with an inital RLWE′ ciphertext, denoted as accum, which is a “fresh” ciphertext from
the evaluation key with error variance σ2eval key. Each automorphism performed during pointwise

multiplication adds σ2⊙,aut key error variance, and each multiplication with a fresh RGSW ciphertext

adds 2σ2⊙,RGSW error variance. Hence, the error variance after pointwise multiplication is

(3k − 2)(σ2⊙,aut key + 2σ2⊙,RGSW) + σ2eval key.

This result is summarized in Table 4.

Inverse FFT Again, recall that each automorphism adds σ2⊙,aut key error variance. The output of

schemeswitching has σ2sw = σ2⊙,eval key + ℓ1(s)σ
2
in error variance. Let σ2accum be initialized as σ2in.

Each automorphism and RGSW×RLWE′ multiplication (performed a total amount of r−1 times)
updates the variance as σ2accum ← σ2accum + σ2⊙,aut key and σ2accum ← σ2accum + 2σ2⊙,sw where

σ2⊙,sw ≤ B2

6 dBqσ
2
sw. Hence, in total, the error variance after a radix-r layer becomes

σ2in + (r − 1)(σ2⊙,aut key + 2σ2⊙,sw)

for σ2⊙,sw ≤ B2

6 dBqσ
2
sw This result is summarized in Table 4.

After last layer Multiplying the ith output register in each group by ω−i with an automorphism
increases (additively) the error variance by σ2⊙,aut key. This result is summarized in Table 4.

Adding b Scaling by a monomial does not increase the error. This result is summarized in Table 4.

Algorithms Error growth

Partial FFT of a –

Pointwise multiplication (3k − 2)(σ2
⊙,aut key + 2σ2

⊙,RGSW) + σ2
eval key.

Partial IFFT (per layer) σ2
in + (r − 1)(σ2

⊙,aut key + 2(σ2
⊙,eval key + ℓ1(s)σ

2
in))

Last IFFT step σ2
⊙,aut key

Adding b –
Table 4. Summary of error growth.

24

5.3 Asymptotic analysis

Let λ = O(n) the be security level considered. We study the performance of our algorithm as λ
increases, i.e., when n tends to infinity. Recall that the other parameters used in our algorithm
are dB = ⌈logB Q⌉ = O(log n), the number of layers ℓ (i.e., the multiplicative depth) and k = r =
ϕ(d)1/ℓ (where we recall that k is the degree at which we stop the partial FFT and r is the radix
for an FFT layer).

Theorem 2. Let ϕ(d) = O(n) be the number of packed ciphertexts and q,Q = poly(n) the moduli of

the rings considered. The total cost of bootstrapping (non-amortized) then corresponds to O(n1+
1
ℓ ·

log n · ℓ) homomorphic operations (in terms of the number of R⊙ RLWE′ operations).

Proof. The number of ⊙ operations in the pointwise multiplication step is (3k − 2)ϕ(d)dB which

asymptotically corresponds to O(n1+
1
ℓ log n). Similarly, the inverse FFT requires (3r−2− 1

r)ϕ(d)dBℓ
operations (without including the last layer modification which asymptotically does not change the

result) which asymptotically gives O(n1+
1
ℓ · log n · ℓ). ⊓⊔

Corollary 2. The amortized cost per message is O(n
1
ℓ · log n ·ℓ) homomorphic operations (in terms

of the number of R⊙ RLWE′ operations).

5.4 Comparison with previous work

We compare the performance of our algorithm with two lines of work: sequential bootstrapping
algorithms such as FHEW/TFHE [4, 5] and the amortized bootstrapping algorithm given in [14].
To compare the performance of our algorithm, we look at asymptotic analyses and report costs in
terms of homomorphic operations (for fair comparison with previous works). Table 5 summarizes
the comparisons between our work and previous works.

Comparing with sequential FHEW/TFHE : see Table 5.

Comparing with amortized work [14]: The total cost (non-amortized) in [14] is O(31/ϵn1+ϵ) for some
ϵ < 1/2.

Scheme Total cost Number of messages Amortized cost

FHEW Õ(n) 1 Õ(n)
TFHE O(n) 1 O(n)

[14] Õ(3ℓ · n1+1/ℓ) O(n) Õ(3ℓ · n1/ℓ)

our work O(ℓ · n1+1/ℓ) O(n) O(ℓ · n1/ℓ)
Table 5. Comparing asymptotic cost of various bootstrapping algorithms in terms of homomorphic operations, where
ℓ corresponds to the recursive depth in each algorithm. For uniformity with previous work, performance is expressed
as the number of RGSW×RGSW products, or equivalent operations. Alternatively, the number of basic R⊙RLWE′

products can be obtained by multiplying these figures by O(logn), the length of the gadget vector.

25

References

1. Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time. In: Canetti, R., Garay, J.A. (eds.)
Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I. Lecture Notes in Computer Science, vol. 8042, pp. 1–20. Springer
(2013). , https://doi.org/10.1007/978-3-642-40041-4 1

2. Bonnoron, G., Ducas, L., Fillinger, M.: Large FHE gates from tensored homomorphic accumulator. In: Joux, A.,
Nitaj, A., Rachidi, T. (eds.) Progress in Cryptology - AFRICACRYPT 2018 - 10th International Conference on
Cryptology in Africa, Marrakesh, Morocco, May 7-9, 2018, Proceedings. Lecture Notes in Computer Science, vol.
10831, pp. 217–251. Springer (2018). , https://doi.org/10.1007/978-3-319-89339-6 13

3. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping.
ACM Trans. Comput. Theory 6(3), 13:1–13:36 (2014). , https://doi.org/10.1145/2633600

4. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption over the torus.
Journal of Cryptology 33(1), 34–91 (2020)

5. Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a second. In: Annual
international conference on the theory and applications of cryptographic techniques. pp. 617–640. Springer (2015)

6. Gentry, C.: A fully homomorphic encryption scheme. Stanford university (2009)
7. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D.,

Johansson, T. (eds.) Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings. Lecture
Notes in Computer Science, vol. 7237, pp. 465–482. Springer (2012). , https://doi.org/10.1007/978-3-642-29011-
4 28

8. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti,
R. (eds.) Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2012. Proceedings. Lecture Notes in Computer Science, vol. 7417, pp. 850–867. Springer
(2012). , https://doi.org/10.1007/978-3-642-32009-5 49

9. Guimarães, A., Pereira, H.V.L., van Leeuwen, B.: Amortized bootstrapping revisited: Simpler, asymptotically-
faster, implemented. Cryptology ePrint Archive, Paper 2023/014 (2023), https://eprint.iacr.org/2023/014,
https://eprint.iacr.org/2023/014

10. Halevi, S., Shoup, V.: Faster homomorphic linear transformations in helib. In: Shacham, H., Boldyreva, A. (eds.)
Advances in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part I. Lecture Notes in Computer Science, vol. 10991, pp. 93–120.
Springer (2018). , https://doi.org/10.1007/978-3-319-96884-1 4

11. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Efficient FHEW bootstrapping with
small evaluation keys, and applications to threshold homomorphic encryption. Cryptology ePrint Archive (2022)

12. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6),
43:1–43:35 (2013). , https://doi.org/10.1145/2535925

13. Micciancio, D., Polyakov, Y.: Bootstrapping in FHEW-like cryptosystems. In: Proceedings of the 9th onWorkshop
on Encrypted Computing & Applied Homomorphic Cryptography. pp. 17–28 (2021)

14. Micciancio, D., Sorrell, J.: Ring packing and amortized FHEW bootstrapping. In: Chatzigiannakis, I., Kaklama-
nis, C., Marx, D., Sannella, D. (eds.) 45th International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic. LIPIcs, vol. 107, pp. 100:1–100:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2018). , https://doi.org/10.4230/LIPIcs.ICALP.2018.100

15. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In:
Matsui, M. (ed.) Advances in Cryptology - ASIACRYPT 2009, 15th International Conference on the Theory and
Application of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings. Lecture
Notes in Computer Science, vol. 5912, pp. 617–635. Springer (2009). , https://doi.org/10.1007/978-3-642-10366-
7 36

26

