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Abstract. The Structured Encryption (StE) framework can be used to capture the encryption and
querying of complex data structures on an honest-but-curious server. In this work, we introduce a
new type of StE called indirectly addressed multimap encryption (IA-MME). We propose two IA-MME
schemes: the the layered multimaps approach which extends and generalizes the existing “multimap
chaining” approach, and a novel technique called the single multimap approach which has comparable
efficiency and strictly better security. We demonstrate that our formalisms simplify and modularize StE
solutions for real-world use cases in searchable encryption and SQL databases, and provide simulations
demonstrating that our IA-MME constructions lead to tangible efficiency and security gains on realistic
data.

1 Introduction

Computing on encrypted data has tremendous potential to mitigate the risk of placing data in the hands of
cloud services. Amongst many approaches, Structured Encryption (StE) [14] has emerged as a promising tool
for efficiently outsourcing encrypted data and query computation. StE allows one to encrypt a data structure
and then delegate the ability to run queries via query-specific tokens. The StE definition is sufficiently general
that it can be used to capture the functionality that would be desired in many real-world encrypted databases,
including keyword-search (e.g. over documents in SSE), relational databases (e.g. SQL), and web graphs (e.g.
social networks).

While many techniques can fit into the definitional framework of StE, much research has been on simple,
efficient constructions from basic symmetric encryption with few rounds of interaction. This efficiency is
enabled by allowing for some controlled leakage to the server such as the size and access pattern to the
database. As such, the security of an StE scheme can be directly quantified through its leakage profile.

Chase and Kamara introduced “multimap chaining” as a technique to build more advanced StE from
simpler StE primitives. The technique involves using multiple multimaps – a mapping M from labels ℓ to
tuples of values M[ℓ] – to index complicated data structures in such a way that the tokens for accessing one
multimap were put in a second. These are then encrypted using multimap encryption (MME), a well-studied
StE primitive. Multimap chaining has since been leveraged to support large and complex subsets of SQL
queries on SQL databases [23,26,12].

Our work extends and generalizes multimap chaining to indirect addressing (IA), where a single query
may trigger an arbitrary number and pattern of accesses within the data structure. More concretely, IA can
be used in a multimap M where there are labels ℓ, ℓ1, . . . , ℓn such that M[ℓ] = (ℓ1, . . . , ℓn) and for each i
M[ℓi] = Di for some payload Di. For example, IA has been used implicitly in searchable encryption (SSE)
for keyword-based document retrieval, where ℓ is a keyword, the ℓi are document identifiers and the Di are
the document contents.

Our work develops IA-MME generically from MME primitives in two ways, by extending multimap
chaining to the layered multimaps approach (LMM) and by a novel technique we call the single multimap
approach (SMM). Of these, SMM has strictly better security, and is likely to be simpler to implement and
more efficient in practice. Through this study, we identify subtle proof issues, design MME primitives, and
propose security conditions to enable the IA-MME constructions to be generically functional and secure. We
believe these formalisms are of independent interest beyond IA-MME.

The IA-MME abstraction handles the complexity of IA, simplifying the expression of StE schemes.
This can be put to use in real-world use-cases, making the schemes easy to understand and customize. We
demonstrate this by building several SSE and SQL StE schemes using IA-MME, and running simulations of
these schemes on realistic data.
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Our contributions. In this work:

1. We formalize IA-MME as a new StE primitive, encompassing and modularizing a large class of StE.

2. We generalize the multimap chaining technique from the literature to the layered multimap approach
(LMM), which we use to build IA-MME generically from standard MME primitives. In doing so, we
identify a proof issue with the generic reduction which we resolve via a sufficient condition on some of the
MME primitives called content obliviousness. We note that the proof issue is also endemic in multimap
chaining proofs from prior work, and our condition recovers them.

3. We propose the single multimap approach (SMM), an IA-MME which has strictly better security than
LMM without sacrificing efficiency. By amalgamating multiple multimaps into a monolithic index, setup
leakage is confined to the total size of the encrypted data structures (instead of the size of the constituent
multimap layers). To build SMM, we introduce a new type of MME primitive called response-flexible
MME and a new notion of security in the presence of token-values.

4. We use IA-MME as a primitive to design schemes for real-world use cases in SSE and SQL StE. The
modularity of IA-MME allows us to reframe existing schemes and explore new approaches to these use
cases simply. We conclude with some simulations on realistic datasets, demonstrating that IA-MME can
bring huge storage savings (over näıve MME solutions) and that the leakage reduction of SMM over LMM
is significant.

1.1 Related Work

StE was first introduced by CK [14] as a generalization of searchable symmetric encryption which was first
introduced by SWP and formalized by CGKO [35,15]. The StE framework can and has been used to capture
many real-world use cases including encrypting SQL data [23,26,12] and supporting rich keyword queries in
document storage systems [10,11,39,17].

Added functionality and security has been studied for specific forms of StE, including support for dynamic
data structures [28,27], volume hiding queries [24,32,31], models for adaptive compromise [21], costs of
minimizing leakage [33,25] and many more [19,5,13,36,7,2,8,22,1,3,16].

StE has been subject to so-called leakage-abuse attacks which can sometimes recover damaging informa-
tion about queries and encrypted data [20,30,9,34,40]. The attacks work against proven-secure constructions
by exploiting the permitted leakage, so they are independent of possible gaps in proofs due to composition.
However, reducing leakage in order to limit leakage abuse has been a common goal.

2 Preliminaries

Given positive integer n, let [n] = {1, . . . , n}. We denote the cardinality of a tuple t with #(t), the empty
tuple with ( ) and the bitlength of a string s with |s|. In pseudocode, we will assume that all integers are
intialized to 1 and tuples to ( ).

Table mappings. We capture mappings as lookup tables of the form T. These map labels ℓ ∈ {0, 1}∗ to
values T[ℓ] ∈ {0, 1}∗ ∪ ⊥. In pseudocode, uninitialized tables are assumed to map all labels to ⊥.
Games. We use the code-based game-playing framework of BR [6]. Given oracle O and adversary A, we
write x←$AO(x1, . . . , xm) to denote that A, a possibly randomized algorithm, is run with inputs x1, . . . , xm

and its output is x. It has black-box access to O and can make as many queries as it likes. Given game G
we write Pr[G(A)] to denote the probability that A plays G and the latter returns true.

Function families, PRF security. A function family F defines a key set F.KS and output length F.ol.

It defines an evaluation algorithm F.Ev : F.KS × {0, 1}∗ → {0, 1}F.ol. We define PRF security for function

family F via the game Gprf
F depicted in Fig. 1. Given adversary A, let Advprf

F (A) = 2Pr[Gprf
F (A)]− 1 be its

PRF advantage.

We give a stronger game and advantage definition in Appendix E Fig. 17 for PRF security in an idealized
model with adaptive compromise, taken from [21]. It is only needed for Theorem 1, so we omit it from the
main text.
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Game Gprf
F (A)

b←$ {0, 1} ; K←$ F.KS

b′←$AFn ; Return b = b′

Oracle Fn(X)

If T[X] = ⊥ then T[X]←$ {0, 1}F.ol

c1←$ F.Ev(K,X) ; c0 ← T[X] ; Return cb

Game Gind$
SE (A)

b←$ {0, 1} ; K←$ SE.KS

b′←$AEnc ; Return b = b′

Oracle Enc(m)

c1←$ SE.Enc(K,m)

c0←$ {0, 1}|c1| ; Return cb

Fig. 1. Games used in defining PRF security of function family F (left) and IND$-security of symmetric encryption
scheme SE (right) against adversary A.

Symmetric Encryption and IND$-security. A symmetric encryption scheme SE defines key set SE.KS,
encryption algorithm SE.Enc and decryption algorithm SE.Dec. and ciphertext length function SE.cl. We
require that if C←$ SE.Enc(K,M) then |C| = SE.cl(|M |) and SE.Dec(K,C) = M .

We say SE is IND$-secure if its ciphertexts are indistinguishability from random strings. This is captured
in the game Gind$

SE in Fig. 1. Given adversary A, let Advind$
SE (A) = 2[Pr[Gind$

SE (A)]−1 be its IND$ advantage.
We give an additional game and advantage definition in Appendix E Fig. 17 for KP security which captures
an idealized model with adaptive compromise, taken from [21]. This definition is only needed for Theorem 1,
so we omit it from the main text.

2.1 Structured Encryption

The following definitions follow CK’s formalism [14].

Data Types, Structured Encryption. A data type DT defines domain set DT.Dom, query set DT.Qrys,
and a deterministic evaluation function DT.Eval : DT.Dom× DT.Qrys→ {0, 1}∗ ∪ {⊥}.

A structured encryption scheme StE for DT defines a non-empty key set StE.KS and the following algo-
rithms:

– Randomized encryption algorithm StE.Enc which takes as input a data structure DS ∈ DT.Dom and a
key K ∈ StE.KS. It returns an encrypted data structure ED ∈ {0, 1}∗.

– Possibly randomized token generation algorithm StE.Tok which takes as input a key and a query q ∈
DT.Qrys, and it returns a fixed-length token tk ∈ {0, 1}StE.tl.

– Deterministic evaluation algorithm StE.Eval which takes as input a token and an encrypted data struc-
ture, and returns a ciphertext c ∈ {0, 1}∗ or ⊥.

– Deterministic decryption algorithm StE.Dec which takes a key and a ciphertext, and returns a query
output s ∈ {0, 1}∗ or ⊥.

The correctness condition is that Pr[StE.Dec(K, c) = DT.Eval(DS, q)] = 1 where the probability is taken over
allK ∈ StE.KS,DS ∈ DT.Dom and q ∈ DT.Qrys and the random variables are defined via ED←$ StE.Enc(K,DS),
tk←$ StE.Tok(K, q), and c← StE.Eval(tk, ED).

We often construct StE for complex data types from StE primitives which reveal query results to the
server. We refer to this class of StE as response revealing (RR) StE. More precisely, an RR StE for DT is
such that for all DS ∈ DT.Dom and q ∈ DT.Qrys we have that DT.Eval(DS, q) = c = StE.Dec(K, c) (where
the random variables are defined as in the correctness condition).

While we allow StE.Eval and StE.Dec to return ⊥, this is to handle malformed input. In this work, we
leave implicit the handling of such in pseudocode and assume no queries will trigger these behaviors.

Semantic security. CK defines adaptive semantic security for StE using game Gss
StE,L,S where L,S are the

leakage algorithm and simulator respectively. In Gss
StE,L,S(A), all three algorithms (i.e. A,L,S) can be run

in “setup” or “query” mode, as indicated using the first argument (i.e. s or q).
The game proceeds in two phases, with the adversary providing a data structure in the “setup phase”

then making queries to that data structure in the “query phase”. We refer to the output of the leakage
algorithm in the first (resp. second) phase as the “setup leakage” (resp. “query leakage”). The adversary’s
goal is to distinguish the encrypted data structure and tokens from those generated by a simulator using
the leakage. The details of Gss

StE,L,S are given in Fig. 2. The advantage of adversaryA is Advss
StE,L,S(A) =

2Pr[Gss
StE,L,S(A)]− 1.
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Game Gss
StE,L,S(A)

K←$ StE.KS ; b←$ {0, 1}
(DS, Sta)←$A(s)
If DS /∈ DT.Dom then return false

If b = 1

ED←$ StE.Enc(K,DS)

Else

(lk, St)←$ L(s, DS)

(ED,St′)←$ S(s, lk)
b′←$ATok(q, ED, Sta)

Return b = b′

Oracle Tok(q)

If q /∈ DT.Qrys

Return false

If b = 1

tk←$ StE.Tok(K, q)

Else

(lk, St)←$ L(q, q, St)
(tk, St′)←$ S(q, lk, St′)

Return tk

Fig. 2. Game used in defining adaptive semantic security of structured encryption scheme StE for data type DT with
respect to leakage algorithm L and simulator S.

Notice that with an RR scheme, in order for S to provide a realistic simulation of of a token for query q,
the query leakage must include DT.Eval(q,DS) (the query response) because this must be returned should
the adversary run StE.Eval(tk, ED). Therefore, we will assume that all leakage algorithm associated to RR
StE schemes are such that if (lk, St)←$ L(q, q, St) then lk = (DT.Eval(q,DS), lk′) for some lk′.

Multimap data structure. The multimap data type MMdt captures mappings from labels to tuples
of values. In particular, its domain elements are table mappings (as defined above) which map all labels
of some fixed bitlength MMdt.lLen to tuples of values of fixed bitlength MMdt.vLen, and maps all other
labels to ( ). We refer to these as multimaps. The multimap query set is the label set while evaluation
simply retrieves the mapped tuple associated to a label. This means that MMdt.Qrys = {0, 1}MMdt.lLen and
MMdt.Eval(M, ℓ) = M[ℓ].

In this paper we will assume all multimaps come from the MMdt with appropriate length values, which we
abbreviate to lLen, vLen and sometimes leave implicit. In pseudocode, uninitialized multimaps are assumed
to map all ℓ ∈ {0, 1}lLen to ( ). While other definitions may not have required fixed-length labels or values,
ours loses no generality because values may be padded or broken up into equal length blocks while labels
may be hashed to a common length.

Multimap encryption. StE for MMdt is a key primitive used to build more complex StE schemes. We
will refer to these as multimap encryption (MME) schemes. As above, each MMdt has an implicit value of
lLen, vLen associated to it. Therefore, each MME scheme need only support a constant implied label length
and value length.

As discussed in Section 1.1, a large number of MME primitives have been proposed in the searchable
encryption, secure indexing, encrypted databases and StE literature. While none of our schemes require
specific MME primitives nor leakage profiles, it is still useful to contextualize the security of schemes using
the leakage profile of state-of-the-art schemes from the literature. Intuitively, the setup leakage of this profile
reveals the total number of values in the multimap. The query leakage are the query and access patterns.
The former is the equality pattern of the queries made thus far. The latter is the query response for RR
schemes, and the number of values returned otherwise. In Appendix A we give a full description of these
leakage profiles and examples of MME schemes which achieves them. These are derived from the popular
SSE scheme

∏
bas (2Lev in the Clusion library) by CJJ+ [10,29].

3 Indirectly Addressed Encrypted Multimaps

We now show how multimaps with indirect addressing can be captured as a data type. We illustrate some
of the issues of constructing StE for IA, which we call “indirectly addressed multimap encryption schemes”
(IA-MMEs), via two strawman constructions. In addition to generalizing the “multimap chaining” technique
of AC [14], our IA-MME syntax allows us to elegantly and simply capture many desired StE functionalities.
We discuss some such schemes in Section 6 in the area of searchable encryption and SQL StE.

We then demonstrate the utility of such a primitive by capturing Searchable Encryption (as defined by
CGKO [15]) and “chained multimaps” (as defined by AC [14]) as special cases of it.
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Alg IA.Eval(M, ℓ)

(b1∥x1, . . . , bn∥xn)←M[ℓ]

For i ∈ [n] do

If bi = 0 then vi ← xi else vi ← IA.Eval(M, xi)

Return (v1, . . . , vn)

Fig. 3. Evaluation algorithm for IA data type (left), and graphical visualization of M ∈ IA.Dom with M[ℓ1] =
(1∥ℓ2, 1∥ℓ3), M[ℓ2] = (0∥v1) and M[ℓ3] = (0∥v2, 0∥v3) (right).

Indirect addressing data type IA. Much like MMdt, IA also involves fixed-length labels and values, but
now we require they all be of some common length len. For the same reasons as those presented in Section 2,
this simplifying assumption does not hurt the generality of our formalism.

Intuitively, indirectly addressed multimaps (IA-MMs) can be seen as directed acyclic graphs (DAGs) with
nodes for each label and value. Edges may point from labels either to either values or other labels. When a
label is queried, the graph is traversed starting from that node and returns all descendant leaf (i.e. value)
nodes. Note that the acyclic requirement is to ensure that this evaluation terminates.

More formally, IA.Dom contains multimaps with lLen = len and vLen = len+ 1 while IA.Qrys = {0, 1}len.
When IA.Eval(M, ℓ) is called, it recursively accesses the multimap, interpreting the values with leading
bit 0 as values (which can be returned as is) and those with leading bit 1 as labels (which prompts the
recursive access). In Fig. 3, we depict (part of) an example IA-MM as a DAG (specifically M where M[ℓ1] =
(1∥ℓ2, 1∥ℓ3), M[ℓ2] = (0∥v1) and M[ℓ3] = (0∥v2, 0∥v3)) and provide the full pseudocode for IA.Eval. Notice
that in the example, IA.Eval(M, ℓ1) = (v1, (v2, v3)).

Depth. The number of “layers” of indirect addressing in an IA-MM is measured using a function depth.
It can be used to measure the depth of some query ℓ in M ∈ IA.Dom, via depth(M, ℓ). In the DAG, this
corresponds to the maximum length path beginning at ℓ. Sometimes, it is useful to describe the maximum
depth of all labels in the IA-MM. We call this the “depth of M” and expand our earlier notation to denote
this with depth(M). In the DAG, this corresponds to the maximum length path.

The precise definition of these algorithms are:

Alg depth(M, ℓ)

(b1∥x1, . . . , bn∥xn)←M[ℓ]
If b1 = · · · = bn = 0 then return 1
else return

(
1 + max

i∈[n],bi=1
depth(M, xi)

)
Alg depth(M)

Return max
ℓ∈{0,1}len

depth(M, ℓ)

Note that in the example visualized in Fig. 3 we have depth(M, ℓ1) = 2, depth(M, ℓ2) = 1, and depth(M) =
2.

In our IA-MME schemes we will assume that the M to be encrypted have some predetermined and finite
maximum depth IA.dp. In other words, we require that all M ∈ IA.Dom have depth(M) ≤ IA.dp. To avoid
degeneracy (to MMdt), we assume that IA.dp ≥ 2.

Uniformity. We say that M ∈ IA.Dom is uniform if all the values associated to each label have the
same depth. In other words, for all ℓ ∈ {0, 1}len where M[ℓ] = (b1∥x1, . . . , bn∥xn), we expect that either
b1 = · · · = bn = 0 (i.e. they are all values) or b1 = · · · = bn = 1 and depth(M, x1) = · · · = depth(M, xn).
For example, multimaps from the multimap data type are all uniform, depth-1 IA-MMs while M depicted
in Fig. 3 is a uniform, depth-2 IA-MM.

As we show later, some IA-MME techniques only work with uniform IA-MMs. Since this may suffice for
some applications, we capture this as a data type UIA so that we can define StE for it. UIA is identical to IA
except UIA.Dom contains only the uniform IA-MMs.

Strawman 1: näıve encryption. A natural first instinct toward constructing IA-MMEs (StE for IA)
would be to simply encrypt M ∈ IA.Dom using an MME scheme MME. This achieves some intuitive notion
of security since MME is secure and M is itself a multimap. Notice that we would want to use non-RR MME
here, to avoid leaking the ℓi and vi to the server.

A problem crops up, however, when one tries to query this encrypted data structure. Consider what
happens when computing IA.Eval(M, ℓ1) in the example depicted in Fig. 3. If the token MME.Tok(K, ℓ1) is
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presented to the server, the best it can do is return the client a ciphertext which decrypts to (1∥ℓ2, 1∥ℓ3). The
client would need to then generate the tokens for ℓ2, ℓ3 and query the server with those to compute M[ℓ1].
More generally, this solution would require depth(M, ℓ) rounds of communication between the client and
server to retrieve IA.Eval(M, ℓ1). This added communication can increase bandwidth and latency in practice
and, as we demonstrate later, is unnecessary.

Strawman 2: inlined payloads. A second natural approach would be to do away with the indirect ad-
dressing entirely and inline the values within M. In our example, this would mean transforming M into the
multimap M′ where M′[ℓ1] = (v1, (v2, v3)), M

′[ℓ2] = (v1), and M′[ℓ3] = (v2, v3). These values should be
padded so vLen is equal to |(v2, v3)|, before M′ is encrypted with an MME scheme. This can be queried in
a single round using the MME.

This approach is both correct and secure but we lose any storage efficiencies that indirect addressing
afforded us. In existing applications making use of such data structures (e.g. those discussed below), many
depth-1 labels are associated with a long tuple of values, and are “pointed to” by multiple labels of higher
depth. For example, in SSE, this would entail to storing one copy of each document for each keyword that it
is associated to. In the worst case, inlining a depth-n IA-MM could lead to a power-of-n blowup in storage.
As such, this solution is also unsatisfying.

4 Layered-Multimap Approach

We extend the “multimap chaining” technique from the literature to an IA-MME technique that we call
“layered multimaps” (LMM). In doing so, we identify an issue that prevents the security of LMM schemes
from being proven in full generality and provide a sufficient condition on the MME primitives – content
oblivious leakage algorithms – to recover this proof approach. Multimap chaining schemes in the literature
(e.g. LabGraph, SPX, and OPX) do not address this issue, so their proofs are technically incorrect and can
be restored with the addition of our condition.

In Section 5, we present an IA-MME technique with strictly better leakage. So we focus on the intuition
of LMM and the sufficient condition that restores proofs from prior work. A full discussion on LMM can be
found in Appendix B.

LMM approach for uniform, depth-2 IA-MMs. The multimap chaining approach of prior work is
equivalent to the handling of depth-2, uniform IA-MMs. We will capture this as LMMu, an StE scheme
for UIA where UIA.dp = 2.

The scheme LMMu will index a depth-2, uniform IA-MM M using two multimaps M1,M2. M1 is a copy
of all the depth-1 mappings in M (i.e. if depth(M, ℓ) = 1 then M1[ℓ] = M[ℓ]). This will be encrypted using
MME scheme MME1. M2 contains all other (i.e. depth-2) mappings in M. However, instead of mapping
these to other (depth-1) labels, they will be mapped to tokens for accessing that label using MME1. M2 will
be encrypted using RR MME scheme MME2.

When a query ℓ is made, the token generation algorithm will return the tokens to access ℓ with both
MME primitives (since the token generation algorithm need not “know” the depth of ℓ). If depth(M, ℓ) = 1,
a ciphertext can be retrieved from the encrypted M1. If depth(M, ℓ) = 2, the encrypted M2 will return a
tuple of tokens (since it was encrypted with an RR scheme) which can then be used to query the encrypted
M1 to retrieve ciphertexts. In either case, MME1.Dec can be used to retrieve UIA.Eval(M, ℓ).

Extending LMMu to LMM. We can extend the LMM technique from uniform, depth-2 IA-MMs to arbi-
trary IA-MMs. The result of this is LMM, StE scheme for IA with no restrictions on depth.

Extending LMMu, LMM will index an IA-MM M with depth(M) = D multimaps. Each Mi will index
the queries of depth i and be encrypted with MME scheme MMEi, where MME2, . . . ,MMED are RR. For
i ≥ 2, the labels (i.e. values where bi = 1) in Mi will be replaced with tokens prior to encryption. We derive
keys for all MME primitives using a function family in the standard way.

We embellish LMMu in two ways in this extension. First, alongside each token in the D−1 RR multimaps,
we include a depth-indicator for the location to points to. This improves efficiency by “telling” the server
which multimap to subsequently access with that token. Additionally, while LMMu tokens were made out
of two MME tokens, we can do better than sending D such tokens in LMM. Instead, we use an additional
multimap M0 to index which token to use and which multimap to access for each possible client query. The
client can then just send the one token needed to access M0.
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Game Gobliv
L (A)(

M1,M2, (ℓ1, . . . , ℓn)
)
←$A

For i = 1, 2 do

(lk0
i , Sti)←$ L(s,Mi)

For j ∈ [n] do
(
(v, lkj

i ), Sti
)
←$ L(q, ℓj , Sti)

Return
(
(lk0

1 ̸= lk0
2) ∨ · · · ∨ (lkn

1 ̸= lkn
2 )
)

Fig. 4. Game used to define content obliviousness of leakage algorithm L. Here, we assume that the adversary provides
M,M′ which are homomorphic, and ℓ1, . . . , ℓn ∈ DT.Qrys.

We provide the full pseudocode and security analysis of LMM in Appendix B.

Technicality in LMM proof. Unfortunately, the LMM construction cannot be proven secure in full
generality. Prior work’s approach to the proof of LMMu’s security involves composing the leakage algorithms
(resp. simulators) for MME1,MME2 to a single algorithm L (resp. S), then “proved” LMMu secure under
L,S. The problem arises in the definition of S, where the two constituent simulators need to “work together”
at query time to return tokens to depth-2 labels which must be able to recursively access the simulated data
structures. (If such an access cannot be done, the adversary can trivially distinguish this from the genuine StE
algorithms). The constituent simulator’s lack of shared state make them unlikely to present consistent output.
So if these simulators were instantiated pathologically, there will be no way to build a secure LMMu even
with secure primitives. In Appendix B, we present this proof approach in full and discuss how a pathological
primitive would scuttle the proof.

Homomorphic multimaps, content oblivious leakage. In order to resolve the above proof issue for
schemes with the LMM approach, we make a sufficient assumption on the leakage algorithm associated to
the RR MME schenes which we call content obliviousness. Since our condition has to do with how the leakage
algorithm treats multimaps of the “same shape”, we start by giving a formal definition of this.

Specifically, we say that two multimaps M1,M2 ∈ MMdt are homomorphic if the tuples mapped to
by each label are of the same length (i.e. #(M1[ℓ]) = #(M2[ℓ]) for all ℓ ∈ {0, 1}lLen). In other words, if
M1[ℓ] = (v1, . . . , vn) then M2[ℓ] must also be a tuple of n (not necessarily identical) values.

Let MME be an RR MME scheme used in any LMM scheme (i.e. LMMu or LMM), with leakage algorithm
L. Then, L is content oblivious if homormorphic multimaps have the same leakage (modulo query responses).
We capture this precisely in the game Gobliv

L in Fig. 4, where L is a leakage algorithm. The game also assumes
that the adversary provides homomorphicM,M′ and ℓ1, . . . , ℓn ∈ DT.Qrys. We say that L is content oblivious
if Pr[Gobliv

L (A)] = 0 for all adversaries A. Note that our notion assumes a leakage algorithm consistent with
an RR MME scheme (in particular, that query leakage contains v = M[ℓj ]). We believe that analogous
definitions for other MME are of independent interest, but in our work we only require this of RR MME
schemes.

Since the “standard” leakage profile (discussed in Section 2.1) has content oblivious leakage, so do all
state-of-the-art RR MME schemes (including MMEr

π in Appendix A). This condition is sufficient to prove
the security of LMMu and LMM. For completeness, we provide these proofs in Appendix B.

It is worth noting that content obliviousness is a sufficient condition to resolving the proof issue. Specif-
ically, conditions could be placed on the simulator for the proof to go through even for some non-content
oblivious RR MME, by requiring the simulator “behaves well” when the leakage input is substituted in the
proof. Nevertheless, we believe our content obliviousness assumption is simpler to use in practice because it
only concerns the leakage profile which can often be deduced by seeing the scheme in action. A condition
based on the simulator is more opaque to someone who does not work through the proof details. Additionally,
all state-of-the-art schemes are already content oblivious. For these reasons, we leave open the problem of
finding the necessary leakage properties and other simulator properties that allow this proof technique to go
through. We see it as a problem of theoretical rather than practical interest.

Implications for prior work. We identified three schemes in the literature where the above “proof
bug” occurs, LabGraph, SPX and OPX. We discuss the specific issues in their proofs, and the insufficient
assumptions made therein in Appendix C. These results can be restored by assuming that the RR MME
primitives are content oblivious. This also means that existing systems using these results are still “secure”
so long as they used state-of-the-art primitives.
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Discussion. Before moving on, we draw attention to a couple of strengths and weaknesses of the LMM ap-
proach. On the one hand, it can efficiently and securely realized using existing MME primitives. In particular,
it avoids the pitfalls of the two näıve techniques proposed in Section 3.

However, the use of multiple data structures in the LMM approach is unsatisfying for a number of reasons.
First, the adversary learns about the relative size of the layers and deduce information about the “structure”
of the IA-MM. Second, for non-uniform IA-MMs, the M0 index and depth indicators in the RR multimaps
have to be used to “tell the server” which data structure it should be searching on. Both of these add to the
complexity and overhead of the scheme.

In this, we see a common thread: if we are able to index and encrypt M as a monolithic data structure
instead of splitting it into several multimaps, we would avoid the above weaknesses. The challenge is doing
so using simple primitives and without added overhead or complexity. This is the focus of our next section.

5 Single-Multimap Approach

In Section 4, we suggested that the LMM could be improved by indexing the entire IA-MM using a single
monolithic encrypted multimap. To realize this intuition, we require a multimap encryption primitive with
expanded functionality (response-flexible MME) and stronger security (TV-security). We explore these prop-
erties in detail, since they have nuanced definitions, interesting leakage implications and are non-trivial to
construct. We then use such MME to construct SMM, the IA-MME employing the single-multimap (SMM)
approach.

5.1 Response-Flexible MME

Recall that in the LMM approach, we used different MME schemes to encrypt tokens and values so that the
tokens could be revealed to the server at query time. If we want to collapse all this indexing into a single
multimap, we need an MME scheme which reveals the intermediate tokens to the server but not the final
values. To achieve this, we start by defining a new type of MME which we call response-flexible (RF) MME.

Syntax. For precision, we need to modify the multimap data type slightly so that one bit of each value
can be used to indicate the desired response type. This creates the RF data type RFdt which has the same
domain and query set as MMdt but its evaluation omits the indicator bit. In other words,

M[ℓ] = (b1∥v1, . . . , bn∥vn) =⇒ RFdt.Eval(M, ℓ) = (v1, . . . , vn).

For consistency, we will let lLen refer to the length of vi (not bi∥vi).
Now suppose MMEf is an StE for RFdt. We say that MMEf is RF if its evaluation reveals the indica-

tor bit of all values, and the remaining bits of those with bi = 1. In other words, for M[ℓ] as above, if
ED←$ MMEf .Enc(K,M) and tk←$ MMEf .Tok(K, ℓ) we have:

MMEf .Eval(tk, ED) = (b′1∥u1, . . . , b
′
n∥un)

where

{
b′i∥ui = bi∥vi if bi = 1,

b′i = bi if bi = 0.

The final requirement we make is on the decryption algorithm. Since the evaluation output is a tuple
which may contain some unencrypted values, we will assume the existence of a decryption algorithm that
works on a per-value basis. More precisely, we need that MMEf defines algorithm MMEf .Dec1 where

MMEf .Dec
(
K, (b1∥c1, . . . , bn∥cn)

)
= (u1, . . . , un)

where

{
ui = ci if bi = 1

ui = MMEf .Dec1(K, ci) if bi = 0.

RF MME Constructions. Before we start building RF MME, we give some intuition as to the leakage
profile that one should expect of such a scheme. Notice that if all values in M have bi = 1, the scheme is
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functionally equivalent to an RR MME. Therefore, one may expect that state-of-the-art RF leakage profiles
are equivalent to the analogous RR profile, except in the query leakage. In particular, if the query output
is (b1∥v1, . . . , bn∥vn), the RR scheme would have returned (v1, . . . , vn) as part of the leakage and the RF
scheme would return only the vi where bi = 1.

This intuition hints at our approach to building RF MME – from RR MME. Many RR MME schemes in
the literature will encrypt the values associated with each label using a differentiated key. This key is used by
the server to recover said values at query time. These schemes can be adapted to achieve response flexibility
by only encrypting the RR values with the differentiated key, and encrypting the other values using a key
which is not given to the server. This is exactly our approach to extending our RR variant of the

∏
bas SSE

scheme to the RF variant MMEr
π in Appendix A. In Section 5.2, we will show that MMEf

π is secure under
the stronger TV-security notion. In particular, Theorem 1 subsumes the proof of MMEf

π’s semantic security.
One might hope for a more generic transform that converts RR to RF MME schemes while maintaining

semantic security. This is indeed possible, as we demonstrate with our transform RfT in Appendix D which
takes an RR MME scheme MMEr and symmetric encryption scheme SE and returns RF MME MMEf .
Intuitively, MMEf will encrypt the values which need to be hidden under a key that is kept secret from the
server, before it proceeds with encryption under MMEr. At query time, MMEr.Eval will peel back its own
layer of encryption but it will only see these encrypted values, which can be decrypted during MMEf .Dec. As
one would expect, a reduction can be given from MMEr and SE’s security to MMEf ’s under a leakage profile
something like the one described above. The proof of this is a bit involved, so we defer a full discussion
on RfT to Appendix D, where we provide the full pseudocode, leakage profiles and a proof in the stronger
TV-security model (which we will define in Section 5.2).

We also briefly mention that using RfT with non-pathological RR MEE schemes will usually lead to
data being wrapped in two layers of encryption. In practice, it would be better to replace the former layer
with the latter (as we did in MMEf

π).

Discussion. We believe the idea of response flexibility is of independent interest, so we highlight some
alternate syntax that we considered which future work may look into. Intuitively, the goal of response
flexibility is to allow a data structure to support both revealing and non-revealing query responses. In the
approach above, we assume that each value in the multimap is annotated with the desired response type. An
alternate approach would be to annotate labels instead of values, thereby requiring that the client decide,
at setup time, whether each tuple in the multimap will be revealed (in entirety) at query time or not. This
approach loses some of the fine-grain control over response types that the former approach had, but may allow
for constructions with less leakage. Future work could look into this to improve the security of applications
which do not need such fine-grained control (e.g. uniform IA-MMs).

Both of the above approaches rely on the intrinsic structure of a multimap and are difficult to extend to
StE in general. However, we believe an RF analog of RR StE would enrich the entire StE framework. One
approach to doing this would be to have a syntax where the client indicates during token generation whether
the response should be revealed or not. This has the added advantage that the client can delay the decision
of whether responses should be revealed till query time, unlike the above approaches. This added flexibility
may be useful in some applications.

While these alternate approaches have their merits, we went with the fine-grained variant because it
allowed for the most storage efficient and straightforward SMM construction. Intuitively, only the fine-
grained approach allows each entry (i.e. mapping of label to values) in the IA-MM to be captured as a single
entry in the Mi indexes computed during the setup phase. Future work could also explore leakage reduction
in this fine-grained setting. In particular, one might extend techniques used to hide the volume and ordering
(with respect to the revealed values) of the non-RR values.

5.2 MME Security with Token Values

A challenge in adopting the SMM approach is that a multimap will contain tokens generated under the same
key that it will be encrypted with. This is so that the server can perform the necessary recursive lookups
using a single data structure. Proving the security of SMM based on a semantically secure MME scheme runs
seems out of reach, because there are pathological MMEs that misbehave when they encrypt key-dependent
tokens. As a convenience in the proof, we define a stronger assumption on MMEs which we call adaptive
security in the presence of token-values (or TV-security).
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Game Gtv
MME,L,S(A)

K←$ MME.KS ; b←$ {0, 1}
(M, Sta)←$A(s)
If b = 1 then

For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

If bi = 1 then vi←$ MME.Tok(K, vi)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
ED←$ MME.Enc(K,M1)

Else

(lk, St)←$ L(s,M) ; (ED,St′)←$ S(s, lk)
b′←$ATok(q, ED, Sta) ; Return b = b′

Oracle Tok(ℓ)

If b = 1 then

tk←$ MME.Tok(K, ℓ)

Else

(lk, St)←$ L(q, ℓ, St)
(tk, St′)←$ S(q, lk, St′)

Return tk

Alg Search((b1∥v1, . . . , bn∥vn), S)
For i ∈ [n] do

If bi = 1 then

If vi ∈ S then return true

If Search(M[vi], S ∪ vi)

then return true

Return false

Fig. 5. Game used in defining adaptive TV-security of multimap encryption scheme MME with respect to leakage
algorithm L and simulator S.

TV-security. This notion extends the semantic security definition given in Section 2.1 but applies only to
MME (not to all of StE, nor specifically to IA-MM). The security game for defining TV-security for MME
is Gtv

MME, depicted in Fig. 5. Intuitively, the game is similar to Gss
MME but when the adversary provides a

multimap M they may request that some of the values therein be tokenized before encryption. We require
that the values to be tokenized form no cycles when the multimap is viewed as a directed graph.4 In the “real
world” this tokenization is done using MME.Tok prior to encryption with MME.Enc. In the “ideal world” the
leakage algorithm gets M and simulator must construct something comparable to this encryption output.
The adversary indicates whether a value should be tokenized using the first bit in each multimap value. The
algorithm Search is called recursively in the game to check that the graph visualization of M is acyclic. Note
that in the game we assume lLen = MME.tl and vLen = MME.tl + 1 for M given by A. The advantage of
adversary A is Advtv

MME,L,S(A) = 2Pr[Gtv
MME,L,S(A)]− 1.

Recall that the values in RF MME have a similar indicator bit in their data structure (thereby making
it a slightly different data type). In our notion of TV-security for RF MME, we use the same indicator
bit to indicate response type (for response flexibility) and tokenization (for TV-security). Intuitively, this
restricts our study of TV-secure response-flexible scheme to those where values are response revealing if and
only if they are tokens. This notion is a perfect fit for our SMM construction because the TV-security game
essentially builds an IA-MM. While a more general definition of TV-secure RF MME can be given with
separate indicator bits, this introduces too many confusing details in defining and proving TV-security (e.g.
the ordering of tokenization and encryption, if both are needed), so we leave the general treatment for future
work to explore.

TV-secure MME leakage. Since our TV-security game is still a simulation-based one, we now give some
intuition about what kind of leakage a TV-secure MME scheme should aim for. In particular, given the
leakage profile of state-of-the-art scheme MME (in the standard model), what analogous leakage algorithm
should we hope to prove it TV-secure under?

One might notice that the multimaps encrypted in the standard and TV-security games (i.e. M,M1

respectively) are homomorphic. So one might hope that, using state-of-the-art schemes with content oblivious
leakage, the profiles would be equivalent. However, the TV-leakage profile needs to simulate the tokens
requested by the adversary as well as the tokens values (in the multimap) should the adversary choose to
evaluate the token he gets on the encrypted data structure. Because the query leakage associated to token
values should be in the TV-security profile but not in the standard profile, one should not expect the same
scheme to achieve the same leakage in both games.

Along this line of thought, one might expect that the leakage associated to all token values must be
included in the TV-security profile so that the simulator can generate ED. However, this is also an erroneous

4 This restriction is sufficient for IA and gets around a technical issue in the simulation sketched in Appendix E.
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intuition because this is equivalent to revealing the query leakage associated to all these tokens during the
setup phase which makes no sense because no queries have been made.

These observations lead us to the correct intuition regarding the TV-security leakage profile. Its setup
leakage should be comparable to the standard case. When a query is made, the query leakage of that query
and all its descendants (in the graph visualization) should be revealed. This is more than the standard case
which would only leak the initial query. We give a concrete example of such a profile in Appendix E, for the
RF variant of the

∏
bas scheme.

Constructing TV-secure RF MME. Many MME schemes from the literature satisfy this stronger no-
tion of security, with the appropriate modifications to their leakage algorithm and simulator to accommodate
the tokenization. This includes the schemes in Appendix A. In particular, the proofs of

∏
bas’s (standard)

semantic security given by CJJ+ and JT [10,21] can be extended to one of TV-security for our response
flexible variant MMEf

π under similar conditions (namely, that the proof is in the random oracle model and
that SE is instantiated with a “one-time pad form” scheme such as CTR mode). In particular:

Theorem 1. Let MMEf
π and Lf be the scheme and leakage respectively described in Figure 18 using PRF F,

symmetric encryption scheme SE, and ideal primitives P1 and P2. Then, given adversary A and simulators
Sprf ,Skp one can define Sf ,A1, A2,A3 such that:

Advtv
MMEf

π,Lf ,Sf ,P1,P2
(A) ≤ Advprf

F,P1
(A1)

+Advsim-ac-prf
F,Sprf ,P1

(A2)

+Advsim-ac-kp
SE,Skp,P2

(A3).

The security notions used in this reduction, SIM-AC-PRF and SIM-AC-KP, refer to security under
adaptive compromise. Both are is are extensions of the PRF and key private (KP) games into this setting,
adapted from the definitions givin[21].

In Appendix E, we give the full definitions for the theorem above and show how the proof of Theorem 1
is obtained by modifying the proof of Theorem D.1, in [21], with additional leakage Lf

π, detailed in Fig. 18.
Other MME techniques from the literature also suffice to construct TV-secure MME. In particular, if

one wishes for security outside the RO model, one could use pseudorandomly generated plaintext masks in
place of encryption (in the style of CK’s scheme Matrix [14]) or generate one token per value (the extension
suggested by CJJ+ to MMEπ).

While a more general result (say, constructing TV-secure schemes from those secure under standard
assumptions) would be desirable, we found this tricky to obtain. When moving from the standard security
to the TV games, the behavior of the simulators quickly becomes undefined. For example, in the standard
security game, the simulator is never asked for tokens before it generates a multimap. So, attempting to give
a generic reduction, from standard to TV security seems to require at least one assumption about on the
simulator. And, unfortunately, this assumption is not enough to allow a proof to go through, there are many
ways a degenerate simulator can break a generic proof.

After some effort, it seems the assumptions one has to make on the simulator (and consequently the
scheme) for a generic reduction make the proof almost trivial (i.e. nearly assuming you have a simulator for
the TV game). So, instead of presenting a generic reduction, we focus on a specific scheme and leave the
target of TV-security open for particular schemes.

5.3 Indirectly Addressed MME SMM

SMM details. Now we are ready to present the details of the SMM approach. Intuitively, this approach is
similar to the LMM one except that we now generate all the recursively accessed tokens using RF MME
scheme MMEf and store the contents of all the Mi (in LMM) in a single multimap M′ which will also be
encrypted with MMEf .

This gives us IA-MME scheme SMM whose algorithms are depicted in Fig. 6. The pseudocode is given
in Fig. 6, where SMM.KS = MMEf .KS, and lLen = len, vLen = len+ 1 = MMEf .tl+ 1 for M1.

SMM’s security. One can notice that on the same multimap and queries, the SMM algorithms and “real
world” of the TV-security game generate ED, tk in the exact same way. Additionally, the leakage algorithm
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Alg SMM.Enc(K,M)

For ℓ ∈ {0, 1}len where M[ℓ] ̸= ( ) do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

If bi = 1 then

vi←$ MMEf .Tok(K, vi)

M′[ℓ]← (b1∥v1, . . . , bn∥vn)
ED←$ MMEf .Enc(K,M′)

Return ED

Alg SMM.Tok(K, ℓ)

tk←$ MMEf .Tok(K, ℓ) ; Return tk

Alg SMM.Eval(tk, ED)

(b1∥v1, . . . , bn∥vn)← MMEf .Eval(tk, ED)

For i ∈ [n] do

If bi = 1 then ti ← SMM.Eval(vi, ED)

else ti ← vi
Return

(
(b1, t1), . . . , (bn, tn)

)
Alg SMM.Dec

(
K, ((b1, t1), . . . , (bn, tn))

)
For i ∈ [n] do

If bi = 0 then ui ← MMEf .Dec1(K, ti)

else ui ← SMM.Dec(K, ti)

Return (u1, . . . , un)

Fig. 6. Algorithms for IA-MME scheme SMM (i.e. StE for IA) using the SMM technique. Here, MMEf is a response-
flexible MME scheme as defined in Section 5.

and simulator in the TV-security game for MMEf and the semantic security game of SMM are also essentially
doing the same this. As such, the following result follows directly from the respective security definitions and
a proof is omitted for brevity.

Theorem 2. Let SMM be the IA-MME scheme for IA defined in Fig. 6 which uses RF MME scheme MMEf

as a primitive. Then, given adversary A we have that:

Advss
SMM,L,S(A) ≤ Advtv

MMEf ,L,S(A).

Discussion. In practice, we expect SMM to be superior to LMM.
In terms of leakage, the only case where the SMM approach is not strictly superior is a degenerate one

(e.g. depth(M) = 1) or a pathological one (with intentionally leaky primitives). Using “standard” MME
primitives (e.g. those in Appendix A), the SMM approach avoids leaking the size of each layer and instead
just leaks their sum (i.e. the size of its monolithic index). Concretely, given M as input, the setup leakage
(i.e. before any queries are made) in the SMM approach is

∑
ℓ∈{0,1}len #(M[ℓ]), the number of values in M.

However, the LMM leakage is (n1, . . . , ndepth(M)) where ni =
∑

ℓ∈{0,1}len #(Mi[ℓ]) is the number of values in
Mi, the multimap indexing all labels of depth i.

We believe that this difference in leakage is significant in a real-world use case. For example, in LabGraph
(CK’s scheme for searching over web graphs [14]), the difference in leakage means an adversary can distinguish
a dense web graph with few vertices from a sparser web graph with more vertices before any queries are made.
In Section 6, we demonstrate this significance further in real-world use cases via simulations on realistic data.

SMM is simpler, since the work to prepare M for encryption is drastically reduced (as evidenced in
a much shorter pseudocode of SMM (Fig. 6) compared to LMM (in Appendix B)). There are fewer data
structures on the server and differentiated keys on the client side to manage at query time. The one-time
cost of performing the security analysis of specific MME schemes is worth the permanent complexity, security
and efficiency savings that comes with the SMM approach. And if the analysis it too much, one could choose
to use MMEf

π, which we have already analyzed in Appendix D.
Finally, we expect SMM to be more storage efficient in practice. In LMM, non-uniform constructions need

to include depth indicators, a complication that SMM can avoid. In Section 6, we explore in our simulations
how this overhead is significant even in relatively low-depth IA-MMEs.

6 Applications and Simulations of IA-MME

The power of the indirect addressing abstraction is its ability to capture and simplify complex StE schemes.
In this section, we describe how indirect addressing can be used in a wide range of real-world applications.
We then perform simulations on realistic datasets to concretize the efficiency and security gains of using
IA-MME, and in particular, the SMM construction.

Searchable Encryption. CGKO first defined Searchable Symmetric Encryption (SSE) as a document
storage scheme[15]. Each document is associated with a long payload and a set of keywords. When a keyword
is queried, the payloads for all documents associated to that keyword should be returned.
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A first insinct might be to use a single multimap associating each keyword to the payloads it should
return. This means that SSE is realizable using just an MME scheme. However, this is akin to using the
“inlined-payloads” strawman solution presented in Section 3. A better solution uses uniform depth-2 IA-
MMEs, with keywords associated to document identifiers at depth-2 and document identifiers associated to
payloads at depth-1. We formalize an SSE datatype and the two schemes in Appendix F as SEdt,SE1,SE2
respectively. In doing so, we can see the simplicity that comes with the IA-MME primitive since SE2 (which
uses indirect addressing) can be expressed with comparable ease to SE1 (which does not).

SQL StE schemes. Various recent works have used the StE framework to capture certain classes of SQL
queries, resulting in schemes such as SPX,OPX,FpSj amd PpSj [23,26,12]. The IA-MME primitive greatly
simplifies and generalizes the description of such schemes.

To demonstrate this, we define a data type SQLdt which supports relation retrievals and joins over SQL
databases. Relation retrievals are queries of the form “select * from [table]”. They let the client retrieve a
single table from a database made out of many tables. Joins are queries of the form “select * from [table1]
join [table2] on [predicate]”. These let the client retrieve pairs of rows from the cross product between two
tables an accordance with some predicate.

We define three StE schemes for SQLdt. In all three, depth-1 labels associate a unique identifier to the
contents of each row in the database. The schemes then use the upper layers in different ways to index which
rows (identified by their unique identifier) should be returned in response to each possible query.

Our first two schemes FP2,PP2 capture the fully and partially precomputed join indexing techniques of
CNR, respectively [12]. They both make use of uniform depth-2 IA-MMs in their indexing, with the depth-2
labels associating a query to which rows should be returned. FP2 is essentially equivalent to the schemes
SPX,OPX,FpSj when restricted to the same query support, while PP2 is analogously equivalent to PpSj.
The key difference between the two schemes is how they index join queries, with the latter indexing rows
from the two input tables separately and doing the join computation on the client-side to reduce leakage,
bandwidth and server storage. The full details of both schemes can be found in Appendix G. We note that
by abstracting out IA-MME, we make the pseudocode of such schemes significantly simpler (compared to
prior work). It also allows for better modularity since one can instantiate the scheme using SMM, LMM or
any other IA-MME (unlike past work which strictly used multimap chaining).

Our IA-MME abstraction also inspired a new join indexing technique which has not appeared in prior
work, which we present now as PP3. The key observation is that real-world joins often make use of every row
in one or both of the input tables. In that case, one could “reuse” a relation retrieval query index to index
that half of the partially precomputed join thereby saving server storage. This makes the data structure
non-uniform and depth-3, demonstrating the need for a generalized IA-MME beyond uniform and depth-2
use-cases.

Simulation Setups. To get an idea for the security and efficiency savings that come with using IA-MME, we
run some simulations for the schemes above. For our full simulation methodology and results, see Appendix H.

We gathered two SSE document collections using the papers submitted to the IACR Cryptology ePrint
Archive in 2020 and 2021 [18]. For each paper, the PDF submitted to ePrint served as the document payload,
while the SSE keyword(s) were those provided by the authors at submission time. The two collections had
3188/3329 distinct keywords, and 1584/1677 document payloads respectively.

For the SQL StE use-case, we generated 1 GB and 10MB databases using the TPC-H benchmark [38].
This database’s schema indicates ten relationships between columns from eight relations which a client may
wish to perform equijoins on. So we define the StE query class to be exactly these eight relation retrievals
and ten joins.

Indirect Addressing saves space. We use our simulations of SE1,SE2 to emphasize that indirect ad-
dressing is much more storage efficient than the “inlined payloads” technique.

In our simulations, we assume that the client pre-processes all the documents such that len = 128. We
then measure the number of values in the data-structure (multimap or IA-MM) prior to encryption with
SE1,SE2. With the 2021 documents, SE1 will store 387, 841, 372 values in its multimap while SE2 will store
93,888,191 in its IA-MM, a decrease of 75.79%. Likewise, for the 2021 documents, there is a decrease of
76.13% (from 378,100,870 to 90,236,426).
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Data Scheme
LMM SMM

M0 M1 M2 M3 M

2021 ePrint SE2 – 9.388e7 6.542e3 – 9.389e7
TPC-H (1GB) FP2 – 7.165e7 1.155e9 – 1.227e9
TPC-H (1GB) PP2 – 7.165e7 3.349e7 – 1.051e8
TPC-H (1GB) PP3 18 7.165e7 8.761e6 20 8.041e7

Fig. 7. Selected simulation results computing the sizes of unencrypted data structures when using LMM and SMM.
Sizes are computed in blocks of 128-bits (black) or 130-bits (in blue). These demonstrate that SMM leaks less and is
more storage efficient.

Assuming encryption changes these sizes only negligibly (true using standard primitives) we see that
indirect addressing is useful in a real-world application over näıve solutions thereby justifying our IA-MME
formalisms.

SMM’s advantages over LMM. We also simulated the size of server-side data structures for the schemes
that use IA-MME, to compare the LMM and SMM approaches. Some of our results are in Fig. 7.

We can use this to compare the difference in setup leakage of each scheme under LMM and SMM. Using
standard MME primitives (e.g. those in Appendix A), LMM would leak all the sizes of each of its Mi while
SMM leaks just that of M (i.e. the sum of the Mi for i > 0). Our simulations show that this difference in
leakage can be significant in a realistic use-case. For example, with PP3 instantiated with LMM, the adversary
learns during setup time how many distinct queries there are (from M0) and the number of complete joins
(from M3,M0). The difference in leakage also allows an adversary to easily make inferences about the data,
for example, they may be able to deduce the average number of keywords per document or rows per join
with just a small amount of auxiliary data. With SMM, the monolithic data structure will hide some of this
frequency information making such deductions hard or even impossible.

As mentioned in Section 4, for non-uniform IA-MME, each token stored in the LMM multimaps needs
to be accompanied with a depth-indicator. Our simulations show that this is not an insignificant overhead.
Even though PP3 only uses depth-3 schemes, this incurs an addition 17522482 bits of storage on top of any
additional metadata to support the multiple data structures.

Finally, we note the superiority of PP3 on realistic datasets. This demonstrates that our generalized
IA-MME abstraction (beyond uniform depth-2 indirect addressing) allows us to easily tweak StE schemes
so they perform better in practice.
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Algs Lr
π

(
s,M

)
, Lπ

(
s,M

)
For ℓ ∈ {0, 1}lLen do

n← n+#(M[ℓ])

Return
(
n, (M)

)
Algs Lr

π

(
q, ℓ, l

)
, Lπ

(
q, ℓ, l

)
(ℓ1, . . . , ℓn,M)← l ; x← min

ℓi=ℓ
i

lk ← (M[ℓ], x) ; lk ←
(
#(M[ℓ]), x

)
Return

(
lk, (M, ℓ1, . . . , ℓn, ℓ)

)
Alg MMEr

π.Enc(K
f ,M)

For ℓ ∈ {0, 1}lLen do

K ← F.Ev(Kf , ℓ)

For i = 0, 1 do Ki ← F.Ev(K, i)

(v1, . . . , vn)←M[ℓ]

For i ∈ [n] do

T[F.Ev(K0, i)]←$ SE.Enc(K1, vi)

Return T

Alg MMEr
π.Tok(K

f , ℓ)

Return F.Ev(Kf , ℓ)

Alg MMEr
π.Eval

(
(K0,K1),T

)
While T[F.Ev(K0, n)] ̸= ⊥ do

vn ← SE.Dec(K1,T[F.Ev(K0, n)])

n← n+ 1

Return (v1, . . . , vn)

Alg MMEπ.Enc
(
(Kf ,Ks),M

)
For ℓ ∈ {0, 1}lLen do

K ← F.Ev(Kf , ℓ) ; (v1, . . . , vn)←M[ℓ]

For i ∈ [n] do

T[F.Ev(K, i)]←$ SE.Enc(Ks, vi)

Return T

Alg MMEπ.Tok
(
(Kf ,Ks), ℓ

)
Return F.Ev(Kf , ℓ)

Alg MMEπ.Eval(K,T)

While T[F.Ev(K,n)] ̸= ⊥ do

vn ← T[F.Ev(K,n)] ; n← n+ 1

Return (v1, . . . , vn)

Alg MMEπ.Dec
(
(Kf ,Ks), c

)
(v1, . . . , vn)← c

For i ∈ [n] do vi ← SE.Dec(Ks, vi)

Return (v1, . . . , vn)

Fig. 8. “Standard” leakage for MME schemes that are RR and not RR (top), an example of each such scheme
(middle), and an RF MME scheme with analogous leakage profile to MMEr

π.
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A Standard MME Leakages and Example MME Schemes.

In Section 2.1 we discuss “standard” MME schemes and their leakage profiles. For RR MME, this leakage
profile is Lr

π and MMEr
π achieves it. For non-RR MME, this leakage profile is Lπ and MMEπ below achieves

it. For RF MME, MMEf
π achieves the the RF leakage analog (see Section 5.1) of MMEr

π. The above MME
and leakage algorithms are given in Fig. 8. All of these schemes were inspired by

∏
bas from [10], with minor

modifications to allow for the different response types and keep tokens compact. Each of these schemes
achieve (adaptive) semantic security with respect to their leakage algorithms in the RO model (as was done
in [10,21]). The only caveat to this being that SE in the RR and RF variants are of the “one-time pad style”
(e.g. CTR mode, or using a PRG mask).

The primitives used are symmetric encryption scheme SE and function family F. We require that SE.KS =
{0, 1}F.ol = F.KS in MMEr

π. Note that MMEπ.KS = SE.KS× F.KS and MMEr
π.KS = F.KS.

Note that MMEr
π has content oblivious leakage (as defined in Section 4). The setup leakage is the number

of values in T which is constant for homomorphic multimaps because SE’s ciphertext length function is

16

https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.1.pdf
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
https://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp


Alg LMMu.Enc
(
(K1,K2),M

)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= ( ) do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

If b1 = · · · = bn = 0 then //Values

M1[ℓ]← (v1, . . . , vn)

Else if b1 = · · · = bn = 1 then //Labels

For i ∈ [n] do

tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)

For i = 1, 2 do EDi←$ MMEi.Enc(Ki,Mi)

Return (ED1, ED2)

Alg LMMu.Tok
(
(K1,K2), ℓ

)
For i = 1, 2 do tki←$ MMEi.Tok(Ki, ℓ)

Return (tk1, tk2)

Alg LMMu.Eval
(
(tk1, tk2), (ED1, ED2)

)
t← MME2.Eval(tk2, ED2)

If t = ( ) then

Return
(
1,MME1.Eval(tk1, ED1)

)
(t1, . . . , tn)← t

For i ∈ [n] do

ti ← MME1.Eval(ti, ED1)

Return
(
2, (t1, . . . , tn)

)
Alg LMMu.Dec

(
(K1,K2), (n, c)

)
If n = 1 then return MME1.Dec(K1, c)

(t1, . . . , tn)← c

For i ∈ [n] do ui ← MME1.Dec(K1, ti)

Return (u1, . . . ,un)

Fig. 9. Algorithms for IA-MME scheme LMMu for uniform depth-2 IA-MMs (i.e. StE for UIA where UIA.dp =
depth(M) = 2) using the LMM technique. Here, MME1,MME2 are MME schemes and MME2 is RR. See Appendix B
for a more general variant of LMMu which supports non-uniform, arbitrary depth M.

message independent. The query leakage (apart from the query response) is the query equality pattern
(which is independent of M).

B LMM details

LMM approach for uniform, depth-2 IA-MMs. The full pseudocode for LMMu is given in Fig. 9. Note
that LMMu.KS = MME1.KS × MME2.KS. We additionally assume that lLen = vLen = len = MME1.tl (for
M1,M2), and that depth(M) = 2 to avoid degeneracy.

Proving security of the LMM approach. Proving the security of the above IA-MME schemes is more
tricky than one might initially think. We demonstrate this by walking through the seemingly straightforward
security proof for LMMu then pointing out a issue therein. Note that this applies to LMM too since LMMu

is a special case of it.
Intuitively, this proof would involve reducing the security of LMMu to that of MME1,MME2. Since

these are all StE schemes, our proof would construct Llm,Slm, the leakage algorithm and simulator for
LMMu, from those associated to MME1,MME2 (i.e. L1,S1,L2,S2). This intuitive proof works when L1,L2

are the“standard” leakage profile (as discussed in Section 2.1 and Appendix A) but falls through under some
pathological leakage algorithms and simulators.

In Fig. 10 we give the intuitive Llm,Slm inspired by those used in prior work. Intuitively, Llm

(
s,M

)
will construct M1,M2 in the same way as LMMu.Enc (using a random K1 ∈ MME1.KS)

5 then return their
setup leakages under the respective schemes that encrypt them. The query leakage for ℓ includes the leakage
incurred for querying ℓ under both schemes, and also the leakage associated with querying MME1 with any
ℓi that would be returned by MME2 (in the case of a depth-2 query).

Meanwhile, Slm’s algorithms channel their inputs into the respective simulators and compose their outputs
in the natural way. During the setup phase we have no problems simulating data structures ED1, ED2.
However, consider what happens in the query phase when a depth-2 query is made. Recall that MME2 is
response-revealing and so lk2 takes the form (M2[ℓ], lk) for some lk where M2 is as it was constructed in
Llm. Before this leakage is passed to S2, the first argument is rewritten with s – the tokens returned by S1.
We call this the “leakage rewriting” trick. It is done so that MME2.Eval(tk, ED2) will return tokens which
MME1.Eval can evaluate. This switch is necessary because the tokens in M2[ℓ] are generated with K2 selected

5 An alternative approach to Llm is to generate the tokens tki in M2 using S1. However, this leads to the same type
of issues. If we instantiate a new instance of S1 outside of the leakage function, it is possible that the simulator is
randomized and the tokens it generates are different than the instance inside Llm, so we will once again need to
replace the tokens and employ content obliviousness to get the proof to go through.
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Alg Llm

(
s,M

)
K1←$ MME1.KS

For ℓ ∈ {0, 1}len where M[ℓ] ̸= ( ) do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

If b1 = · · · = bn = 0 then M1[ℓ]← (v1, . . . , vn)

Else if b1 = · · · = bn = 1 then

For i ∈ [n] do tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)

(L1, St1)←$ L1

(
s,M1

)
(L2, St2)←$ L2

(
s,M2

)
Return

(
(lk1, lk2), (St1, St2,M)

)

Alg Llm

(
q, ℓ, (St1, St2,M)

)
(lk1, St1)←$ L1

(
q, ℓ, St1

)
(lk2, St2)←$ L2

(
q, ℓ, St2

)
If M[ℓ] = (1∥ℓ1, . . . , 1∥ℓn) then

For i ∈ [n] do

(lki, St1)←$ L1

(
q, ℓi, St1

)
lk← (lk1, . . . , lkn)

Else lk← ( )

Return
(
(lk1, lk2, lk), (St1, St2,M)

)

Alg Slm
(
s, (lk1, lk2)

)
(ED1, St

′
1)←$ S1

(
s, lk1

)
(ED2, St

′
2)←$ S2

(
s, lk2

)
(ED1, ED2)← ED

Return
(
ED, (St′1, St

′
2)
)

Alg Slm
(
q, (lk1, lk2, lk), (St

′
1, St

′
2)
)

If lk = (lk′
1, . . . , lk

′
n) then

For i ∈ [n] do (tki, St
′
1)←$ S1

(
q, lk′

i, St
′
1

)
s← (tk1, . . . , tkn) ; (s

′, lk)← lk2 ; lk2 ← (s, lk)

(tk1, St
′
1)←$ S1

(
q, lk1, St

′
1

)
(tk2, St

′
2)←$ S2

(
q, lk2, St

′
2

)
Return

(
(tk1, tk2), (St

′
1, St

′
2)
)

Fig. 10. Leakage algorithm (left) and simulator (right) for LMMu, the IA-MME scheme for uniform depth-2 IA-MMs.
Here, MME1,MME2 are MME schemes and MME2 is RR. The leakage algorithm and simulator of MMEi is Li,Si
respectively.

in the leakage algorithm. S1 has no knowledge of this key so we can expect that these tokens are unlikely to
“work” with the simulated ED2. However, this switch also means that the behavior of S2 in Slm is no longer
well defined because MME2’s semantic security only promises that S2

(
q, (M2[ℓ], lk), St

′
2

)
returns a token,

not S2
(
q, (s, lk), St′2

)
.

Proof of Theorem 3. We can now state and prove LMMu’s security under the content obliviousness
assumption:

Theorem 3. Let LMMu be the IA-MME scheme for UIA defined in Fig. 9 using MME primitives MME1,MME2.
Let Llm,Slm be as defined in Fig. 10, where Li,Si are the leakage algorithm and simulator for MMEi (and
L2 is content oblivious). Then given adversary A one can define A1,A2 such that:

Advss
LMMu,Llm,Slm

(A) ≤ Advss
MME1,L1,S1

(A1)

+Advss
MME2,L2,S2

(A2).

Proof. The adversaries A1,A2 are described in Fig. 11. To aid this proof, we define G0,G1,G2 in Fig. 12
where the adversary A plays different hybrid games. Let b, b1, b2 be the challenge bits in Gss

LMMu,Llm,Slm
(A),

Gss
MME1,L1,S1

(A1) and Gss
MME2,L2,S2

(A2) respectively. Intuitively, each Ai is playing the semantic security
game for MMEi and runs A – A1 simulates the encryption of M2 using a simulator while A2 uses the MME1

algorithms to do likewise for M1.
The outline of the proof is to first transition from the “real-world” into a game where the encryption

of M2 is simulated. Then, transition to a game where token values for M2 are generated lazily (where we
invoke obliviousness). And finally, transition again into a game where the encryption of both M1 and M2

are simulated, which matches the “ideal-world.”
Our theorem statement will follow from a series of claims together with the triangle inequality. Specifically,

we use the following

|Pr[Gss
LMMu,Llm,Slm

(A)|b = 1]− Pr[Gss
LMMu,Llm,Slm

(A)|b = 0]|
≤ |Pr[G0]− Pr[G1]|+ |Pr[G1]− Pr[G2]|+ |Pr[G2]− Pr[G3]|.

The first and last terms give the theorem statement, and the difference between G1 and G2 is 0 by our
obliviousness assumption.
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Adversary A1(s)

K1←$ MME1.KS ; (M, Sta)←$A(s)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= ( ) do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

If b1 = · · · = bn = 0 then

M1[ℓ]← (v1, . . . , vn)

Else if b1 = · · · = bn = 1 then

For i ∈ [n] do tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)

(lk2, St2)←$ L2

(
s,M2

)
(ED2, St

′
2)←$ S2

(
s, lk2

)
Return

(
M1, (ED2, Sta)

)
Adversary ATok

1 (q, ED1, (ED2, Sta))

b′←$ATok∗(q, (ED1, ED2), Sta) ; Return b′

Oracle Tok∗(ℓ)

(b1∥v1, . . . , bn∥vn)←M[ℓ]

(lk2, St2)←$ L2

(
q, ℓ, St2

)
If b1 = · · · = bn = 1 then

For i ∈ [n] do tki←$ Tok(vi)

(s′, lk)← lk2 ; lk2 ←
(
(tk1, . . . , tkn), lk

)
(tk2, St

′
2)←$ S2

(
q, lk2, St

′
2

)
tk1←$ Tok(ℓ) ; Return (tk1, tk2)

Adversary A2(s)

K1←$ MME1.KS

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}len if M[ℓ] ̸= ( ) do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

If b1 = · · · = bn = 0 then

M1[ℓ]← (v1, . . . , vn)

Else if b1 = · · · = bn = 1 then

For i ∈ [n] do

tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)

ED1←$ MME1.Enc(K1,M1)

Return
(
M2, (K1, ED1, Sta)

)
Adversary ATok

2 (q, ED2, St
′
a)

(K1, ED1, Sta)← St′a
b′←$ATok∗(q, (ED1, ED2), Sta)

Return b′

Oracle Tok∗(ℓ)

tk1←$ MME1.Tok(K1, ℓ)

tk2←$ Tok(ℓ)

Return (tk1, tk2)

Fig. 11. Adversaries used in the proof of Theorem 3.

Notice that all the encrypted data structures and tokens in G0 are generated using the MME primitives.
This is the same as what happens in the “real world” of Gss

LMMu,Llm,Slm
(A). It is also equivalent to the “real

world” experienced by A2. Therefore,

Pr[G0] = Pr[Gss
LMMu,Llm,Slm

(A)|b = 1]

= Pr[Gss
MME2,L2,S2

(A2)|b2 = 1].

In G1, the tokens for depth-1 queries and ED1 are generated using the MME primitive while depth-2 tokens
and ED2 are simulated. This is what happens in the “ideal world” of Gss

MME2,L2,S2
(A2), which generates

tokens for MME2 via a simulator. So,

Pr[G1] = Pr[Gss
MME2,L2,S2

(A2)|b2 = 0].

Next, we observe that G2 captures the “real world” of Gss
MME1,L1,S1

(A1), because it recursively replaces
the tokens prior to simulating the token for MME2, just like A1. This establishes that,

Pr[G2] = Pr[Gss
MME1,L1,S1

(A1)|b1 = 1].

We now invoke perfect obliviousness to claim

|Pr[G2]− Pr[G1]| ≤ max
A

Pr[Gobliv
L2

(A)] = 0,

because the values in the leakage output are replaced in equal number of values from Tok. If the second part
of lk2 is the same between these games, then everything in the games is identically distributed. Therefore,
the difference between these games is bounded by the probability that the second part of lk2 differs. This
is exactly the probability captured by Gobliv

L2
. However, by assuming perfect content obliviousness, any two

homomorphic multimaps will have this part of the leakage be exactly the same and because we replace s with
the same number of inputs, we are effectively comparing leakage outputs on two homomorphic multimaps.
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Game G0

For i = 1, 2 do Ki←$ MMEi.KS

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= ( ) do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

If b1 = · · · = bn = 0

then M1[ℓ]← (v1, . . . , vn)

Else if b1 = · · · = bn = 1 then

For i ∈ [n] do

tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)

For i = 1, 2 do

EDi←$ MMEi.Enc(Ki,Mi)

b′←$ATok
(
q, (ED1, ED2), Sta

)
Return b′ = 1

Oracle Tok(ℓ)

tk1←$ MME1.Tok(K1, ℓ)

tk2←$ MME2.Tok(K2, ℓ)

Return (tk1, tk2)

Game G1, G2

K1←$ MME1.KS ; (M, Sta)←$A(s)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= ( ) do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

If b1 = · · · = bn = 0 then

M1[ℓ]← (v1, . . . , vn)

Else if b1 = · · · = bn = 1 then

For i ∈ [n] do

tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)

ED1←$ MME1.Enc(K1,M1)

(lk2, St2)←$ L2

(
s,M2

)
(ED2, St

′
2)←$ S2

(
s, lk2

)
b′←$ATok

(
q, (ED1, ED2), Sta

)
Return b′ = 1

Oracle Tok(ℓ)

(lk2, St2)←$ L2

(
q, ℓ, St2

)
(b1∥v1, . . . , bn∥vn)←M[ℓ]

If b1 = · · · = bn = 1 then

For i ∈ [n] do

tki←$ Tok(vi)

s← (tk1, . . . , tkn)

(s′, lk)← lk2 ; lk2 ← (s, lk)

tk1←$ MME1.Tok(K1, ℓ)

(tk2, St
′
2)←$ S2

(
q, lk2, St

′
2

)
Return (tk1, tk2)

Game G3

K1←$ MME1.KS ; (M, Sta)←$A(s)
For ℓ ∈ {0, 1}len where M[ℓ] ̸= ( ) do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

If b1 = · · · = bn = 0 then M1[ℓ]← (v1, . . . , vn)

Else if b1 = · · · = bn = 1 then

For i ∈ [n] do tki←$ MME1.Tok(K1, vi)

M2[ℓ]← (tk1, . . . , tkn)

For i = 1, 2 do

(lki, Sti)←$ Li

(
s,Mi

)
; (EDi, St

′
i)←$ Si

(
s, lki

)
b′←$ATok

(
q, (ED1, ED2), Sta

)
Return b′ = 1

Oracle Tok(ℓ)

(lk1, St1)←$ L1

(
q, ℓ, St1

)
(lk2, St2)←$ L2

(
q, ℓ, St2

)
(b1∥v1, . . . , bn∥vn)←M[ℓ]

If b1 = · · · = bn = 1 then

For i ∈ [n] do

tki←$ Tok(vi)

s← (tk1, . . . , tkn)

(s′, lk)← lk2 ; lk2 ← (s, lk)

(tk1, St
′
1)←$ S1

(
q, lk1, St

′
1

)
(tk2, St

′
2)←$ S2

(
q, lk2, St

′
2

)
Return (tk1, tk2)

Fig. 12. Games G0,G1,G2,G3 used in the proof of Theorem 3.
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Finally, we establish

Pr[G3] = Pr[Gss
MME1,L1,S1

(A1)|b1 = 0]

= Pr[Gss
LMMu,Llm,Slm

(A)|b = 0].

In G3 the tokens in M2 during the setup phase are generated with MME1, but just like in Slm, they will be
replaced with simulator-generated ones when the adversary queries the associated label. It also replaces the
values with updated tokens just like in both Slm and A1.

LMM details. In Section 4, we described how LMMu, the scheme supporting uniform depth-2 IA-MMs could
be extended to support all IA-MMs. The resultant scheme is LMM, an StE scheme for IA, whose pseudocode
we present in Fig. 13. As in Section 4, we will assume that all M being encrypted have depth(M) ≥ 2 to
avoid degeneracy. Here, we let D = IA.dp and have D + 1 MME schemes MME0, . . . ,MMED, which are
all RR except MME1. As discussed in Section 4, we assume that the keys for the MME primitives can be
generated using function family F (i.e. {0, 1}F.ol = MMEi.KS for i ∈ {0, . . . , D}). Also, we assume lLen = len,
len = MME1.tl = · · · = MMED−1.tl and that vLen = len+ ⌈log2(D)⌉.

We state the security of LMM with the below theorem, which uses the leakage algorithm Llm depicted
in Fig. 14. Though the latter pseudocode looks quite complex, its intuition is straightforward. During the
setup phase, its leakage is the sum of all the setup leakage from the Mi generated in LMM.Enc under Li.
When a query is made, the leakage algorithm recursively traverses all the descendants of the query (using
RecLeak) made (in the graph visualization of IA-MMs in Section 3) and leaks their depths and their query
leakages (under the appropriate Li). Additionally, it leaks the query leakage under L0 for the access to M0

and any additional accesses to M1 to retrieve non-RH values.

Theorem 4. Let LMM be the IA-MME scheme for IA defined in Fig. 13 using MME primitives MME0, . . . ,MMED

(where D = IA.dp) and function family F. Let Li,Si be a leakage algorithm and simulator for MMEi. If
L0,L2, . . . ,LD are content oblivious and Llm is as defined in Fig. 14, then given adversary A one can define
Af ,A0,A1, . . . ,AD,Slm such that:

Advss
LMM,Llm,Slm

(A) ≤ Advprf
F (Af )

+Advss
MME0,L0,S0

(A0)

+Advss
MME1,L1,S1

(A1)

+ · · ·+Advss
MMED,LD,SD

(AD).

Since the proof of this result is standard and is an extension of Theorem 3, we provide only a sketch of
this proof.

Proof Sketch. The proof proceeds through standard game transitions, much like those in the proof of
Theorem 3. We begin in the “real-world,” and make a game transition to a game where we replace MME0

with a simulator and invoke the content obliviousness of L0, so that the tokens can be replaced at query
time in future games.

Next, we use a series of game transitions to replace MME2, then MME3, etc, until MMED are all replaced
with simulators. At each of these steps, we must additionally invoke the content obliviousness of each of
L2, . . . ,LD. Finally, we replace MME1 with a simulator in our last game transition, which is equivalent to
the “simulated world” against Slm with Llm, but do not require content oblivious leakage, because it is
response-hiding.

In each of these game transitions, we build up to the fully recursive leakage in Llm. We add on depth to
this recursive leakage as we replace schemes with simulators in subsequent hybrid games.

C Inconsistent Simulators in Prior Work

We observe the use of “leakage rewriting” outlined in Section 4 in SPX, OPX, and LabGraph [23,26,14].
Specifically, these papers construct uniform, depth-2 IA-MMs usings the LMM scheme, but their proofs have
a technical issue, which can be fixed without content oblivious assumption. Although this issue does occur
multiple times in SPX and OPX, we will only outline a single occurrence for brevity. The other occurrences
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Alg LMM.Enc(K,M)

D ← depth(M)

For i = 0, . . . , D do

Ki ← F.Ev(K, i)

For ℓ ∈ {0, 1}len where M[ℓ] ̸= ( ) do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

If bi = 0 then ui ← (0, 0len)

Else

di ← depth(M, vi)

tki←$ MMEdi .Tok(Kdi , vi)

ui ← (di, tki)

{jk}k∈[m] ← {i ∈ [n] : bi = 0}
M1[ℓ]← (vj1 , . . . , vjm)

tk←$ MME1.Tok(K1, ℓ)

d← depth(M, ℓ)

If d = 1 then M0[ℓ]← (1, tk)

Else

If m ≥ 1 then uj1 ← (0, tk)

Md[ℓ]← (u1, . . . , un)

tk′←$ MMEd.Tok(Kd, ℓ)

M0[ℓ]← ((d, tk′))

For d = 0, . . . , D do

EDd←$ MMEd.Enc(Kd,Md)

Return (ED0, . . . , EDD)

Alg LMM.Tok(K, ℓ)

tk←$ MME0.Tok
(
F.Ev(K, 0), ℓ

)
Return tk

Alg LMM.Eval(tk,ED)

(ED0, ED1, . . . , EDD)← ED

(d, tk′)← MME0.Eval(tk, ED0)

c′ ← MMEd.Eval(tk
′, EDd)

If d = 1 then return (1, c′)(
(d1, tk1), . . . , (dn, tkn)

)
← c′

{jk}k∈[m] ← {i ∈ [n] : di = 0}
For i ∈ [n] do

If di ̸= 0 do ui ← LMM.Eval(tki,ED)

Else if i = j1 then

ui ← ⊥ ; c← MME1.Eval(tki, ED1)

Else ui ← ⊥
If m ≥ 1 then

return
(
(0, c), u1, . . . , un

)
Else return (0, u1, . . . , un)

Alg LMM.Dec(K,u)

K1 ← F.Ev(K, 1)

If u = (1, c′) then return MME1.Dec(K1, c
′)

(b, u1, . . . , un)← u

{jk}k∈[m] ← {i ∈ [n] : ui = ⊥}
For i = 1, . . . , n where ui ̸= ⊥ do

wi ← LMM.Dec(K1, ui)

If b = (0, c) then

(v1, . . . , vm)← MME1.Dec(K1, c)

For i ∈ [m] do wji ← vi
Return (w1, . . . , wn)

Fig. 13. Algorithms for IA-MME scheme LMM (i.e. StE for IA). Note that when we assign the {jk}k∈[m] we require
that j1 < · · · < jm. Since we move values to M1, by convention, we store the token pointing to Mi[ℓ] in the first
location a value would be (j1).
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Alg Llm

(
s,M

)
K←$ LMM.KS ; D ← depth(M)

Generate M0, . . . ,MD as

in LMM.Enc(K,M)

For i = 0, . . . , D do

(lki, Sti)←$ Li

(
s,Mi

)
s← (St0, . . . , StD)

Return
(
(lk0, . . . , lkD), (s,M)

)
Alg Llm

(
q, ℓ, (s,M)

)
(St0, . . . , StD)← s

(lk0, St0)←$ L0

(
q, ℓ, St0

)
s← (St0, . . . , StD)

(lk, s)←$ RecLeak(ℓ, s,M)

Return
(
(lk0, lk), (s,M)

)

Alg RecLeak(ℓ, (St0, . . . , StD),M)

(b1∥v1, . . . , bn∥vn)←M[ℓ]

d← depth(M, ℓ) ; (lk′, Std)←$ Ld

(
q, ℓ, Std

)
If d = 1 then lk ← lk′

Else

If ∃i ∈ [n] where bi = 0 then

(lkc, St1)←$ L1

(
q, ℓ, St1

)
Else lkc ← ⊥
For i ∈ [n] do

If bi ̸= 0 then

s← (St0, . . . , StD)

(lki, (St0, . . . , StD))← RecLeak(vi, s,M)

Else lki ← ⊥
lk ← (lkc, lk

′, lk1, . . . , lkn)

Return
(
(d, lk), (St0, . . . , StD)

)
Fig. 14. Leakage algorithm for LMM used in the proof of Theorem 4. Here, each Li is a leakage algorithm for MME
scheme MMEi. Note that for i = 0, 2, . . . , D, MMEi is RR and Li is content oblivious. RecLeak is a helper algorithm
used by Llm to handle recursive queries.

can be fixed using the same content oblivious assumption. We observe in parts of SPX and OPX the authors
specify the construction should use a specific scheme, and the proofs which make this assumption are free
from the issue, because those schemes already have content oblivious leakage. We also illustrate how the
“chainability” assumption from [14] is insufficient to justify the use of the “leakage rewriting” trick.

C.1 Leakage Rewriting in SPX/OPX

The relevant definition for the issue is Definition 4.3 at the end of Section 4 in SPX. In the ideal game of
this definition, the simulator only receives inputs of the form (DS(qi),LQ(DS, qi)) to generate tokens.

We observe in the actual proof, the simulator SMM is not fed inputs of the same form as in the security
definition. The occurrence we focus on is in section “Appendix F: Proof of Theorem 6.1” of SPX. The base
simulator SMM is the simulator which exists based on the security Definition 4.3.

In describing the simulator, the authors write,

rtkr ← SMM((ctj)j∈[#r],Lmm
Q (MMR, χ(r)))

And, then in the proof pass these rtkr into another simulator,

tki,j ← SMM((rtkr)r∈DBatti,j=Xi,j
,Lmm

Q (MMV , χ(atti,j)))

However, there is no guarantee that this input to SMM fits the input form required by Definition 4.3, because
(rtkr)r∈DBatti,j=Xi,j

(tokens for MMR) are not necessarily the same tokens contained in MMV (χ(atti,j)). Unless

the leakage from the generation of the simulated rtkr leaks the tokens in MMR or a way to generate them,
then it is unlikely over a random key choice the rtkr generated correspond to the the values stored in MMV .

Note, this is not a necessary behavior of SMM, but one that is not ruled out. In Section 4, we illustrate
a possible change to the security definition and a sufficient condition on the leakage to avoid such a change.
Either of which, will allow the proof to go through.

C.2 Leakage Rewriting in CK10

In LabGraph, the same trick is used in the proof of Theorem 6.2 [14]. At the beginning of the proof, the
authors outline a simulator S. In step 2b, S feeds in vw generated from other simulators to generator a token
τw. However, these simulators may not necessarily generate stored tokens τ+ and τ− with high probability.

It is worth noting these authors require their structured encryption algorithms to be “chainable,” which
places restrictions on both the setup and query leakage. However, the security definition (Definition 4.2)
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Alg MMEf .Enc
(
(K,Ks),M

)
For ℓ ∈ {0, 1}len do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

If bi = 0 then vi←$ SE.Enc(Ks, vi)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
ED←$ MMEr.Enc(K,M1) ; Return ED

Alg MMEf .Tok
(
(K,Ks), ℓ

)
tk←$ MMEr.Tok(K, ℓ) ; Return tk

Alg MMEf .Eval(tk, ED)

c←$ MMEr.Eval(K, c)

Return tk

Alg MMEf .Dec
(
(K,Ks), c

)
(b1∥t1, . . . , bn∥tn)← c

For i ∈ [n] do

If bi = 0 then

ti ← SE.Dec(Ks, ti)

Return (t1, . . . , tn)

Alg Lf

(
s,M

)
For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] if bi = 0 then vi←$ {0, 1}SE.cl(|vi|)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
(lk, St)←$ Lr

(
s,M1

)
Return (lk, St)

Alg Lf

(
q, ℓ, St

)
(tk, St)←$ Lr

(
q, ℓ, St

)
Return (tk, St)

Fig. 15. Algorithms (top) and leakage algorithm (bottom) for RF MME scheme MMEf = RfT[MMEr, SE] constructed
using the RfT transform, RR MME scheme MMEr (with leakage algorithm Lr) and symmetric encryption scheme
SE.

indicates the simulator for queries will receive input of the form (L2(δ, q),vI) where I := Query(δ, q). But, the
restrictions on the query leakage function in their Definition 6.1 (Chainability) do not rule out the existence
of a simulator fitting the security definition but which behaves in an unspecified way on mismatched input.

D Achieving Response Flexibility

RfT transform. In Section 5.1 we sketched how RF MME schemes can be constructed generically from
RR MME using the RfT transform. Intuitively, we will first encrypt the values in M which are supposed to
be hidden from the server using symmetric encryption scheme SE then encrypt this using RR MME scheme
MME. More specifically, we define the generic transform MMEf which takes the primitives as input and
returns RF MME scheme MMEf = RfT[MMEr,SE]. We define MMEf .KS = MMEr.KS× SE.KS and MMEf ’s
algorithms are given in Fig. 15. Note that this satisfies both requirements of an RF MME because MMEr is
RR and MMEf .Dec1((K,Ks), ·) = SE.Dec(Ks, ·). Note also that the values in M1 are slightly longer than in
M because of SE’s ciphertext expansion (i.e. if vLen = x in M then vLen = SE.cl(x) in M1) so we expect
MMEr,MMEf to support the respective value lengths (and pad their values up to it if need be).

RfT preserves security. TheRfT transform preserves both (standard) semantic security and TV-security
(as defined in Section 5.2) assuming state-of-the-art primitives. We state and prove the TV-security variant
of this result and note that the analogous result for semantic security follows directly – by assuming that
the adversary has no token values in M.

In Section 5.1, we gave some intuition about deriving Lf from Lr. For the RfT transform, the analogous
leakage profile is given in Fig. 15. In this version of Lf , we construct M1 from M by transcribing the bi = 1
values without modification, then replacing the bi = 0 values with random strings of the appropriate length.
Everything else proceeds in the intuitive way from here on, using Lr, with M1 instead of M.

This leakage profile is stated a little different from the one sketched in Section 5.1 in order to simplify
the proof. Namely, we sketched a leakage algorithm which uses Lr algorithms everywhere except the query
leakage, where the non-RR values would be omitted from the query response tuple that is leaked. However,
they are essentially equivalent except that in the one below, we are implicitly leaking query patterns and do
away with any need for content obliviousness.

Theorem 5. Let MMEf = RfT[MMEr,SE] be the RF MME scheme in Fig. 15. Let Lr be the leakage
algorithm for MMEr and Lf be as defined in Fig. 15. Then, given an adversary A and simulator S, one can
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Adversary AEnc
1

K←$ MMEr.KS ; (M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

(b1∥u1, . . . , bn∥un)←M[ℓ]

For i ∈ [n] do

If bi = 0 then vi←$ Enc(vi)

Else vi←$ MME.Tok(K, vi)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
ED←$ MMEr.Enc(K,M1)

b′←$ATok(q, ED, Sta) ; Return b′

Oracle Tok(ℓ)

tk←$ MMEr.Tok(K, ℓ) ; Return tk

Adversary A2(s)

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

(b1∥u1, . . . , bn∥un)←M[ℓ]

For i ∈ [n] do

If bi = 0 then

vi←$ {0, 1}SE.cl(|vi|)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
Return (M1, Sta)

Adversary ATok
2 (q, ED, Sta)

b′←$ATok(q, ED, Sta)

Return b′

Games G0 , G1

K←$ MMEr.KS ; Ks←$ SE.KS

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

If bi = 1 then vi←$ MMEr.Tok(K, vi)

Else vi←$ SE.Enc(Ks, vi)

Else vi←$ {0, 1}SE.cl(|vi|)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
ED←$ MMEr.Enc(K,M1)

b′←$ATok(q, ED, Sta)

Return b′ = 1

Oracle Tok(ℓ)

tk←$ MMEr.Tok(K, ℓ)

Return tk

Game G2

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

If bi = 1 then

vi←$ MMEr.Tok(K, vi)

Else vi←$ {0, 1}SE.cl(|vi|)

M1[ℓ]← (b1∥v1, . . . , bn∥vn)
(lk, St)←$ Lr

(
s,M

)
(ED,St′)←$ S(s, lk)
b′←$ATok(q, ED, Sta)

Return b′ = 1

Oracle Tok(ℓ)

(lk, St)←$ Lr

(
s, ℓ, St

)
(tk, St′)←$ S(q, lk, St′)
Return tk

Fig. 16. Adversaries and games used in the proof of Theorem 5.

construct A1,A2 such that:

Advtv
MMEf ,Lf ,S(A) ≤ Advind$

SE (A2) +Advtv
MMEr,Lr,S(A1).

Proof. We define the adversaries A1,A2 in Fig. 16 along with three games G0,G1,G2 where the
adversary A plays different hybrid games. Let b, b1, b2 be the challenge bits in Gtv

MMEf ,Lf ,S(A), G
ind$
SE (A1) and

Gtv
MMEr,Lr,S(A2) respectively.
In G0 (which includes the boxed code), the values in M1 are either encrypted with SE or tokenized with

MMEr. The encrypted data structure and tokens that A sees are also the outputs of MMEr’s algorithms.
This is equivalent to encryption and token generation in the “real world” when A plays the TV-security
game for MMEf . The adversary A2 (playing the IND$ game) runs A, simulating everything like in the real
world of the TV-security game (with keys of its own choosing). uses its oracle to encrypt values in M1, but
uses MMEr’s algorithms everywhere else. Therefore, the “real world” of A1 playing the IND$ game is also
equivalent to G0 and we have

Pr[G0] = Pr[Gtv
MMEf ,Lf ,S(A)|b = 1] = Pr[Gind$

SE (A1)|b1 = 1].

G1 is almost the same as G0 except that in place of encryption with SE, a randomly selected bitstring
of the same length will be used. From the above discussion, one can see this is equivalent to A1 playing
the IND$ game in the “ideal world”. At the same time, A2 also runs A but replaces all values that should
be encrypted in M with random strings before returning it during the setup phase. Therefore, G1 is also
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Game Gsim-ac-prf
F,S,P (A)

For u ∈ {0, 1}∗ do

Ku←$ F.KS

σP←$ P.Init

σ←$ S.Init

b←$ {0, 1}
b′←$AEv,Exp,Prim

Return b = b′

Oracle Prim(x)

y1←$ P.Prim(x : σP)

y0←$ S.Prim(x : σ)

Return yb

Oracle Ev(u, x)

y1←$ F.EvP(Ku, x)

If u ̸∈ X then

If Tu[x] = ⊥ then y0←$ {0, 1}F.ol

Else y0 ← Tu[x]

Else

y0←$ S.Ev(x : σ)

Tu[x]← y0
Return yb
Oracle Exp(u)

K1 ← Ku

K0←$ S.Exp(u, Tu : σ)

X.add(u)

Return Kb

Game Gsim-ac-kp
SE,S,P (A)

For u ∈ {0, 1}∗ do

Ku←$ SE.KS

σP←$ P.Init

σ←$ S.Init

b←$ {0, 1}
b′←$AEv,Enc,Prim

Return b = b′

Oracle Prim(x)

y1←$ P.Prim(x : σP)

y0←$ S.Prim(x : σ)

Return yb

Oracle Enc(u,m)

c1←$ SE.EncP(Ku,m)

If u ̸∈ X then

c0←$ S.Enc1(|m| : σ)
Else

c0←$ S.Enc2(u,m : σ)

Mu.add(m) ; Cu.add(cb)

Return cb
Oracle Exp(u)

K1 ← Ku

K0←$ S.Exp(u,Mu, Cu : σ)

X.add(u)

Return Kb

Fig. 17. SIM-AC security definintions from [21] for PRF and CPA security. The bottom game is a combination of
the original CPA game in the paper and a condition on the simulator structure to achieve key private security.

equivalent to A2 playing the TV-security game for MMEr in the “real world”. This gives us

Pr[G1] = Pr[Gind$
SE (A1)|b1 = 0] = Pr[Gtv

MMEr,Lr,S(A2)|b2 = 1].

Finally, in G2, values in M that should be encrypted are still replaced with random strings, but now
this multimap is given to the leakage algorithm Lr and simulator S to construct ED, tk. Immediately, we
can see that this is equivalent to A2 playing the TV-security game for MMEr in the “ideal world”. At the
same time, we defined Lf to use the same replacement technique and so it is also equivalent to A playing
the TV-security game for MMEf . This gives us

Pr[G2] = Pr[Gtv
MMEr,Lr,S(A2)|b2 = 0] = Pr[Gtv

MMEf ,Lf ,S(A)|b = 0].

Combining these three equations gives us the advantage bound in the theorem statement.

E TV-Secure RF MME scheme

In this section, we detail the RF MME schemeMMEf
π and explain why it achieves sufficient security to be used

in SMM. In particular, we reduce the TV-security of MMEf
π to the security of its primitives under adaptive

compromise. This latter notion of security was first defined by JT for both function families (which we use
without modification) and symmetric encryption (which we modify slightly to suit the form of encryption
done in our scheme).

AC Security Notions. In our proof, we reduce the TV-security of MMEf
π to the SIM-AC-PRF security

of F, the SIM-AC-KP security of SE and the PRF security of F. All three of the above security notions are
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Alg MMEf
π.Enc

P1,P2
(
(Kf ,K0),M

)
For ℓ ∈ {0, 1}lLen do

K1,ℓ ← F.EvP1
(
Kf , ℓ∥1

)
K2,ℓ ← F.EvP1

(
Kf , ℓ∥2

)
(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

b′ ← SE.EncP2(K1,ℓ, bi)

If bi = 1 then

c← SE.EncP2(K1,ℓ, vi)

Else

c← SE.EncP2(K0, vi)

T[F.EvP1(K2,ℓ, i)]←$ (b′, c)

Return T

Alg MMEf
π.Tok

P1,P2((Kf ,K0), ℓ)

K1,ℓ ← F.EvP1
(
Kf , ℓ∥1

)
K2,ℓ ← F.EvP1

(
Kf , ℓ∥2

)
Return (K1,ℓ,K2,ℓ)

Alg MMEf
π.Eval

P1,P2((K1,ℓ,K2,ℓ),T)

n← 1

While T[F.EvP1(K2,ℓ, n)] ̸= ⊥ do

(b′, c)← T[F.EvP1(K2,ℓ, n)]

b← SE.DecP2(K1,ℓ, b
′)

v ← SE.DecP2(K1,ℓ, c)

If b = 1 then vn ← 1∥v else vn ← 0∥c
n← n+ 1

n← n− 1

Return (v1, . . . , vn)

Alg MMEf
π.Dec

P1,P2
(
(Kf ,K0),v

)
(b1∥v1, . . . , bn∥vn)← v

For i ∈ [n] do

If bi = 0 then

vi ← SE.DecP2
(
K0, vi

)
Return (v1, . . . , vn)

Algs Lf
π

(
s,M

)
For ℓ ∈ {0, 1}lLen do

n← n+#(M[ℓ]))

Return
(
N, (M)

)
Algs Lf

π

(
q, ℓ, l

)
(ℓ1, . . . , ℓq,M)← l ; x← min

ℓi=ℓ
i

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

If bi = 0 then lki ← ⊥
Else (lki, l)← Lf

π

(
q, vi, l

)
lk ← (x, lk1, . . . , lkq)

Return
(
lk, (ℓ1, . . . , ℓq, ℓ,M)

)
Fig. 18. Algorithms for RF MME scheme MMEf

π, and its leakage profile.

given with respect to ideal primitives (similar to the random oracle model or ideal cipher model). An ideal
primitive P has functions P.Init, which outputs an initial state, and P.Prim(x : σP), which statefully evaluates
inputs. For example, the fixed length n random oracle Pn

rom outputs an empty table on init and lazily samples
and records random elements from {0, 1}n on each new input to Pn

rom.Prim(x).

Additionally, the two notions of AC-security are defined with respect to simulators. Intuitively, these
simulators will be called upon to simulate calls to the ideal primitive, compromised keys, and evalua-
tions/encryption using the cryptographic primitive. For more details on this syntax, the reader may refer to
the work of [21]. These, along with the primitives, are indicated in the subscript of the games and advantages.

Our first security notion is SIM-AC-PRF. The relevant security game Gsim-ac-prf
F,S,P is recalled in Fig. 17

with only minor modifications to allow for concrete notions of security (i.e. input and output lengths are
assumed to be defined implicitly by the scheme, instead of in a security parameter). We define the advantage

of an adversary A as Advsim-ac-prf
F,S,P (A) = 2Pr[Gsim-ac-prf

F,S,P (A)]− 1.

Also in Fig. 17 is the SIM-AC-KP notion of security captured in security game Gsim-ac-kp
SE,S,P , which is

adapted from JT’s notion of SIM-AC-CPA security. In particular, we bring together JT’s notion of CPA
security and our conditions on simulator structure to ensure key private (KP) security. As before, we define

Advsim-ac-kp
SE,S,P (A) = 2Pr[Gsim-ac-kp

SE,S,P (A)]− 1.

Algorithms and leakage of MMEf
π. In Section 5, we suggested that the MME techniques of CJJ+ can

be extended to achieve a RF MME scheme [10]. In Fig. 18, we give the algorithms and leakage profile of this
scheme which we call MMEf

π.

The primitives used in MMEf
π are symmetric encryption scheme SE and function family F. We require

that SE.KS = {0, 1}F.ol = F.KS in MMEf
π. Note that MMEf

π.KS = SE.KS × F.KS. Finally, since we prove
security in an idealized model, we give MMEf

π access to two ideal primitives P1 and P2.
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Game G0

σP←$ P1.Init

σ′
P←$ P2.Init

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false

ED←$ Setup(M)

b′←$APrim,Tok(q, ED, Sta)

Return b′ = 1

Oracle Prim(x)

(d, x)← x

If d = 1 then

y←$ P1.Prim(x : σP)

Else

y←$ P2.Prim(x : σ′
P)

Return y

Oracle Tok(ℓ)

Return (K1,ℓ,K2,ℓ)

Alg Setup(M)

K0←$ {0, 1}F.ol

For ℓ ∈ {0, 1}lLen do

K1,ℓ ← F.EvP1
(
Kf , ℓ∥1

)
K2,ℓ ← F.EvP1

(
Kf , ℓ∥2

)
For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

b′ ← SE.EncP2(K1,ℓ, bi)

If bi = 1 then

vi←$ (K1,vi ,K2,vi)

c← SE.EncP2(K1,ℓ, vi)

Else

c← SE.EncP2(K0, vi)

T[F.EvP1(K2,ℓ, i)]←$ (b′, c)

Return T

Game G1

σP←$ P1.Init

σ′
P←$ P2.Init

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false

ED←$ Setup(M)

b′←$APrim,Tok(q, ED, Sta)

Return b′ = 1

Oracle Prim(x)

(d, x)← x

If d = 1 then

y←$ P1.Prim(x : σP)

Else

y←$ P2.Prim(x : σ′
P)

Return y

Oracle Tok(ℓ)

Return (K1,ℓ,K2,ℓ)

Alg Setup(M)

K0←$ {0, 1}F.ol

For ℓ ∈ {0, 1}lLen do

K1,ℓ←$ {0, 1}F.ol

K2,ℓ←$ {0, 1}F.ol

For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

b′ ← SE.EncP2(K1,ℓ, bi)

If bi = 1 then

vi←$ (K1,vi ,K2,vi)

c← SE.EncP2(K1,ℓ, vi)

Else

c← SE.EncP2(K0, vi)

T[F.EvP1(K2,ℓ, i)]←$ (b′, c)

Return T

Alg Search((b1∥v1, . . . , bn∥vn), S)
For i ∈ [n] do

If bi = 1 then

If vi ∈ S then return true

If Search(M[vi], S ∪ vi) then return true

Return false

Fig. 19. Games G0,G1 used in the proof of Theorem 1, and helper function Search used therein.
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Game G2

σP←$ P1.Init

σ′←$ Skp.Init

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false

ED←$ Setup(M)

b′←$APrim,Tok(q, ED, Sta)

Return b′ = 1

Oracle Prim(x)

(d, x)← x

If d = 1 then

y←$ P1.Prim(x : σP)

Else

y←$ Skp.Prim(x : σ′)

Return y

Oracle Tok(ℓ)

If M[ℓ] = ⊥ then

K1,ℓ←$ {0, 1}F.ol

Else then

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For t ∈ Tℓ

Mℓ.add(Tok(t))

K1,ℓ←$ Skp.Exp(ℓ,Mℓ, Cℓ : σ
′)

Return (K1,ℓ,K2,ℓ)

Alg Setup(M)

For ℓ ∈ {0, 1}lLen do

K2,ℓ←$ {0, 1}F.ol

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

b′ ← Skp.Enc1(|bi| : σ′)

Mℓ.add(bi) ; Cℓ.add(b
′)

For i ∈ [n] do

c← Skp.Enc1(2 · F.ol : σ′)

If bi = 1 then

Tℓ.add(vi) ; Cℓ.add(c)

T[F.EvP1(K2,ℓ, i)]←$ (b′, c)

Return T

Game G3

σ←$ Sprf .Init

σ′←$ Skp.Init

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false

ED←$ Setup(M)

b′←$APrim,Tok(q, ED, Sta)

Return b′ = 1

Oracle Prim(x)

(d, x)← x

If d = 1 then

y←$ Sprf .Prim(x : σ)

Else

y←$ Skp.Prim(x : σ′)

Return y

Oracle Tok(ℓ)

If M[ℓ] = ⊥ then

K1,ℓ←$ {0, 1}F.ol

K2,ℓ←$ {0, 1}F.ol

Else then

For t ∈ Tℓ

Mℓ.add(Tok(t))

K1,ℓ←$ Skp.Exp(ℓ,Mℓ, Cℓ : σ
′)

K2,ℓ←$ Sprf .Exp(ℓ,Xℓ : σ)

Return (K1,ℓ,K2,ℓ)

Alg Setup(M)

For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

b′ ← Skp.Enc1(|bi| : σ′)

Mℓ.add(bi) ; Cℓ.add(b
′)

For i ∈ [n] do

c← Skp.Enc1(2 · F.ol : σ′)

If bi = 1 then

Tℓ.add(vi) ; Cℓ.add(c)

x← {0, 1}F.ol ; Xℓ.add(x)

T[x]←$ (b′, c)

Return T

Fig. 20. Games G2,G3 used in the proof of Theorem 1. The Search helper function is given in Fig. 19.
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Adversary AEv,Prim
1

σ′
P←$ P2.Init

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false

ED←$ Setup(M)

b′←$APrimSim,TokSim(q, ED, Sta)

Return b′ = 1

Oracle PrimSim(x)

(d, x)← x

If d = 1 then

y←$ Prim(x)

Else

y←$ P2.Prim(x : σ′
P)

Return y

Oracle TokSim(ℓ)

Return (K1,ℓ,K2,ℓ)

Alg Setup(M)

K0←$ {0, 1}F.ol

For ℓ ∈ {0, 1}lLen do

K1,ℓ ← Ev(ℓ∥1)
K2,ℓ ← Ev(ℓ∥2)

For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

b′ ← SE.EncP2(K1,ℓ, bi)

If bi = 1 then

vi←$ (K1,vi ,K2,vi)

c← SE.EncP2(K1,ℓ, vi)

Else

c← SE.EncP2(K0, vi)

T[F.EvP1(K2,ℓ, i)]←$ (b′, c)

Return T

Adversary AEnc,Exp,Prim
2

σP←$ P1.Init

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false

ED←$ Setup(M)

b′←$APrimSim,TokSim(q, ED, Sta)

Return b′ = 1

Oracle TokSim(ℓ)

If M[ℓ] = ⊥ then

K1,ℓ←$ {0, 1}F.ol

Else then

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

If bi = 1 then

If K1,vi = ⊥ then

vi←$ TokSim(vi)

Else vi ← (K1,vi ,K2,vi)

c← Enc(ℓ, vi)

K1,ℓ←$ Exp(ℓ)

Return (K1,ℓ,K2,ℓ)

Oracle PrimSim(x)

(d, x)← x

If d = 1 then

y←$ P1.Prim(x : σP)

Else

y←$ Prim(x)

Return y

Alg Setup(M)

For ℓ ∈ {0, 1}lLen do

K2,ℓ←$ {0, 1}F.ol

For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

b′ ← Enc(ℓ, bi)

For i ∈ [n] do

If bi = 1 then

vi←$ TokSim(vi)

c← Enc(ℓ, vi)

Else

c← Enc(0, vi)

T[F.EvP1(K2,ℓ, i)]←$ (b′, c)

Return T

Fig. 21. Adversaries used for the first (top) and second (bottom) game hops in the proof of Theorem 1.
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Adversary AEv,Exp,Prim
3

σ′←$ Skp.Init

(M, Sta)←$A(s)
For ℓ ∈ {0, 1}lLen do

If Search(M[ℓ], {ℓ}) then return false

ED←$ Setup(M)

b′←$APrimSim,TokSim(q, ED, Sta)

Return b′ = 1

Oracle TokSim(ℓ)

If M[ℓ] = ⊥ then

K1,ℓ←$ {0, 1}F.ol

K2,ℓ←$ {0, 1}F.ol

Else then

For t ∈ Tℓ

Mℓ.add(TokSim(t))

K1,ℓ←$ Skp.Exp(ℓ,Mℓ, Cℓ : σ
′)

K2,ℓ←$ Exp(ℓ)

Return (K1,ℓ,K2,ℓ)

Oracle PrimSim(x)

(d, x)← x

If d = 1 then

y←$ Prim(x)

Else

y←$ Skp.Prim(x : σ′)

Return y

Alg Setup(M)

For ℓ ∈ {0, 1}lLen do

(b1∥v1, . . . , bn∥vn)←M[ℓ]

For i ∈ [n] do

b′ ← Skp.Enc1(|bi| : σ′)

Mℓ.add(b) ; Cℓ.add(b
′)

For i ∈ [n] do

c← Skp.Enc1(2 · F.ol : σ′)

If bi = 1 then

Tℓ.add(vi) ; Cℓ.add(c)

x← Ev(ℓ, i)

T[x]←$ (b′, c)

Return T

Fig. 22. Third adversary for the final game hop in the proof of Theorem 1.

Security reduction. We are now ready to state and prove the security reduction of MMEf
π. The theorem

stated below is analogous to the one in [21]. Note that, as mentioned before, we denote the ideal primitives
and simulators used in each definition in subscripts of each advantage terms. Additionally, we adopt the
same notation used by JT to manage a list L as a queue by using L.add, L.dq to queue and dequeue list
elements, respectively.

Theorem 1. Let MMEf
π and Lf be the scheme and leakage respectively described in Figure 18 using

PRF F, symmetric encryption scheme SE, and ideal primitives P1 and P2. Then, given adversary A and
simulators Sprf ,Skp one can define Sf ,A1, A2,A3 such that:

Advtv
MMEf

π,Lf ,Sf ,P1,P2
(A) ≤ Advprf

F,P1
(A1) +Advsim-ac-kp

SE,Skp,P2
(A2)

+Advsim-ac-prf
F,Sprf ,P1

(A3).

Proof. The proof closely follows the proof in Appendix D of [21]. In particular, we use the same 3 primary
game hops, however we reverse the order of the last two for simplicity. To navigate these hops, along with
the respective adversaries and games, we focus on the differences from the proof given by JT.

Claim. Let G0 and G1 be defined as in Figure (19), and A1 be defined as in Figure (21). Then,

|Pr[G1(A)]− Pr[G0(A)]| ≤ Advprf
F,P1

(A1).

The first game-hop (Claim 1 in [21]) generates K1 and K2 uniformly at random instead of as PRF

outputs, this step goes through without any issue and gives the Advprf
F,P1

(A1) term in the statement.

We switch the order of the next 2 gamehops relative to [21] for simplicity. In the second hop, we construct
an adversary for an encryption game defined in [21]. This allows us to run a simulator in the setup phase that
outputs ciphertexts. Later (when A calls Tok), we can give the simulator messages we want the ciphertexts
to decrypt to and it will return a key doing just that.

Claim. Let G2 be defined as in Figure (20), G1 as in Figure (19), and A2 as in Figure (21). Then,

|Pr[G2(A)]− Pr[G1(A)]| ≤ Advsim-ac-kp
SE,Skp,P2

(A2).
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Alg Sf(s, lk)
(N)← lk

σ←$ Sprf .Init

σ′←$ Skp.Init

For i ∈ [N ] do

b′ ← Skp.Enc1(1 : σ′)

c← Skp.Enc1(2 · F.ol : σ′)

x← {0, 1}F.ol

L.add((x, b′, c))

T[x]←$ (b′, c)

U ← [N ]

St← (σ, σ′, U, L, T )

Return (T, St)

Alg Sf(q, lk, St)
(σ, σ′, U, L, T )← St ; (tk1, . . . , tkq)← T

(x, lk1, . . . , lkq)← lk

If x ≥ 1 then return tkx
For i ∈ [n] do

If lki = ⊥ then bi ← 0

Else bi ← 1 ; (vi, t)←$ Sf(q, lki, St)
(x, b′, ci)← L.dq()

M.add(bi) ; C.add(b′) ; X.add(x)

For i ∈ [n] do

If bi = 1 then M.add(vi) ; C.add(c)

ℓ←$ U ; U ← U \ {ℓ}
K1←$ Skp.Exp(ℓ,M,C : σ′)

K2←$ Sprf .Exp(ℓ,X : σ)

tk ← (K1,K2) ; T ← (tk1, . . . , tkq, tk)

St← (σ, σ′, U, L, T )

Return (tk, St)

Fig. 23. Simulator for the proof of Theorem 1 which uses the leakage function from Figure (18).

At this point, we run into our first complication. The key given to the adversary when Tok is called,
must decrypt the revealed entries to other valid tokens. In both games each K2 is still generated at random,
so decrypting to those is just a matter of writing them down at setup and resusing them in the Tok.

However, the K1 for each token we reveal must also be a valid token. In G1, we generate K1 at random
just like K2, which can be used later when Tok is called. However, in G2, we delay the computing K1

until Tok is called. However, in order for the simulator Skp to generate K1, it must recursively determine
the tokens for revealed labels. We avoid any circular dependence by requiring an adversary to supply a
multimap without cycles in the TV-security game. This jump, using Skp to give usable tokens gives us the

Advsim-ac-kp
SE,Skp,P2

(A2) in the statement.

Claim. Let G3 and G2 be defined as in Figure (20), and A3 be defined as in Figure (22). Then,

|Pr[G3(A)]− Pr[G2(A)]| ≤ Advsim-ac-prf
F,Sprf ,P1

(A3),

For the final jump, we replace the remaining PRF outputs with random outputs to determine where in
the data structure ciphertexts are stored. In G3, the key for these outputs is determined later when Tok is
queried. In a similar way K1 was in the previous hop, the simulator Sprf provides a key that satisfies some

of the previous outputs. This final hop gives us the Advsim-ac-prf
F,Sprf ,P1

(A3) term in the theorem.

Claim. Let G3 be defined as in Figure (20), G0 as in Figure (19), Lf as in Figure (18), and Sf as defined in
Figure (23). Then,

|Pr[G3(A)]− Pr[G0(A)]| = Advtv
MMEf

π,Lf ,Sf ,P1,P2
(A),

At the end, we end up with a simulator, which outputs simulated ciphertexts in random locations at setup
phase. Then, at query time, determines the tokens to match the locations and revealed values with recursive
calls. This can be implemented with the recursive leakage Lf

π and simulates the ideal game. We observe that
G0 is exactly the real game and G3 is the ideal game, which with the triangle inequality completes the proof.

F Searchable Encryption using MME and IA-MME

We provide the pseudocode for several Searchable Encryption schemes.

Searchable Encryption Data Type. We begin by formalizing a data type for searchable encryption
SEdt. This captures collections of documents which the client seeks to retrieve via keywords that have been
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Alg SE1.Enc(K,DS)

For w ∈
⋃

l(D,W )∈DSW do

D←
(
D : (D,W ) ∈ DS , w ∈W

)
M[w]← Part(D)

Return MME.Enc(K,M)

Alg SE1.Tok(K,w)

Return MME.Tok(K,w)

Alg SE1.Eval(tk, ED)

Return MME.Eval(tk, ED)

Alg SE1.Dec(K, c)

D← Unpart(MME.Dec(K, c))

Return {D : D ∈ D}

Alg SE2.Enc(K,DS)

(D1,W1), . . . , (Dn,Wn)← DS

For i ∈ [n] do M[0∥i]← Part(Di)

For w ∈
⋃

(D,W )∈DS W do

M[1∥w]←
(
0∥i : i ∈ [n] , w ∈Wi

)
Return IAMME.Enc(K,M)

Alg SE2.Tok(K,w)

Return IAMME.Tok(K, 1∥w)

Alg SE2.Eval(tk, ED)

Return IAMME.Eval(tk, ED)

Alg SE2.Dec(K, c)

D← Unpart(IAMME.Dec(K, c))

Return {D : D ∈ D}

Fig. 24. Two StE schemes for SEdt (searchable encryption). SE1 uses the strawman solution of in-lined payloads and
an MME scheme MME, and SE2 uses depth-two indirect addressing scheme IAMME.

pre-assigned to the documents. For simplicity, we will assume that all keywords are of a constant length len
(in practice, this can be achieved with hashing). So we define

SEdt.Dom = {{Di,Wi}ni=1 : ∀i , Di ∈ {0, 1}∗,Wi ⊆ {0, 1}len} ,
SEdt.QS = {0, 1}len ,

SEdt.Eval(DS,w) = {D : (D,W ) ∈ DS , w ∈W}.

StE for SEdt. We now describe the two StE schemes for SEdt. Note that in our pseudocode, we assume
the existence of a partitioning algorithm Part which breaks a string of arbitrary length into a tuple of
strings of length len, then affixes a leading 0 to them (so they are ready for insertion into the IA-MME
at depth-1). We require that this partitioning be invertible via an algorithm Unpart, even when multi-
ple partitioned strings have been concatenated. In other words, for any strings s1, . . . , sn we require that
Unpart(Part(s1), . . . ,Part(sn)) = (s1, . . . , sn). Additionally, in pseudocode, we assume that “For” loops iterate
over sets in a random order.

Our first scheme is SE1 which uses an MME primitive MME. This is based on the strawman “inlined-
payloads” technique mentioned in Section 3. Let SE1.KS = MME.KS, and the pseudocode is given in Fig. 24.
Note that since this is using an MME scheme, we do not need the output of Part to have leading 0s.

Our second scheme is SE2 which uses a uniform depth-2 IA-MM for indexing. Let SE1.KS = IAMME.KS,
and the pseudocode is given in Fig. 24. As shown in our simulations in Section 6, this saves storage since
each document payload is only stored once in the dataset.

G SQL StE using IA-MME

We now demonstrate various ways that IA-MME can be used to build StE for SQL Databases. To simplify our
discussion, we will focus on two types of non-recursive SQL queries: relation retrievals and single-attribute
joins. However, we believe that the below StE schemes can extend their query support (e.g. select queries)
using standard techniques in the literature [26,12].

SQL Data Type. The data type capturing our desired functionality will be SQLdt.
First, we capture each relation in a SQL database as a tuple of strings with each string representing all

the values in a row. We assume that relations in the database can be uniquely identified via a string identifier
of length len. The set of possible SQL relations are therefore given by

SQLdt.Rltns = {(id, r) : id ∈ {0, 1}len , r = (r1, . . . , rn) , r1, . . . , rn ∈ {0, 1}∗}.
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With this, we can define the data structures in SQLdt as

SQLdt.Dom = {DS : DS = {(idi, ri)}ni=1} ⊂ SQLdt.Rltns , id1 ̸= . . . ̸= idn}.

We simplify the notation for retrieving the rows in a table by its unique identifier, with DS[id] = r if and
only if (id, r) ∈ DS. If no such relation exists in DS, then DS[id] = ⊥.

Joins take the rows of two tables and return some subsection of their cross product based on a predicate
For example, in an equijoin, the predicate is the equality of the value in a particular column of the left (i.e.
first input) table with another in a particular column of the right (i.e. second input) table. Therefore, we
simplify joins by defining join predicates to be the set of functions:

JPs = {jpred : {0, 1}∗ × {0, 1}∗ → {0, 1}}.

We also define the function Join to compute a join. It takes two sets of rows and a join predicate as input
and returns a set of tuples of rows:

Join(r1, r2, jpred) = {(r1, r2) : r1 ∈ r1 , r2 ∈ r2 , jpred(r1, r2) = 1}.

We want to support all queries of the form “select * from [table]” and a user-defined subset of the
queries of the form “select * from [table1] join [table2] on [predicate]”. To capture this, the scheme defines
SQLdt.JnQs such that:

SQLdt.JnQs ⊆ {(j, jpred, id1, id2) : jpred ∈ JPs , id1, id2 ∈ {0, 1}len}
SQLdt.QS = {(r, id) : id ∈ {0, 1}len} ∪ SQLdt.JnQs.

And query evaluation works as follows, for any DS, jpred, id, id1, id2:

SQLdt.Eval(DS, (r, id)) = DS[id]

SQLdt.Eval(DS, (j, jpred, id1, id2)) =


⊥ , if DS[id1] = ⊥ or DS[id2] = ⊥
⊥ , if Join(DS[id1], DS[id2], jpred) = ∅
Join(DS[id1], DS[id2], jpred), otherwise

Indirect Addressing for SQLdt. We will describe three StE schemes for SQLdt that use an arbitrary
IA-MME scheme (LMM or SMM). These adapt and extend the techniques from prior work in SQL StE and
demonstrates the versatility of IA-MME, and its power to simplify complicated StE schemes.

We also use Part as we did for SE, to partition a string into blocks of length len and add leading zeroes.
Similarly, Unpart restores any tuple of the form Part(r1)∥ . . . ∥Part(rn) to (r1, . . . , rn). To simplify notation,
we will assume the adversary chooses the set of joins SQLdt.JnQs and makes queries such that the output
is not ⊥. Additionally, for clarity, we allow arbitrary length labels in IAMME, with the understanding that
they can be hashed to length len to match the desired syntax of an IA-MME. In all three cases, the security
of the StE scheme reduces to that of IAMME immediately, and we omit the proofs for brevity.

The first scheme is FP2 that uses depth-two indirect addressing to perform fully precomputed join index-
ing. When SQL StE schemes SPX, OPX and FpSj are restricted to the query support in SQLdt, their schemes
are basically equivalent to FP2 with LMMu as the underlying primitive [23,26,12]. Let FP2.KS = IAMME.KS.
The algorithms for FP2 are given in Fig. 25.

The next scheme is PP2 that modifies the approach above with partially precomputed join indexing.
When SQL StE scheme FpSj is restricted to the query support in SQLdt, the schemes are basically equivalent
to PP2. The scheme’s key set is given by PP2.KS = IAMME.KS × SE.KS and its pseudocode is in Fig. 25.
Compared to FP2 has strictly less leakage (i.e. it is more secure) and reduces bandwidth and storage on
practical datasets [12].

The scheme PP3 is a slight modification of PP2 which makes use of the observation that when partially
precomputed joins are indexed, the scheme might store the same combinations of rows in the multimap
as it would in a relation retrieval query. This happens whenever an indexed join returns all rows from a
relation somewhere in the join output. With a third level of indirect addressing, we avoid indexing the whole
set of rows again and instead point to the relevant relation retrieval query. Using our IA-MME primitive,
the modification to achieve PP3 is very minimal, as demonstrated in the pseudocode in Fig. 25. Note that
PP3.KS = IAMME.KS× SE.KS.
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Alg FP2.Enc(K,DS)

For (id, (r1, . . . , rn)) ∈ DS do

For i = 1, . . . , n do

M[0∥id∥i]← Part(ri)

M[1∥(r, id)]← (1∥id∥i)
For (j, jpred, id1, id2) ∈ SQLdt.JnQs do

r← ( ) ; (r1, . . . , rn)← DS[id1]

(r′1, . . . , r
′
n)← DS[id2]

For (i, j) ∈ [n]× [n] do

If jpred(ri, r
′
j) = 1 then

r← r∥(1∥id∥i, 1∥id∥j)
M[1∥(j, jpred, id1, id2)]← r

Return IAMME.Enc(K,M)

Alg FP2.Tok(K, q)

If q = (r, id) then

return (r, IAMME.Tok(K, 1∥q))
Else return (j, IAMME.Tok(K, 1∥q))

Alg FP2.Eval((x, tk), ED)

Return (x, IAMME.Eval(tk, ED))

Alg FP2.Dec(K, (x, c))

r← IAMME.Dec(K, c)

(r1, . . . , rn)← Unpart(r)

If x = r then return (r1, . . . , rn)

Else return ((r1, r2), . . . , (rn−1, rn))

Algs PP2.Enc((K,Ks), DS), PP3.Enc((K,Ks), DS)

For (id, (r1, . . . , rn)) ∈ DS do

For i = 1, . . . , n do M[0∥id∥i]← Part(ri)

M[1∥(r, id)]← (1∥id∥i)
For (j, jpred, id1, id2) ∈ SQLdt.JnQs do

(r1, . . . , rn)← DS[id1] ; (r
′
1, . . . , r

′
n)← DS[id2]

ℓ1 ← 1∥L∥(j, jpred, id1, id2) ; ℓ2 ← 1∥R∥(j, jpred, id1, id2)
M[ℓ1]←

(
1∥id1∥i : i ∈ [n] , ∃j ∈ [n] , jpred(ri, r

′
j) = 1

)
If M[ℓ1] = M[1∥(r, id1)] then M[ℓ1]← (1∥(r, id1))
M[ℓ2]←

(
1∥id2∥j : j ∈ [n] , ∃i ∈ [n] , jpred(ri, r

′
j) = 1

)
If M[ℓ2] = M[1∥(r, id2)] then M[ℓ2]← (1∥(r, id2))

Return IAMME.Enc(K,M)

Algs PP2.Tok((K,Ks), q),PP3.Tok((K,Ks), q)

If q = (r, id) then return (r, IAMME.Tok(K, 1∥q))
Else If q = (j, jpred, id1, id2) then

Return
(
j, IAMME.Tok(K, 1∥L∥q), IAMME.Tok(K, 1∥R∥q),SE.Enc(Ks, jpred)

)
Algs PP2.Eval(tk, ED),PP3.Eval(tk, ED)

If tk = (r, tk′) then return (r, IAMME.Eval(tk, ED))

Else if tk = (j, tk1, tk2, c) then

Return (j, IAMME.Eval(tk1, ED), IAMME.Eval(tk2, ED), c)

Algs PP2.Dec((K,Ks), c),PP3.Eval(tk, ED)

If c = (r, c′) then return Unpart
(
IAMME.Dec(K, c′)

)
Else if c = (j, c1, c2, c3) then

r1 ← Unpart
(
IAMME.Dec(K, c1)

)
; r2 ← Unpart

(
IAMME.Dec(K, c2)

)
Return Join(r1, r2, SE.Dec(K

s, c3))

Fig. 25. Three StE schemes for SQLdt (relation retrievals and joins on SQL data). FP2 and PP2 use depth-two
uniform indirect addressing while PP3 uses depth-three non-uniform indirect addressing.
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Data Scheme
LMM SMM

M0 M1 M2 M3 M

2021 ePrint SE2 – 9.388e7 6.542e3 – 9.389e7
2020 ePrint SE2 – 9.024e7 6.197e3 – 9.024e7

TPC-H (10MB) FP2 – 6.893e5 1.039e7 – 1.108e7
TPC-H (10MB) PP2 – 6.893e5 3.357e5 – 1.025e6
TPC-H (10MB) PP3 18 6.893e5 8.781e4 20 7.772e5
TPC-H (1GB) FP2 – 7.165e7 1.155e9 – 1.227e9
TPC-H (1GB) PP2 – 7.165e7 3.349e7 – 1.051e8
TPC-H (1GB) PP3 18 7.165e7 8.761e6 20 8.041e7

Fig. 26. Full simulation results computing the sizes of unencrypted data structures when using LMM and SMM.
Sizes are computed in blocks of 128-bits (black) or 130-bits (in blue). These demonstrate that SMM leaks less and is
more storage efficient.

H Simulation Details

In this section, we provide additional details about our simulations. Our source code and full results can be
obtained from [4].

ePrint dataset details. We used a Python script to scrape the ePrint keywords and PDFs for 2020
and 2021 from the online archive [18]. To ensure all documents were accessible, we add the author-selected
”category” to the documents’ keywords in the event that the authors did not identify any.

TPC-H dataset details. We obtained the TPC-H tool [38] and generated datasets with scale factor 1
(approx 1GB) and scale factor 0.01 (approx 10MB). We used Python to convert this into CSV format and
perform the analysis. We followed the TPC-H schema to determine a set of equijoins to support [37]. The
summary of the relations and joins used can be found in [4].

Additional simulation details. In all our simulations, we break up depth-1 values (i.e. PDF documents
and rows from each relation) into 128-bit blocks to accurately portray how a real-world application might
store such payloads. For token values, we assume that each token is also 128-bits.

For the StE schemes for SQLdt, the LMM technique used by FP2,PP2 is consistent with LMMu while
that of PP3 is consistent with LMM. Additionally, we assume that depth indicators are used in LMM for all
multimaps except M1. All of these choices were done to minimize server storage.

Full results. In Fig. 26 we provide the full simulation results.

36


	Structured Encryption for Indirect Addressing

