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Abstract. Masking is a prominent strategy to protect cryptographic implementations
against side-channel analysis. Its popularity arises from the exponential security gains
that can be achieved for (approximately) quadratic resource utilization. Many variants
of the countermeasure tailored for different optimization goals have been proposed over
the past decades. The common denominator among all of them is the implicit demand
for robust and high entropy randomness. Simply assuming that uniformly distributed
random bits are available, without taking the cost of their generation into account, leads
to a poor understanding of the efficiency and performance of secure implementations.
This is especially relevant in case of hardware masking schemes which are known to
consume large amounts of random bits per cycle due to parallelism.
Currently, there seems to be no consensus on how to most efficiently derive many
pseudo-random bits per clock cycle from an initial seed and with properties suitable
for masked hardware implementations. In this work, we evaluate a number of building
blocks for this purpose and find that hardware-oriented stream ciphers like Trivium and
its reduced-security variant Bivium B outperform all competitors when implemented in
an unrolled fashion. Unrolled implementations of these primitives enable the flexible
generation of many bits per cycle while maintaining high performance, which is cru-
cial for satisfying the large randomness demands of state-of-the-art masking schemes.
According to our analysis, only Linear Feedback Shift Registers (LFSRs), when also
unrolled, are capable of producing long non-repetitive sequences of random-looking
bits at a high rate per cycle even more efficiently than Trivium and Bivium B. Yet,
these instances do not provide black-box security as they generate only linear outputs.
We experimentally demonstrate that using multiple output bits from an LFSR in the
same masked implementation can violate probing security and even lead to harmful
randomness cancellations. Circumventing these problems, and enabling an independent
analysis of randomness generation and masking scheme, requires the use of cryptograph-
ically stronger primitives like stream ciphers. As a result of our studies, we provide an
evidence-based estimate for the cost of securely generating n fresh random bits per cycle.
Depending on the desired level of black-box security and operating frequency, this cost
can be as low as 20n to 30n ASIC gate equivalents (GE) or 3n to 4n FPGA look-up
tables (LUTs), where n is the number of random bits required. Our results demonstrate
that the cost per bit is (sometimes significantly) lower than estimated in previous works,
incentivizing parallelism whenever exploitable and potentially moving low randomness
usage in hardware masking research from a primary to secondary design goal.
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1 Introduction
Side-channel analysis is known to be a significant threat to implementations of cryptographic
algorithms and protocols that must operate under adversarial exposure. If untrusted indi-
viduals gain physical access to a cryptographic device, measurable quantities such as power
consumption or electromagnetic emanations during the processing of secret material can be
monitored to extract sensitive information. This type of attack was first demonstrated by
Kocher et al. in 1999 [KJJ99] and has since inspired a great deal of research on the theory
and practice of implementation security. Masking (also known as secret sharing) is a well-
known countermeasure to protect cryptographic implementations from side-channel analysis
adversaries. It was first proposed by Chari et al. in 1999 [CJRR99], and is nowadays widely
considered to be the most potent protection mechanism against passive physical adversaries.
Its core principle is based on splitting each potentially sensitive intermediate variable into
a discrete number of shares, in such a way that only the combination of all shares reveals
information about the secrets. Using this technique, adversaries can be forced (implicitly or
explicitly) to collect information on all individual shares before combining them to recon-
struct the sensitive intermediates. Yet, learning information about the secrets from partial
information on their shares is a hard problem. To be precise, if the leakage of the individual
shares is sufficiently noisy and independent, masking is capable of providing exponential
security in the number of shares against adversaries trying to extract sensitive information
from side-channel observations – see for example [PR13, DDF14, DFS15] for a formalization.
The implementation cost of this countermeasure is typically estimated to be quadratic in the
number of shares due to the known complexity of masked multiplications [ISW03].

Yet, and especially when masking is applied to hardware implementations of crypto-
graphic algorithms, the independence assumption is often invalidated by physical defaults
such as glitches [MPG05], transitions [CGP+12] and couplings [CBG+17]. It has taken
the research community several years to develop generalizable strategies to avoid these
issues at the conceptual level. The first solid approaches toward preventing glitches from
recombining shares in hardware masking schemes came in the form of threshold implementa-
tions [NRR06, NRS08]. A few years later, other masking schemes with a lower number of
shares to achieve a given protection order (compared to threshold implementations) were
proposed [RBN+15, GMK16, GMK17, GM17]. These schemes also targeted higher-order
security for the first time, after it was found that higher-order threshold implementations
suffer from conceptual flaws [BGN+14a, Rep15, RBN+15]. Simultaneously, independent re-
searchers started investigating the requirements needed to securely compose masked building
blocks into full cipher implementations, resulting in the security notion of Strong Non-
Interference (SNI) [BBD+16]. Following these advances, the robust probing model was
introduced to allow formal analysis of composability and robustness against physical defaults
jointly [FGP+18]. Subsequently, it was shown at CHES 2019 that many previously proposed
hardware masking schemes suffer from composability flaws under the robust probing model
at higher orders, giving substantial evidence that a formal analysis is beneficial to properly
generalize schemes to arbitrary orders [MMSS19]. Finally, in 2020, a new composability
notion called Probe Isolating Non-Interference (PINI) was introduced to allow trivial compo-
sition of masked implementations of linear and non-linear functions [CS20, CGLS21]. Based
on this notion, new masked gadgets have been introduced [CGLS21, KM22b, KM22a] along
with tools that allow formal verification of their properties [KSM20, CGLS21] and automated
generation of full cipher masked hardware circuits based on PINI gadgets [KMMS22].

1.1 Motivation
Clearly, the past few years have advanced our collective understanding of how to best capture
physical defaults such as transitions, couplings, and glitches through proven design principles.
This, in turn, enables fast and efficient masked hardware implementations that can leverage
parallelism to simultaneously operate on the individual shares of a secret intermediate
without sacrificing security against physical adversaries. In order to achieve this symbiosis
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between performance and security, hardware masking schemes often consume a notoriously
large number of random bits per cycle. Indeed, in the past several years, a strong trend
is observable in the community towards constructing masked hardware implementations
entirely from circuit gadgets that are provably robust probing secure and composable
(e.g., [CS21, KSM22, MCS22, KMMS22]). This is done in order to automatically derive
guarantees that the resulting full hardware implementations are provably secure themselves.
The gadgets used for this purpose typically consume a certain amount of fresh random bits
per clock cycle to satisfy the required properties, e.g., d(d − 1)/2 bits for one 2-input AND
gate with d shares in domain-oriented masking [GMK16] or HPC2 [CGLS21]. Naturally, full
ciphers composed of many such gadgets also need many bits of fresh randomness per cycle,
especially if those implementations leverage parallelism, are optimized for low latency and if
higher-order protection is required. Hence, it is not uncommon for parallel masked hardware
implementations of full block ciphers to require hundreds or even thousands of independent,
uniformly distributed, and unpredictable random bits per cycle. Recent works presented at
CHES 2022 [KMMS22] and CCS 2022 [KM22b] list exemplary cost and performance figures
for masked round-based cipher implementations that demand multiple thousands of freshly
random bits in each cycle. Even for serialized implementations or single S-boxes it is not
uncommon to see requirements in the range of hundreds of bits per cycle. Despite this huge
demand, most works on the topic have considered the efficient generation and distribution
of these bits to be beyond their scope. In fact, the majority of publications in the masking
literature simply assumes the existence of robust and high-entropy randomness sources. We
argue that the lack of focus on this topic can have negative consequences, since concurrent
randomness generation is a crucial part of masked implementations, especially in hardware.
Failing to include this component in the evaluation of implementations clearly leads to a
poor understanding of the efficiency and performance of secure circuits.

1.2 Research Question

Our work aspires to answer the question whether such huge demands for randomness can be
satisfied in hardware and at what cost, as this aspect has been neglected in most previous
publications. While reducing randomness requirements is an often researched topic (initiated
in [BBP+16], with many follow-up works), studies of the actual cost of randomness for masking
are surprisingly missing in the literature. For example, the authors of the recent [KM22a]
consider quite different approaches in order to provide meaningful comparisons between
masking schemes including randomness generation, such as an individual 32/64-bit LFSR for
each bit of randomness required per cycle or a Keccak-based PRNG, which both turn out to
be rather expensive. Hence, it is our goal to find more efficient solutions while also clarifying
the relevant security properties that must be satisfied in the masking context.

Once a reliable estimate of the cost of producing a certain number of random bits per
cycle is established, it becomes much easier to decide on crucial trade-offs in masked hardware
implementations. Additionally, it will help to answer the question whether schemes that
minimize randomness requirements are more worthwhile, or whether it is better to optimize
other parameters such as latency or area at the cost of higher randomness usage.

1.3 TRNG vs. PRNG

Whenever randomness is required in a design, at least some initial entropy must come from
a true randomness/noise source, usually extracted by a True Random Number Genera-
tor (TRNG). Yet, as we will confirm in the paper, TRNGs tend to be either fairly slow or
resource-hungry, making the cost of generating each truly random bit significant. Thus, it is a
common strategy to use Pseudo Random Number Generators (PRNGs), which are generally
considered to be much more efficient than TRNGs, to stretch the initial seed (obtained once
at power-up) into many pseudo-random bits whenever needed during runtime.
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Figure 1: Fitted distributions obtained for 5000 fixed-vs-fixed samplings of the leakage
function l(xm) + l(m) = HW (xm) + HW (m) + N (µ, δ2) with xm = x ⊕ m, x ∈ {0, 1}4

, m ∈
{0, 1}4, µ = 0, δ2 = 2 and HW (·) being the Hamming weight function. Red curves are
obtained for x = 0, blue curves for x = 15. First-order Welch’s t-statistics result given in the
middle of the figures; Shannon entropy H of the mask m given below the figures.

1.4 Requirements for Masking Randomness
Many different PRNG constructions have been proposed in the literature for a variety
of applications. Of course, depending on the concrete use case, different properties are
required from the random numbers. Cryptographically strong PRNGs, as required in many
cryptographic protocols for generating keys, nonces or salts, should produce output that
is indistinguishable from genuine randomness for computationally bounded adversaries.
However, the requirements are not always that strong. In the concrete case of masking,
adversaries typically cannot directly obtain the output of the PRNGs. In fact, there is
no output that depends on the generated random bits at all, since these values are only
used for internal randomization of intermediates computations, and the final results of
the masked operations are unmasked internally before being released to outside observers.
Hence, adversaries can only obtain a noisy version of the generated random bits from their
side-channel observations (especially noisy in hardware if generated in parallel to the masked
cipher implementation), leaving the possibility to perform direct state recovery attacks on
the PRNG quite theoretical (see [JD06, BMV07, CMM14, MCB+22]). As a result, many
previous works have opted for random number generators without cryptographic strength
for mask generation, such as Linear Feedback Shift Registers (LFSRs).

LFSRs are arguably the most simple primitive for generating long non-repetitive sequences
of random-looking, uniformly distributed bits from an initial seed.1 However, as mentioned
above, LFSRs cannot provide black-box security, and their linear output can be distinguished
from true randomness using statistical test suites such as the one proposed by the National
Institute of Standards and Technology (NIST) [BRS+10]. This raises doubts regarding
their suitability to fill the two main requirements for (pseudo-)random numbers in masking
contexts, namely uniformity and unpredictability [GSF13]. Without uniformity, masking
schemes cannot keep their security promises. The example in Figure 1 illustrates that even
a small bias in the sampling of random masks can lead to a reduction of the protection
order, even if noise and independence assumptions are fulfilled. Despite the fact that xm

and m leak independently and in the presence of noise, the two rightmost figures show
distributions that can be confidently distinguished by their means using statistical hypothesis
tests corresponding to first-order leakage, i.e., the null hypothesis is rejected. This is caused
by a biased distribution of m, with a reduced Shannon entropy H (recall that the entropy
is maximized for a uniform distribution). The reason why the unpredictability of random
numbers is important in masking contexts is even more obvious. If an adversary can predict
the random bits and has knowledge of the data being processed (known-plaintext scenario),
she can compute all intermediate values that are actually processed inside the cryptographic
implementation and perform attacks in the same trivial way as on unprotected circuits. Since
all future outputs (at least until the next re-seeding) can be calculated once the internal state
of a deterministic PRNG is discovered, state recovery attacks are the most relevant threat to

1 An LFSR of degree m has a maximum period of 2m − 1 and repeats the output sequence every 2m steps.
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the unpredictability requirement. With respect to LFSRs, once an adversary has obtained a
sufficient number of consecutive output bits, state recovery is trivial. More precisely, if the
feedback polynomial is known – with m being the LFSR’s degree – an attacker only needs to
observe m consecutive output bits to know its internal state and predict all further outputs.
When the feedback polynomial is unknown, the attacker typically requires 2m consecutive
output bits [PP10]. However, as mentioned before, the attacker model in the context of
masking does not allow direct access to the generated random bits, making the application
of such attacks difficult for noisy leakages. Uniformity and unpredictability also implicitly
require that the adversary can neither bias nor control the generation of randomness.

1.5 Masking Randomness in Previous Works
In the state-of-the-art hardware masking literature, different authors have used various
techniques to generate the random bits required for their experimental analyses. An AES-128
in counter (CTR) mode has been used in [BGN+14b] to provide 44 random bits per clock
cycle. Assuming that a round-based AES-128 implementation requires at least 12 500 gate
equivalents (GE) of area (the smallest value listed in the comparison of [UHM+20]) and
produces 128 output bits every 10 clock cycles, the area cost of generating one random bit per
cycle can be estimated to be 977 GE. Other works like [CRB+16] instantiated reduced-round
variants of the low-latency cipher PRINCE [BCG+12] in Output FeedBack (OFB) mode to
rapidly generate a high number of random bits per clock cycle. It is not stated how many
of the PRINCE rounds were removed, but calculating based on a full PRINCE as unrolled
implementation which requires approximately 8 000 GE [BCG+12] of area and generates 64
output bits per cycle, the cost of generating one random bit per cycle is about 125 GE. For
a round-reduced variant, this cost might be halved at the expense of a reduced security
level. In [SBHM20], a sponge-based PRNG [BDPA10] using a variant of Keccak [BDPA13]
is used to generate 976 random bits every clock cycle. The design details provided are
insufficient to estimate the cost per bit of the concrete construction used. However, a
round-based Keccak-f[200] permutation requires about 5 000 GE of area and runs for 18
clock cycles [KY10]. Using the construction proposed in [BDPA10], either 64 or 96 bits
are obtained per call to Keccak-f[200], resulting in a minimum cost of 938 GE to produce
one random bit per cycle. As mentioned earlier, there are also a number of works that use
LFSRs to generate random values for masking. For instance, 31-bit LFSRs are employed
in [MMW18, Moo19, SM21, KMMS22, KSM22] in such a way that each required random
bit is generated by a dedicated LFSR that is randomly seeded on power-up. Following the
same principle, the authors of [KM22a] have considered such a 31-bit LFSR, a 64-bit LFSR,
and different variants of Keccak-Sponge-based PRNGs, and have reported the overhead of a
hardware masking scheme including the area required for the necessary PRNGs. The cost
of generating one random bit per cycle is estimated as 286 GE and 565 GE for the 31-bit
and 64-bit LFSRs respectively [KM22a]. Further, it has been explored in [PYR+16] whether
evolutionary computation can be beneficial in the design and optimization of lightweight
PRNGs for masking applications. The authors have proposed multiple PRNG variants that
have passed all tests of the NIST statistical test suite [BRS+10]. The most efficient one, based
on Cartesian genetic programming, is said to have a throughput-area ratio of 68.14 Mbps/GE
based on the NanGate 45 nm library. While this is significantly more efficient than all
other approaches mentioned above, it is entirely unclear whether this primitive provides
any resistance against modeling or state-recovery attacks. The other variants proposed by
the authors, which are said to be prediction resistant, are significantly more expensive. To
summarize, the current state of the art lacks dedicated, efficient, and well-studied solutions
for generating masking randomness and has mostly relied on ad hoc approaches so far.

We note that between all these publications, there is one work about multiplicative
masking of the AES which applies one of the solutions we recommend in this work, namely an
unrolled Trivium instance to generate multiple masking randomness bits in parallel [MRB18].
It is easy to overlook, as the use of Trivium is only mentioned at the very end of the work’s
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Appendix, without any further reasoning or cost analysis. But it appears that the authors
had a promising idea which, unfortunately, does not seem to have caught on in the community
(as evident by all the publications which since reverted to less suitable solutions).

1.6 Our Contributions
In this work, we focus on the problem of efficiently and securely generating randomness
in hardware with properties suitable for use in masked implementations. As a first step,
we briefly investigate the efficiency of state-of-the-art on-chip TRNGs, focusing mainly on
a high-throughput, low-area TRNG proposed at CHES 2018 [YRG+18], and discard the
possibility of using only TRNGs for the entire randomness generation of masking due to
their sub-optimal cost-performance trade-off. In consequence, we conclude that PRNGs
are indeed a better choice for this purpose. While LFSRs are generally considered a poor
choice for random number generation in cryptographic contexts due to the linear dependency
between their output bits, we include them in our comparison of potential primitives for
mask generation and evaluate their security in masking contexts later. Alongside LFSRs, we
analyze a number of efficient cryptographic building blocks with potential for secure mask
generation based on their throughput-area ratio. We chose these building blocks in part
based on prior reports comparing the 32 primitives that survived to Round 2 of NIST’s
Lightweight Cryptography (LWC) standardization process [oSN17] and the 8 stream ciphers
in Profile 2 (hardware) that reached the final phase of eSTREAM, the ECRYPT stream
cipher project [oEiCE04]. We have included the following ones in our comparisons:

• The lightweight primitive Subterranean 2.0 [DMMR20], which offers by far the best
throughput-area ratio among NIST LWC Round 2 candidates according to [AZ21].

• The cross-platform permutation Gimli [BKL+17], which is among the highest through-
put primitives of NIST LWC Round 2 candidates according to [AZ21].

• The ultra low-latency block cipher SPEEDY [LMMR21], whose variant SPEEDY-5-192
is claimed to provide the best throughput-area ratio among low-latency ciphers.

• The stream ciphers Trivium [Can06, CP08], Grain v1 (both 80- and 128-bit vari-
ant) [HJM07, HJMM06] and MICKEY 2.0 (both 80- and 128-bit variant) [BD08]
which offer the most promising performances in throughput-area ratio among the
eSTREAM competition’s Phase-3 candidates, as reflected by different comparative
efforts [GB08, GLB+06, BKSQ07, GSB07, Rog07, HCK+08, KSPS13, LLL20].

Where possible, we also consider reduced-security variants of these primitives, motivated
by the assumption that full cryptographic strength may not be required in our target setting,
i.e., randomness used in masking. For Gimli and SPEEDY this means that we consider
reduced-round versions. For Trivium, we consider its reduced-security variant Bivium B, which
has been introduced to study the cryptanalytic properties of Trivium [Rad06]. Thanks to its
unrolled implementation style available in hardware, our throughput-area comparison leaves
no doubt that Trivium is the most efficient primitive, outperforming the other candidates
by an impressive margin. By the term unrolling in the context of stream ciphers we denote
the generation of multiple output bits in a single cycle using a single hardware module
(see [GB08, GLB+06, GSB07, Rog07, HCK+08, LLL20] and explanations in Section 3).
Since the degree or level of unrolling can be chosen arbitrarily for stream ciphers, these
primitives offer a high flexibility to hardware designers. Considering primarily the throughput-
area ratio, our comparison shows that only LFSRs, when also unrolled to produce multiple
bits simultaneously, are able to outperform Trivium and Bivium B. Hence, as a next step we
evaluate whether unrolled LFSRs are suitable candidates for mask generation.

In this respect it is noteworthy that, to the best of our knowledge, no previous work has
explicitly used unrolled LFSRs to generate randomness for masking. The authors of [KM22a]
for example discussed the need to use an independent LFSR for each random bit required
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per cycle in a masked circuit, and all previous works have apparently followed the same
strategy. However, according to our comparison, this is not a cost-effective strategy. Hence,
we investigate the security of unrolled LFSRs in two case studies, and find that without
great care, this strategy does indeed lead to problems when used in masked implementations,
and may render the entire side-channel security null and void. In fact the demonstrated
problems extend, although in limited form, to the single-LFSR-per-bit scenario which has
more commonly been considered in practice. To summarize, we do not prove that unrolled
LFSRs can never be used securely for mask generation – as long as state recovery attacks
are not a problem which, as previously mentioned, should hold for high noise levels and
could even be formalized with arguments similar to the ones given in [DFH+16].2 But,
our case studies provide clear evidence that when using such linear primitives which lack
black-box security guarantees, the randomness generation and the masking scheme must
always be analyzed jointly to ensure that each random bit is used only in positions where it
cannot cause problems. Moving to primitives that offer black-box security, such as Trivium,
solves this issue and allows the independent analysis of the masked implementation and the
randomness generator, which is much more convenient from the designer’s perspective.

In summary, we warn against the use of (unrolled) LFSRs and recommend unrolled
Trivium for high security levels and unrolled Bivium B for medium security levels for the
efficient generation of randomness for masked hardware implementations. We detail how to
use these primitives, discuss their security against side-channel attacks, and finally estimate
the resulting cost of generating n random bits per cycle. For Trivium, the asymptotic cost
per random bit updated per clock cycle is about 30 GE on ASIC or 4 LUTs on FPGA. Using
Bivium B, the cost can even be reduced to 20 GE or 3 LUTs per random bit. These results
show that randomness generation is significantly cheaper than estimated by most works in
the past, which incentivizes highly parallel (low latency) masked implementations and should
motivate researchers to focus on alternative optimization goals than reducing randomness
usage in masking schemes. We believe that our conclusions are of positive nature for the
physical security community, as implementations using many random bits per cycle are also
known to provide superior security levels against more sophisticated attacks (e.g., so-called
horizontal attacks [BCPZ16]) compared to low-randomness approaches.

2 Background
In this section, we introduce the primitives that could be considered to generate randomness
for masking. We start with TRNGs that we will rule out for performance reasons in
Section 3.2. We follow with LFSRs that we will rule out for security reasons in Section 4. We
then discuss the different (cryptographic) PRNGs that we will investigate, paying a special
attention to Trivium and Bivium that we suggest as the candidates of choice in this paper.
We conclude by describing how stream cipher implementations can be unrolled.

2.1 True Random Number Generators (TRNGs)
Whenever randomness is needed in a digital design, at least some initial entropy has to come
from an analog noise source, as deterministic digital computation methods are unable to
generate true randomness. Thus, TRNGs exploit noise sources based on physical phenomena
with unpredictable behavior. An optimal source of entropy would be radioactive decay, since
the timing of events at the atomic level is impossible to predict, even with unbounded memory
and computational resources. Yet, it is clearly not realistic to sample radioactive decay in
integrated circuits to generate random numbers for cryptographic applications. Instead, noise
sources inherent to modern integrated circuits are commonly leveraged. These include clock
jitter, metastability, thermal noise in resistors, oscillatory metastability, write collisions in
dual-port random access memories and random initialization of bi-stable circuits [FD02, FL14].

2 For sufficiently many and/or large LFSRs so that correlation attacks do not trivially apply [Can11b].
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A large number of TRNG designs based on these physical phenomena is discussed and
compared in [PMB+16, YRG+18]. The raw random numbers extracted from entropy sources
are typically subject to statistical defects and need to be tested and post-processed before
being used in applications. Obtaining independent random values with high entropy is
therefore a laborious process that comes at a significant cost (e.g., in latency or area).

2.2 Linear-Feedback Shift Registers (LFSRs)
LFSRs are structures that hold an array of bits shifted one position per step in a certain
direction. The bit that gets shifted out of the array is typically the output, and the new bit
shifted into the array is determined by a feedback function computing a linear combination
of a number of state bits. LFSRs consist of clocked storage elements like flip-flops, and the
feedback function is typically described by a polynomial. The number of storage elements is
the degree of the LFSR. The maximum period, or sequence length, of an LFSR of degree m
is 2m − 1. LFSRs with maximum period exist for any degree m. Since the LFSR output is
determined by a linear combination of the initial state bits only, state recovery attacks are
trivial once a sufficient number of consecutive output bits are observed (2m if the feedback
polynomial is unknown; m otherwise [PP10]). Due to this lack of black box security, LFSRs
are rarely used as standalone primitives in cryptographic applications but more commonly
as useful ingredients (e.g., for stream ciphers – see next). Yet, and somewhat surprisingly,
they have been employed for the generation of randomness for masking.

2.3 Pseudo-Random Number Generators (PRNGs)
Due to the high cost of generating true random values in integrated circuits, it is common
practice to use PRNGs to stretch short sequences of true random bits (called seeds) into
long sequences of pseudo-random bits. PRNGs are deterministic polynomial time algorithms
constructed from an iterated function [BM82]. They generally use a pair of functions f
and g, where f : {0, 1}n → {0, 1}n iteratively updates an n-bit state si = f i(s0), and
g : {0, 1}n → {0, 1}m generates the output bitstream g(s0)∥g(s1)∥ . . . . The initial state s0 is
derived from the seed, which can be obtained from a TRNG at device power-up. Therefore,
all the entropy in the output descends from the initial random seed, and is further limited
by the state size of a PRNG. Cryptographically strong PRNGs, required for key or nonce
generation in many cryptographic protocols – when properly seeded – should produce output
indistinguishable from genuine randomness for computationally bounded adversaries.

PRNGs are natural candidates to generate randomness for masked implementations since
they generally have good properties for leakage due to the continuous update of their secret
state [YSPY10]. Furthermore their initialization, that may lead to stronger side-channel
attack vectors if it had to be synchronized with another communication party [SPY+10], is not
needed in this context and can be done with a truly random seed generated on-chip. As most
cryptographic primitives, they can be obtained generically from well-investigated building
blocks like (tweakable) block ciphers (as in the previous reference) or permutations [BDPA10]
– both possibly coming with similar guarantees in terms leakage-resistance [BBC+20]. They
can also be obtained from dedicated constructions, usually introduced as stream ciphers.
Such dedicated constructions generally correspond to a slightly more aggressive security
(margins) vs. efficiency tradeoff compared to generic constructions. The latter appears
appealing for our purposes since expensive randomness generation makes the application of
higher-order masking prohibitive and, as already mentioned, the adversarial scenario of this
generation is different from the stream cipher one (i.e., the adversary sees only the leakage
of the PRNG). Concretely, we will primarily investigate Trivium [oEiCE04, Can06] and
its Bivium B variant [Rad06] that we detail next. We will also report performance figures
for Subterranean 2.0 [DMMR20], Gimli [BKL+17] and SPEEDY [LMMR21]. The former
two were among the most promising candidates from the NIST lightweight cryptography
standardization process [oSN17], while the latter is a performance-driven block cipher with
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few rounds. For completeness, we finally provide results for other stream ciphers of the
eSTREAM competition [oEiCE04], namely Grain v1 [HJM07] and MICKEY 2.0 [BD08],
despite previous works already reporting their lower performances compared to Trivium, and
for Kreyvium which is a variant of Trivium with 128-bit security [CCF+16].3

2.4 Trivium & Bivium
Trivium is a stream cipher submitted by De Cannière and Preneel to the eSTREAM
competition, a multi-year effort to collect compact stream ciphers suitable for widespread
adoption [oEiCE04, Can06]. It was selected to be part of the final portfolio [CP08] and has
later been standardized as part of the lightweight stream cipher standard ISO/IEC 29192-3.
Trivium is based on a combination of three Non-Linear Feedback Shift Registers (NLFSRs)
of degree 93, 84 and 111 (288 bits in total) – see Figure 2 for an illustration. It has two
input parameters, an 80-bit key and an 80-bit initialization vector (IV). As is common in
cryptographic applications, the IV is public, but should take a new value for each encryption
session. During the initialization phase, the IV is loaded into the 80 leftmost positions
of the upper register, while the key is loaded into the 80 leftmost positions of the middle
register. All other bits are set to zero, with the exception of the three rightmost bits of the
bottom register, which are set to one. The cipher is then clocked for 1152 steps without
producing any keystream, which corresponds to 4 rotations of the state (4 · 288 = 1152), that
randomizes the content of the registers. After the initialization phase (also called warm-up)
is completed, the online phase begins and the keystream is generated. According to the
performance comparisons of phase-3 candidates of the eSTREAM competition presented
in [GB08, GLB+06, BKSQ07, GSB07, Rog07, HCK+08], unrolled Trivium offers by far the
best throughput-area ratio for hardware implementations.

In an attempt to better understand the security of Trivium, Raddum introduced two
reduced variants, called Bivium A and Bivium B [Rad06]. Both of them consist of only
two of Trivium’s NLFSRs, namely the 93-bit and the 84-bit ones. Bivium B is depicted in
Figure 3. In Bivium A, the keystream is generated as the sum of 2 state bits, both from the
same register. In Bivium B, the keystream is generated as the sum of 4 state bits, 2 from
each NLFSR. While no key recovery attack on Trivium with a complexity below 280 is known,
there have been effective attacks on both Bivium variants. In 2006, Haddum presented
an attack to break Bivium A in about a day [Rad06] by building and solving a system
of equations using the output keystream with the initial state bits as the unknowns. He
estimated the same attack to require about 256 seconds (about 231 years) on Bivium B. Later
in 2007, Maximov and Biryukov presented an attack on Bivium B with complexity c · 237,
where the constant c denotes the time required to solve a system of equations (estimated
to be c ≈ 214) [MB07]. In 2011, it was reported in [HL11] that by guessing 35 variables,
Bivium B can be solved in 232.81 seconds (about 7.9 years) by MFCS, an algorithm for
solving Boolean polynomial equations. In 2019, a key-recovery attack on Bivium B based on
Boolean equation solving has been reported [SSD19]. The concrete complexity of the attack
is unclear due to ambiguous claims in the paper, but the authors state that about 4 terabytes
of memory and a parallel search over 239 threads is required to recover the initial state and
the key. We conclude that Bivium A is weaker and that Bivium B can be broken in practical
time complexity on large computation clusters. For the rest of the paper we denote Bivium B
as Bivium and use it as an aggressive design that may be secure in the leakage-only setting
we consider, to gauge the performance gains that such an optimization offers.

2.5 Cautionary Notes
The move from LFSRs to cryptographically strong designs is admittedly gradual and dif-
ferent tweaks can be used in order to add non-linearity to stream ciphers based on shift

3 We do not provide the details of these additional algorithms due to place constraints.
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Figure 2: Schematic of the Trivium stream cipher consisting of 3 NLFSRs.

registers. As just described, Trivium uses NLFSRs, but other approaches have been consid-
ered in the literature, including filtering one or several LFSRs with a non-linear Boolean
function [Can11c, Can11a] or using irregularly clocked generators [Fon11a, Fon11b]. Grain
v1 [HJM07, HJMM06] is an example where both an LFSR with a non-linear filter function
and an NLFSR are combined (and where the filtered LFSR part eventually became the
weak point [TIM+18]). Such approaches have been intensively analyzed, culminating with
the eSTREAM competition [oEiCE04]. To the best of our knowledge no existing stream
cipher design gets close to Trivium in terms of security vs. performance tradeoff in hardware,
explaining our focus on this cipher. Note that a minimum requirement for all these designs is
that the register is large enough to avoid trivial correlation attacks where the adversary can
just guess the full register [Can11b]. Somewhat surprisingly, even this minimum requirement
is not always met in practice. See for example the issue recently reported for the masked
AES core of the OpenTitan project which uses multiple independent 32-bit filtered LFSRs
(1 for 4 S-boxes each): https://github.com/lowRISC/opentitan/issues/19091. Hence,
guessing the seed of each LFSR and testing the hypothesis is feasible.

Whether we could use sufficiently long LFSRs to avoid state guessing combined with a
filtering function that is just strong enough to be secure in the leakage-only setting and to
prevent the issues we put forward in Section 4 while not being a secure stream cipher is an
interesting open question. Yet, it might not be worthwhile in the long run due to the limited
potential for performance gains over stream ciphers combined with the increased security risk
(too little non-linearity enables the attacks in Section 4; too small size and too little unrolling
enable the attacks in Section 5). Additionally, it would annihilate the convenient possibility
to consider the security of the PRNG used to generate randomness and the masking scheme
itself independently that we also promote in this paper.

https://github.com/lowRISC/opentitan/issues/19091
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Figure 3: Schematic of Bivium B, a reduced security variant of the stream cipher Trivium
consisting of 2 NLFSRs.

2.6 Unrolling Stream Ciphers

While our terminology of unrolling a stream cipher may appear somewhat novel, the general
concept is not. It has merely been described using different terms in the past. Stream
ciphers like Trivium and Grain have been developed with this implementation trick in mind
in the early 2000s already. Similar to the iterated round functions of a block cipher or
permutation, the (normally consecutively executed) state update (and output) functions of
a stream cipher can be unrolled, which means multiple instances are realized in hardware
without any memory elements in between so that the combinatorial logic of multiple steps
is evaluated in a single cycle. See Figure 4(a) for an exemplary illustration of unrolling an
update function. Here, each instance of the update function is producing 1 output bit or
word per cycle (different from the block cipher analogy). While this is obviously a convenient
instrument to adjust the tradeoff between latency (in cycles) and critical path (in seconds),
there is another big advantage in the case of stream ciphers. Much unlike typical round
functions of block ciphers and permutations, the state update functions of stream ciphers
(typically) produce only 1 bit/word per cycle and can additionally be chosen to be sparse.
Sparsity of the function means here that it receives only a few selected bits/words as inputs
instead of the entire state. Thus, when choosing the function in a clever way, namely that the
next update function does not receive the current feedback bit as input, it becomes possible
to unroll a certain number of consecutive state updates (i.e., compute them in parallel in
one cycle) without directly increasing the logic depth or critical path of the circuit. See
Figure 4(b) for an example of a 2-bit unrolled Bivium implementation where the gate depth
is not changed compared to the regular design in Figure 3. It turns out stream ciphers like
Trivium and Grain [HJM07, HJMM06] indeed employ well-chosen functions to allow fast
implementations generating multiple output bits and performing multiple updates per clock
cycle. Trivium’s update function ensures that any state bit which has just been modified
is not used for at least the 64 following update steps [CP08]. For Grain v1 with 80-bit key,
modified state bits are not used in the next 16 updates [HJM07] while for the 128-bit key
variant that number is even increased to 32 [HJMM06]. Consequently, the critical path is
only increased in steps of 64, 16 and 32 bits of unrolling, respectively. The area, however,
is increased for each additional copy of the function. Yet, as only the combinatorial logic
needs to be replicated and as the area of stream ciphers like Trivium and Grain is highly
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dominated by the state register(s), unrolling these primitives corresponds to a net gain in
throughput-area ratio up to a certain level. Even beyond that level, the bits/cycle metric
continues to grow much faster than the critical path of the implementation.

We acknowledge that our definition of unrolling has been mostly been referred to as
parallelization in previous works on stream cipher implementations [GB08, GSB07, Rog07,
LLL20]. We have decided to avoid this term in our work, as it conflicts with the description
of multiple unrolled stream ciphers in parallel, which is a concept we need later in Section 5.
Less commonly, unrolled stream cipher circuits have also been referred to as higher-radix
implementations (e.g., radix-64 for 64-bit unrolled Trivium) [GLB+06, HCK+08].

3 Initial Cost Efficiency Comparison
In the following we explore the suitability of multiple building blocks to be used as randomness
generators for masked hardware implementations from the performance viewpoint.

3.1 Throughput-Area Ratio
Comparing primitives for cost-efficient randomness generation begs the question which per-
formance metric is the most relevant to evaluate. Since we aim to satisfy the randomness
demands of even large, parallel, higher-order masked hardware implementations of crypto-
graphic algorithms, we argue that the throughput-area ratio (TPA) is the optimal choice for
our scenario (as opposed to the throughput, area or power consumption individually or any
other combination of them). Assuming a masked implementation requires up to 1000 fresh
random bits per cycle (not unusual for gadget-based parallel higher-order implementations,
c.f. [KMMS22]) at 100 MHz in 65 nm ASIC technology, the TPA is arguably the most suit-
able metric to find the cheapest solution for generating the required amount of randomness
per cycle at the desired clock frequency. For concrete settings, the throughput-area ratio
measured in (bits/cycle)/GE is probably ideal for decision making. Yet, it is not best suited
for general comparisons of multiple candidates due to its strong dependency on the chosen
frequency and implementation technology. Indeed, to obtain both fair and optimal results in
the (bits/cycle)/GE metric for any given candidate, a separate implementation needs to be
constructed to best leverage the available critical path budget at each considered frequency
and for each considered implementation technology. When measuring the throughput-area
ratio in (bits/s)/GE instead, the critical path delay is part of the formula and it becomes
easier to compare multiple candidates without limiting the analysis to one predefined setting.
In fact, the (bits/s)/GE value can be seen as an upper bound on the TPA in the sense that
the optimal value is obtained for a concrete circuit under the assumption that the operating
frequency of the device is determined by this implementation, instead of the implementation
being tailored to one predefined frequency. As not every candidate will fit into each setting
perfectly, flexibility of an implementation is another important factor. In the following we
use the throughput-area ratio measured in (bits/s)/GE to compare the selected candidates
for concurrent randomness generation. We aim to avoid remaining technology biases by
evaluating the metric in multiple standard cell libraries for the PRNG building blocks.

3.2 High-Throughput Low-Area TRNG
Since an efficient TRNG implementation is always needed when randomness has to be
generated inside an integrated circuit, the first important question to answer is whether this
primitive can potentially be used for all randomness generation, which would save the cost
of implementing a PRNG in addition. To answer this question, we have selected a suitable
representative from the TRNG literature and evaluate its efficiency in the following. At
CHES 2018, Yang et al. proposed a high-throughput, low-area TRNG suitable for both ASIC
and FPGA implementations [YRG+18]. The design is called ES-TRNG, where ES stands
for Edge Sampling. The chosen noise source is timing jitter, and the design relies on two
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(a) 1-bit/1-word (left), 2-bit/2-word (middle) or 3-bit/3-word unrolled update functions.

(b) 2-bit unrolled Bivium, producing keystream at twice the rate as regular Bivium.

Figure 4: Unrolling a stream cipher like Trivium/Bivium is achieved by implementing
multiple consecutive update functions in the same hardware circuit, each producing one
output bit/word per cycle. If one update function’s inputs are independent of the feedback bits
of multiple previous update functions, consecutive steps can be unrolled without increasing
the circuit depth (e.g., up to 64 steps for Bivium/Trivium/Kreyvium).

techniques that the authors call variable-precision phase encoding and repetitive sampling to
increase throughput and reduce area. We implemented this design using a 65 nm low-power
CMOS standard cell library and obtained the results listed in Table 1. The throughput is
estimated in part based on timing jitter measurements on a test chip manufactured under
the same 65 nm technology and in part based on a prototype FPGA implementation whose
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output has been evaluated positively by statistical test suites. For a 100 MHz system clock
the resulting throughput when synthesized in (and parametrized for) 65 nm ASIC technology
is 2.2 Mbit/s and thus higher than the 1.15 Mbit/s given in [YRG+18]. This is expected
when moving from FPGA to ASIC implementation. In fact, higher performances are likely
still possible on ASIC platforms. Our concrete implementation is able to produce 7.4 kbit/s
of high-entropy random numbers for each gate equivalent (GE) of area (i.e., a TPA of 7.4
(kbit/s)/GE). Please note that a recent improvement of the original ES-TRNG design has
been published in [LBS22] under the name Tight-ES-TRNG. The authors performed low-cost
optimizations to ensure that the signal edges populate a larger portion of the full distribution
of phase jitter to increase the achievable entropy level. In that work, the throughput is
increased to 5.6 Mbit/s. Even higher throughput may potentially be achieved with alternative
TRNG designs according to the comparisons presented in [PMB+16, YRG+18], at the cost
of a significantly larger area and less freedom in the implementation. In particular, the only
TRNG design listed which provides a larger throughput-area ratio compared to the ES-TRNG
is a Self-Timed Ring (STR) based TRNG [CFAF13, CFFA13], with an approximately 6 times
better efficiency [PMB+16, YRG+18]. However, this design occupies a 20 to 30 times larger
area (high default cost) and requires both manual placement and manual routing. Even
when considering such a design, the throughput-area ratio would still fall in the range of tens,
maybe hundreds, of kbit/s/GE for a 65 nm ASIC implementation, without yet considering
the cost of monitoring the entropy source or continuous internal testing. We will demonstrate
in this section that it is possible to implement cryptographically strong PRNGs with a
much higher throughput-area ratio than that, providing strong support for the idea that
randomness-hungry masked implementations are better served by PRNGs than TRNGs.

Table 1: ES-TRNG in a 65 nm low-power CMOS technology @ 100 MHz system clock.

Min. Area Min. Latency Throughput @ 100 MHz

ES-TRNG 297 GE 0.135803 ns 2.2 Mbit/s

3.3 Permutations vs. Block Ciphers vs. Stream Ciphers

Having concluded negatively on the suitability of TRNG instances to generate random values
for (parallel, higher-order) hardware masking, we now compare a number of potentially
cost-efficient cryptographic building blocks based on their throughput-area ratio to be used in
PRNG constructions. We rely on prior efficiency comparisons to pre-select such primitives. In
more detail, the authors of [AZ21] compared the Round 2 candidates of the NIST lightweight
cryptography standardization process [oSN17] based on their ASIC implementation figures.
Several different metrics are evaluated, including throughput and throughput-area ratio.
The lightweight primitive Subterranean 2.0, introduced in [DMMR20], offers by far the best
throughput-area ratio, while the cross-platform permutation Gimli, proposed in [BKL+17],
offers one of the best throughput figures. Both of these primitives are included in our further
investigation. According to the comparison of low-latency ciphers given in [LMMR21], the
5-round version of the ultra low-latency cipher SPEEDY, called SPEEDY-5-192 requires
a smaller area per output bit and can be clocked at a higher frequency than any other
low-latency primitive when implemented fully-unrolled in hardware. Finally, the comparison
of all 8 stream ciphers in the hardware profile of the eSTREAM competition that reached
the third phase are compared for their cost and efficiency in [GB08]. The stream cipher
Trivium [Can06, CP08] offers by far the best throughput-area ratio among all its competitors,
hence, we include it in our preliminary investigation as well. Other related works reached
similar conclusions [GLB+06, BKSQ07, GSB07, Rog07, HCK+08, LLL20]
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3.3.1 Full-Security Versions

To summarize, in our initial comparison we have selected two of the most cost-efficient
building blocks from the NIST lightweight cryptography competition, the supposedly most
cost-efficient low-latency cipher and the supposedly most cost-efficient hardware stream cipher
from the eSTREAM competition. The corresponding synthesis results are given in Table 2
for 4 different ASIC standard cell libraries, 2 commercial ones and 2 open-source ones. The
synthesis tool used is Synopsys Design Compiler Version O-2018.06-SP4. Our Subterranean
2.0, Gimli and SPEEDY hardware implementation results are based on publicly available
source code that can be found here:

• Subterranean 2.0: https://github.com/pmassolino/hw-subterranean

• Gimli: https://gimli.cr.yp.to/impl.html

• SPEEDY: https://github.com/Chair-for-Security-Engineering/SPEEDY

The complete set of individual delay, area, power consumption and throughput figures, in
addition to combined metrics such as energy consumption per bit and power-area-time
product, are listed for each candidate in Appendix A. It is important to note that we compare
the raw primitives in this initial comparison and do not consider any framework that is
needed to turn them into usable PRNGs (typically required for the block-oriented primitives,
but not for stream ciphers). For the block ciphers and permutations, two different versions
are considered: (i) a fully-unrolled single-cycle implementation from combinatorial logic only
and (ii) a fully-unrolled round-pipelined implementation (✓). For Gimli and SPEEDY, 24
and 5 cipher rounds are unrolled respectively. Both versions (i) and (ii) produce one block of
output per clock cycle. Yet, the pipelined versions obviously require a number of cycles equal
to the number of rounds before the first usable output is produced. We also acknowledge
that efficiently initializing such large pipelines, for example 24 · 384 = 9216 bits in case of
Gimli, while keeping the initial seed small, might become difficult. For Trivium the situation
is different, as common stream ciphers are not based on iterative round functions. Instead,
they are typically constructed from state update functions that produce a single output bit
or word per step while updating the state register. As discussed in Section 2, these update
functions can be unrolled in a similar manner as the round functions of a block cipher or
permutation, with the additional advantage that state update functions can be sparse and
chosen in such a way that a certain degree of unrolling leads to no increase of the gate depth
or critical path. In fact, the structure of Trivium allows it to be implemented in a way that
neither the depth nor the delay of the hardware circuit are increased for 64 bits of unrolling
or below, making Trivium_X64 the most cost efficient primitive in Table 2. Trivium_X48
and Trivium_X64 outperform Trivium_X32, Trivium_72 and any larger (> 72) or lower (<
32) unrolling level in fact. We evaluated Trivium for many degrees of unrolling (arbitrary
degrees are possible, see also Section 5), but none of them offered a better throughput-area
ratio than Trivium_X64 in (bits/s)/GE. Of course, when integrated into a larger chip design
where other components demand a lower operating frequency, larger unrolling factors are still
more attractive in order to fully exhaust the critical path budget and generate as many bits
per cycle as possible. Since the degree of unrolling can be chosen arbitrarily, the number of
output bits produced per cycle is adjustable with single-bit granularity, which also provides
a conveniently high flexibility compared to permutations and block ciphers.

Subterranean 2.0 is a hybrid primitive that is hard to put in a single category. It uses
elements from permutation-based cryptography and resembles a sponge-like construction
that behaves like a stream cipher when squeezed, producing 32-bit words per step. Its
round/update function can also be unrolled to provide even more bits per cycle, but unlike
Trivium, unrolling will not improve its TPA in (bits/s)/GE. Instead, the standard variant
producing 32 bits per cycle is the most cost-efficient one in this metric and makes it the
second most cost-efficient primitive in two of the four considered standard cell libraries
in Table 2. Yet, its throughput-area ratio is 4 times lower compared to Trivium_X64, mostly

https://github.com/pmassolino/hw-subterranean
https://gimli.cr.yp.to/impl.html
https://github.com/Chair-for-Security-Engineering/SPEEDY
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Table 2: Comparison of the throughput-area ratio of unrolled building blocks, including
the stream cipher Trivium, the lightweight primitive Subterranean 2.0, the cross-platform
permutation Gimli and the ultra low-latency cipher SPEEDY.

Throughput/Area [(Mbit/s)/GE]
Commercial Foundry NanGate OCL

Primitive pip. bits/cycle 90 nm LP 65 nm LP 45 nm 15 nm

Subterranean2 32 14.272 17.848 15.610 156.644
Subterranean2_X2 64 9.430 11.418 10.461 92.776
Subterranean2_X4 128 5.422 6.786 6.987 60.899
Subterranean2_X8 256 2.910 3.309 3.859 32.578

Gimli (24 rounds)
384 1.254 1.540 1.739 16.351

✓ 384 13.518 15.875 16.561 162.556

SPEEDY-5-192
192 1.354 1.637 2.159 18.442

✓ 192 7.446 10.146 8.857 75.990

Trivium 1 2.356 4.072 2.189 22.232
Trivium_X32 32 51.292 46.261 46.827 412.244
Trivium_X48 48 48.623 63.186 57.639 607.553
Trivium_X64 64 58.899 73.785 77.514 752.875
Trivium_X72 72 42.484 59.694 61.534 530.410

because it occupies a larger area while only producing half the number of bits per cycle
(c.f. Table 7). Its power consumption, however, is lower than unrolled Trivium’s and almost
as low as unrolled Bivium’s (c.f. Table 8). Round-pipelined Gimli performs similarly well
and places second in the other two cell libraries. Yet, it comes at a much higher default cost.
Round-pipelined SPEEDY is roughly half as cost-efficient as Gimli and Subterranean 2.0
here.

Note that the throughput-area ratio of Trivium_X64 is 77.51 (Mbit/s)/GE in Nan-
Gate 45 nm library, more than 13% larger than the 68.14 (Mbit/s)/GE achieved by the
PRNG based on evolutionary programming presented in [PYR+16] using the same library.
We believe it is a strong result that Trivium, a stream cipher with proven cryptographic
strength that has been analyzed for the past 18 years, leads to more cost-efficient implemen-
tations in hardware than dedicated PRNGs for mask generation that only achieve sufficient
statistical properties to pass common test suites without cryptographic guarantees.

3.3.2 Reduced-Security Versions

Yet, as explained in detail in Section 1, full 80-bit or 128-bit security may not always be
needed for PRNGs in masking contexts, as adversaries may at most obtain a noisy version of
the PRNG’s output through side-channel observations. Performing cryptanalytic attacks or
solving complex systems of equations based on partially erroneous data is known to be a
hard problem. The security of modern lattice-based post-quantum cryptography for instance
depends on the hardness of computational problems such as Learning With Errors (LWE),
which requires solving a system of noisy linear equations. Hence, lower security levels in the
black-box model can lead to much higher security levels against adversaries with access to
noisy data only [DFH+16]. For this reason our concrete setting might tolerate lower security
levels if the cost-efficiency can be improved significantly. In this context, the advantage of
block ciphers and permutations over stream ciphers is that the number of rounds can be
adapted in order to flexibly adjust the security-vs-performance tradeoff. In fact, it is possible
for most modern block ciphers and permutations to remove multiple rounds and still maintain
a security level beyond enumeration power. For stream ciphers, no such well-understood
mechanism exists (shortening the initialization phase reduces security but brings no gains in
hardware performance during keystream generation). Luckily, in case of Trivium, the reduced
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security variant Bivium has been introduced as a study object for cryptanalytic analyses.
Hence, we also compare Bivium to round-reduced versions of the previously analyzed building
blocks Gimli and SPEEDY in Table 3. The smallest round-reduced versions (8-round Gimli
and 2-round SPEEDY) chosen here can both be practically broken in the black-box setting
(distinguishers with complexities below 240 exist), but attacks are still expected to require a
computational effort that becomes prohibitive when only partial information on inputs and
outputs is available. Bivium_X64 clearly outperforms the reduced security primitives in TPA.
Here, round-pipelined 8-round Gimli performs best among the remaining primitives, with
approximately half the throughput-area ratio compared to Bivium_X64, while also consuming
a 9 times larger area and 10 times more power on average. Reduced-round SPEEDY achieves
less than a quarter of the cost efficiency of Bivium_X64. The results in Table 2 and Table 3
show that Trivium and Bivium are the most suitable among the tested primitives.

Table 3: Comparison of the throughput-area ratio of the reduced-security versions of the
primitives from Table 2.

Throughput/Area [(Mbit/s)/GE]
Commercial Foundry NanGate OCL

Primitive pip. bits/cycle 90 nm LP 65 nm LP 45 nm 15 nm

Gimli (8 rounds)
384 8.619 10.544 12.839 108.180

✓ 384 42.754 44.256 49.251 480.270

Gimli (16 rounds)
384 2.484 2.996 4.273 36.684

✓ 384 20.603 25.763 23.827 243.939

SPEEDY-2-192
192 10.429 12.539 15.224 134.877

✓ 192 19.734 25.811 24.427 242.620

SPEEDY-3-192
192 4.155 4.918 6.359 55.208

✓ 192 12.513 16.790 15.249 134.630

SPEEDY-4-192
192 2.183 2.751 3.425 29.738

✓ 192 9.297 12.971 11.013 96.851

Bivium 1 3.624 5.364 3.544 34.050
Bivium_X32 32 70.893 77.847 71.559 690.677
Bivium_X48 48 75.572 96.861 107.462 969.275
Bivium_X64 64 89.620 107.543 109.730 1212.312
Bivium_X72 72 66.909 90.785 81.547 809.863

3.4 Other Stream Ciphers
The observation that stream ciphers can outperform block-based encryption algorithms
in throughput-area ratio is not new. Stream ciphers are known to require a smaller area
footprint in hardware (on average) compared to block ciphers with similar security levels and
have therefore been of primary interest for resource-constrained devices such as smart cards,
sensor networks or Radio-Frequency Identification (RFID) tags [BKSQ07]. Since Trivium
delivered very promising results in the preliminary analysis, we now investigate whether other
stream ciphers can provide similarly impressive performance for randomness generation.

The eSTREAM competition was held from 2004 to 2008 with the goal to identify
and collect secure and compact stream cipher proposals suitable for widespread adoption;
separately for a hardware and software profile [oEiCE04]. During this time, researchers have
compared many of the proposed stream ciphers to each other and also to older standards
such as A5/1 [BGW98], RC4 [Sch96] or E0 [E02], resulting in a number of publications
containing performance rankings of multiple candidates [GB08, GLB+06, BKSQ07, GSB07,
Rog07, HCK+08]. They all have in common that Trivium is identified as the number one
candidate with respect to throughput-area ratio, although among different sets of primitives,
most oftenly followed by Grain v1 (either the 80- or 128-bit key variant). Also for the
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maximum throughput, Trivium places first in all works that have implemented its 64-bit
unrolled variant [GB08, GLB+06, GSB07, Rog07, HCK+08]. The top rank for minimum area
is mostly split between Trivium, Grain v1 [HJM07, HJMM06], MICKEY 2.0 [BD08] when
considering only eSTREAM candidates - with the insecure A5/1 algorithm (broken in practical
time since the year 2000 [BD00]) being consistently smaller. Two further comparisons have
been published several years after the eSTREAM competition ended, namely [KSPS13] in
2013 and [LLL20] in 2020, which also include more recent stream cipher proposals. While
the work by Kitsos et al. favors MICKEY 2.0 over Trivium or Grain v1 for maximizing the
throughput-area ratio, this is mostly due to the fact that only the basic non-unrolled versions
of the latter have been implemented [KSPS13]. This is also criticized by Li et al. [LLL20],
who provide implementation figures including unrolled Trivium and Grain v1 and report
an advantage of Trivium over MICKEY 2.0 in TPA by more than an order of magnitude.
In total, all listed publications collectively include the following set of stream ciphers
(or variants of them) implemented in hardware: A5/1 [BGW98], RC4 [Sch96], E0 [E02],
SNOW3G [SNO], Phelix [WSLM05], Lex [Bir08], Achterbahn [GGK05], MOSQUITO [DK05],
SFINKS [BLM+05], VEST [OGL05], ZK-Crypt [GGV05], Trivium [CP08], Grain v1 [HJM07,
HJMM06], MICKEY 2.0 [BD08], DECIM [BBC+08], Edon80 [GMK08], F-FCSR [ABL08],
Moustique [DK08], Pomaranch [JHK08], Salsa20 [Ber08], ZUC [ZUC], Plantlet [MAM16] and
Lizard [HKM17]. Among all these primitives, the candidates consistently performing best in
maximum throughput, minimum area and maximum throughput-area ratio (without being
broken in practical time complexity yet) are Trivium, Grain v1 (80- and 128-bit variant) and
MICKEY 2.0 (80- and 128-bit variant). These are, not surprisingly, also the three candidates
that have been selected for the hardware portfolio of the eSTREAM competition. Hence, we
decided to select these three primitives for a closer look at stream cipher performances for
mask generation. While, to the best of our knowledge, no cryptanalytic attacks against full
Trivium or full MICKEY 2.0 exist, key recovery attacks against both Grain v1 variants (80-
and 128-bit key) with complexities below exhaustive key search are known [TIM+18, BCM23].
However, the complexities remain significant enough to not disregard these primitives for
our purposes, as the performance of the attacks is still prohibitive for most computationally
bounded adversaries even in the noise-free setting (approximately 275 and 2112 respectively).
Since we take a look at 80- and 128-bit variants of both Grain and MICKEY, we also
consider a 128-bit secure version of Trivium for this exercise, which is called Kreyvium
and has been first proposed at FSE 2016 for efficient homomorphic encryption [CCF+16].
Unlike the 128-bit versions of Grain and MICKEY, Kreyvium is not a real re-design of its
successor based on larger parameters, but mostly relies on keeping original Trivium intact
and extending it by two additional registers holding the 128-bit key and 128-bit IV, which are
never updated beyond a rotation of the bits. This change, while promising for the purposes
intended by the authors, is not exactly optimal to improve the throughput-area ratio.

The full comparison is shown in Table 4; individual delay, area, power consumption and
throughput figures in addition to combined metrics (energy consumption per bit, power-
area-time product) can be found in Appendix A. As already pointed out in previous stream
cipher comparisons, the optimal level of unrolling to maximize the throughput-area ratio
differs between the candidates. For Grain v1 with 80-bit key and 128-bit key it is 16 and 32
respectively, for Trivium and Kreyvium it is 64 (because the core design is identical) and
for MICKEY 2.0 with 80-bit key and 128-bit key it is actually 1. The MICKEY design
is not based on the principle that recently updated state bits are not used in the next X
update steps. Hence, unrolling this stream cipher will not lead to any improved results in
the (bits/s)/GE metric (doubling the output bits per cycle will also increase both delay
and area of the combinational logic approximately by factor 2, resulting in a lower TPA
overall). To still have a common denominator between all designs for comparison purposes,
we made sure to evaluate a 32-bit unrolled version of each of them. While the small size and
power consumption of Grain v1 is attractive (c.f., Table 7; similar to Bivium), its update
function has a larger gate depth than Trivium’s and the number of consecutive update
functions based on independent bits is too small to reach the throughput-area of Trivium. In
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fact, Subterranean 2.0 and round-pipelined Gimli achieve better TPA than both Grain v1
variants (c.f., Table 2). MICKEY 2.0 is only competitive when no unrolling is considered,
making it a poor choice for our purposes. Additionally, it has received the least amount
of cryptanalysis among the three eSTREAM candidates considered here and it has been
pointed out that its data-dependent irregular clocking may lead to simple, timing-based
side-channel attacks [GBC+08], which is highly undesirable for our setting. Finally, we
extrapolated the critical path values given in Appendix A Table 6 to estimate how many bits
per cycle can at most be generated by each of the stream ciphers (i.e., the maximum level
of unrolling) in 65 nm ASIC technology at 100MHz operating frequency. The results show
that Bivium, Trivium and Kreyvium may generate over 3000 bits per cycle, while the Grain
v1 variants achieve 400 (for the 80-bit key) and 1000 bits (for the 128-bit key) respectively.
Both MICKEY 2.0 versions may generate at most 50 bits per cycle. Once again, we conclude
that Trivium and its variants are clearly the most promising cryptographic algorithms for
cost efficient and secure randomness generation in hardware.

Table 4: Comparison of the throughput-area ratio of unrolled stream ciphers.

Throughput/Area [(Mbit/s)/GE]
Commercial Foundry NanGate OCL

Primitive key length bits/cycle 90 nm LP 65 nm LP 45 nm 15 nm

GrainV1_80

80

1 1.464 2.020 1.580 14.825
GrainV1_80_X8 8 6.391 7.849 7.287 69.252
GrainV1_80_X16* 16 8.274 10.861 9.031 86.915
GrainV1_80_X32 32 5.817 7.023 7.158 61.417

GrainV1_128

128

1 1.086 1.484 1.093 9.841
GrainV1_128_X16 16 8.522 11.465 9.751 91.195
GrainV1_128_X32* 32 12.410 18.556 13.996 130.803
GrainV1_128_X48 48 8.907 11.978 11.195 94.795

MICKEY2_80*

80

1 1.224 1.807 1.391 11.291
MICKEY2_80_X2 2 0.967 1.440 1.108 9.191
MICKEY2_80_X4 4 0.621 0.835 0.763 6.627
MICKEY2_80_X32 32 0.056 0.077 0.068 0.642

MICKEY2_128*

128

1 0.778 0.967 0.885 6.247
MICKEY2_128_X2 2 0.575 0.817 0.652 5.602
MICKEY2_128_X4 4 0.360 0.496 0.443 3.603
MICKEY2_128_X32 32 0.033 0.046 0.039 0.359

Trivium

80

1 2.356 4.072 2.189 22.232
Trivium_X32 32 51.292 46.261 46.827 412.244
Trivium_X48 48 48.623 63.186 57.639 607.553
Trivium_X64* 64 58.899 73.785 77.514 752.875
Trivium_X72 72 42.484 59.694 61.534 530.410

Kreyvium

128

1 0.982 1.240 1.027 9.218
Kreyvium_X32 32 21.554 27.449 23.696 233.767
Kreyvium_X48 48 29.554 36.597 33.600 325.753
Kreyvium_X64* 64 37.142 45.264 37.719 388.195
Kreyvium_X72 72 27.773 38.244 32.134 291.893

* Optimal level of unrolling to maximize Throughput/Area ratio.

3.5 LFSRs
There is one well-known primitive for generating long sequences of random-looking bits
that has not been discussed yet and which is preferable over Trivium and Bivium from a



20 Randomness Generation for Secure Hardware Masking

pure performance standpoint, namely an unrolled LFSR. Indeed, the update function of
an LFSR can be unrolled in the same manner as for stream ciphers like Trivium or Grain.
Additionally, sparse feedback polynomials which guarantee maximum period are known for
(almost) arbitrary register sizes. Of course, a sufficiently large state is required (e.g., > 64
bits) to (i) guarantee a long enough non-repetitive output sequence and (ii) keep adversaries
from simply guessing all state bits. While this requirement seems rather obvious, it has
apparently been neglected in the design of OpenTitan, the open source silicon root of trust
developed by lowRISC, where multiple 32-bit LFSRs are instantiated to generate masking
randomness.4 To attack this design, one may simply enumerate all possible states of the
LFSRs to find the correct seed for each of them separately (since there is no diffusion between
the LFSRs) which in turns allows one to generate all previous and future masks.

However, even when respecting the minimum size of 64 bits, an unrolled LFSR can easily
be 3-4 times more cost-efficient than Bivium, which is demonstrated for different levels
of unrolling in Table 5. The obvious caveat is that LFSRs provide no black-box security
whatsoever, as all output bits depend linearly on the initial state. As discussed in Section 2
already, this allows trivial state recovery attacks when sufficiently many consecutive output
bits are observed. Another problem may occur when multiple bits with linear dependencies
between each other are used as pseudo-randomness in the same masked implementation.
Hence, a closer look at the severity of such risks is needed, which we study next.

Table 5: Throughput-area ratio of an exemplary 64-bit LFSR for different degrees of unrolling.

Throughput/Area [(Mbit/s)/GE]
Commercial Foundry NanGate OCL

Primitive bits/cycle 90 nm LP 65 nm LP 45 nm 15 nm

LFSR64 1 10.805 12.984 11.741 106.251
LFSR64_X32 32 230.191 265.875 218.516 2384.159
LFSR64_X64 64 222.286 298.575 308.312 3058.591
LFSR64_X96 96 294.813 399.138 387.573 3310.856
LFSR64_X128 128 287.444 373.509 332.251 2821.053

4 Security Analysis: Unrolled LFSRs
In this section, we tackle the question of the (in)security of using LFSRs as the source of
masking randomness. At first sight, although LFSRs do not have as strong properties as
other cryptographic primitives (i.e., their state can be retrieved by observing the stream it
generates), we would like to point out again that their use as a source of randomness in the
context of masking may make sense. Indeed, masking schemes usually only require that their
randomness is uniformly distributed and unpredictable. Since the adversary does not have
access to the output of the LFSR, but only a noisy version of it, state recovery might not be
easy, and we will optimistically assume that the unpredictability holds true. Regarding the
uniformity, a properly seeded LFSR has uniform output bits, but they are not independent.
Are these dependencies an issue in practice? We answer this question positively with two
simple examples where the masking security is broken due to the linear dependencies in the
LFSR output stream, both in theory and in real-world experiments.

At its core, the problem is simple. Let a set of values x1, . . . , xn represented by the
first-order Boolean sharings (x0

1, x1
1), . . . , (x0

n, x1
n) that are XORed together: xi = xi

1 ⊕· · ·⊕xi
n

for i = 0, 1.5 If the sharings are freshly generated from randomness rj out of the LFSR (i.e.,

4 See https://github.com/lowRISC/opentitan/blob/master/hw/ip/aes/rtl/aes_prng_masking.sv#L7
and the already mentioned issue https://github.com/lowRISC/opentitan/issues/19091

5 This problem also exists for higher-order masking. We focus on the simplest (first-order) example.

https://github.com/lowRISC/opentitan/blob/master/hw/ip/aes/rtl/aes_prng_masking.sv#L7
https://github.com/lowRISC/opentitan/issues/19091
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x1
j = rj and x0

j = xj ⊕rj), and moreover if these bits are linearly dependent (r1 ⊕· · ·⊕rn = 0),
then (x0, x1) = (x, 0): the masking is completely removed.

Let us now relax the fresh sharing generation hypothesis, which might not be realistic.
Instead, let us consider a case where the sharings (x0

j , x1
j ) are the outputs of AND gadgets,

such as the well-known ISW multiplication [ISW03]. In this case, xi
j = yi

jz0
j ⊕ yi

jz1
j ⊕ rj

for i = 0, 1, assuming that the multiplication inputs are sharings of yj and zj . Since this
value can be re-written as xi

j = yi
jzj ⊕ rj , we can clearly see that, assuming again a linear

dependency of the rjs, the result of XORing the xjs is an insecure sharing:

(x0, x1) =

 n⊕
j=1

x0
jzj ,

n⊕
j=1

x1
jzj

 .

For example, if the zjs are all 0, then x0 = 0, while if they are all 1, it is uniformly distributed.

Let us now show how this problem happens in concrete cases. Both case studies are based
on a circuit masked at the first order using the HPC2 masking scheme [CGLS21] (i.e., we
have HPC2 AND gadgets and sharewise XORs), and we ensure that the circuits are secure
against glitches and transitions [CS21] when provided with fresh randomness. The first
case-study is a low-latency implementation of Ascon [DEMS20] (the recent winner of NIST’s
Lightweight Cryptography standardization process [oSN17]) showing that the above problem
can appear in real-world circuits and not only in artificial examples. Next, the second case
study shows how glitches and transitions interact with the LFSR, providing further insights
on how (not) to use an LFSR for generating masking randomness.

4.1 Case Study 1
We implemented the masked Ascon permutation with a round-based architecture and with
minimal latency (2 clock cycles per round, due to the latency of the HPC2 AND gadgets).
The permutation operates on a 320-bit state that can be represented as binary matrix of
dimension 5x64. Next, we use bu,v = b0≤5v+u<320 to depict the bit of the state located at the
u-th row and the v-th column.6 The permutation is composed of the layers shown in Figure 5:
the substitution layer consists in 64 parallel S-boxes (each operating on a single column)
and the linear diffusion layer operates on the rows. As depicted in Figure 6 and Figure 7,
the non-linear part of the S-box (which is the Keccak S-box) is the only sequential logic,
and the other layers (S-box output, Ascon diffusion layer, and S-box input) are all linear
and implemented with combinational logic. The non-linear S-box layer is implemented as a
two-stage pipeline that is fed with the fresh masks ri,0≤i<320. It outputs the sharing of the
state bits si,0≤i<320 (which are simply a forwarding of its input) and the results of the AND
gates denoted ai,0≤i<320. The others layers combined together form a purely combinational
XOR network producing the sharing for the bits s′

i,0≤i<320that are then forwarded back
to the input of the substitution layer. The values of the fresh masks ri are obtained by
applying 320 times the update function of the instantiated n-bit LFSR and can thus directly
be expressed as a linear combination of the previous LFSR state bits denoted lr,0≤r<n.

By tracking back the operations from the output of the combined linear layer to its input
(i.e., the output of the substitution layer), the values of the bits s′

i can be expressed as a
linear combination of some specific si and ai only. Furthermore, the sharings of the bits
ai are linearly dependent on the values of the fresh masks ri, which means that every s′

i is
the result of a combination involving multiple ri. When using an n-bit unrolled LFSR with
n < 320 to generate the ris, some of these bits become linearly dependent, which we can
make evident by writing the ris as a linear combination of the initial LFSR state lr.

It follows that, if for a wire in the circuit, the combination of the involved ri results
in the canceling of the randomness (i.e., the involved lr bits cancel out to 0), the value

6 We order bits by column in the state, from the left to the right and from the top to the bottom position
inside a column. That is, b0 (resp., b319) is the top left (resp., bottom right) bit in the state matrix.
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Figure 5: Top-level representation of the Ascon permutation.
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Figure 6: Masked Ascon S-box architecture.
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Figure 7: Masked Ascon diffusion layer architecture.

on the wire may become dependent on the secret values. Such a canceling may occur
explicitly (i.e., a physical wire in the implementation is designed to hold this value) or may be
induced by physical default such as glitches (i.e., this value appears only ephemerally due to
propagation delays). Both cases may occur in practice. Whether they occur or not is out of
the designer’s control when using a standard tool flow where automated algorithms determine
the concrete gate-level implementation and adjust wire/path delays as needed to satisfy
timing constraints.7 For the sake of simplicity, we discuss the explicit randomness cancellation
in the following discussion. More precisely, we analyzed the maximum-length LFSRs proposed
in [Alf96]. By symbolically simulating the execution of our Ascon implementation when
using these LFSRs as PRNG, we identified that 13 designs (out of 166 possible ones) had
randomness cancellations. We next detail the results we obtained for the 63-bit LFSR.
For simplicity, we only analyze the results for an implementation with 2 shares, but our
methodology could be applied identically when more shares are considered.

We first illustrate how randomness cancellation may occur during the computation using
the 63-bit LFSR. In particular, we identified 39 randomness cancellations in the linear tree
and describe next a concrete occurrence for the bit s′

32 = s′(2,6) as an example. From Figure 5
and Figure 7, s′(2,6) can be expressed as follows:

7 While the designer may add synthesis constraints in order to prevent the first case, avoiding glitches
requires the addition of registers, which in turn increases the latency of the implementation.
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s′(2,6) = y(2,6) ⊕ y(1,6) (1)
= x(2,6) ⊕ x(2,5) ⊕ x(2,0) ⊕ x(1,6) ⊕ x(1,9) ⊕ x(1,31) (2)
= 1 ⊕ s(2,6) ⊕ a(3,6) ⊕ 1 ⊕ s(2,5) ⊕ a(3,5) ⊕ 1 ⊕ s(2,0) ⊕ a(3,0)

⊕ s(1,6) ⊕ s(0,6) ⊕ a(2,6) ⊕ a(1,6) ⊕ s(1,9) ⊕ s(0,9) ⊕ a(2,9) ⊕ a(1,9)

⊕ s(1,31) ⊕ s(0,31) ⊕ a(2,31) ⊕ a(1,31) (3)
s′

32 = s32 ⊕ s27 ⊕ s2 ⊕ s31 ⊕ s30 ⊕ s46 ⊕ s45 ⊕ s156 ⊕ s155

⊕ a33 ⊕ a28 ⊕ a3 ⊕ a32 ⊕ a31 ⊕ a47 ⊕ a46 ⊕ a157 ⊕ a156 (4)

where Equation (1) is the expansion of the S-box input linear layer, Equation (2) is the
expansion of the diffusion linear layer, Equation (3) is the expansion of the S-box output
linear layer and Equation (4) removes the constants and applies the mapping to state indices
instead of matrix locations. The constants are removed since we are only interested in
expressing the linear dependencies on state variables. To ease the expressions, we next
define the set I = [32, 27, 2, 31, 30, 46, 45, 156, 155] as the set of state bit indices involved in
Equation (4). By expanding the results of the AND operations, the following expression
holds for s′0≤i<2

32 , the i-th share of the value s′
32:

s′i
32 =

⊕
j∈I

(si
j ⊕ ai

j+1) (5)

=
⊕
j∈I

(si
j ⊕ (si

j+2 ⊙ sj+1) ⊕ rj+1) (6)

where Equation (5) is a variant of Equation (4) to express the shares instead of the unmasked
value and Equation (6) is the expansion of the multiplication gadgets. The latter depicts an
expression very similar to the problematic case explained at the beginning of the section: a
randomness cancellation may lead to the sharing (s′0

32, s′1
32) being insecure. Such a cancellation

can be searched by relying on symbolic executions of the LFSR update function in order to
express the ri as a linear combination of the LFSR state bits. Considering the previously
defined set I, it turns out that rj

j ∈ [31, 33, 157] are linearly dependent.
To check the validity of our analysis, we ran simulations of our implementation, computing

the share distribution of the 39 bits for which randomness cancellations are expected to
occur. We used a netlist in which the additions are ordered such that the computations
of the randomness cancellations are explicit (while keeping the exact same functionality).
In order to easily highlight the bias, we used a fixed input state sharing and a uniformly
generated PRNG seed for each simulation case. As depicted in Figure 8, the conditional
distribution of the sharing is significantly biased for the identified failing path (depicted in
blue, for the biased shares b0 and b1) while it shows a uniform distribution for the cases
where no failing paths were detected (depicted in red for the unbiased shares u0 and u1).

We conclude our analysis by performing an experimental verification of the discovered
issue on a SAKURA-G board using a Spartan-6 FPGA as target. To do so, we performed
a power analysis by collecting measurements at 500MS/s using a Picoscope 5224D digital
oscilloscope and by measuring the voltage drop across a 1 Ohm shunt resistor, with a vertical
resolution of 12bits. The FPGA was fed with an external clock of 2.5MHz synchronized with
the clock of the oscilloscope to ensure a proper temporal alignment of the traces. With this
configuration, we performed a fixed-vs-fixed statistical t-test using 10M traces to evaluate the
statistical security order achieved by our securely first-order masked Ascon implementation.
Figure 9 shows that first-order leakage is present and confidently detectable with less than
10M traces. In order to verify that the source of this leakage is indeed the use of the
unrolled 63-bit LFSR for fresh mask generation we have repeated the same experiment with
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Figure 8: Conditional distribution of the sharing.
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Figure 9: Case study 1: fixed-vs-fixed t-test results for the first-order masked Ascon
experiment (10M traces) using the unrolled 63-bit LFSR as source of fresh randomness.
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Figure 10: Case study 1: fixed-vs-fixed t-test results for the first-order masked Ascon
experiment (10M traces) using unrolled Trivium as source of fresh randomness.

an unrolled Trivium instead. The result is depicted in Figure 10, showing a clear absence
of first-order leakage (only the expected second-order leakage is present and has a lower
amplitude). It confirms that using multiple bits from the same LFSR as random values for a
masked implementation can lead to a security degradation in realistic settings.

4.2 Case Study 2
As a second case study, we consider the case of a network of AND and XOR operations.
More precisely, we suppose that the underlying circuit receives two n-bit operands x1, . . . , xn

and y1, . . . , yn and generates the output as z =
n⊕

i=1
xiyi. Considering an n-bit LFSR, we have

seen in the first case study what happens when unrolling more than n rounds. In this case
study, we demonstrate that even unrolling less than that can cause issues, due to transitions.
More precisely, the observation is that such an n-bit LFSR should not be unrolled more than
n/2 rounds.8 Otherwise, the security of the circuit under robust probing model [FGP+18]
cannot be guaranteed. This can be justified by the fact that transition-extended probes
would allow the attacker to observe two consecutive values stored in a register. Without
considering transitions, it should be possible to securely use an n-bit LFSR with n unrolled
rounds (again considering 1 execution cycle). In order to practically show this, we set two
examples with n = 4 and n = 5 (identified as ANDXOR4 and ANDXOR5), while using an unrolled
8-bit LFSR generating 4 (resp., 5) random bits per clock cycle (next referred to as LFSR8_X4
and LFSR8_X5).

Verification Tool. To examine the security of these circuits, we conducted two distinct
experiments. We first synthesized the circuits for an ASIC platform by Synopsys Design
Compiler with NanGate 45 nm digital library and used PROLEAD [MM22] to examine their
first-order probing security under glitch- and transition-extended probing model. As a side

8 If we unroll less than n/2, we do not expect to see problem arising when considering only one execution
cycle, however there might still be issues when executing the implementation over multiple cycles.
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note, PROLEAD is a simulation-based leakage assessment software tool developed for evaluation
of masked hardware designs following the robust probing security model. We analyzed both
circuits by PROLEAD using 100M simulations and allowed first-order probes to be placed
on every location of the circuit (including the LFSR) and extended based on glitches as
well as transitions. We set PROLEAD to seed the LFSR with a randomly generated 8-bit
value for every simulation, and performed a fixed-vs-random statistical test with fixed input
x1, . . . , xn and y1, . . . , yn being all zero. While the tool did not report any leakage for n = 4,
it revealed a single probe placed on an output share (e.g., z0) being able to see significantly
different distributions for n = 5 using less than 1M simulations. Note that we have similarly
examined smaller circuits with n < 4 which led to the same result as with n = 4. Note also
that transition-extended probes play an important role here. Without covering transitional
leakages, PROLEAD did not report any first-order leaking probes up to n = 8.

FPGA-Based Experiments. As in the previous section, we also have carried out FPGA-
based experimental analysis on both aforementioned circuits. To this end, we made use of a
SAKURA-G board with Spartan-6 FPGAs, and measured dynamic power consumption of
the underlying circuit being operated at a low clock frequency of 3 MHz. The power traces
have been collected by a digital oscilloscope at a sampling rate of 500 MS/s; corresponding
sample power traces can be seen in Figure 11(a) and Figure 12(a). We followed the procedure
suggested in [SM15] for collecting the traces suitable for a fixed-vs-random t-test. Similar to
the simulation-based analysis explained above, the LFSR was randomly seeded before every
measurement. We further made sure that the circuit is enabled once the input is given and
the corresponding clock cycles are covered by the collected power traces. For each circuit,
we collected 100M traces and performed a first- and second-order t-test, whose results are
depicted in Figure 11(b), 11(c) and Figure 12(b), 12(c), respectively. The experimental
results are in line with the simulation-based analyzes employing PROLEAD, i.e., detectable
first-order leakage is seen for n = 5 while it is not the case for n = 4.

We would like to highlight that these experiments cannot be seen as a proof that unrolling
an n-bit LFSRs for more than n/2 steps will always cause leakage. However, we presented an
example (for small n) where this is indeed the case and consider the rule of thumb plausible
based on the joint occurrence of glitches and transitions in practice.

More generally, we conclude from our two case studies that even in simple settings (i.e.,
analyzing one clock cycle), LFSRs as PRNGs can cause serious security issues. While it
might be possible to work around these issues with thorough analysis, exhaustive verification
of combined circuits becomes quickly prohibitive and some countermeasures to prevent issues
from occurring (e.g., not unrolling too much, paying close attention to synthesis details)
will add undesirable overheads. We therefore conclude that a simpler solution will be often
desirable, such as the use of a proper cryptographically-secure PRNG.

5 Unrolled Trivium/Bivium for Masking Randomness
We finally provide guidelines for the secure use of Trivium and Bivium as PRNGs for masking
randomness generation and analyze the efficiency and security of the resulting circuits.

5.1 Initialization
Trivium (resp., Bivium) normally expect two input parameters, a key and an initialization
vector. One simple and efficient option to turn them into PRNGs is to use a randomly chosen
fixed 80-bit IV for the device lifetime and at every device power-up obtain 80 true random
bits from a TRNG as a seed to supply via the key input. If multiple instances in parallel
are required (to generate many bits without increasing the critical path too much), each of
them needs a different 80-bit IV, but can be fed with the same seed. Before randomness is
produced, at least the initial phase of 1152 (resp., 708) steps needs to be executed. Please
note that the amount of cycles for this initialization depends directly on the level of unrolling.
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Using Trivium_X64 this phase requires only ⌈1152/64⌉ = 18 cycles. Using Trivium_X256 for
example only ⌈1152/64⌉ = 5 cycles are needed. We note that these numbers of initialization
cycles are in the same range as required for the pipelined block-based primitives discussed
in Section 3 (5 for full SPEEDY, 24 for full Gimli). Alternatively, in order to skip the
initialization phase altogether, the state of each Trivium (resp., Bivium) instance can be
completely filled with 288 bits (resp., 177 bits) of TRNG output. In this case, the respective
instance’s output can be used immediately in the masked implementation without any further
delay. Yet, due to the limited efficiency of TRNGs, this approach is often less convenient,
especially when multiple Trivium (resp., Bivium) instances in parallel are needed.

5.2 Cost and Performance Analysis

Since the unrolling factor may be chosen arbitrarily in both Trivium and Bivium hardware
implementations, it is crucial to investigate how the relevant cost and performance metrics
scale when increasing the number of bits produced per cycle. Figure 13 illustrates the
relationship between the area cost per output bit produced, which predictably decreases with
larger levels of unrolling (blue curves), and the critical path delays defining the maximum
possible operating frequency of the resulting circuits, which expectedly increase when more
bits per cycle are generated (red curves). These results exclude the cost of the register stage
that is needed before the generated bits can be used in a masked implementation in order to
avoid timing dependencies between generated output bits. The curves are based on synthesis
results using a commercial 65nm CMOS ASIC library and have been obtained without placing
any timing constraints, i.e., the critical path delays are larger than reported in Appendix A
and considered in Section 3, while the area figures are smaller (this choice has been made to
reduce the tool runtime for the large unrolling factors). Critical path delays are given in
nanoseconds and area is measured in gate equivalents (circuit area divided by 2-input NAND
area). The x-axis covers the range from 20 = 1 to 213 = 8192 bits per cycle. Please note
that there are two separate y-axes, where the left y-axis (red) is in linear scale and the right
y-axis (blue) is in logarithmic scale. We have chosen this kind of data representation here to
highlight that there is a sweet spot (i.e., an effective zone) between 26 = 64 and 210 = 1024
that combines a high maximum operating frequency (> 100 MHz) with a low average area
cost per bit (< 60 GE for Trivium, < 40 GE for Bivium). The concrete values for 28 = 256
output bits per cycle, which is the center of the effective area, are 35.48 GE per bit at a
maximum 419 MHz for Trivium, and 22.9 GE per bit at a maximum 436 MHz for Bivium.
The asymptotic values for the area per bit decrease even below 31 GE for Trivium and 20
GE for Bivium, but beyond a certain point the critical path delay becomes prohibitive.

In Figure 14 we have repeated the same analysis on an FPGA. Since our experimental
results are obtained on Spartan-6 FPGAs we have chosen the same device model for the cost
and performance analysis here. In contrast to the ASIC results presented above, the area
cost is now measured by the number of six-input look-up tables (LUTs) that are instantiated
by the synthesis and implementation tool (ISE Design Suite 14.7) per output bit per cycle.
Again, these results exclude the cost of the registers that the finally generated bits need to
pass through before being be used in a masked implementation. In general, the FPGA results
are similar to the ASIC analysis. The sweet spot is again between 26 = 64 and 210 = 1024.
The concrete values for 28 = 256 output bits per cycle are 4.82 LUTs per bit at a maximum
140 MHz for Trivium, and 3.65 GE per bit at a maximum 139 MHz for Bivium.

In summary, the cost and performance of unrolled Trivium and Bivium hardware imple-
mentations reach their optimal trade-off when a few hundreds, but less than thousands of
bits per cycle are required by a masked implementation. In consequence, when more than a
thousand bits per cycle are required by a masked implementation and if the unrolled PRNG
becomes part of the critical path of the entire design, one may consider instantiating multiple
PRNG instances in parallel while reducing the degree of unrolling.
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Figure 11: Case study 2: fixed-vs-random t-test results for the ANDXOR4 experiment (100M
traces) with LFSR8_X4 as source of fresh randomness.
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Figure 12: Case study 2: fixed-vs-random t-test results for the ANDXOR5 experiment (100M
traces) with LFSR8_X5 as source of fresh randomness.
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Figure 13: Area cost per bit and respective critical path delays for different degrees of
unrolling (i.e., number of output bits produced per cycle).
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Figure 14: Number of LUTs per bit instantiated on a Spartan-6 FPGA for different degrees
of unrolling (i.e., number of output bits produced per cycle).
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5.3 Security against SCA Attacks
In this subsection we discuss the security of the pseudo-random phase of Bivium and Trivium
against Side-Channel Analysis (SCA) attacks. Our analysis relies mostly on the state-of-the-
art investigations reported by Kumar et al. at CHES 2022 [KDB+22]. To the best of our
knowledge, this is the only successful SCA on the pseudo-random phase of Trivium, and
no follow-up of this work has been published yet. More precisely, the authors successfully
performed a simulated SCA on a software implementation of Trivium embedded on a 32-bit
microcontroller. To this end, they assumed that each register over which the state is encoded
leaked its Hamming weight. This leakage model has nice algebraic properties that allows one
to instantiate a so-called Algebraic SCA [RSV09], by solving equations whose variables are
the state bits, and whose constraints are given not only by the output stream bits, but also
by the Hamming weights of the state registers. Concretely, Kumar et al. instantiated this
approach using the Z3 Satisfiability Modulo Theory (SMT) solver.9

In a nutshell, knowing the Hamming weights of each register at each state update enables
the adversary to straightforwardly guess some information about the input/output bits of
these registers, provided that their size is less than the size of the three NLFSRs in Trivium.
As an example, consider one particular register whose bit-size is small enough to not store
the bits s0, s92 or s177 — those are the only bits that may not be just shifted from one
clock cycle to another. If the adversary observes a sequence (h, h + 1) (resp., (h + 1, h)) of
Hamming weights for some value h, this means that the bit leaving the register is 0 (resp.,
1) while the bit entering the register is 1 (resp., 0). Likewise, if the adversary observes a
sequence of two equal Hamming weights, this means that the register intput and output
bits are equal. Overall, this leaks exactly 3

2 bits per clock-cycle, and per such register —
assuming pseudo-randomness of the input/output bits. Then, letting the state bit shift over
a few updates is sufficient to easily recover the whole state. We could even extend Kumar
et al.’s attack with the Hamming weight leakage model up to 128-bit registers. There, the
bit-size becomes larger than the size of each NLFSR, but the last 31 bits of the third NLFSR
need to be stored in a third register, whose bits are just shifted from one update to another.

However, for attacks with larger registers, and in particular for a whole state fitting into
one single 288-bit register, the picture becomes different. Hereupon, we did not succeed
in extending Kumar et al.’s attack, with 288, 300 or 3000 state updates, within 2 days of
computation, even with this noise-free idealized leakage model. Likewise, the results are the
same when turning to attacks on a 288-bit register assuming a Hamming distance leakage
model. These results were already reported by Kumar et al. [KDB+22, Sec. 5.2.2]. Hereupon,
although the authors succeed in recovering the state during the initialization phase using a
few hundreds of rounds and a few hundreds of seconds, and assuming to know in advance a
dozen of key bits, they could not succeed any attack on the pseudo-random phase whithin 2
days, unless potentially combined with an enumeration of 140 bits, which is more than the
complexity of directly enumerating the 80-bit secret key of Trivium.

To summarize, when assuming a Hamming weight or a Hamming distance leakage model,
operating on the whole Trivium state in parallel, as it is done for hardware implementations,
seems to be the key ingredient to make side-channel attacks on Trivium prohibitive. Moreover,
thanks to their open-source code, we replicated Kumar et al.’s experiment with the Hamming
distance leakage model to verify whether considering reduced variants of Trivium, i.e., Bivium
A and Bivium B could result in different outcomes, but we were not able to report any success
for those variants within 2 days as well. Hence, unless a leakage model is observed in practice
which proves to be significantly more informative than noise-free HW/HD on the whole state,
attacks on hardware Trivium and Bivium have to be considered hard in our setting. Thus,
given the current knowledge, state recovery through SCA attacks is not a primary concern
for hardware implementations of stream ciphers with state sizes like Trivium’s, meaning that
the unpredictability requirement for masking randomness is expected to be fulfilled.

9 The authors used an SMT solver rather than a SAT solver, in order to deal with potential noise into the
SCA measurements, that could prevent from a fully accurate guessing of the Hamming weights.
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On the effect of unrolling. Based on these evaluations, we predict that unrolling a hardware
implementation can only be beneficial for the SCA security, as the sequential nature of the
leakage should be much less exploitable. To ground this claim, let us consider side-channel
analysis against an LFSR. Without considering unrolling, we have been able to successfully
apply Kumar et al.’s approach to 64-bit LFSRs within a few seconds and a few rounds, thanks
to the sequential nature of the leakages. However, at the extreme case where the adversary
is not able to exploit the sequential nature of the Hamming weight/distance leakages due to
unrolling — i.e. the adversary assumes that the leakages are independent, whereas they are
not — the problem can be seen as an instance of the so-called hidden multiplier problem,
introduced by Belaïd et al. [BCF+15]. There only exists two known attacks against this
problem. The first one leverages the parity of the least significant bit of the Hamming
weight of the leakage, and is therefore highly sensitive to the presence of noise [BFG14]. The
second one leverages the most significant bit of the Hamming weight of the leakages, but
the attack uses an instance of the LWE problem, for which there is no polynomially efficient
algorithm [BCF+15]. Overall this contrasts with attacks against non-unrolled LFSRs, which
should be straightforward to break using Kumar et al.’s approach if the noise level is not
prohibitive. The same also applies to (≤ 128-bit) LFSRs with non-linear filter functions when
the state is only updated by one or a few bits per cycle. Hence, these are similarly insecure
as regular LFSRs in the low-noise setting because the state can be recovered through SCA
observations, which violates the unpredictability requirement for masking randomness.

6 Conclusions
Modern hardware masking schemes based on robust probing secure and composable gadgets
are known to consume a large number of random bits per clock cycle, especially in parallel
implementations and at higher orders. The required random numbers need to be uniformly
distributed and unpredictable to adversaries. However, the secure and efficient generation
of these bits has not yet received the attention it deserves from the research community.
In this work, we improve upon this state of the art and provide contributions in multiple
different directions. First of all, we clarify the relevant security properties that must be
satisfied in the context of concurrent randomness generation for hardware masking. Then,
after arguing that True Random Number Generators (TRNGs) are not cost-efficient when
large quantities of bits are needed per cycle, we compare multiple potential candidates for
building cost efficient Pseudo-Random Number Generators (PRNGs) instead, to stretch
an initial seed obtained once at power-up into many pseudo-random bits during runtime.
Our comparison includes block ciphers, permutations, stream ciphers and LFSRs. We
arrive at the conclusion that the stream cipher Trivium and its reduced security variant
Bivium B (for more aggressive optimizations) are impressively well-suited for our targeted
application scenario when considering their unrolled implementation. Unrolled Trivium
is basically a ready-to-use, trivial-to-instantiate, cheap, flexible, cryptographically strong
and high-performance PRNG for hardware applications that already survived 18 years of
cryptanalysis and heuristically inherits some of the properties of leakage-resilient stream
ciphers. Hence, we highly recommend its adaptation for concurrent masking randomness
generation and provide guidelines for its usage together with parametrizable source code.
The only alternatives with even better performance according to our analysis are unrolled
LFSRs, which offer no cryptographic strength. For that reason we also studied in detail
what the security implications might be when using such a simple linear primitive for mask
generation instead of a cryptographically strong PRNG and present two case studies where
security degradation occurs in practice. Concrete results like that have, to the best of our
knowledge, not been presented in the masking literature before. And while it is always
easy to argue that the need for cryptographic strength is obvious for PRNGs in masking
contexts, both the related side-channel literature (see Section 1.5) and concrete real-world
examples (see OpenTitan) are showing that the opposite assumption is more prevalent, i.e.,
LFSR-based approaches are the norm, not the exception. Hence, we believe our work is an
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important cautionary study that still culminates in a positive result, as the secure options
we recommend are also more efficient than many of the less secure ones used in previous
works (e.g., a separate LFSR for each bit of randomness). While it may indeed be possible
to instantiate certain LFSRs together with specific masked implementations securely, it at
least requires a thorough analysis of the randomness generator and the masked circuit jointly.
When instantiating a cryptographically strong PRNG like Trivium, the (SCA) security of
randomness generation and masked implementation can be assessed separately, which is a
desirable and advisable approach.

We demonstrate that securely generating n bits of randomness per cycle using our
proposed approaches has an asymptotic cost of approximately 30n GE (ASIC) or 4n LUTs
(FPGA) for Trivium (80-bit security), and approximately 20n GE (ASIC) and 3n LUTs
(FPGA) for Bivium. These values are at least one order of magnitude better than what has
been used as an estimate for the cost of producing random bits as recently as CHES 2022. For
completeness, we also evaluated our solutions using NIST’s 800-22 test suite for random and
pseudo-random number generators for cryptographic applications. Unsurprisingly, the random
values generated by Trivium and Bivium passed all statistical tests, while the unrolled 64-bit
LFSR failed all linear complexity tests. We believe that our results can have a considerable
impact on hardware masking research as they help to decide on crucial optimization trade-offs,
and can guide future research directions, such as moving low randomness to a secondary
design goal for hardware masking in the future.

We provide source code related to this work, including the unrolled stream cipher imple-
mentations, in the following GitHub repository:

https://github.com/uclcrypto/randomness_for_hardware_masking
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A Extended performance comparison

Table 6: Comparison of the critical path delay of relevant building blocks when synthesized
for maximum operating frequency.

Critical Path [ns]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 0.181586 0.135803 0.208436 0.021313

LFSR64 0.198822 0.155045 0.169445 0.014804
LFSR64_X32 0.195796 0.157433 0.197540 0.017748
LFSR64_X64 0.318669 0.224628 0.249999 0.022856
LFSR64_X96 0.311533 0.219201 0.242679 0.022425
LFSR64_X128 0.346743 0.265965 0.329463 0.028568

Bivium 0.217899 0.134968 0.194500 0.016976
Bivium_X32 0.195342 0.165267 0.218067 0.019418
Bivium_X48 0.242034 0.168228 0.192918 0.019445
Bivium_X64 0.236545 0.174493 0.223668 0.018651
Bivium_X72 0.378802 0.276818 0.328879 0.028219
Trivium 0.217623 0.118064 0.194513 0.016977
Trivium_X32 0.186734 0.180408 0.205709 0.020549
Trivium_X48 0.249180 0.166565 0.222982 0.018831
Trivium_X64 0.243608 0.173686 0.205199 0.018959
Trivium_X72 0.380121 0.274877 0.281385 0.028132
Kreyvium 0.279769 0.205444 0.234201 0.021628
Kreyvium_X32 0.291147 0.207658 0.241899 0.020947
Kreyvium_X48 0.280961 0.208351 0.237580 0.021515
Kreyvium_X64 0.272732 0.209060 0.266117 0.022508
Kreyvium_X72 0.396187 0.282755 0.332073 0.033164

GrainV1_80 0.552327 0.351267 0.431476 0.040580
GrainV1_80_X8 0.518995 0.406393 0.495407 0.044568
GrainV1_80_X16 0.559680 0.407079 0.565964 0.050532
GrainV1_80_X32 0.967295 0.788402 0.885287 0.089198
GrainV1_128 0.475218 0.322891 0.419144 0.039935
GrainV1_128_X16 0.503052 0.359735 0.472844 0.043818
GrainV1_128_X32 0.485202 0.341568 0.452880 0.044034
GrainV1_128_X48 0.769497 0.549393 0.705566 0.071954

MICKEY2_80 0.356980 0.234147 0.318378 0.033913
MICKEY2_80_X2 0.565007 0.385819 0.561346 0.057637
MICKEY2_80_X4 0.994678 0.747549 0.967886 0.096524
MICKEY2_80_X32 9.098467 6.634537 9.621321 0.897338
MICKEY2_128 0.357516 0.267185 0.319032 0.039074
MICKEY2_128_X2 0.630560 0.451635 0.605333 0.060051
MICKEY2_128_X4 1.159020 0.845300 1.085925 0.114799
MICKEY2_128_X32 10.208649 7.354148 10.711792 1.041437

Gimli-8 1.619769 1.175962 1.527335 0.148707
✓ 0.339260 0.287740 0.316472 0.029309

Gimli-16 2.894982 2.071035 2.758774 0.274899
✓ 0.356307 0.264966 0.337362 0.029584

Gimli-24 4.385863 3.127366 4.383278 0.421443
✓ 0.360362 0.266396 0.324092 0.029630

Subterranean2 0.405738 0.287102 0.406284 0.034361
Subterranean2_X2 0.722609 0.531270 0.719394 0.069042
Subterranean2_X4 1.366440 0.995288 1.351147 0.130649
Subterranean2_X8 2.635188 1.955079 2.662149 0.258758

SPEEDY-2-192 1.119609 0.806595 1.167997 0.110700
✓ 0.729113 0.521127 0.725931 0.066281

SPEEDY-3-192 1.733313 1.257028 1.842109 0.173992
✓ 0.737364 0.528380 0.728356 0.068753

SPEEDY-4-192 2.376308 1.709736 2.549025 0.237866
✓ 0.737837 0.521994 0.742094 0.069379

SPEEDY-5-192 2.994643 2.178075 3.187368 0.300466
✓ 0.745205 0.520147 0.722302 0.070076
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Table 7: Comparison of the area consumption of relevant building blocks when synthesized
for maximum operating frequency.

Area [GE]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 306.25 297.00 237.00 273.00

LFSR64 465.50 496.75 502.67 635.75
LFSR64_X32 710.00 764.50 741.33 756.25
LFSR64_X64 903.50 954.25 830.33 915.50
LFSR64_X96 1045.25 1097.25 1020.67 1293.00
LFSR64_X128 1284.25 1288.50 1169.33 1588.25

Bivium 1266.25 1381.25 1450.67 1730.00
Bivium_X32 2310.75 2487.25 2050.67 2386.00
Bivium_X48 2624.25 2945.75 2315.33 2546.75
Bivium_X64 3019.00 3410.50 2607.67 2830.50
Bivium_X72 2840.75 2865.00 2684.67 3150.50
Trivium 1950.50 2080.25 2348.33 2649.50
Trivium_X32 3341.00 3834.25 3322.00 3777.50
Trivium_X48 3961.75 4560.75 3734.67 4195.50
Trivium_X64 4460.50 4994.00 4023.67 4483.75
Trivium_X72 4458.50 4388.00 4158.33 4825.25
Kreyvium 3641.25 3924.00 4193.00 5016.00
Kreyvium_X32 5099.25 5614.00 5582.67 6535.00
Kreyvium_X48 5780.75 6295.00 6013.00 6848.75
Kreyvium_X64 6318.00 6763.25 6376.00 7324.75
Kreyvium_X72 6543.50 6658.25 6747.33 7437.75

GrainV1_80 1236.75 1409.25 1466.67 1662.25
GrainV1_80_X8 2411.75 2508.00 2216.00 2592.00
GrainV1_80_X16 3455.00 3618.75 3130.33 3643.00
GrainV1_80_X32 5687.50 5779.00 5050.00 5841.25
GrainV1_128 1937.75 2086.25 2183.00 2544.50
GrainV1_128_X16 3732.25 3879.50 3470.33 4004.00
GrainV1_128_X32 5314.25 5880.50 5048.67 5555.753
GrainV1_128_X48 7003.25 7294.25 6076.67 7037.25

MICKEY2_80 2288.00 2363.25 2258.33 2611.50
MICKEY2_80_X2 3660.75 3600.00 3214.67 3775.50
MICKEY2_80_X4 6475.00 6410.50 5415.00 6253.00
MICKEY2_80_X32 62447.25 62259.50 48821.67 55493.00
MICKEY2_128 3594.00 3872.00 3542.33 4097.25
MICKEY2_128_X2 5520.50 5418.50 5068.00 5945.25
MICKEY2_128_X4 9591.25 9539.75 8320.67 9671.25
MICKEY2_128_X32 94555.25 95573.00 76321.67 85654.50

Gimli-8 27505.00 30970.50 19582.33 23870.00
✓ 26474.00 30086.75 24636.67 27280.00

Gimli-16 53388.50 61880.75 32578.33 38078.50
✓ 52309.25 60988.25 47771.33 53210.00

Gimli-24 69833.75 79734.25 50366.33 55725.75
✓ 78828.00 90802.75 71544.00 79725.25

Subterranean2 5526.25 6244.75 5045.67 5945.25
Subterranean2_X2 9391.75 10550.50 8504.33 9991.50
Subterranean2_X4 17274.00 18951.25 13559.00 16087.75
Subterranean2_X8 33381.00 38775.00 24922.33 30368.50

SPEEDY-2-192 16443.00 18983.25 10792.67 12859.25
✓ 13344.00 14274.50 10827.67 11939.50

SPEEDY-3-192 26658.50 31058.75 16391.67 19988.00
✓ 20808.25 21642.00 17287.33 20742.75

SPEEDY-4-192 37013.75 40820.25 21994.33 27143.25
✓ 27989.00 28356.25 23492.33 28574.00

SPEEDY-5-192 47364.00 53856.00 27903.33 34649.00
✓ 34604.00 36380.00 30011.00 36056.00
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Table 8: Comparison of the power consumption of relevant building blocks when synthesized
for maximum operating frequency, estimated for 100 MHz operation.

Power [mW]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 0.0382 0.0219 0.0220 0.0074

LFSR64 0.1782 0.1054 0.0531 0.0252
LFSR64_X32 0.2241 0.1325 0.0881 0.0301
LFSR64_X64 0.2564 0.1556 0.1058 0.0360
LFSR64_X96 0.2708 0.1675 0.1311 0.0465
LFSR64_X128 0.3007 0.1853 0.1516 0.0581

Bivium 0.4833 0.2529 0.1618 0.0681
Bivium_X32 0.6458 0.4078 0.2550 0.0902
Bivium_X48 0.7168 0.4558 0.2910 0.0990
Bivium_X64 0.7872 0.5110 0.3310 0.1086
Bivium_X72 0.7304 0.4166 0.3406 0.1193
Trivium 0.7157 0.3991 0.2776 0.0974
Trivium_X32 0.9599 0.5950 0.4127 0.1439
Trivium_X48 1.0750 0.6864 0.4704 0.1583
Trivium_X64 1.1559 0.7276 0.5108 0.1705
Trivium_X72 1.1301 0.6370 0.5299 0.1859
Kreyvium 1.4335 0.7247 0.4449 0.2018
Kreyvium_X32 1.6782 0.9694 0.6799 0.2571
Kreyvium_X48 1.7909 1.0446 0.7525 0.2730
Kreyvium_X64 1.8916 1.0999 0.8017 0.2923
Kreyvium_X72 1.9194 1.0440 0.8620 0.2986

GrainV1_80 0.4479 0.2424 0.1742 0.0661
GrainV1_80_X8 0.6472 0.3750 0.2829 0.0998
GrainV1_80_X16 0.8222 0.4983 0.4107 0.1387
GrainV1_80_X32 1.2170 0.7298 0.7144 0.2369
GrainV1_128 0.7005 0.3705 0.2532 0.1016
GrainV1_128_X16 1.0080 0.5954 0.4455 0.1554
GrainV1_128_X32 1.2855 0.8108 0.6683 0.2167
GrainV1_128_X48 1.5699 0.9661 0.8331 0.2785

MICKEY2_80 0.6057 0.3425 0.2700 0.0942
MICKEY2_80_X2 0.8498 0.4772 0.3981 0.1399
MICKEY2_80_X4 1.3253 0.7962 0.7055 0.2344
MICKEY2_80_X32 18.3180 11.7230 11.9660 3.5713
MICKEY2_128 0.9650 0.5482 0.4274 0.1536
MICKEY2_128_X2 1.2706 0.7234 0.6327 0.2212
MICKEY2_128_X4 1.9906 1.1607 1.1222 0.3654
MICKEY2_128_X32 26.8160 17.6274 18.8430 5.6178

Gimli-8 8.0824 5.5274 4.1302 1.4268
✓ 9.8002 6.1129 4.5818 1.5078

Gimli-16 13.4989 9.8060 6.4017 2.0360
✓ 18.1331 11.7633 8.8154 2.8464

Gimli-24 17.4224 13.0373 9.7293 2.9185
✓ 26.6511 17.3752 13.1350 4.2043

Subterranean2 0.8247 0.5043 0.3999 0.1492
Subterranean2_X2 1.1644 0.7594 0.6346 0.2423
Subterranean2_X4 2.8752 1.9857 1.6683 0.5661
Subterranean2_X8 9.3689 7.1013 5.2655 1.7625

SPEEDY-2-192 4.6353 3.0388 1.9893 0.7162
✓ 3.8586 2.3635 1.9718 0.5813

SPEEDY-3-192 7.3420 5.0057 3.0958 1.1275
✓ 5.8516 3.5152 3.1976 1.1105

SPEEDY-4-192 10.1531 6.6220 4.1915 1.5378
✓ 7.8388 4.6164 4.3498 1.5172

SPEEDY-5-192 12.9344 8.7471 5.3422 1.9655
✓ 9.6633 5.8834 5.5623 1.9002
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Table 9: Comparison of the maximum throughput of relevant building blocks when synthe-
sized for maximum operating frequency.

Throughput [Gbit/s]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 5.5070 7.3636 4.7976 46.9197

LFSR64 5.0296 6.4497 5.9016 67.5493
LFSR64_X32 163.4354 203.2611 161.9925 1803.0201
LFSR64_X64 200.8353 284.9155 256.0010 2800.1400
LFSR64_X96 308.1536 437.9542 395.5843 4280.9365
LFSR64_X128 369.1495 481.2663 388.5110 4480.5377

Bivium 4.5893 7.4092 5.1414 58.9067
Bivium_X32 163.8153 193.6261 146.7439 1647.9555
Bivium_X48 198.3192 285.3271 248.8104 2468.5009
Bivium_X64 270.5616 366.7769 286.1384 3431.4514
Bivium_X72 190.0729 260.0987 218.9255 2551.4724

Trivium 4.5951 8.4700 5.1410 58.9032
Trivium_X32 171.3668 177.3757 155.5596 1557.2534
Trivium_X48 192.6318 288.1758 215.2640 2548.9884
Trivium_X64 262.7172 368.4811 311.8924 3375.7055
Trivium_X72 189.4134 261.9353 255.8772 2559.3630

Kreyvium 3.5744 4.8675 4.2698 46.2364
Kreyvium_X32 109.9101 154.0995 132.2866 1527.6651
Kreyvium_X48 170.8422 230.3805 202.0372 2231.0016
Kreyvium_X64 234.6626 306.1322 240.4957 2843.4334
Kreyvium_X72 181.7324 254.6374 216.8198 2171.0288

GrainV1_80 1.8105 2.8468 2.3176 24.6427
GrainV1_80_X8 15.4144 19.6854 16.1483 179.5010
GrainV1_80_X16 28.5878 39.3044 28.2703 316.6310
GrainV1_80_X32 33.0819 40.5884 36.1465 358.7524
GrainV1_128 2.1043 3.0970 2.3858 25.0407
GrainV1_128_X16 31.8059 44.4772 33.8378 365.1467
GrainV1_128_X32 65.9519 93.6856 70.6589 726.7112
GrainV1_128_X48 62.3784 87.3692 68.0305 667.0929

MICKEY2_80 2.8013 4.2708 3.1409 29.4872
MICKEY2_80_X2 3.5398 5.1838 3.5629 34.6999
MICKEY2_80_X4 4.0214 5.3508 4.1327 41.4405
MICKEY2_80_X32 3.5171 4.8232 3.3259 35.6610
MICKEY2_128 2.7971 3.7427 3.1345 25.5925
MICKEY2_128_X2 3.1718 4.4284 3.3040 33.3050
MICKEY2_128_X4 3.4512 4.7320 3.6835 34.8435
MICKEY2_128_X32 3.1346 4.3513 2.9874 30.7268

Gimli-8 237.0708 326.5412 251.4183 2582.2591
✓ 1131.8753 1334.5381 1213.3775 13101.7776

Gimli-16 132.6433 185.4145 139.1923 1396.8767
✓ 1077.7223 1449.2425 1138.2432 12979.9892

Gimli-24 87.5540 122.7870 87.6057 911.1552
✓ 1065.5952 1441.4631 1184.8487 12959.8380

Subterranean2 78.8686 111.4586 78.7626 931.2884
Subterranean2_X2 88.5680 120.4661 88.9638 926.9720
Subterranean2_X4 93.6741 128.6060 94.7343 979.7243
Subterranean2_X8 97.1468 130.9410 96.1629 989.3414

SPEEDY-2-192 171.4884 238.0377 164.3840 1734.4173
✓ 263.3337 368.4323 264.4879 2896.7577

SPEEDY-3-192 110.7705 152.7412 104.2284 1103.4990
✓ 260.3870 363.3748 263.6074 2792.6054

SPEEDY-4-192 80.7976 112.2980 75.3229 807.1772
✓ 260.2201 367.8203 258.7273 2767.4080

SPEEDY-5-192 64.1145 88.1512 60.2378 639.0074
✓ 257.6472 369.1264 265.8168 2739.8824
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Table 10: Comparison of the energy consumption per bit of relevant building blocks when
synthesized for maximum operating frequency.

Energy per bit [fJ/bit]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 382.0000 219.0000 220.0000 74.0000

LFSR64 1782.0000 1054.0000 531.0000 252.0000
LFSR64_X32 70.0312 41.4062 27.5312 9.4062
LFSR64_X64 40.0625 24.3125 16.5312 5.6250
LFSR64_X96 28.2083 17.4479 13.6562 4.8438
LFSR64_X128 23.4922 14.4766 11.8438 4.5391

Bivium 4833.0000 2529.0000 1618.0000 681.0000
Bivium_X32 201.8125 127.4375 79.6875 28.1875
Bivium_X48 149.3333 94.9583 60.6250 20.6250
Bivium_X64 123.0000 79.8438 51.7188 16.9688
Bivium_X72 101.4444 57.8611 47.3056 16.5694

Trivium 7157.0000 3991.0000 2776.0000 974.0000
Trivium_X32 299.9688 185.9375 128.9688 44.9688
Trivium_X48 223.9583 143.0000 98.0000 32.9792
Trivium_X64 180.6094 113.6875 79.8125 26.6406
Trivium_X72 156.9583 88.4722 73.5972 25.8194

Kreyvium 14335.0000 7247.0000 4449.0000 2018.0000
Kreyvium_X32 524.4375 302.9375 212.4687 80.3438
Kreyvium_X48 373.1042 217.6250 156.7708 56.8750
Kreyvium_X64 295.5625 171.8594 125.2656 45.6719
Kreyvium_X72 266.5833 145.0000 119.7222 41.4722

GrainV1_80 4479.0000 2424.0000 1742.0000 661.0000
GrainV1_80_X8 809.0000 468.7500 353.6250 124.7500
GrainV1_80_X16 513.8750 311.4375 256.6875 86.6875
GrainV1_80_X32 380.3125 228.0625 223.2500 74.0312
GrainV1_128 7005.0000 3705.0000 2532.0000 1016.0000
GrainV1_128_X16 630.0000 372.1250 278.4375 97.1250
GrainV1_128_X32 401.7188 253.3750 208.8438 67.7188
GrainV1_128_X48 327.0625 201.2708 173.5625 58.0208

MICKEY2_80 6057.0000 3425.0000 2700.0000 942.0000
MICKEY2_80_X2 4249.0000 2386.0000 1990.5000 699.5000
MICKEY2_80_X4 3313.2500 1990.5000 1763.7500 586.0000
MICKEY2_80_X32 5724.3750 3663.4375 3739.3750 1116.0312
MICKEY2_128 9650.0000 5482.0000 4274.0000 1536.0000
MICKEY2_128_X2 6353.0000 3617.0000 3163.5000 1106.0000
MICKEY2_128_X4 4976.5000 2901.7500 2805.5000 913.5000
MICKEY2_128_X32 8380.0000 5508.5625 5888.4375 1755.5625

Gimli-8 210.4792 143.9427 107.5573 37.1563
✓ 255.2135 159.1901 119.3177 39.2656

Gimli-16 351.5339 255.3646 166.7109 53.0208
✓ 472.2161 306.3359 229.5677 74.1250

Gimli-24 453.7083 339.5130 253.3672 76.0026
✓ 694.0391 452.4792 342.0573 109.4870

Subterranean2 257.7188 157.5938 124.9688 46.6250
Subterranean2_X2 181.9375 118.6562 99.1562 37.8594
Subterranean2_X4 224.6250 155.1328 130.3359 44.2266
Subterranean2_X8 365.9727 277.3945 205.6836 68.8477

SPEEDY-2-192 241.4219 158.2708 103.6094 37.3021
✓ 200.9688 123.0990 102.6979 30.2760

SPEEDY-3-192 382.3958 260.7135 161.2396 58.7240
✓ 304.7708 183.0833 166.5417 57.8385

SPEEDY-4-192 528.8073 344.8958 218.3073 80.0938
✓ 408.2708 240.4375 226.5521 79.0208

SPEEDY-5-192 673.6667 455.5781 278.2396 102.3698
✓ 503.2969 306.4271 289.7031 98.9688
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Table 11: Comparison of the product between power consumption, area consumption and
critical path delay of relevant building blocks when synthesized for maximum operating
frequency.

Power-Area-Time product [mW][GE][ns]

Commercial Foundry NanGate OCL

Primitive pip. 90 nm LP 65 nm LP 45 nm 15 nm

ES-TRNG 2.1243 0.8833 1.0868 0.0431

LFSR64 16.4927 8.1178 4.5228 0.2372
LFSR64_X32 31.1533 15.9474 12.9016 0.4040
LFSR64_X64 73.8220 33.3531 21.9621 0.7533
LFSR64_X96 88.1806 40.2868 32.4728 1.3483
LFSR64_X128 133.9031 63.5016 58.4040 2.6362

Bivium 133.3495 47.1468 45.6527 2.0000
Bivium_X32 291.5054 167.6304 114.0318 4.1791
Bivium_X48 455.2811 225.8752 129.9806 4.9026
Bivium_X64 562.1626 304.1004 193.0565 5.7332
Bivium_X72 785.9701 330.3986 300.7265 10.6062

Trivium 303.7958 98.0200 126.8023 4.3811
Trivium_X32 598.8608 411.5790 282.0249 11.1701
Trivium_X48 1061.2280 521.4315 391.7323 12.5066
Trivium_X64 1256.0165 631.1114 421.7436 14.4938
Trivium_X72 1915.2590 768.3241 620.0316 25.2348

Kreyvium 1460.3192 584.2258 436.8939 21.8925
Kreyvium_X32 2491.5083 1130.1188 918.1657 35.1941
Kreyvium_X48 2908.7176 1370.0655 1074.9978 40.2268
Kreyvium_X64 3259.4553 1555.1762 1360.2941 48.1902
Kreyvium_X72 4975.9478 1965.4902 1931.4025 73.6543

GrainV1_80 305.9562 119.9936 110.2395 4.4587
GrainV1_80_X8 810.0913 382.2126 310.5738 11.5289
GrainV1_80_X16 1589.8835 734.0543 727.6183 25.5330
GrainV1_80_X32 6695.3137 3325.0966 3193.8676 123.4315
GrainV1_128 645.0580 249.5804 231.6758 10.3240
GrainV1_128_X16 1892.5360 830.9354 731.0320 27.2645
GrainV1_128_X32 3314.6421 1628.5653 1528.0290 53.0139
GrainV1_128_X48 8460.1595 3871.5587 3571.9094 141.0208

MICKEY2_80 494.7177 189.5217 194.1307 8.3427
MICKEY2_80_X2 1757.6833 662.8062 718.3882 30.4434
MICKEY2_80_X4 8535.6477 3815.5201 3697.5979 141.4755
MICKEY2_80_X32 10407815.7900 4842337.0373 5620776.7213 177836.3749
MICKEY2_128 1239.9406 567.1350 483.0118 24.5907
MICKEY2_128_X2 4422.9668 1770.2931 1941.0146 78.9724
MICKEY2_128_X4 22128.4065 9359.8275 10139.7768 405.6853
MICKEY2_128_X32 25884984.9057 12389558.8766 15404941.1574 501128.9139

Gimli-8 360085.0347 201308.6328 123529.2349 5064.6208
✓ 88021.1749 52920.3622 35723.4526 1205.5608

Gimli-16 2086373.0632 1256709.4941 575360.7881 21312.3218
✓ 337967.4729 190092.7241 142071.0266 4480.7022

Gimli-24 5336154.6290 3250957.4325 2147933.9245 68541.6358
✓ 757067.5566 420297.2160 304559.1178 9931.6462

Subterranean2 1849.1503 904.1495 819.7850 30.4793
Subterranean2_X2 7902.2740 4256.5616 3882.4599 167.1466
Subterranean2_X4 67865.8889 37454.1775 30563.5933 1189.8564
Subterranean2_X8 824137.2619 538336.6870 349349.8962 13849.8877

SPEEDY-2-192 85334.6251 46529.4812 25076.7302 1019.5243
✓ 37541.4147 17581.6685 15498.6266 460.0187

SPEEDY-3-192 339255.6457 195431.1298 93478.4328 3921.1655
✓ 89782.5878 40197.0149 40262.0385 1583.7132

SPEEDY-4-192 893026.7767 462161.6370 234992.6627 9928.7385
✓ 161881.5656 68330.9943 75832.3129 3007.7512

SPEEDY-5-192 1834592.9331 1026055.8860 475125.5513 20462.5187
✓ 249188.2304 111331.2714 120574.0067 4801.1598
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