
Improved Polynomial Secret-Sharing Schemes

Amos Beimel*

Ben-Gurion University of the Negev
Be’er-Sheva, Israel

amos.beimel@gmail.com

Oriol Farràs
Universitat Rovira i Virgili,
Tarragona, Catalonia, Spain
oriol.farras@urv.cat

Or Lasri†

Ben-Gurion University of the Negev
Be’er-Sheva, Israel

orshlomo@post.bgu.ac.il

July 27, 2023

Abstract

Despite active research on secret-sharing schemes for arbitrary access structures for more than 35
years, we do not understand their share size – the best known upper bound for an arbitrary n-party access
structure is 2O(n) while the best known lower bound is Ω(n/ log(n)). Consistent with our knowledge,
the share size can be anywhere between these bounds. To better understand this question, one can study
specific families of secret-sharing schemes. For example, linear secret-sharing schemes, in which the
sharing and reconstruction are computed by linear mappings, have been studied in many papers, e.g.,
it is known that they require shares of size at least 20.5n. Secret-sharing schemes in which the sharing
and/or reconstruction are computed by low-degree polynomials have been recently studied by Paskin-
Cherniavsky and Radune [ITC 2020] and by Beimel, Othman, and Peter [CRYPTO 2021]. It was shown
that secret-sharing schemes with sharing and reconstruction computed by polynomials of degree 2 are
more efficient than linear schemes (i.e., schemes in which the sharing and reconstruction are computed
by polynomials of degree one).

Prior to our work, it was not known if using polynomials of higher degree can reduce the share size.
We show that this is indeed the case, i.e., we construct secret-sharing schemes with reconstruction by
degree-d polynomials, where as the reconstruction degree d increases, the share size for arbitrary access
structures decreases. As a step in our construction, we construct conditional disclosure of secrets (CDS)
protocols. For example, we construct 2-server CDS protocols for functions f : [N]× [N]→ {0, 1} with
reconstruction computed by degree-d polynomials with message size NO(log log d/ log d). Combining our
results with a lower bound of Beimel et al. [CRYPTO 2021], we show that increasing the degree of the
reconstruction function in CDS protocols provably reduces the message size. To construct our schemes,
we define sparse matching vectors, show constructions of such vectors, and design CDS protocols and
secret-sharing schemes with degree-d reconstruction from sparse matching vectors.

*Supported by ERC grant 742754 (project NTSC) and ISF grant 391/21.
†Supported by ISF grant 391/21.

1

1 Introduction

Secret sharing is a method by which a dealer holding a secret distributes shares to parties such that only pre-
defined authorized subsets of parties can reconstruct the secret and unauthorized subsets should not learn any
information about the secret. The collection of authorized sets is called an access structure. Originally, secret
sharing was motivated by the problem of secure information storage; nowadays secret-sharing schemes
have found numerous other applications in cryptography, distributed computing, and complexity theory
(see, e.g., [9] for such applications). A major problem with secret-sharing schemes is that the best known
schemes for general n-party access structures have share size of 2O(n) [31, 34, 4, 6], making the known
constructions for general access structures impractical. On the other hand, the best known lower bound
on the total share size of secret-sharing schemes realizing an arbitrary n-party access structure, proved by
Csirmaz [17, 18], is Ω(n2

logn). Despite active research on secret-sharing schemes for more than 35 years,
determining the share size for arbitrary access structures is a major open problem.

To better understand this question, one can study specific families of secret-sharing schemes. Such
study can shed light on general secret-sharing schemes, e.g., provide new techniques for constructing ef-
ficient secret-sharing schemes or proved new lower bound techniques. For example, linear secret-sharing
schemes, in which the sharing and reconstruction are computed by linear mappings, have been studied in
many papers [32, 15, 8, 39, 34, 4, 6], e.g., it is known that they require shares of size at least 20.5n [8] and
every n-party access structure can be realized by a secret-sharing scheme with share size 20.757n [6]. Secret-
sharing schemes in which the sharing and/or reconstruction are computed by low-degree polynomials have
been recently studied by Paskin-Cherniavsky and Radune [38] and by Beimel, Othman, and Peter [13]. It
was shown in [13] that every n-party access structure can be realized by a secret-sharing scheme with shar-
ing and reconstruction computed by polynomials of degree 2 and share size 20.705n, that is, secret-sharing
schemes with degree-2 sharing and reconstruction are more efficient than the best known linear schemes
(i.e., schemes in which the sharing and reconstruction are computed by polynomials of degree one). Prior to
this work, it was not known if secret-sharing schemes with constant reconstruction degree d > 2 are more
efficient than secret-sharing schemes with reconstruction degree 2.

In this paper we continue the study of polynomial secret-sharing schemes, i.e., schemes in which the
reconstruction of the secret from the shares of an authorized set is done by polynomials of constant degree.
Our main result in this paper is showing that the increasing the degree results in better share size as described
in the next theorem.

Theorem 1.1 (Informal). Every n-party access structure can be realized by a secret-sharing scheme with

reconstruction by polynomials of degree d and share size 2
(0.585+O

(
log log d
log d

)
)n.

In particular, for an arbitrary access structure, we get a secret-sharing scheme with share size 20.6731n+o(n)

and reconstruction degree 243. As lim
d→∞

log log d
log d = 0, the share size approaches 20.585n+o(n), which is the

share size of the best known secret-sharing scheme [13]. In comparison, Beimel et al. [13] constructed a
degree-2 secret-sharing scheme with share size 20.705n+o(n), and Applebaum and Nir [6] constructed a linear
secret-sharing scheme with share size 20.7575n+o(n).

Beimel and Farràs [10] proved that most access structures can be realized with secret-sharing schemes
that are much more efficient than the best known schemes for the worst access structures. Beimel et al. [13]
showed a similar result for schemes with reconstruction of degree 2. We generalize this result to arbitrary
reconstruction degrees.

Theorem 1.2 (Informal). Almost all n-party access structures can be realized by a secret-sharing scheme

with reconstruction degree by polynomials of degree d and 1-bit secrets and with share size 2
O
(

log log d
log d

)
n.

2

Linear Degree-2 Degree-d Unrestricted

Lower bound
for the worst

access structure

Ω(2n/2−o(n))
[8]

Ω(2n/3−o(n))
[13]

Ω(2n/(d+1)−o(n))
[13]

Ω(n2/ log(n))
[17]

Upper bound
for all

access structures

20.7576n+o(n)

[6]
20.705n+o(n)

[13]
2
(0.585+O

(
log log d
log d

)
)n+o(n)

(this paper, Corollary 7.6)
20.585n+o(n)

[6]

Upper bound
for almost all

access structures

2n/2+o(n)

[10]
2n/3+o(n)

[13]
2
O
(

log log d
log d

)
n

(this paper, Corollary 7.9)
2Õ(

√
n)

[10]

Table 1: Summary of previous and our results on the share size for secret-sharing schemes.

The previous results and our results on secret-sharing schemes with polynomial reconstruction are sum-
marized in Table 1.

Protocols for conditional disclosure of secrets (CDS), a primitive introduced by Gertner, Ishai, Kushile-
vitz, and Malkin [27], are an important tool in the recent constructions of secret-sharing schemes for arbitrary
access structures [34, 3, 4, 6]. In a k-server CDS protocol for a Boolean function f : [N]k → {0, 1}, there
are k servers that hold a secret s and have a common random string. In addition, each server holds a private
input xi ∈ [N]. Each server sends one message to a referee such that the referee, who knows the private
inputs of the servers but nothing more, learns the secret s if f(x1, . . . , xk) = 1 and learns nothing other-
wise. CDS protocols have been used recently in [34, 3, 4, 6, 13] to construct the best known secret-sharing
schemes for arbitrary access structures. Continuing this line of research, we construct k-server CDS proto-
cols that are provably more efficient as the degree of d of the reconstruction grows. We use them to construct
secret-sharing schemes for arbitrary access structures with reconstruction by polynomials of degree d; these
schemes are more efficient than the best known linear secret-sharing schemes. Specifically, we prove the
following result.

Theorem 1.3 (Informal). For every N > 0, d > 0, k > 1, and function f : [N]k → {0, 1}, there is a k-

server CDS protocol for f , with degree-d reconstruction and communication complexity NO
(
(k−1)· log log d

log d

)
.

For example, we prove that for any function f : [N]2 → {0, 1} there is a 2-server CDS protocol
over F7 with communication complexity O(N1/4) and reconstruction degree 243. In comparison, the best
previously known 2-server CDS protocol with constant degree reconstruction has degree-2 reconstruction
and communication complexity O(N1/3) [13].

By a lower bound of Beimel et al. [13], the message size of CDS protocols with degree-d reconstruc-
tion is Ω(N1/(d+1)). Thus, while the message size of our protocols does not match the lower bound, our
results show that increasing the degree of the reconstruction in 2-server CDS protocols provably reduces the
message size. The known and new results on the message size CDS protocols are described in Table 2.

3

Linear Degree-2 Degree-d Unrestricted

Lower bound
for the worst function
f : [N]2 → {0, 1}

Ω(N1/2)
[8]

Ω(N1/3)
[13]

Ω(N1/(d+1))
[13]

Ω(logN)
[2, 5, 7]

Upper bound
for all functions
f : [N]2 → {0, 1}

O(N1/2)
[26]

O(N1/3)
[35]

N
O
(

log log d
log d

)
(this paper, Corollary 3.7)

NO(
√

log logN/ logN)

[35]

Lower bound
for the worst function
f : [N]k → {0, 1}

Ω(N (k−1)/2)
[11, 14]

Ω(N (k−1)/3)
[13]

Ω(N (k−1)/(d+1)/k)
[13]

Ω(logN)

Upper bound
for all functions
f : [N]k → {0, 1}

O(N (k−1)/2)
[35, 14]

O(N (k−1)/3)
[13]

N
O
(
(k−1)· log log d

log d

)
(this paper, Corollary 5.15)

NO(
√

k/ logN log logN)

[37]

Table 2: Summary of previous and our results on the message size of CDS protocols.

1.1 Our Techniques

Our main result is a general construction of secret-sharing schemes for arbitrary access structures in which
reconstruction is done by low degree polynomials. We construct it using the same steps as the constructions
of the most efficient known secret-sharing schemes for arbitrary access structures. We start by construct-
ing 2-server CDS protocols using matching vectors, following the footsteps of Liu, Vaikuntanathan, and
Wee [35]. We use this 2-server CDS protocols to construct k-server CDS protocols using decomposable
matching vectors, as in Liu et al. [37]. We then transform this CDS protocol into a robust k-server CDS pro-
tocol using the transformation of Applebaum, Beimel, Nir, and Peter [4] (with the better analysis of Beimel,
Othoman, and Peter [13]), and finally use a transformation of [6] to construct secret-sharing schemes for
arbitrary access structures. The technical contribution of this paper is in the first two steps. We show that if
the matching vectors are sparse (i.e., the number non-zero of entries in them is small), then the degree of the
reconstruction is low. We construct such matching vectors and show how to use them to construct 2-server
and k-server CDS protocols with low-degree reconstruction, as explained below.

Matching vectors and CDS protocols. We start by recalling that a family of pairs of vectors ((ui,vi))
N
i=1,

where ui,vi ⊆ Zh
m, is a family S-matching vectors over Zm if ⟨ui,vi⟩ ≡ 0 (mod m) for i ∈ [N]

and ⟨ui,vj⟩ mod m ∈ S for i ̸= j ∈ [N] (where m = p1 · p2 is a product of two distinct primes
p1 < p2, S ⊆ Zm \ {0}, and ⟨ui,vj⟩ is the inner product modulo m, i.e.,

∑h
ℓ=1 ui[ℓ] · vj [ℓ] mod m).

Matching vectors were used by Efremenko [22] and Dvir and Gopi [20] to construct 3-server an 2-server
private information retrieval (PIR) protocols respectively. Liu et al. [35] used the ideas in [20] to construct
2-server CDS protocols. In [20, 35] matching vectors over Z6 are used. We generalize the construction
and show that one can use matching vectors over Zp1p2 , where p1 and p2 are primes such that p1 divides
p2 − 1. Furthermore, we observe that one can use S-matching vectors for a larger set than the set that
was used in previous constructions on PIR and CDS protocols, namely, one can take Sone = {a ∈ Zm :
a ≡ 1 (mod p1) ∨ a ≡ 1 (mod p2)}. Previous works used the smaller set Scan = {a ∈ Zm : (a ≡

4

0, 1 (mod p1))∧(a ≡ 0, 1 (mod p1))}\{0}. E.g., over Z21 we can use Sone = {1, 4, 7, 8, 10, 13, 15, 16, 19}
instead of Scan = {1, 7, 15}. We use this observation to construct better CDS protocols with degree-d
reconstruction. The construction of Sone-matching vectors that are shorter than the known Scan-matching
vectors may lead to CDS protocols that are better than the currently best ones.

Sparse matching vectors. The most expensive part of computing the reconstruction function of the CDS
protocol over Zm (when considering the degree of the reconstruction) is computing a⟨vi,m⟩ mod p2, where
a is an element of order p1 in Fp2 , 1 ≤ i ≤ N is an index, and m is a vector sent to the referee by the second
server. Note that

a⟨vi,m⟩ ≡
h∏

ℓ=1

avi[ℓ]·m[ℓ] (mod p2), (1)

where vi,m ∈ Zh
m, and vi[ℓ],m[ℓ] are the ℓ-th coordinates of vi and m, respectively. If the server sends

ab·m[ℓ] mod p2 for every 1 ≤ ℓ ≤ h and every b ∈ Zp1 (this only increases the communication complexity
by a factor of p1), then the referee can compute this value with a polynomial of degree h. In the best
constructions of matching vectors, the length of the vectors h is 2Θ(

√
log(N) log log(N)) (over Z6). Thus, we

get a CDS protocol with communication complexity and reconstruction degree 2Θ(
√

log(N) log log(N)).
The starting point of the construction with lower reconstruction degree is to recall that the order of a is

p1 and to write the product in (1) as ∏
ℓ∈{1,...,h},

vi[ℓ] ̸≡0 (mod p1)

avi[ℓ]·m[ℓ] (mod p2).

This implies that the degree of reconstruction is the number of coordinates in the matching vectors that are
non-zero modulo p1. To get a 2-server CDS protocol with degree-d reconstruction, we need a family of
matching vectors in which each vi contains at most d coordinates that are non-zero modulo p1; we say that
such family is a d-sparse family.

Constructions of sparse matching vectors. Our goal is to construct a family of N matching vectors
over Zp1·p2 that are d-sparse with respect to p1 and their length h is as short as possible. By the lower
bound of [13] their length is at least h = Ω(N1/(d+1)) for a constant d. We present 3 constructions in

which h = d
O(log d

log log d
)4.18

N
O(log log d

log d
). The first construction is due to Efremenko [22]; the construction as

described in [22, Appendix A] is sparse. In the second construction, we show how to improve Efremenko’s
construction. For concrete parameters, our construction achieves the smallest length h compared to the other
2 constructions. The downside of our construction is that they are Sone-matching vectors (compared to Scan

in the other two constructions). Sone-matching vectors suffice for constructing 2-server private information
retrieval (PIR) protocols [20], k- CDS protocols, and secret-sharing schemes for arbitrary access structures.
However, they cannot be used in the 3-server PIR protocols of Efremenko [22]. The third construction we
describe is a construction by Kutin [33]; in this case we need to decouple two of the parameters in the
construction to achieve sparse matching vectors. The advantage of Kutin’s construction compared to the
other two constructions is that every m that is a product of two distinct primes (e.g., m = 6) can be used
to achieve every sparsity d. In contrast, in Efremenko’s construction and in our construction, to get smaller
sparsity we need to use bigger m’s. We remark that we can also use Grolmusz construction of matching
vectors [28] to construct sparse matching vectors (again by decoupling two parameters). This yields a

5

construction with similar features as Kutin’s construction; we do not describe Grolmusz construction in this
paper.

We next describe the ideas of Efremenko’s construction [22] and our improvement. Efremenko starts
with a family of vectors (ũ1, . . . , ũN) and (ṽ1, . . . , ṽN) that are the characteristic vectors of N subsets in(

[h̃]
m−1

)
. If ũi and ṽj are the characteristic vectors of Ai and Aj respectively, then ⟨ũi, ṽj⟩ = |Ai ∩ Aj |

mod m. Thus, ⟨ũi, ṽi⟩ = m − 1 and ⟨ũi, ṽj⟩ ∈ {0, . . . ,m − 2} for i ̸= j. By adding a first coordinate

that is 1 in all vectors, Efremenko constructs Zm \ {0}-matching vectors, where
(

h̃
m−1

)
> N (since there

must be at least N distinct subsets of size m − 1). The sparsity of these vectors is m. To construct Scan-
matching vectors, Efremenko uses the tensor product, Fermat’s little theorem, and the Chinese reminder
theorem (CRT). The length of the resulting vectors is h̃p2−1 and their sparsity with respect to p1 is mp1 .
We modify this construction by starting with characteristic vectors of sets of size p21 (since p1 < p2 this is
smaller than in Efremenko’s construction). We use Fermat’s little theorem only with respect to p1 and use
a polynomial of degree p1 to deal with the vectors modulo p2. The length of the vectors in our construction
is h̃p1 , where h̃ is bigger than in Efremenko’s construction; however, our construction yields vectors with
roughly the same length as Efremenko’s construction and smaller sparsity.

k-server CDS protocols with polynomial decoding. We use 2-server CDS protocols to construct a k-
server CDS protocols. Following [37], the first server in the k-server CDS protocol will simulate the first
server in the 2-server CDS protocol and the last k − 1 servers in the k-server CDS protocol will simulate
the second server in the 2-server CDS protocol. In the simulation, the last k − 1 servers need to send
a message depending on their collective inputs, but each server only sees its input. As in [37], we use
decomposable matching vectors to enable the simulation, that is, matching vectors such that every vector
ui can be computed from k − 1 vectors u2,i2 , . . . ,uk,ik , where each vector ut,it can be computed from the
input of the t-th server. To construct k-server CDS protocols with polynomial decoding using this approach,
we have two challenges. First, we need to show that the constructions of sparse matching vectors are
decomposable. This is done by changing the basic construction; instead of taking characteristic vectors of
arbitrary sets of size m−1, we partition the universe into m−1 parts (i.e., subsets) and take sets of size m−1
that contain exactly one party from each part. The second challenge is to implement the simulation of the
second server’s message in the 2-server CDS protocol using a protocol in which the referee reconstructs the
message using a low-degree polynomial. Liu et al. [37] use a private simultaneous message (PSM) protocol
of [30] for this task; however, it is not clear how to reconstruct the message with low-degree polynomials in
this protocol. We design a special purpose protocol for this task exploiting the fact that in CDS protocols
the referee knows the inputs (but not the secret).

From k-server CDS protocols with polynomial decoding to secret-sharing with polynomial recon-
struction. We transform our k-server CDS protocol into a robust k-server CDS protocol using the trans-
formation of Applebaum, Beimel, Nir, and Peter [4] (using the better analysis of Beimel, Othoman, and
Peter [13]). In a robust CDS protocol (abbreviated as RCDS protocol) for a function f , a server can send
messages for more than one input using the same randomness. The security of the protocol should hold as
long as the messages correspond to zero-inputs (i.e., inputs for which f evaluates to zero). We finally use
a transformation of [6] from RCDS protocols to secret-sharing schemes for arbitrary access structures. The
details of this transformation are similar to previous papers.

Summary of construction. The main conceptual contribution of this paper is defining sparse matching
vectors and showing that they imply CDS protocols with polynomial reconstruction. Towards this good, we

6

generalize the CDS protocol of [35] to work over arbitrary m = p1 ·p2 where p1 and p2 are primes such that
p1 divides p2 − 1. We observe that in this case, we can use a more relaxed notion of matching vectors (i.e.,
Sone-matching vectors). Constructing Sone-matching vectors that are shorter than the known constructions
of Scan-matching vectors will lead to better CDS protocols and secret-sharing schemes. Our most important
technical contribution is constructing a new family of sparse matching vectors that for concrete parameters
are shorter than the matching vectors of Efremenko [21], which are sparse and sparse generalizations of the
constructions of Grolmusz [28] and Kutin [33]. Our contribution of secret-sharing schemes with polynomial
reconstruction follows the steps of previous constructions [36, 37, 4, 6]; however, in many steps we encoun-
tered technical difficulties and needed to change the constructions to enable polynomial reconstruction.

1.2 Previous Works

Secret-sharing schemes. Secret-sharing schemes were introduced by Shamir [40] and Blakley [16] for
the threshold case, and by Ito, Saito, and Nishizeki [31] for the general case. Ito et al. presented two secret-
sharing schemes with share size 2n for every access structure. The best currently known secret-sharing
schemes for general n-party access structure are highly inefficient with total share size of 20.585n [3, 4, 6, 34].
The best known lower bound for the total share size of a secret-sharing scheme is Ω(n2

logn) [17, 18]; there is
an exponential gap between the lower bound and the upper bound.

Polynomial secret sharing. Paskin-Cherniavsky and Radune [38] defined secret-sharing schemes with
polynomial sharing; in these schemes the sharing is computed constant degree polynomial (there are no
restrictions on the reconstruction functions). They showed limitations of various sub-classes of secret-
sharing schemes with polynomial sharing. Specifically, they showed that the subclass of schemes for which
the sharing is linear in the randomness (and the secret can be with arbitrary degree) is equivalent to multi-
linear schemes up to a multiplicative factor of O(n) in the share size. This implies that schemes in this
subclass cannot significantly reduce the known share size of multi-linear schemes. In addition, they showed
that the subclass of schemes over finite fields with odd characteristic such that the degree of the randomness
in the sharing function is exactly 2 or 0 in any monomial of the polynomial can efficiently realize only access
structures whose all minimal authorized sets are singletons. They also studied the randomness complexity of
schemes with polynomial sharing and showed an exponential upper bound on the randomness complexity (as
a function of the share size).1 Beimel, Othman, and Peter [13] defined and studied secret-sharing schemes
and CDS protocols with polynomial reconstruction and secret-sharing schemes with polynomial sharing and
reconstruction. They constructed a k-server CDS protocols with degree 2 sharing and reconstruction with
message size O(N1/3) and proved a lower bound of Ω(N1/(d+1)) for every 2-server CDS protocol with
degree-d reconstruction. They also prove that (under plausible assumptions) secret-sharing-schemes with
polynomial sharing are more efficient than secret-sharing schemes with polynomial reconstruction.

Matching vectors. We next discuss the most relevant results on matching vectors. The study of matching
vectors families dates back to the study of set systems with restricted intersections modulo an integer m, that
is, a system of sets whose size modulo m is some number µ0 and the sizes of the intersection of any two sets
in the system modulo m is in some set L. Such system implies a family of matching vectors by taking the
characteristic vectors of the sets in the system. Frankl and Wilson [25] initiated the study of this question
and proved upper bounds on the size of such set systems when the moduli is a prime. Using matching vector
terminology, they proved that for any prime p if there is an S-matching vector family ((ui,vi))

N
i=1 over Zh

p ,

1For linear and multi-linear schemes, there is a tight linear upper bound on the randomness complexity.

7

then N ≤
(
h
|S|
)
. They asked if the same lower bounds applies to composite numbers. Frankl [24] showed

that this is not true; his result implies that for every N there is an Sone-matching vectors family over Z6 with
N vectors of length h = O(N1/3) (where N >

(
h
3

)
). Grolmusz [28] showed that working over compos-

ite numbers can drastically reduce the length of the matching vectors, i.e., his result implies that there is an
Sone-matching vectors family over Zm, where m = p1p2 for two primes p1 ̸= p2, with N vectors and length
h = 2O(p2

√
logN log logN). Kutin [33] showed that for every pair of primes p1 ̸= p2 and for infinitely many

values of N there are Sone-matching vectors families over Zp1p2 of length h = 2O(
√
logN log logN) (notice

that he removed the dependency of p2 in the exponent). Efremenko [22] used matching vectors to construct
locally decodable codes and 3-server private information retrieval protocols. He also provided another con-
struction of Sone-matching vectors with length h = 2O(

√
logN log logN). Dvir, Gopalan, and Yekhanin [19]

continued the study of matching vector codes, i.e., locally decodable codes based on matching vectors. Dvir
and Gopi [20] used matching vectors to construct 2-server private information retrieval protocols and Liu,
Vaikuntanathan, and Wee [35, 37] used them to construct CDS protocols.

2 Preliminaries

In this section, we will present the definitions needed for this paper. We will start with some notations,
continue by defining secret-sharing schemes for general access structures, in particular secret-sharing with
polynomial reconstruction. We then define conditional disclosure of secrets (CDS) protocols.

2.1 Notations

For a natural number n ∈ N, we denote [n] ≜ {1, . . . , n}. For α ∈ [0, 1], we denote the binary entropy of α
by H2(α), where H2(α) = −α logα− (1− α) log(1− α) for α ∈ (0, 1), and H2(0) = H2(1) = 0.

If a random variable x is distributed according to a probability distribution D, we write x ∼ D. For a
finite set R, we denote by U(R) the uniform distribution over the elements of R.

For a set A and a positive integer k, we denote by
(
A
k

)
the family of subsets of A of size k, i.e., {B ⊆

A : |B| = k}.
For an integer variable x, and some positive integer i, we define the polynomial

(
x
i

)
= x·...·(x−i+1)

i! . This
is a degree-i polynomial which has coefficients in Q.

We use the Õ notation, called soft-O, as a variant of big O notation that ignores logarithmic factors, that
is, f(n) ∈ Õ(g(n)) if f(n) ∈ O(g(n) logk g(n)) for some constant k.

If two integers a and b are congruent modulo m, we denote a ≡ b (mod m). If a is the reduction of b
modulo m, then we denote a← b mod m.

We next define 3 products of vectors that are used to construct matching vectors. We define the first two
over the group Zm and the last product over a field F as this is the way that they are used in this paper.

Definition 2.1 (Pointise and dot product). Let m,h > 0 be two positive integers and let x,y ∈ Zh
m. The

point-wise product (or Hadamard product) of x,y, denoted by x ⊙ y, is a vector in Zh
m whose ℓ-th element

is the product of the ℓ-th elements of x,y, i.e. (x ⊙ y)[ℓ] = x[ℓ] · y[ℓ] mod m. The dot product (or inner
product) of x and y is ⟨x,y⟩ =

∑
ℓ∈[h] x[ℓ] · y[ℓ] mod m.

Definition 2.2 (Tensor product). Let F be a field, N be an integer, and let x,y ∈ FN . The tensor product of
x,y, denoted by x⊗ y ∈ FN2

, is defined by (x⊗ y)[i, j] := x[i] · y[j], (where we identify [N2] with [N]2).

8

Similarly we define the ℓ-th tensor power x⊗ℓ ∈ FNℓ
by x⊗ℓ = x⊗ℓ−1 ⊗ x, i.e.,

x⊗ℓ[i1, i2, . . . , iℓ] :=

ℓ∏
j=1

x[ij].

We will need the following inequalities in our constructions.

Claim 2.3. For every α, x > 0, if α = x log x, then

α

logα
≤ x ≤ 2 · α

logα
.

Proof. Since α = x log x, logα = log x+ log log x. Therefore,

x

2
=

x log x

2 log x
≤ α

logα
=

x log x

log x+ log log x
≤ x log x

log x
= x.

Theorem 2.4 (Chinese reminder theorem (CRT)). Let n1, n2, . . . , nk be pairwise relatively prime natural
numbers, N = n1n2 . . . nk, and b1, b2, . . . , bk ∈ Z. Then there is a unique x ∈ ZN such that x ≡
bi (mod ni) for all 1 ≤ i ≤ k.

2.2 Access Structures and Secret-Sharing Schemes

The definitions in this subsection are mainly based on [9].

Definition 2.5 (Access structures). Let P = {p1, . . . , pn} be a finite set of n parties. A collection A ⊆ 2P

is monotone if for every set A ∈ A and for every C ⊆ P such that A ⊆ C it must be that C ∈ A. An
access structure is a monotone collection A ⊆ 2P \∅. A set of parties is called authorized if it is in A and
unauthorized otherwise.

Definition 2.6 (Secret-sharing schemes — Syntax). Let P = {p1, . . . , pn} be a set of n parties. A secret-
sharing scheme with domain of secrets S, set of random strings R, and domain of shares S1, S2, · · · , Sn

for the parties p1, p2, . . . , pn, is a mapping Π : S × R → S1 × S2 × · · · × Sn. We denote the shares by
sh1, . . . , shn. For a set A ⊆ P , we denote ΠA(s; r) as the restriction of Π to its A-entries (i.e., (shj)pj∈A,
the shares of the parties in A). We define the size of the secret in Π as log |S|, and the share size of party

pj as log |Sj |, the maximum share size as max
1≤j≤n

log |Sj |, and the total share size as
n∑

j=1
log |Sj |.

Informally, we consider a dealer that distributes a secret s ∈ S according to Π by first sampling a
random string r ∈ R with uniform distribution, computing a vector of shares Π(s; r) = (sh1, sh2, . . . , shn),
and privately communicating each share shj to party pj .

Definition 2.7 (Secret-sharing schemes — Correctness and security). A secret-sharing scheme Π with finite
domain S, where |S| ≥ 2, realizes an access structure A if the following two requirements hold:

CORRECTNESS. The secret s can be reconstructed by any authorized set of parties, that is, for any set

9

A ∈ A (where A = {pi1 , . . . , pi|A|}), there exists a reconstruction function RECONA : Si1×· · ·×Si|A| → S
such that for every s ∈ S and every r ∈ R

RECONA(ΠA(s; r)) = s.

SECURITY. Every unauthorized set cannot learn anything about the secret from its shares (in the information
theoretic sense). Formally, for any set B /∈ A, for every two secrets s, s′ ∈ S, and for every possible vector
of shares (shj)pj∈B:

Pr
r∼U(R)

[ΠB(s; r) = (shj)pj∈B] = Pr
r∼U(R)

[ΠB(s
′, r) = (shj)pj∈B].

2.3 Conditional Disclosure of Secrets

Informally, in a CDS protocol there are k servers Q1, . . . , Qk, each holding a private input xi, the secret s,
and a common random string r, and there is a referee holding x1, . . . , xk. Each server Qi sends the message
mi = ENC(xi, s; r) to the referee, and the referee can reconstruct s if and only if f(x1, . . . , xn) = 1.

Definition 2.8 (Conditional disclosure of secrets (CDS) protocols). Let f : X1 × · · · ×Xk → {0, 1} be a
k-input function. A k-server CDS protocol P for f , with domain of secrets S, domain of common random
strings R, and finite message domains M1, . . . ,Mk, consists of k encoding functions ENC1, . . . , ENCk,
where ENCi : Xi × S ×R→Mi for every i ∈ [k]. For an input x = (x1, . . . , xk) ∈ X1 × · · · ×Xk, secret
s ∈ S, and randomness r ∈ R, we let ENC(x, s; r) = (ENC1(x1, s; r), . . . , ENCk(xk, s; r)). We say that a
protocol P is a CDS protocol for f if it satisfies the following properties:

CORRECTNESS. There is a deterministic reconstruction function DEC : X1×· · ·×Xk×M1×· · ·×Mk → S
such that for every input x = (x1, . . . , xk) ∈ X1 × · · · × Xk for which f(x1, . . . , xk) = 1, every
secret s ∈ S, and every common random string r ∈ R, it holds that DEC(x, ENC(x, s; r)) = s.

SECURITY. For every input x = (x1, . . . , xk) ∈ X1 × · · · × Xk satisfying f(x1, . . . , xk) = 0 and every
pair of secrets s, s′ ∈ S, the encodings ENC(x, s; r) and ENC(x, s′; r) are equally distributed, i.e.,
for every messages m1, . . . ,mk

Pr
r∼U(R)

[ENC(x, s; r) = (m1, . . . ,mk)] = Pr
r∼U(R)

[ENC(x, s′; r) = (m1, . . . ,mk)],

where the probability distributions are over the choice of r from R with uniform distribution.

The message size of a CDS protocol P is defined as the size of the largest message sent by the servers,
i.e., max1≤i≤k log |Mi|.

In two-server CDS protocols, we sometimes refer to the servers as Alice and Bob (instead of Q1 and
Q2, respectively) and to the referee as Charlie.

Definition 2.9 (The predicate INDEXk
N). We define the k-input function INDEXk

N : {0, 1}Nk−1×[N]k−1 →
{0, 1} where for every D ∈ {0, 1}Nk−1

(a (k − 1) dimensional array called the database) and every
(i2, . . . , ik) ∈ [N]k−1 (called the index), INDEXk

N (D, i2, . . . , ik) = Di2,...,ik .

Observation 2.10 ([26]). If there is a k-server CDS protocol for INDEXk
N with message size M , then for

every f : [N]k → {0, 1} there is a k-server CDS protocol with message size M .

We obtain the above CDS protocol for f in the following way: Server Q1 with input x1 constructs
a database Di2,...,ik = f(x1, i2, . . . , ik) for every i2, . . . , ik ∈ [N] and servers Q2, . . . , Qk−1 treat their
inputs (x2, . . . , xk) ∈ [N]k−1 as the index, and execute the CDS protocol for INDEXk

N (D,x2, . . . , xk) =
f(x1, x2, . . . , xk).

10

2.4 Robust Conditional Disclosure of Secrets

In the definition of CDS protocols (Definition 2.8), if a server sends messages for different inputs with the
same randomness, then the security is not guaranteed and the referee can possibly learn information on the
secret. In [4], the notion of robust CDS (RCDS) protocols was presented; the motivation for this definition
is constructing more efficient secret-sharing schemes for arbitrary access structures. In RCDS protocols, the
security is guaranteed even if the referee receives messages of different inputs with the same randomness.
Next, we define the notion of t-RCDS protocols.

Definition 2.11 (Zero Sets). Let f : X1 ×X2 × · · · ×Xk → {0, 1} be a k-input function. We say that a set
of inputs Z ⊆ X1 ×X2 × · · · ×Xk is a zero set of f if f(x) = 0 for every x ∈ Z. For sets Z1, . . . , Zk, we
denote ENC(Z, s; r) = (ENC(x, s; r))x∈Z1×···×Zk

.

Definition 2.12 (t-RCDS Protocols). Let P be a k-server CDS protocol for a k-input function f : X1 ×
X2×· · ·×Xk → {0, 1} and Z = Z1×Z2×· · ·×Zk ⊆ X1×X2×· · ·×Xk be a zero set of f . We say that
P is robust for the set Z if for every pair of secrets s, s′ ∈ S, it holds that ENC(Z, s; r) and ENC(Z, s′; r)
are identically distributed. For an integer t, we say that P is a t-RCDS protocol if it is robust for every zero
set Z1 × Z2 × · · · × Zk such that |Zi| ≤ t for every i ∈ [k].

2.5 Degree-d Secret Sharing and Degree-d CDS Protocols

We next quote the definition of [13] of secret-sharing with polynomial reconstruction and CDS with poly-
nomial decoding.

Definition 2.13 (Degree of polynomial). The degree of a multivariate monomial is the sum of the degree of
all its variables; the degree of a polynomial is the maximal degree of its monomials.

Definition 2.14 (Degree-d mapping over F). A function f : F ℓ → Fm can be computed by degree-d poly-
nomials over F if there are m polynomials Q1, . . . , Qm : F ℓ → F of degree at most d s.t. f(x1, . . . , xℓ) =
(Q1(x1, . . . , xℓ), . . . , Qm(x1, . . . , xℓ)) .

A secret-sharing scheme has polynomial reconstruction if for every authorized set, the mapping that the
set uses to reconstruct the secret from its shares can be computed by polynomials.

Definition 2.15 (Secret-sharing schemes with degree-d reconstruction). We say that the scheme Π with
domain of secrets S has a degree-d reconstruction over a finite field F if there are integers ℓ, ℓ1, . . . , ℓn such
that S ⊆ F ℓ and Si = F ℓi for every i ∈ [N], and ReconB , the reconstruction function of the secret, can be
computed by degree-d polynomials over F for every B ∈ A.

Notice that in Definition 2.7, the polynomials in the reconstruction can depend on B.

Definition 2.16 (CDS Protocols with Degree-d Decoding). A CDS protocolP with domain of secrets S has a
degree-d decoding over a finite field F if there are integers ℓ, ℓ1, . . . , ℓk ≥ 1 such that S ⊆ F ℓ and Mi = F ℓi

for every 1 ≤ ℓ ≤ k, and for every inputs x1, . . . , xk the function DECx1,...,xk
: F ℓ1+···+ℓk → S can be com-

puted by degree-d polynomials over F , where DECx1,...,xk
(m1, . . . ,mk) = DEC(x1, . . . , xk,m1, . . . ,mk).

11

2.6 Matching Vectors

We next define matching vectors (MV), which are vectors whose inner product lies in a small set S ∪ {0}.
These vectors were used in [25, 28] to construct a family of sets whose intersection lies in a small set. They
were used in [22] to construct efficient PIR protocols and in [35] to construct efficient CDS protocols.

Definition 2.17 (Matching vector family [22]). Let m,h > 0 be integers, and S ⊆ Zm \ {0} be a subset.
The family of vectors ((ui,vi))

N
i=1, where ui,vi ∈ Zh

m, is called S-matching vectors if:

1. ⟨ui,vi⟩ mod m = 0 for i ∈ [N].

2. ⟨ui,vj⟩ mod m ∈ S for i ̸= j ∈ [N].

Let m = p1p2 for some primes p1, p2. In previous works, they mainly considered the set

Scan = {a ∈ Zm : (a mod p1 ∈ {0, 1}) ∧ (a mod p2 ∈ {0, 1})} \ {0}.

We will consider a bigger set

Sone = {a ∈ Zm : a ≡ 1 (mod p1) ∨ a ≡ 1 (mod p2)}.

E.g., for m = 6, Scan = {1, 3, 4} and Sone = {1, 3, 4, 5}. Note that every Scan-matching vectors family is
in particular a Sone-matching vectors family since Scan ⊆ Sone.

3 A Polynomial 2-Server CDS Protocol

In this section we present a 2-server CDS protocol with polynomial reconstruction of degree d, for the

INDEX2
N predicate, with N

O(log log d
log d

) communication. This CDS protocol is a generalization of the CDS
protocol from [35], which is based on a PIR protocol presented in [20]. In [35], they use matching vector
families over m = 3 · 2; We generalize this protocol and use matching vector families over m = p1p2, for
primes p1, p2 such that p1|p2 − 1. We will first present the protocol and prove its correctness and security.
We will then define sparse matching vectors and show that if we use sparse matching vectors in the CDS
protocols, then we get a CDS protocol with degree-d decoding. In Section 4, we will show how to construct
sparse matching vectors.

3.1 The CDS Protocol over m = p1p2

In Figure 1, we present the 2-server CDS protocol; in the protocol we use an element a ∈ F ∗
p2 whose order

is p1, i.e. p1 is the smallest positive integer s.t. ap1 ≡ 1 (mod p2). An element of order p1 exists if and only
if p1|p2 − 1. This generalizes the CDS protocol of [35], which uses matching vectors over m = 2 · 3 and
the element a = −1.

Theorem 3.1. Given an Sone-matching vector family ((ui,vi))
N
i=1 over Zh

m, where m = p1p2 is a product
of two primes p1, p2 such that p1|p2 − 1, the protocol in Figure 1 is a 2-server CDS protocol for INDEX2

N

with message size h · logm.

Proof. For the correctness and the security, we need to make the following analysis of Charlie’s reconstruc-
tion function in the protocol in Figure 1 (i.e. (2)):

12

A polynomial 2-server CDS protocol for INDEX2
N

Public Knowledge: An Sone-matching vector family ((ui,vi))
N
i=1 over Zh

m for m = p1p2 s.t. p1|p2 − 1,
and h ∈ N. An element a ∈ F ∗

p2
of order p1 in F ∗

p2
.

Alice’s Input: D ∈ {0, 1}N .
Bob’s Input: i ∈ [N].
The secret: s ∈ {0, 1}.
Shared Randomness: r1 ∈ F h

p1
, r2 ∈ F h

p2
, r3 ∈ Fp2

.

Define C : F h
p1
→ Fp2

as C(b) =
∑N

j=1 Dja
⟨b,vj⟩ mod p2.

Define V : F h
p1
→ F h

p2
as V (b) =

∑N
j=1 Djvja

⟨b,vj⟩ mod p2.

• Alice sends m1
A ← ((1− a)s− 1)C(r1)− r3 ∈ Fp2

and
m2

A ← r2 + ((1− a)s− 1)V (r1) ∈ F h
p2

.

• Bob sends m1
B ← (sui + r1 mod p1) ∈ F h

p1
and m2

B ← (⟨ui, r2⟩+ r3 mod p2) ∈ Fp2
.

• Charlie outputs 1 if

⟨ui,m
2
A⟩ −m1

A −m2
B − C(m1

B) + ⟨ui, V (m1
B)⟩ ≠ 0, (2)

and 0 otherwise.

Figure 1: A polynomial CDS protocol using a matching vector family over Zm where m = p1p2 for primes
p1, p2 such that p1|p2 − 1.

⟨ui,m
2
A⟩ −m1

A −m2
B − C(m1

B) + ⟨ui, V (m1
B)⟩

≡ ⟨ui, r2 + ((1− a)s− 1)V (r1)⟩ − ((1− a)s− 1)C(r1) + r3 − ⟨ui, r2⟩ − r3

− C(sui + r1) + ⟨ui, V (sui + r1)⟩
≡ ⟨ui, r2⟩+ ((1− a)s− 1)⟨ui, V (r1)⟩ − ((1− a)s− 1)C(r1)− ⟨ui, r2⟩
− C(sui + r1) + ⟨ui, V (sui + r1)⟩
≡ ((1− a)s− 1)(⟨ui, V (r1)⟩ − C(r1)) + ⟨ui, V (sui + r1)⟩ − C(sui + r1)

≡ ((1− a)s− 1)
∑
j

[
(⟨ui,vj⟩ − 1)Dja

⟨r1,vj⟩
]
+
∑
j

[
(⟨ui,vj⟩ − 1)Dja

⟨sui+r1,vj⟩
]

≡
∑
j

[
(⟨ui,vj⟩ − 1)((1− a)s− 1 + as⟨ui,vj⟩)Dja

⟨r1,vj⟩
]
(mod p2). (3)

We next analyze each term in the sum. Recall that for every i ̸= j, either ⟨ui,vj⟩ ≡ 1 (mod p1) or
⟨ui,vj⟩ ≡ 1 (mod p2) (or both). Thus, for i ̸= j,

• If ⟨ui,vj⟩ ≡ 1 (mod p2) then (⟨ui,vj⟩ − 1) ≡ 0 (mod p2), and the term is 0.

• If ⟨ui,vj⟩ ≡ 1 (mod p1), then (1−a)s−1+as⟨ui,vj⟩ ≡ (1−a)s−1+as (mod p2) (since the order
of a modulo p2 is p1). This expression equals 0 by a case analysis: if s = 0, then (1− a)s− 1+ as ≡
−1 + a0 ≡ 0 (mod p2), and if s = 1, the term (1− a)s− 1 + as ≡ 1− a− 1 + a ≡ 0 (mod p2).

13

For i = j, ⟨ui,vi⟩ ≡ 0 (mod m), and, in particular ⟨ui,vi⟩ ≡ 0 (mod p1), thus, the i-th term is −(1 −
a)sDia

⟨r1,vi⟩. Therefore, expression (3) equals −(1− a)Dia
⟨r1,vi⟩s.

Correctness. From the analysis above, if Di = 1, Charlie computes

−(1− a)a⟨r1,vj⟩s, (4)

and outputs 1 if and only if it is not equal to 0 and otherwise 0. Since −(1 − a)a⟨r1,vj⟩ ̸≡ 0 (mod p2),
Charlie outputs s.

Security. The security follows similarly to [35] using the following observations:

• The joint distribution of m1
B,m

1
A,m

2
A is uniformly distributed, since we are using r1, r2, r3 as one-

time pads.

• If Di = 0, then from the reconstruction analysis, the sum in (3) is 0, i.e.,

⟨ui,m
2
A⟩ −m1

A −m2
B − C(m1

B) + ⟨ui, V (m1
B)⟩ = 0

thus,
m2

B = ⟨ui,m
2
A⟩ −m1

A − C(m1
B) + ⟨ui, V (m1

B)⟩.

Therefore, m2
B in independent of s and can be computed given m1

B,m
1
A,m

2
A, D, i.

From the two observation, we conclude that when Di = 0 we can simulate m1
A,m

2
A,m

1
B,m

2
B given D, i,

i.e., the distribution of the messages is the same for the two values of the secret.

Communication complexity. Clearly the message sizes are at most (h + 1) log p2 since m1
A ∈ Fp2 ,

m2
A ∈ F h

p2 , m1
B ∈ F h

p1 , m2
B ∈ Fp2 and p1 < p2.

3.2 Sparse Matching Vectors

In order to analyze the degree of the reconstruction function we will introduce a new definition regarding
matching vector families. This new definition is one of our most important contributions in this paper.

Definition 3.2 ((d, p)-sparse matching vectors). Let ((ui,vi))
N
i=1 be an S-matching vector family over Zh

m

for some m,h ∈ N. We say that ((ui,vi))
N
i=1 is a d-sparse S-matching vector family if for all i ∈ [N],

|{ℓ ∈ [h] : vi[ℓ] ̸= 0}| ≤ d,

i.e., the number of non-zero entries in vi is at most d.
For a prime p such that p|m, we say that ((ui,vi))

N
i=1 is (d, p)-sparse if for all i ∈ [N],

|{ℓ ∈ [h] : vi[ℓ] ̸≡ 0 (mod p)}| ≤ d.

We could have defined the sparsity property to be over ui as well, and our constructions in Section 4
would satisfy this stronger requirement. However, for the reconstruction degree, sparsity solely for the vi’s
suffices.

Next, we use the definition above for the reconstruction degree analysis.

14

Lemma 3.3. Given a (d, p1)-sparse Sone-matching vector family over m = p1p2 for primes p1, p2 such that
p1|p2 − 1, the CDS protocol of Figure 1 can be implemented such that the degree of the decoding is p1 · d.

Proof. Charlie’s reconstruction function as defined in (2) in Figure 1 is linear except for computing C(m1
B)

and V (m1
B), thus we show how to enable Charlie to compute C(b) as a low degree polynomial by changing

the message of Bob; the analysis for V (b) is the same.

C(b) =

N∑
j=1

Dja
⟨b,vj⟩ =

N∑
j=1

Dja
∑

ℓ∈[h] b[ℓ]·vj [ℓ] =
(∗)

N∑
j=1

Dj

∏
ℓ∈[h]:vj [ℓ]̸≡0 (mod p1)

(
ab[ℓ]

)vj [ℓ]
mod p2.

The equality (∗) is correct since the order of a is p1. Thus, instead of sending m1
B , Bob sends

m′1
B = (aγ·m

1
B [ℓ])ℓ∈[h],γ∈Fp1 ∈ F h

p2 . (5)

The function C(m1
B) can be computed as a polynomial of degree maxj{|{ℓ ∈ [h] : vj ̸≡ 0 (mod p1)}|};

since ((ui,vi)) is (d, p1)-sparse, the degree is at most d.
In addition, Charlie outputs 1 if the expression in (2) is non-zero. We use Fermat’s little theorem to

convert any non-zero value to 1. That is when Di = 1, Charlie computes the expression in (2), multiplies it
by the constant −(a− 1)−1 and by (4) and since s ∈ {0, 1}, outputs(

(−(1− a))−1 · (−(1− a))sa⟨r1,vi⟩
)p1
≡ s (mod p2).

To conclude, the total construction degree as most p1 ·d. Note, that the modification of the protocol changes
the communication complexity by a factor of p1.

Now, we present two theorems that will be proven in the next section. These theorems state the exis-
tence of sparse matching vector families; combining them with the CDS protocol in Figure 1, we get CDS
protocols with various trade-offs between the decoding degree and the communication complexity.

Theorem 3.4. For every N, d > 0, there exists primes p1, p2 where p1|p2 − 1, and p1 ≤ 2 log d
log log d such

that there is a (d, p1)-sparse Sone-matching vector family ((ui,vi))
N
i=1 over Zh

m, where m = p1p2,and

h ≤ 2d
1+ 2

log log dN
16 log log d

log d .

Theorem 3.5. For every N, d > 0, there is a (d, 2)-sparse Scan-matching vector family ((ui,vi))
N
i=1 over

Zh
6 , and h ≤ dO(1)N

O(log log d
log d

).

Combining the construction of the CDS protocol from Figure 1 and Theorem 3.5 or Theorem 3.4, we
get the following theorem.

Theorem 3.6. For every N, d > 0, there is a 2-server CDS protocol for INDEX2
N , with degree-d recon-

struction and communication complexity dO(1)N
O
(

log log d
log d

)
.

Proof. Let N, d > 0. Let d′ = d/2, from Theorem 3.5, we get a (d′, 2)-sparse Scan-matching vector family

over Zh
6 , and h ≤ d′O(1)N

O(log log d
log d

). Thus, from Figure 1 we get a 2-server CDS protocol for INDEX2
N

over F3, with degree-2d′ = d reconstruction and communication complexity dO(1)N
O
(

log log d
log d

)
.

Let d′ be the largest integer such that 2d′ · log d′ ≤ d. From Theorem 3.4 we get a (d′, p1)-sparse Sone-

matching vector family over Zh
m, where m = p1p2, p1 ≤ 2 log d′

log log d′ ≤ 2 log d′, and h ≤ 2d
′1+ 2

log log d′ N
16 log d′
log log d′ .

15

Let α = d′ log d′, from Claim 2.3, d′ ≤ 2 logα
log logα , thus d′ ≤ 2 log d−1

log(log d−1) = do(1). Therefore, h ≤

2d
1+ 2

log log dN
16 log log do(1)

log do(1) = dO(1)N
O(log log d

log d
). Thus, from the protocol in Figure 1 we get a 2-server

CDS protocol for INDEX2
N over Fp2 , with degree-p1 · d′ reconstruction and communication complexity

dO(1)N
O(log log d

log d
). Also p1d

′ ≤ 2d′ log d′ ≤ d, thus the CDS protocol has degree-d reconstruction.

Corollary 3.7. For every constant d > 0, N > 0, and function f : [N]× [N]→ {0, 1}, there is a 2-server

CDS protocol for f , with degree-d reconstruction and communication complexity dO(1)N
O
(

log log d
log d

)
.

4 Constructions of d-Sparse Matching Vector Families

In this section, we present three different constructions of (d, p1)-sparse matching vector families over Zh
m

where m = p1p2 and h = dO(1)N
O(log log d

log d
). The main differences between the constructions would be the

constraints of choosing the primes p1, p2 as N grows.

4.1 Basic Tools

In the three constructions of matching vector families, we use a basic construction of an S̃-matching vectors
family for a large set S̃. To avoid repetition, we will present it here, and use it in the construction with
different choices of S̃.

Claim 4.1. Let N, t, w > 0 be integers, where 0 < w < t. There is a (w + 1)-sparse S̃-matching vector
family ((ũi, ṽi))

N
i=1 over Zh̃

t , for S̃ = {t− w, . . . , t− 1}, and h̃ = ⌈N1/w⌉ · w + 1.

Proof. Partition [h̃ − 1] to w sets of size h̃−1
w = ⌈N1/w⌉. Let {A}Ni=1 be N subsets of [h̃ − 1] of size w

s.t. Ai contains exactly one element from each set in the partition (there are
(
h̃−1
w

)w
=
(
⌈N1/w⌉

)w ≥ N

such sets). For each set Ai, let uAi ∈ {0, 1}h̃−1 be its characteristic vector. We define the vector family
((ũi, ṽi))

N
i=1 over Zh̃

t as ũi = (t−w,uAi), ṽi = (1,uAi), that is, in ũi, and ṽi we add a coordinate to uAi .
We next argue that ((ũi, ṽi))

N
i=1 is an S̃-matching vector where S̃ = {t− w, . . . , t− 1}.

• For every i ∈ [N], ⟨ũi, ṽi⟩ ≡ t− w + ⟨uAi ,uAi⟩ = t− w + |Ai| ≡ 0 (mod t).

• For every i ̸= j ∈ [N], ⟨ũi, ṽj⟩ = t− w + ⟨uAi ,uAj ⟩ = t− w + |Ai ∩Aj | ∈ S̃
(since 0 ≤ |Ai ∩Aj | ≤ w − 1 as Ai ̸= Aj).

The sparsity of uAi for every i ∈ [N] is w (since uAi is a characteristic vector of a set of size w), thus the
sparsity of ũi and ṽi is w + 1.

We will use the following lemma about tensor products (tensor products are defined in Definition 2.2).

Lemma 4.2. For every u1,u2,v1,v2 ∈ F ,

⟨u1 ⊗ u2,v1 ⊗ v2⟩ = ⟨u1,v1⟩ · ⟨u2,v2⟩.

In particular, ⟨u⊗ℓ,v⊗ℓ⟩ = ⟨u,v⟩ℓ.

16

Proof.
⟨u1 ⊗ u2,v1 ⊗ v2⟩ =

∑
i,j∈[N]

(u1 ⊗ u2)[i, j] · (v1 ⊗ v2)[i, j]

=
∑

i,j∈[N]

u1[i]u2[j] · v1[i]v2[j]

=

∑
i∈[N]

u1[i] · v1[i]

∑
j∈[N]

u2[j] · v2[j]


= ⟨u1,v1⟩ · ⟨u2,v2⟩.

4.2 Efremenko’s Construction

The first matching vector family we present is the Efremenko’s [22, Appendix A]. We observe that Efre-
menko’s construction is sparse. This construction takes the basic construction from Claim 4.1 and uses
Fermat little theorem and the Chinese reminder theorem to construct Scan-matching vectors.

Construction 4.3. Let p1 < p2 be two primes, m = p1p2, and S̃ = {1, . . . ,m − 1}. Let ((ũi, ṽi))
N
i=1,

where h̃ = ⌈N1/(m−1)⌉ · (m− 1) + 1 be the S̃-matching vector family over Zh̃
t of Claim 4.1 where t = m

(i.e., w = m− 1).
We define for every i ∈ [N]:

up1,i = ũ
⊗(p1−1)
i mod p1,up2,i = ũ

⊗(p2−1)
i mod p2,

vp1,i = ṽ
⊗(p1−1)
i mod p1,vp2,i = ṽ

⊗(p2−1)
i mod p2.

Construct ((ui,vi))
N
i=1 over Zh

m, where h = h̃p2 using the CRT per entry, where we pad up1,i and vp1,i

with zeros to be of length h̃p2 , i.e., we define ui[k] ∈ Zm for k ∈ [h̃p2] as the unique element s.t.

• ui[k] ≡ up1,i[k] (mod p1),

• ui[k] ≡ up2,i[k] (mod p2).

that is
ui[k] =

(
up1,i[k] · p2(p−1

2 mod p1) + up2,i[k] · p1(p−1
1 mod p2)

)
mod m.

We define vi analogously using vp1,i and vp2,i.

Efremenko [22] proves that ((ui,vi))
N
i=1 is an Scan-matching vector family (recall that Scan = {a ∈

Zm : a mod p1, a mod p2 ∈ {0, 1}} \ {0}). For completeness, provide this proof.

Claim 4.4. Let p1, p2 be two primes and let m = p1p2. The family ((ui,vi))
N
i=1 as constructed in Con-

struction 4.3 is an Scan-matching vector family.

Proof. Let i, j ∈ [N]. By Lemma 4.2, for ℓ ∈ {1, 2},

⟨ui,vj⟩ ≡ ⟨upℓ,i,vpℓ,j⟩ ≡ ⟨ũ
⊗pℓ−1
i , ṽ⊗pℓ−1

j ⟩ ≡ ⟨ũi, ṽj⟩pℓ−1 (mod pℓ).

Since ⟨ũi, ṽi⟩ ≡ 0 (modm) by Claim 4.1,

17

• ⟨ui,vi⟩ ≡ 0p1−1 ≡ 0 (mod p1),

• ⟨ui,vi⟩ ≡ 0p2−1 ≡ 0 (mod p2),

thus, ⟨ui,vi⟩ ≡ 0 (modm).
Let i ̸= j ∈ [N]. Since ⟨ũi, ṽi⟩ ̸≡ 0 (modm), then ⟨ũi, ṽj⟩ ̸≡ 0 (mod pℓ) for at least one ℓ ∈ {1, 2}. Also
⟨ui,vj⟩ mod p1 ∈ {0, 1}, and ⟨ui,vj⟩ mod p2 ∈ {0, 1}, thus ⟨ui,vj⟩ mod m ∈ Scan.

We now will analyze the sparsity of the matching vectors family ((ui,vi))
N
i=1. From Claim 4.1 the

sparsity of ((ũi, ṽi))
N
i=1 is m. Thus, the family is (d, p1)-sparse where d = mp1−1, since the number of

entries k where vi[k] ̸≡ 0 (mod p1), by the CRT, is the number of entries k where vp1,i[k] ̸≡ 0 (mod p1),
which is mp1−1. The same applies to vi.

For the CDS protocol provided in Figure 1, we need that p1|p2−1. The next result assures that for every
prime p1 there is a fairly small prime p2 s.t. p1|p2 − 1.

Theorem 4.5 ([41]). There exists a constant c such that for every integer d ≥ 2 and every a ∈ Z relatively
prime to d, there exists a prime p < cd5.18 such that p ≡ a (mod d).

Using Theorem 4.5 for a prime p1, we can take the least prime p2 such that p2 ≡ 1 (mod p1) and get
that p2 ≤ cp5.181 , thus p21 ≤ m ≤ cp6.181 . Note that

h̃ = (m− 1)⌈N1/(m−1)⌉+ 1 ≤ 2mN1/(m−1) ≤ 2cp6.181 N2/m,

and
h = h̃p2−1 ≤

(
2cp6.181 N2/m

)p2
≤
(
2cp6.181

)cp5.181 N2/p1 .

Since d = mp1 ,

p2p11 = (p21)
p1 ≤ d ≤ (cp6.181)p1

⇒ 2p1 log p1 ≤ log d ≤ p1 log c+ 6.18p1 log p1.

We take p1 as the smallest s.t. p1 > · log d
log log d . From Bertrand’s postulate (see, e.g., [1]) that states that for

every integer k > 0 there is a prime p such that k ≤ p ≤ 2k, we take such p1 < 2 · log d
log log d . Combining this

with the upper bound on h and on p1, we get

h ≤
(
2cp6.181

)cp5.181 N2/p1

≤

(
2c

(
2 log d

log log d

)6.18
)c

(
2 log d
log log d

)5.18

·N
2 log log d

log d

≤ O

(
log d

log log d

)O
(

log d
log log d

)5.18

N
O
(

log log d
log d

)

= d
O
(

log d
log log d

)4.18

N
O
(

log log d
log d

)
= 2polylog(d)N

O(log log d
log d

)
.

18

4.3 Our Construction

In this section, we will prove Theorem 3.4 by showing a construction of a matching vector family generaliz-
ing the construction in Section 4.2. The matching vector family in this section will be for a larger set Sone;
in return, we will get a more efficient protocol and more freedom in choosing the pairs of primes p1, p2.

Construction 4.6. Let p1, p2 be primes, and let m = p1p2. Let 0 < w < m be a weight that will be chosen
later. We start with the basic matching vector family ((ũi, ṽi))

N
i=1 over Zh̃

t from Claim 4.1 with t = m and
h̃ = w⌈N1/w⌉+ 1. Define up1,i = ũ⊗p1−1

i , and vp1,i = ṽ⊗p1−1
i , thus for every i, j ∈ [N]

⟨up1,i,vp1,j⟩ ≡ ⟨ũ
⊗p1−1
i , ṽ⊗p1−1

j ⟩ ≡ ⟨ũi, ṽj⟩p1−1 ≡ 1⟨ũi,ṽj⟩̸≡0 (mod p1) (mod p1).

Next, we define the set A = {a ∈ {m−w, . . . ,m− 1} : a ≡ 0 (mod p1)}. Since m ≡ 0 (mod p1), the size
of A is ⌊ wp1 ⌋. We consider the polynomial R : Fp2 → Fp2 (of degree at most ⌊ wp1 ⌋) s.t.

1. R(0) ≡ 0 (mod p2),

2. R(a) ≡ 1 (mod p2) for all a ∈ A,

i.e.,

R(x) = x

∑
a∈A

∏
b∈A,b ̸=a

(x− b)

a− b

 .

Since a, b ≡ 0 (mod p1) and 0 < a, b < m, then a ̸≡ b (mod p2), therefore the inverse of a− b exists. Note
that deg(R) = dR = |A| = ⌊ wp1 ⌋. Let R(x) ≡

∑dR
k=1 akx

k (mod p2) be the explicit representation of R (as
R(0) = 0, its free coefficient is 0). Define up2,i =

(
a1ũ

⊗1, . . . , adRũ
⊗dR

)
(that is, up2,i is a concatenation

of dR vectors), and vp2,j =
(
ṽ⊗0, . . . , ṽ⊗dR

)
. By Lemma 4.2, for every i, j ∈ [N]

⟨up2,i,vp2,j⟩ ≡
dR∑
k=1

ak⟨ũ⊗k
i , ṽ⊗k

j ⟩ ≡
dR∑
k=1

ak⟨ũi, ṽj⟩k ≡ R(⟨ũi, ṽj⟩) (mod p2).

We pad either up1,i and vp1,i or up2,i and vp2,i such that they will have the same length. We construct
((ui,vi))

N
i=1 over Zh

m, where h = h̃
max{⌊ w

p1
⌋,p1−1} using the CRT per entry, i.e., ui[k] is the unique element

in Zm s.t.

• ui[k] ≡ up1,i[k] (mod p1),

• ui[k] ≡ up2,i[k] (mod p2);

we define vi the same way with vp1,i and vp2,i.

Claim 4.7. Let p1, p2 be primes and let m = p1p2. The family ((ui,vi))
N
i=1 over Zh

m as constructed
in Construction 4.6 with ⌊ wp1 ⌋ = p1 − 1 is a (d, p1)-sparse Sone-matching vector family, such that h ≤

4d ·N
2 log log d

log d , and
√
2p1 log

(
p1/
√
2
)
≤ log d ≤ 2p1 log p1.

Proof. Let i, j ∈ [N]. By the construction,

• ⟨ui,vj⟩ ≡ ⟨up1,i,v1,j⟩ ≡ 1⟨ũi,ṽj⟩̸≡0 (mod p1) (mod p1),

19

• ⟨ui,vj⟩ ≡ ⟨up2,i,vp2,j⟩ ≡ R(⟨ũi, ṽj⟩) (mod p2).

Therefore,

• ⟨ui,vi⟩ ≡ 1⟨ũi,ṽi⟩̸≡0 (mod p1) ≡ 0 (mod p1),

• ⟨ui,vi⟩ ≡ R(⟨ũi, ṽi⟩) ≡ R(0) ≡ 0 (mod p2),

thus, ⟨ui,vi⟩ ≡ 0 (modm). For every i ̸= j ∈ [N],

• If ⟨ũi, ṽj⟩ ̸≡ 0 (mod p1), then ⟨ũi, ṽj⟩ ≡ 1⟨ũi,ṽj⟩≠1 ≡ 1 (mod p1). By Claim 4.1, ⟨ui,vj⟩ ≡
⟨ũi, ṽj⟩p1−1 ≡ 1 (mod p1), and ⟨ui,vj⟩ ∈ Sone.

• Otherwise ⟨ũi, ṽj⟩ ≡ 0 (mod p1), and, by Claim 4.1, m−w ≤ ⟨ũi, ṽj⟩ ≤ m−1. Thus, ⟨ũi, ṽj⟩ ∈ A
and ⟨ui,vj⟩ ≡ R(⟨ũi, ṽj⟩) ≡ 1 (mod p2) by the definition of R, thus ⟨ui,vj⟩ ∈ Sone.

Next, we analyze the p1-sparsity of the matching vectors and their length h (as a function of N and d).
Recall that h = h̃

max{⌊ w
p1

⌋,p1−1}. We take w such that ⌊ wp1 ⌋ = p1 − 1, i.e., p21 − p1 ≤ w ≤ p21 − 1. By
Claim 4.1, the sparsity with respect to p1 of ((ũi, ṽi))

N
i=1 is w + 1. By the definition if ui (respectively vi)

the p1-sparsity of ui is the sparsity of up1,i (resp. vp1,i), i.e., d = (w + 1)p1−1. Therefore,

1

4
· p2p1−2

1 ≤ p
2(p1−1)
1 ·

(
1− 1

p1

)p1−1

≤ (p21 − p1)
p1−1 ≤ d = (w + 1)p1−1 ≤ (p21)

p1−1 ≤ p2p11 . (6)

This implies
(2p1 − 2) log p1 − 2 ≤ log d ≤ 2p1 log p1.

Let p1 log p1 = α. Using Claim 2.3, we get

p1 ≥
α

logα
≥

log d
2

log log d
2

=
log d

2 log log d− 2
≥ log d

2 log log d
. (7)

On the other hand, for every p1 > 4,

log d ≥ (2p1 − 2) log p1 − 2 ≥ p1 log p1.

Thus,

p1 ≤
2α

logα
≤ 2 log d

log log d
.

We conclude that for every p1 > 4

log d

2 log log d
≤ p1 ≤

2 log d

log log d
. (8)

Also,
h̃ = ⌈N1/w⌉ · w + 1 ≤ 2N1/w · w ≤ 2(p21 − 1)N

1
p1(p1−1) .

From the choice of w, h = h̃p1−1, therefore

h ≤ 2p1−1(p21 − 1)p1−1N
1
p1 ≤ 22 log d/ log log d

2
p2p1−2
1 N

1
p1 ≤ 2d

1+ 2
log log d ·N

1
p1

(where the last inequality follows from (6)). So we get,

h ≤ 2d
1+ 2

log log dN
2 log log d

log d .

20

Remark 4.8. We next consider a specific choice of parameters in Construction 4.6 and analyze the resulting
properties of the matching vector family. Take p1 = 3, p2 = 7, and choose w = 8. Then the length of the
resulting matching vectors from Construction 4.6 is h = h̃max{⌊ 8

3
⌋,2}, where h̃ = O(N1/8), i.e., the length

is O(N1/4). The sparsity is (8 + 1)2 = 81. Using this matching vector family, the protocol in Figure 1 is
a 2-server CDS protocol over F7, with reconstruction degree p1 times the sparsity of the matching vectors,
i.e. 243, and communication complexity O(N1/4).

This 2-server CDS protocol has better communication complexity than the quadratic 2-server CDS pro-
tocol from [13] (whose communication complexity is O(N1/3)).

The following lemma proves Theorem 3.4.

Lemma 4.9. For every N, d > 0, there exists primes p1, p2 where p1|p2 − 1 such that the matching vectors
from Construction 4.6 is a (d, p1) − sparse Sone-matching vector family over Zh

m, where m = p1p2, and

h ≤ 2d
1+ 2

log log dN
16 log log d

log d .

Proof. Let N, d > 0 be some natural numbers. Let p1 be a prime such that

log d

4 log log d
≤ p1 ≤

log d

2 log log d
, (9)

such prime exists from Bertrand’s postulate [1]. Let p2 be the smallest prime such that p1|p2 − 1. Let
((ui,vi))

N
i=1 be that vector family over Zh

m of Construction 4.6, where m = p1p2. By Claim 4.7, ((ui,vi))

is an Sone-matching vector family such that h ≤ 2d
′1+ 2

log log d′ N
2 log log d′

log d′ where d′ is the p1-sparsity of the
matching vector family. By equation (8), log d′

2 log log d′ ≤ p1 ≤ 2 log d′

log log d′ . Therefore, by (8), (9),

log d′

2 log log d′
≤ p1 ≤

log d

2 log log d
⇒ d′ ≤ d,

thus, in particular the matching vector family is d-sparse with respect to p1. Also, by (8), (9),

log d

4 log log d
≤ p1 ≤

2 log d′

log log d′
⇒ 2 log log d′

log d′
≤ 16 log log d

log d
,

so, h ≤ 2d
1+ 2

log log dN
16 log log d

log d .

4.4 Kutin’s Construction

In this section, we will prove Theorem 3.5 by presenting a variant of the construction of matching vector
family of Kutin [33]. Let p1 < p2 be two primes, m = p1p2, and t = pe11 pe22 for some e1, e2 > 0. By
Claim 4.1 there is an S̃-matching vector family ((ũi, ṽi))

N
i=1 over Zh̃

t , where S̃ = {1, . . . , t − 1}, and
h̃ = ⌈N1/(t−1)⌉ · (t− 1) + 1 (i.e., w = t− 1).

Next we define BBR polynomials, which will be used in the construction.

Theorem 4.10 ([33]). Let p1 < p2 be two primes, m = p1 · p2, and t = pe11 pe22 for two positive integers
e1, e2. There exists a polynomial Qm,t(x) over Q such that:

1. Qm,t(x) =
∑dQ

i=1 bi
(
x
i

)
, where bi ∈ Zm.

2. Qm,t(x) ≡ 0 (modm) if and only if x ≡ 0 (mod t).

21

3. degQm,t = dQ = max{pe11 , pe22 } − 1.

4. If x ̸≡ 0 (mod t) then Qm,t(x) mod m ∈ Scan.

Note that the coefficients of Q are not necessarily integers, and yet for every input x, it evaluates to an
integer when x is an integer.

Example 4.11. Let p1 = 2, p2 = 3, e1 = 3, e2 = 2. Then m = 6, Scan = {1, 3, 4}, and t = 72. Then,

Qm,t(x) = x+ 5

(
x

2

)
+

(
x

3

)
+ 5

(
x

4

)
+

(
x

5

)
+ 5

(
x

6

)
+

(
x

7

)
+ 2

(
x

8

)
.

(where the polynomials
(
x
i

)
are defined in Section 2.1). The degree of Qm,t is 8; it can be checked that

Qm,t(72) ≡ 0 (mod 6), for example Qm,t(2) ≡ 2 + 5
(
2
2

)
≡ 1 (mod 6).

Construction 4.12. Let t = pe11 pe22 , and let Qm,t be the polynomial from Theorem 4.10. We use Claim 4.1
with t and w = t− 1. In this case, ũi = ṽi, since by definition its first entry is t−w = 1, and ũi is a binary
vector. Let Ai ⊆ [h̃] be the subset defined by ũi, i.e., Ai = {ℓ ∈ [h] : ũi[ℓ] = 1}; as the sparsity of ũi is
w + 1 = t, |Ai| = t. We define vectors ui,vi of length

∑dQ
i=1

(
h
i

)
, where for every ∅ ̸= S ⊆ [h̃] of size at

most dQ we have the following coordinate in the vectors

• ui[S] = b|S| · 1S⊆Ai ,

• vi[S] = 1S⊆Ai .

The sparsity of this family is the number of non-empty subsets of Ai of size at most dQ, i.e., at most∑dQ
i=1

(
t
i

)
.

Our construction is based on Kutin’s construction [33]. Kutin uses h̃ = t1.5 in Claim 4.1, and gets

shorter vectors of length N
O
(√

log logN
logN

)
; however, his vectors are dense. We get longer vectors that are

sparser.

Lemma 4.13. Let ((ũi, ṽi))
N
i=1, Qm,t, and ((ui,vi))

N
i=1 be as defined in Construction 4.12. Then, for all

i, j ∈ [N],
⟨ui,vj⟩ = Qm,t(⟨ũi, ṽj⟩).

Proof. Let i, j ∈ [N],

⟨ui,vj⟩ =
dQ∑
i=1

∑
S∈([h]i)

ui[S] · vj [S]

=

dQ∑
i=1

∑
S∈([h]i)

b|S| · 1S⊆Ai · 1S⊆Aj

=

dQ∑
i=1

bi
∑

S∈([h]i)

1S⊆Ai∩Aj

=

dQ∑
i=1

bi

(
|Ai ∩Aj |

i

)
= Qm,t(|Ai ∩Aj |) = Qm,t(⟨ũi, ṽj⟩)

22

Claim 4.14. For every two primes p1, p2 and an integer e1 > 0, there exists an integer e2 > 0 such that
for t = pe11 pe22 , the family ((ui,vi))

N
i=1 as defined in Construction 4.12 is a (d, p1)-sparse Scan-matching

vector family over Zh
m, such that h ≤ dp1·O(1) ·N

2p1 log log d
log d , and

√
t/p1 ≤ log d ≤

√
p1t.

Proof. Let i ̸= j ∈ [N]. By Theorem 4.10, and Lemma 4.13

• ⟨ui,vi⟩ = Qm,t(⟨ũi, ṽi⟩) ≡ 0 (modm), since ⟨ũi, ṽi⟩ ≡ 0 (mod t).

• ⟨ui,vj⟩ = Qm,t(⟨ũi, ṽi⟩) = Qm,t(a) for a ∈ {1, . . . , t− 1}, thus Q(a) ∈ Scan (by the definition of
Q).

Before, analyzing the p1-sparsity of ((ui,vi))
N
i=1, we show how to choose an exponent e2 given e1 and

primes p1, p2 s.t. pe11 , pe22 = Θ(
√
t) up to a factor of

√
p1. For every e1 > 0, let ẽ2 be the minimal integer

s.t. p1e1 ≤ p2
ẽ2 ,

• If p2ẽ2 ≤ p1
e1+1, then we choose e2 = ẽ2 and

1. t = p1
e1p2

e2 ≥ p1
−1p2

e2 · p2e2 ⇒ p2
2e2 ≤ p1t ⇒ pe11 ≤ p2

e2 ≤
√
p1t.

2. t = pe11 p2
e2 ≤ p2e1+1

1 ⇒ p2
e2 ≥ pe11 ≥

√
t
p1

.

• Otherwise, pẽ22 > pe1+1
1 and we choose ẽ2 = e2 − 1, thus pe1−1

1 ≤ p2
ẽ2−1 = pe22 ≤ pe11 (since ẽ2 is

the minimal s.t. pe11 ≤ pẽ22) and we get

1. t = pe11 p2
e2 ≥ pe11 pe1−1

1 ⇒ p2e11 ≤ p1t ⇒ p2
e2 ≤ pe11 ≤

√
p1t.

2. t = pe11 p2
e2 ≤ p1p

e2
2 · p2e2 ⇒ pe21 ≥ p2

e2 ≥
√

t
p1

.

In conclusion, for every e1 we can choose e2 such that√
t

p1
≤ pe11 , pe22 ≤

√
p1t. (10)

Thus, by the definition, the degree of Qm,t, namely dQ, is at most
√
p1t.

Then, h̃ = (t− 1)⌈N1/(t−1)⌉+ 1 ≤ 2(t− 1)N1/(t−1) and

h =

dQ∑
i=1

(
h̃

i

)
≤

√
p1t∑

i=1

(
h̃

i

)
≤

(
eh̃√
p1t

)√
p1t

≤

(
6t ·N1/(t−1)

√
p1t

)√
p1t

≤
(
6
√
t/p1

)√p1t
·N

√
2p1
t .

23

Let d be the sparsity of ((ui,vi))
N
i=1. We use the inequalities of Claim 2.3 to get,

d =

dQ∑
i=1

(
t

i

)
≤

√
p1t∑

i=1

(
t

i

)
≤
(

et√
p1t

)√
p1t

≤
(
e
√
t/p1

)√p1t
.

⇒ log d ≤
√
p1t log(e

√
t/p1) ≤

√
p1t log(

√
p1t)⇒

√
t ≥ log d
√
p1 log log d

.

d ≥

(
t√
t/p1

)√t/p1

=
(√

p1t
)√t/p1

⇒ log d ≥
√
t/p1 log

√
p1t⇒

√
t ≤

2
√
p1 log d

log log d
.

(11)

Thus,

h ≤
(
12 log d

log log d

)(
2p1 log d
log log d

)
·N

√
2p1 log log d

log d = d·O(p1) ·N
√
2p1 log log d

log d .

The following lemma proves Theorem 3.5.

Lemma 4.15. For every N, d > 0, there exists integers e1, e2 such that the matching vectors from Construc-

tion 4.12 is a (d, 2)− sparse Scan-matching vector family over Zh
6 , and h ≤ dO(1)N

O(log log d
log d

).

Proof. Let N, d > 0. We want to prove the existence of an Scan-matching vector family with vectors of

length dO(1)N
O(log log d

log d
). We choose p1 = 2, p3 = 3, e1 = ⌊log

(
log d

log log d

)
⌋ − 1, and we choose e2 such that

equation (10) holds for t = 2e13e2 and we get ,2e1−
1
2 ≤
√
t ≤ 2e1+

1
2 . Then,

log

(
log d

log log d

)
− 2 ≤ e1 ≤ log

(
log d

log log d

)
− 1

⇒ log d

4 log log d
≤ 2e1 ≤ log d

2 log log d

⇒ log d

4
√
2 log log d

≤
√
t ≤ log d√

2 log log d
.

Let ((ui,vi))
N
i=1 be the vectors in Zh

m as defined in Construction 4.12 given t,m. According to Claim 4.14,

((ui,vi))
N
i=1 is an Scan-matching vector family such that h ≤ d′O(1) · N

2
√
2 log log d′
log d′ , where d′ is the p1-

sparsity of the matching vectors family. Also by equation (11), log d′√
2 log log d′

≤
√
t ≤ 2

√
2 log d′

log log d′ therefore

log d′√
2 log log d′

≤ log d√
2 log log d

⇒ d′ ≤ d,

log d

4
√
2 log log d

≤ 2
√
2 log d′

log log d′
⇒ 2
√
2 log log d′

log d′
≤ 32 ·

√
2 log log d

log d
.

Thus, ((ui,vi))
N
i=1 is (d, 2)-sparse, and has length h ≤ d′O(1)N

2
√
2 log log d′
log d′ ≤ dO(1) ·N

32·
√
2 log log d
log d .

24

4.5 Comparison of the Three Constructions

We described three constructions of sparse matching vectors. These constructions have the same asymptotic

behavior: For every d there is a d-sparse matching vector family with vectors of length Od

(
N

O(log log d
log d

)
)

.

The one based on Kutin’s construction is the most interesting as the vectors can be over Zh
m for m = p1 · p2

for every two primes p1, p2, e.g., we can take m = 2 · 3. In the construction we provide and Efremenko’s
construction, the value of m increases as d increases (e.g., as the length of the vectors decreases). Our
construction yields shorter matching vectors that can be used to construct CDS protocols and secret-sharing
schemes that are better than the degree-2 construction of [13]. Efremenko’s and Kutin’s constructions are
for Scan-matching vector family, whereas our construction yields only an Sone-matching vector family.

For every two primes p1, p2, and m = p1p2, the length of Efremenko’s matching vectors is mp2N1/p1 ,
and are (mp1 , p1)-sparse. The length in our matching vector family is p2p11 ·N1/p1 and they are (p2p11 , p1)-
sparse. Thus, the sparsity and length in our matching vector family is much better since p2 > p1 and
p2p11 < (p1 · p2)p1 = mp1 , and is independent of the choice of p2. Recall that as we need that p1 divides
p2 − 1, we only know that p2 ≤ c · p5.181 .

5 A Polynomial k-Server CDS Protocol

In this section, we describe a construction of k-server CDS protocol for INDEXk
N with polynomial re-

construction. Our protocol is a generalization of the k-server CDS protocol from [37]. It relies on two
components. The first is a matching vector family with a special property of k-decomposability (see Defini-
tion 5.1). Thus, we need to prove that the constructions of sparse matching vectors are decomposable. The
second is simulation of Bob in the 2-server CDS protocol by k−1 servers. We need to modify the simulation
of [37] such that it can be computed by a linear function. Towards this goal, we describe a selection protocol
that will be used as a black box in the k-server CDS protocol.

Recall that the point-wise product of two vectors x,y ∈ Zh
m, for some m,h > 0, is a vector in Zh

m

whose ℓ-th element is x ⊙ y[ℓ] = x[ℓ] · y[ℓ] mod m.

Definition 5.1 (k-decomposability). Let N ′ = k
√
N . A family of vectors (ui)

N
i=1 over Zh

m is k-decomposable
if there exist vector families (u1,i)

N ′
i1=1, . . . , (uk,i)

N ′
i=1 over Zh

m such that under the natural mapping i 7→
(i1, . . . , ik) ∈ [N ′]k

ui = u1,i1 ⊙ · · · ⊙ uk,ik mod m

for all i ∈ [N], i.e. ui is the pointwise product of k vectors u1,i1 , . . . ,uk,ik , where each uj,ij can be
computed from ij .

Definition 5.2 (Decomposable Matching Vector Families). For integers N,m, h, k > 0 and S ⊆ Zm \ {0},
a collection of vectors ((ui,vi))

N
i=1 over Zh

m is a k-decomposable S-matching vector family if it is an
S-matching vector family, and (ui)

N
i=1, (vi)

N
i=1 are k-decomposable (as in Definition 5.1).

We next give an example, in order to demonstrate the notion of decomposable matching vectors.

Example 5.3. Let N = 4, k = 2, w = 1, and i = (i1, i2) ∈ {1, 2}2. Let e1, e2, e3, e4 ∈ Z4
m be the

standard unit vectors (i.e., e1 = (1, 0, 0, 0)). Let ũi = ṽi = (1, ei) for 1 ≤ i ≤ 4 be the basic matching
vector family from Claim 4.1. We will decompose ei for every i ∈ [4] as follows:

(ũ1,i)1≤i≤2 = ((1, 1, 1, 0, 0), (1, 0, 0, 1, 1)) and (ũ2,i)1≤i≤2 = ((1, 1, 0, 1, 0), (1, 0, 1, 0, 1)).

25

For example,
ũ(1,1) = (1, e1) = (1, 1, 0, 0, 0) = (1, 1, 1, 0, 0) ⊙ (1, 1, 0, 1, 0)

and
ũ(2,1) = (1, e3) = (1, 0, 0, 1, 0) = (1, 0, 0, 1, 1) ⊙ (1, 1, 0, 1, 0).

5.1 The Selection Protocol

In this section, we will describe an important component of our k-server CDS protocol. In our k-CDS
protocol there will be k servers, the first server will simulate Alice in the 2-server CDS protocol described
in Section 3, and the other k − 1 servers will simulate Bob, i.e., each server Qj for 2 ≤ j ≤ k, holding
an index ij−1, sends a message such that the referee can reconstruct the messages of Bob with input i =
(i1, . . . , ik−1) in the 2-server CDS protocol. This should be done such that the referee will not learn any
additional information. Furthermore, the referee should reconstruct the message of Bob using a linear
function. We will formulate these requirements as a special case of private simultaneous message (PSM)
protocols [23, 29].

Definition 5.4 (PSM protocols). Let Xt be a t-th input space, and let Y be the output space. A private
simultaneous messages (PSM) protocol P , consists of:

• A finite domain R of common random inputs, and k finite message domains M1, . . . ,Mk, denote
M =M1 × · · · ×Mk.

• Message encoding algorithms ENC1, . . . , ENCk, where ENCt : Xt ×R →Mt.

• A decoding algorithm DEC :M→ Y .

We say that a PSM protocol computes a k-argument function f : X1 × · · · × Xk → Y , if it satisfies the
following two properties:

Correctness. For all x1 ∈ X1, . . . , xk ∈ Xk, and r ∈ R:

DEC(ENC1(x1; r), . . . , ENCk(xk; r)) = f(x1, . . . , xk),

that is, the referee always reconstructs the output of f .

Security. For every m = (m1, . . . ,mk) ∈M1×· · ·×Mk, x = (x1, . . . , xk), and x′ = (x′1, . . . , x
′
k) ∈ X

such that f(x) = f(x′) it holds that

Pr
r∼U(R)

[(ENC1(x1; r), . . . , ENCk(xk; r)) = m] = Pr
r∼U(R)

[(ENC1(x
′
1; r), . . . , ENCk(x

′
k; r)) = m],

that is, the referee cannot distinguish between two inputs with the same output, i.e., the referee only learns
the output of f . The communication complexity of a PSM protocol is defined as log |M|.

Next, we define a function, simulating Bob’s messages, and we design a PSM for it. In the function,
we need the following selection function: each server holds an input xi ∈ Fp and all servers hold a vector
s = (s0, . . . , sp−1) ∈ Z

p
q . The inputs of the servers define a selection index b =

∏k
i=1 xi mod p; the

referee, which knows x1, . . . , xk, should learn sb without learning any additional information on s.

26

Definition 5.5 (The selection function). Let q be a positive integer, p be a prime, and let s = (s0, . . . , sp−1) ∈
Z
p
q be a vector of length p. Let Zp

q × Fp be the input space for each server; each server holds the common
input s, and a private input xt. The SELECTION function is defined as follows

fSELECTION(s, x1, . . . , xk) = (sb, x1, . . . , xk)

where b =
∏k

t=1 xt mod p.

Protocol SELECTION

Private input: The input of server Qi is xi ∈ Fp.
Common input: A vector s = (s0, . . . , sp−1) ∈ Zp

q .
Shared Randomness: r = (rj,a)j∈[k−1],a∈F∗

p
where rj,a ∈ Zq . Let rk,a = sa for a ∈ F ∗

p .

The message of server Q1:
If x1 = 0 sends m1 ← s0, otherwise sends m1 ← r1,x1

.

The message of server Qj , for 2 ≤ j ≤ k:
If xj = 0 sends mj ← s0 otherwise sends (mj,1, . . . ,mj,p−1), where

mj,a = (rj,a − rj−1,a·x−1
j mod p) mod q.

Referee:
Denote b1 = x1, b2 = x1 · x2 mod p, . . . , bk =

∏k
i=1 xi mod p = b. The referee computes:

• If ∃j s.t. xj = 0, the referee outputs mj .

• Otherwise outputs m1 +
∑k

j=2 mj,bj .

Figure 2: A PSM protocol for the SELECTION function.

In Protocol SELECTION, we assume that the referee knows x1, . . . , xk; this is the case when we use
it in a CDS protocol. For the purpose of analyzing Protocol SELECTION in Figure 2 as a PSM protocol
(where the referee has no input), we assume that each server Qj also sends xj and the referee also outputs
x1, . . . , xk. Furthermore, in the definition of fSELECTION we assume that all servers have a common input
s. We can modify Protocol SELECTION in a way that only Qk will hold s.

Claim 5.6. Let p be a prime and k, q be integers. The PSM (ENC1, . . . , ENCk, DEC) described in Figure 2
is a PSM protocol for fSELECTION with communication complexity (2p− 2) log p.

Proof. Let x1, . . . , xk ∈ Fp be the inputs for each server respectively, and denote b =
∏k

i=1 xi mod p.

Correctness. Since, for every j ∈ [k], ENCj sends xi, and DEC outputs x1, . . . , xk. It is left to show that
the referee in Figure 2 outputs sb. If there is j ∈ [k] such that xj = 0, then b = 0. In this case, server Qj

sends mj = s0, and the referee outputs mj . Otherwise, denote b1 = x1, b2 = x1 · x2 mod p, . . . , bk =∏k
i=1 xi mod p; in particular bk = b. We observe that for every 2 ≤ j ≤ k, the messages mj,bj satisfy

27

mj,bj = rj,bj − rj−1,bj ·x−1
j

= rj,bj − rj−1,bj−1
, thus the referee outputs

m1 +
k∑

j=2

mj,bj ≡ r1,x1 +
k∑

j=2

(rj,bj − rj−1,bj−1
) ≡ rk,bk ≡ sb (mod q).

Security. Let s = (s1, . . . , sp), s
′ = (s′1, . . . , s

′
p) ∈ Z

p
q , and let x,x′ ∈ F k

p such that

fSELECTION(s,x) = fSELECTION(s
′,x′).

From the definition of fSELECTION, x′ = x = (x1, . . . , xk), and sb = s′b where b =
∏k

t=1 xt. We denote
r = (rj,a)j∈[k−1],a∈F ∗

p
, and r′ = (r′j,a)j∈[k−1],a∈F ∗

p
as random strings in the execution of fSELECTION with

inputs x and x′ respectively. We will describe a bijection between r, and r′ such that for every t ∈ [k],
ENCt(s, xt; r) = ENCt(s

′, xt; r
′). Let r = (rj,a)j∈[k],a∈F ∗

p
, where rk,a = sa, for every a ∈ F ∗

p . We define r′

as follows. We define r′k,a = s′a for every a ∈ F ∗
p . There are two cases:

xj = 0 for some j ∈ [k]. In this case, b = 0. Let j0 be the maximal index such that xj0 = 0. We define
recursively for every a ∈ F ∗

p , j0 ≤ j ≤ k − 1

r′j,a = rj,a + rj+1,a·xj+1 − r′j+1,a·xj+1
,

and for every 1 ≤ j < j0, we define r′j,a = rj,a. We show that the messages sent by the servers are the same
with (s, r) and (s′, r′). Then, for every j ≤ j0, such that xj = 0,

ENCj(s, xj ; r) = (s0, xj) = (s′0, xj) = ENCj(s
′, xj ; r

′).

For j = 1, if x1 ̸= 0 then j0 > 1 and

ENC1(s, x1; r) = (r1,x1 , x1) = (r′1,x1
, x1) = ENC1(s

′, x1; r
′).

For every j < j0 such that xj ̸= 0, consider the message of Qj ,

1. ENCj(s, xj ; r) = (mj,1, . . . ,mj,p−1, xj)

2. ENCj(s
′, xj ; r

′) = (m′
j,1, . . . ,m

′
j,p−1, xj)

We need to show that mj,a = m′
j,a for every a ∈ F ∗.

m′
j,a = r′j,a − r′

j−1,a·x−1
j

= rj,a − rj−1,a·x−1
j

= mj,a.

For j0 < j ≤ k, we again need to show that m′
j,a = mj,a for every a ∈ F ∗

p .

m′
j,a = r′j,a − r′

j−1,a·x−1
j

= r′j,a − (rj−1,a·x−1
j

+ rj,a − r′j,a)

= rj,a − rj−1,a·x−1
j

= mk,a.

(12)

28

For every j, xj ̸= 0. For every a ∈ F ∗
p , 1 ≤ j ≤ k − 1 we define recursively,

r′j,a = rj,a + rj+1,a·xj+1 − r′j+1,a·xj+1
.

For servers 2 ≤ j ≤ k, as before, we need to show that m′
j,a = mj,a for every a ∈ F ∗

p , which follows
exactly as in equation (12). Thus, it is left to show that r′1,x1

= r1,x1 , and we will get that

ENC1(s, x1; r) = (r1,x1 , x1) = (r′1,x1
, x1) = ENC1(s

′, x1; r
′).

For every j ∈ [k], denote bj =
∏j

i=1 xi. We prove, by induction on 1 ≤ j ≤ k, that for every a ∈ F ∗
p ,

r′j,bj = rj,bj , and in particular r′1,x1
= r1,x1 .

For the base case, j = k, and r′k,bk = s′b = sb = rk,bk . For j < k, using an induction hypothesis that
r′j+1,bj+1

= rj+1,bj+1
, we get

r′j,bj = rj,bj + rj+1,bj+1
− r′j+1,bj+1

= rj,bj .

5.2 Protocols for Simulation Bob’s Messages

In this subsection, we present the polynomial k-server CDS protocol for INDEXk
N (hence for every function

f : [N]k → {0, 1}). In this protocol, the first server Q1 holds the database and the k−1 servers Q2, . . . , Qk

collectively hold the index. In this protocol, the servers that hold the index will simulate Bob in the 2-server
CDS protocol described in Figure 1, using the PSM protocol SELECTION from Section 5.1. Server Q1

will simulate Alice.
In the CDS protocol of Figure 1, Bob sends m1

B = sui + r1. In the implementation of the protocol
as a polynomial protocol, Bob sends m′1

B = (am
1
B [1] mod p2, . . . , a

m1
B [h] mod p2) where am

1
B [ℓ] ≡

asui[ℓ]+r1[ℓ] (mod p2) (see (5)). Recall that we use decomposable matching vectors, so for i = (i1, . . . , ik−1)
we have ui[ℓ] ≡

∏
t∈[k−1] ut,it [ℓ] (mod m). In particular, ui[ℓ] =

∏
t∈[k−1] ut,it [ℓ] (mod p1). Thus, the

ℓ-th coordinate of m′1
B is

am
1
B [ℓ] ≡ a(s

∏
t∈[k−1] ut,it [ℓ])+r1[ℓ] mod p1 ≡ as·b+r1[ℓ] (mod p2), (13)

where b =
∏

t∈[k−1] ut,it [ℓ] mod p1. Consider the vector (ar1[ℓ], as+r1[ℓ],...,a(p1−1)s+r1[ℓ]); the referee
should learn the (b + 1)-th coordinate of this vector without learning any other information. Therefore,
each coordinate of the vector can be sent by Q2, . . . , Qk using the selection protocol. A formal description
of a protocol for this task appears in Figure 3.

In addition, Bob sends

m2
B ≡ ⟨ui, r2⟩+ r3 ≡

∑
ℓ∈[h]

ui[ℓ] · r2[ℓ]

+ r3 ≡

∑
ℓ∈[h]

k−1∏
t=1

ut,it [ℓ] · r2[ℓ]

+ r3 (mod p2). (14)

This can be done by executing ℓ copies of Protocol SELECTION and summing the results. As we only
want to disclose the sum of the executions, we mask each with a random element such that the sum of the
masks is zero. A formal description of a protocol for this task appears in Figure 4. We next describe the
functionality computed by these protocols and prove their correctness and security.

29

Definition 5.7 (The function SEND1). Let ((ui,vi))
Nk−1

i=1 be a decomposable matching vector family. Let
r1 ∈ F h

p1 be the server’s common input, and let i ∈ [N], we denote i = (i1, . . . , ik−1), where for every
t ∈ [k − 1], it ∈ [N1/(k−1)]. We define the PSM functionality SEND1 as

fSEND1(s, i, r1) = (i, (asui[ℓ]+r1[ℓ] mod p2)ℓ∈[h]).

Notice that r1 is an input of fSEND1 , thus a PSM protocol for this function should hide it (i.e., the referee
should not distinguish between s = 1, i, r1 and s = 0, i, r′1 = ui + r1).

Protocol Send m1
B

Common input: r1 ∈ F n
p1

.
Private input of Qt+1 for 1 ≤ t ≤ k − 1: it ∈ [N1/(k−1)].

• For ℓ = 1 to h:

– Q2, . . . , Qk execute protocol SELECTION, where the vector is sℓ = (as·b+r1[ℓ]

mod p2)b∈Fp1
and the input of the server Qt+1 for 1 ≤ t ≤ k − 1 is xℓ

t = ut,it [ℓ] mod p1.

• The referee reconstructs:
m1

B ← (s1b1 , . . . , s
h
bh)

where bℓ =
∏k−1

t=1 ut,it [ℓ] mod p1 for every ℓ ∈ [h].

Figure 3: A protocol simulating Bob’s message m1
B .

Lemma 5.8. Protocol Send m1
B described in Figure 3 is a PSM protocol for the function fSEND1 .

Proof. We next prove the correctness and security of the protocol.

Correctness. Let i = (i1, . . . , ik−1) ∈ [N] and r1 ∈ F h
p1 . From the correctness of Protocol SELECTION

(described in Figure 2), for every ℓ ∈ [h], the referee reconstructs sℓ
bℓ
≡ as·b

ℓ+r1[ℓ] (mod p2) where bℓ =∏k−1
t=1 ut,it [ℓ] mod p1. Therefore, by (13),

m1
B = (asui[ℓ]+r1[ℓ] mod p2)ℓ∈[h] = (am

1
B [ℓ])ℓ∈[h].

Security. Let s, s′, i, i′ ∈ [N], and r1, r
′
1 ∈ F h

p1 such that fSEND1(s, i, r1) = fSEND1(s
′, i′, r′1). By the

definition of fSELECTION1 , i = i′ = (i1, . . . , ik−1). Furthermore, asui[ℓ]+r1[ℓ] ≡ as
′ui[ℓ]+r′1[ℓ] (mod p2) for

every ℓ ∈ [h]. From the security of the protocol SELECTION, the messages sent in every iteration are
equally distributed, and since in every iteration the SELECTION protocol is executed independently, the
joint distribution of all the messages in all iterations is the same for s, r1 and s′, r′1.

Definition 5.9 (The function SEND2). Let ((ui,vi))
Nk−1

i=1 be a decomposable matching vector family. Let
r2 ∈ F h

p2 , r3 ∈ Fp2 be the servers’ common input, and let i = (i1, . . . , ik−1), where for every t ∈ [k − 1],
it ∈ [N1/(k−1)]. We define function SEND2 as

fSEND2(i, r2, r3) = (i, ⟨ui, r2⟩+ r3 mod p2).

30

Protocol Send m2
B

Common input: r2 ∈ F h
p2

, r3 ∈ Fp2 .
Private input of Qt+1 for 1 ≤ t ≤ k − 1: it ∈ [N1/(k−1)].
Shared randomness: (rℓ3)ℓ∈[h−1]. Define rh3 = r3 −

∑
ℓ∈[h−1] r

ℓ
3 mod p2.

• For ℓ = 1 to h:

– Q2, . . . , Qk execute protocol SELECTION, where the vector is sℓ = (b · r2[ℓ] + rℓ3
mod p2)b∈Fp2

, and the input of Qt+1 for 1 ≤ t ≤ k − 1 is xℓ
t = ut,it [ℓ] mod p2.

• The referee reconstructs:
m2

B ←
∑
ℓ∈[h]

(bℓr2[ℓ] + rℓ3) mod p2

where for every ℓ ∈ [h], bℓ =
∏k−1

t=1 ut,it [ℓ] mod p2.

Figure 4: A protocol simulating Bob’s message m2
B .

Lemma 5.10. Protocol Send m2
B described in Figure 4 is a PSM protocol for the function fSEND2 .

Proof. We next prove the correctness and security of the protocol and analyze its communication complexity
and reconstruction degree.

Correctness. Let i = (i1, . . . , ik−1), r2, r3 be an input, and let (rℓ3)ℓ∈[h] be the randomness. By the
correctness of the protocol SELECTION (described in Figure 2), for every iteration ℓ ∈ [h], the referee
reconstructs sℓ

bℓ
≡ bℓ · r2[ℓ] + rℓ3 (mod p2), where bℓ =

∏k−1
t=1 ut,it [ℓ] mod p2. Therefore, from (14),

m2
B ≡

∑
ℓ∈[h]

(bℓr2[ℓ] + rℓ3) ≡
∑
ℓ∈[h]

(
k−1∏
t=1

ut,it [ℓ] · r2[ℓ] + rℓ3

)

≡

∑
ℓ∈[h]

ui[ℓ] · r2[ℓ]

+ r3 ≡ ⟨ui, r2⟩+ r3 (mod p2)

(since rh3 ≡ r3 −
∑

ℓ∈[h−1] r
ℓ
3 (mod p2)).

Security. Let i, i′ ∈ [N], r2, r
′
2 ∈ F h

p2 , r3, r
′
3 ∈ Fp2 such that fSEND2(i, r2, r3) = fSEND1(i

′, r′2, r
′
3). By

the definition of fSELECTION2 , i = i′ = (i1, . . . , ik−1), and ⟨ui, r2⟩+ r3 = ⟨ui, r
′
2⟩+ r′3. We first show that

the outputs of the selection protocols are equally distributed for i, r2, r3 and i, r′2, r
′
3. Let (rℓ3)ℓ∈[h−1], and

rh3 = r3 −
∑

ℓ∈[h−1] r
ℓ
3 be the randomness used in the execution of Protocol Send mB2 with (i, r2, r3). We

define, r′ℓ3 = bℓ(r2[ℓ]− r′2[ℓ]) + rℓ3, for every ℓ ∈ [h− 1] where bℓ =
∏k−1

t=1 ut,it [ℓ] = ui[ℓ]. We also define

31

r′h3 = r′3 −
∑

ℓ∈[h−1] r
′ℓ
3 . Thus, we get for every ℓ ∈ [h− 1]

s′ℓbℓ = bℓ · r′2[ℓ] + r′ℓ3

= bℓ · r′2[ℓ] + bℓ(r2[ℓ]− r′2[ℓ]) + rℓ3

= bℓ · r2[ℓ] + rℓ3 = sℓbℓ .

Also, from the correctness

s′hbh = ⟨ui, r
′
2⟩+ r′3 −

∑
ℓ∈[h−1]

s′ℓbℓ = ⟨ui, r2⟩+ r3 −
∑

ℓ∈[h−1]

sℓbℓ = shbh .

Recall, that sℓ
bℓ
, s′ℓ

bℓ
are the outputs for the protocol SELECTION in iteration ℓ, for the inputs r2, r3, and

r′2, r
′
3 respectively. From the security of the protocol SELECTION, the messages sent by the servers

given the choice for (rℓ3)ℓ∈[h], (r
′ℓ
3)ℓ∈[h] as above are distributed the same where the distribution is over the

randomness of the SELECTION protocol. Since we have seen a bijection from (rℓ3)ℓ∈[h] to (r′ℓ3)ℓ∈[h], the
messages in the protocol are distributed the same for the inputs r2, r3, and r′2, r

′
3, where the randomness is

over (rℓ3)ℓ∈[h−1], and the randomness of the SELECTION protocol.

5.3 The k-Server CDS Protocol

In Figure 5 we describe the k-server CDS protocol for INDEXk
N . This is an implementation of the 2-server

CDS protocol from Figure 1, where the index i is distributed between Q2, . . . , Qk and they send Bob’s
messages using protocols Send m1

B and Send m2
B .

Theorem 5.11. Let p1, p2 be primes such that p1|p2−1, m = p1 ·p2 and ((ui,vi))
Nk−1

i=1 be a decomposable
(d, p1)-sparse Sone-matching vector family over Zh

m. The protocol in Figure 5 is a k-server CDS protocol
for INDEXk

N with message size h · 2m logm and reconstruction by polynomial of degree d · p1.

Proof. We next prove the correctness and security of the protocol and analyze its communication complexity
and reconstruction degree.

Correctness. The correctness follows immediately from Lemma 5.8, Lemma 5.10, and from the correct-
ness of the 2-server CDS protocol in Figure 1 (proven in Theorem 3.1).

Security. From the security of the protocols Send m1
B and Send m2

B described in Figure 3, and Fig-
ure 4 respectively, Charlie can reconstruct m1

B,m
2
B , without learning any additional information about

s, r1, r2, r3. From the security of the 2-server CDS protocol described in Figure 1 (as probed in Theo-
rem 3.1), Charlie does not learn any information about the secret s if Di = 0, when he does not have any
information about r1, r2, r3.

Communication complexity. The message of Q1 has length O(h logm). For 2 ≤ t ≤ k, the message of
Qt is the sequence of the messages resulting from 2h executions of Protocol SELECTION. By Claim 5.6,
each such message has length at most m logm. Therefore, the total communication complexity of each
server is at O(h ·m logm).

32

The Polynomial CDS Protocol for INDEXk
N

Parameters: A decomposable Sone-matching vector family ((ui,vi))
Nk−1

i=1 over Zh
m for m = p1p2 s.t.

p1|p2 − 1, and h ∈ N, where for every i ∈ [Nk−1] the decomposition of ui is ui1 , . . . ,uik−1
, and an

element a ∈ F ∗
p2

of order p1 in Fp2 .
Input of Q1: D ∈ {0, 1}Nk−1

.
Inputs of Q2, . . . , Qk: i1, . . . , ik−1 ∈ [N].
The secret: s ∈ {0, 1}.
Shared Randomness: r1 ∈ F h

p1
, r2 ∈ F h

p2
, r3 ∈ Fp2 , rℓ1 ∈ F

(k−1)·(p1−1)
p1 , rℓ2 ∈ F

(k−1)·(p2−1)
p2 for every

ℓ ∈ [h], and the randomness of the protocols Send m1
B and Send m2

B .

Define C : F h
p1
→ Fp2

, as C(b) =
∑N

j=1 Dja
⟨b,vj⟩ mod p2.

Define V : F h
p1
→ F h

p2
, as V (b) =

∑N
j=1 Djvja

⟨b,vj⟩ mod p2.

• Q1 sends m1
A ← ((1− a)s− 1)C(r1)− r3 ∈ Fp2 and m2

A ← r2 + ((1− a)s− 1)V (r1) ∈ F h
p2

.

• Charlie and Q2, . . . , Qk:

– Execute protocol Send m1
B described in Figure 3 with inputs (s, i, r1).

– Execute protocol Send m2
B described in Figure 4 with inputs (i, r2, r3).

• Charlie outputs 1 if

⟨ui,m
2
A⟩ −m1

A −m2
B − C(m1

B) + ⟨ui, V (m1
B)⟩ ≠ 0, (15)

and 0 otherwise.

Figure 5: A polynomial k-server CDS protocol using a decomposable matching vector family over Zm,
where m = p1p2 for primes p1, p2 such that p1|p2 − 1.

Reconstruction degree: The reconstruction function of the PSM protocol SELECTION described in
Figure 2 is linear (i.e., has degree 1). Furthermore, the reconstruction function of Charlie as a function of
m1

A,m
2
A,m

1
B,m

2
B has degree d · p1 (by Lemma 3.3). Therefore, the degree of the reconstruction function

in the k-server CDS protocol is d · p1.

In Section 6, we will see how to decompose the matching vector families we have seen in Section 4,
yielding a decomposable matching vector families as summarized in the next two theorems.

Theorem 5.12. For every N, d > 0, there exists primes p1, p2 where p1|p2 − 1, and p1 ≤ 2 log d
log log d such

that there is a decomposable (d, p1)-sparse Sone-matching vector family over Zh
m where m = p1p2 and

h ≤ 2d
1+ 2

log log dN
2 log log d

log d .

Theorem 5.13. For every N, d > 0, there is a decomposable (d, 2)-sparse Scan-matching vector family

over Zh
6 , where h ≤ dO(1)N

O(log log d
log d

).

Combining Theorems 5.12 and 5.13 with Theorem 5.11, we get the following theorem, which can be
proved similarly as Theorem 3.6

33

Theorem 5.14. For every N, d > 0, and k > 1, there is a k-server CDS protocol for INDEXk
N , with

degree-d reconstruction over and communication complexity dO(1)N
O
(
(k−1)· log log d

log d

)
.

Corollary 5.15. For every N, d > 0, k > 1, and function f : [N]k → {0, 1}, there is a k-server CDS

protocol for f , with degree-d reconstruction and communication complexity of dO(1)N
O
(
(k−1)· log log d

log d

)
.

Remark 5.16. Using the construction of the matching vector family over Z21 from Remark 4.8 (in the next
section we will show that it is decomposable), we get a k-server CDS protocol over F7, with reconstruc-
tion degree 243, and communication complexity O(N (k−1)/4). Previously, the best known k-server CDS
protocol with polynomial reconstruction had communication complexity O(N (k−1)/3) and degree 2 [13].

6 Construction of Decomposable Matching Vector families

In this section, we show that the three construction we have seen in Section 4 are decomposable.

6.1 Decomposability of the Basic MV

In this section, we show a decomposition of the basic matching vector family in Claim 4.1. In Example 5.3,
we have shown the decomposition for vectors of length 5. We first generalize Example 5.3 and show that
the standard basis is decomposable.

Claim 6.1. Let N ′,m, α, h′ > 0, and let u = (ei1,...,iα)i1,...,iα∈[N ′] be the standard basis of Zh′
m. Then there

is a decomposition u1, . . . ,uα of u.

Proof. We define the following decomposition of standard basis vectors.

For every j ∈ [α], we define uj = (yj,ℓ1,...,ℓα)ℓ1,...,ℓα∈[N ′]:

yj,i1,...,iα [ℓ1, . . . , ℓα] = 1ℓj=ij .

Note that yj,i1,...,iα ∈ {0, 1}N
′α

. For every i = (i1, . . . , iα) and a vector ei, we have that ei[ℓ] = 1 if and
only if ℓ = (ℓ1, . . . , ℓα) = (i1, . . . , iα), i.e., i1 = ℓ1, . . . , iα = ℓα. Thus, for every ℓ1, . . . , ℓα ∈ [N ′]:

y1,i1,...,iα ⊙ · · · ⊙ yα,i1,...,iα [ℓ1, . . . , ℓα] =
∏
j∈[α]

yj,i1,...,iα [ℓ1, . . . , ℓα]

=
∏
j∈[α]

1ℓj=ij = 1(ℓ1,...,ℓα)=(i1,...,iα)

= ei1,...,iα [ℓ1, . . . , ℓα].

We next show how to decompose the basic construction of matching vectors assuming the w divides k.
In Claim 6.3 we will remove this assumption.

Claim 6.2. Let N,m,w, k ≥ 0 where 0 ≤ w ≤ m and k = αw for some integer α. There is a decomposable
(w + 1)-sparse S̃-matching vector family ((ũi, ṽi))

N
i=1 over Zh̃

m for S̃ = {m − w, . . . ,m − 1}, where
h̃ = ⌈N1/w⌉ · w + 1.

34

Proof. We show that the basic matching vector from Claim 4.1 is decomposable. Denote N ′ = N1/k. For
i ∈ [N], we denote i = (ib,j)b∈[w],j∈[α], where ib,j ∈ [N ′]. We define:

u′
i = (ei1,1,...,i1,α , . . . , eiw,1,...,iw,α),

i.e., u′
i is a concatenation of w standard basis vectors, each of length N1/w = N ′α. The vector family

((ũi, ṽi))
N
i=1 where ũi = (w,u′

i), ṽi = (1,u′
i) is the vector family from Claim 4.1; it is a (w + 1)-sparse

S̃-matching vector family. We need to prove that this matching vector family is decomposable. For every
ei1,...,iα , let y1,i1,...,iα , . . . ,yα,i1,...,iα be its decomposition from Claim 6.1.

Now, for every t ∈ [k] we define u′
t,it

= (u′
t,it,1

, . . . ,u′
t,it,w

) where for every i = (i1, . . . , ik), and
b ∈ [w]:

u′
t,it,b =

{
1N1/w if ⌈ tα⌉ ≠ b,

y(t−1) mod α+1,ib,1,...,ib,α if ⌈ tα⌉ = b.

That is, u′
t,it

is a concatenation of w blocks, where the ⌈ tw⌉’s block is a decomposition of the appropriate
standard basis vector and the other blocks are all ones vectors. Note that for every t ∈ [k], b ∈ [w],
u′
t,it,b
∈ {0, 1}N1/w

, thus u′
t,it
∈ {0, 1}h̃. Next we prove that for i = (i1, . . . , ik)

u′
i = u′

1,it ⊙ · · · ⊙ u′
k,it . (16)

Let ℓ ∈ [h̃], denote b = ⌈ ℓ
N1/w ⌉, and ℓ′ = ℓ mod N1/w. Then,∏

t∈[k]

u′
t,it [ℓ] =

∏
t∈[k]

u′
t,it,b[ℓ

′] =
∏

t∈[k]:⌈ t
α
⌉̸=b

u′
t,it,b[ℓ

′] ·
∏

t∈[k]:⌈ t
α
⌉=b

u′
t,it,b[ℓ

′]

=
∏

t∈[k]:⌈ t
α
⌉̸=b

1 ·
∏

t∈[k]:⌈ t
α
⌉=b

y(t−1) mod α+1,ib,1,...,ib,α [ℓ
′]

=
∏
j∈[α]

yj,ib,1,...,ib,α [ℓ
′] = eib,1,...,ib,α [ℓ

′] = u′
i[ℓ].

Thus, by (16) for every i ∈ [N]

ũi = ũ1,i1 ⊙ · · · ⊙ ũk,ik , ṽi = ṽ1,i1 ⊙ · · · ⊙ ṽk,ik ,

where for every t ∈ [k],

ṽt,it = (1,v′
t,it), and ũt,it =

{
(1,u′

t,it
) if t < k,

(w,u′
t,it

) if t = k.

which concludes the proof.

If w does not divides k, we decompose the vectors to kw parts, and get a decomposition to k parts by
composing e parts to one parts.

Claim 6.3. Let N,m,w, k ≥ 0 where 0 ≤ w ≤ m. There is a decomposable (w + 1)-sparse S̃-matching
vector family ((ũi, ṽi))

N
i=1 over Zh̃

m for S̃ = {m− w, . . . ,m− 1}, where h̃ = ⌈N1/w⌉ · w + 1.

35

Proof. Let k′ = kw, h̃ = ⌈N1/w⌉ · w + 1, and let ((ũi, ṽi))
N
i=1 be a k′-decomposable, (w + 1)-sparse,

S̃-matching vector family over Zh̃
m for S̃ = {m− w, . . . ,m− 1} from Claim 6.2, where for every i ∈ [N]

ũi = ũ1,i1 ⊙ · · · ⊙ ũk′,ik′
, ṽi = ṽ1,i1 ⊙ · · · ⊙ ṽk′,ik′

.

For every t ∈ [k′], we denote (t1, t2) ∈ [k]× [w], and for every i ∈ [N], t1 ∈ [k], we define

ũ′
t1,it1

= ũ(t1,1),i(t1,1)
⊙ · · · ⊙ ũ(t1,w),i(t1,w)

,

and we get

ũi = ũ1,i1 ⊙ · · · ⊙ ũk′,ik′

= ũ(1,1),i(1,1) ⊙ · · · ⊙ ũ(1,w),i(1,w)
⊙ · · · ⊙ ũ(k,1),i(k,1) ⊙ · · · ⊙ ũ(k,w)i(k,w)

= ũ′
1,i1 ⊙ · · · ⊙ ũ′

k,ik
.

Thus, we get that (ũ′
1,i)

k√N
i=1 , . . . , (ũ

′
k,i)

k√N
i=1 is a k-decomposition of (ũi)i∈[N]. We k-decompose (ṽi)i∈[N]

similarly, and we get that ((ũi, ṽi))i∈[N] is k-decomposable.

6.2 Decomposability of Efremenko’s and Our MVs

In this section, we will show a decomposition for our matching vector family from Construction 4.6; since
our construction uses the same techniques as in Construction 4.3, using polynomials and CRT per entry, the
decomposition of our matching vector family will yield a decomposition of Efremenko’s construction.

Construction 6.4. Let N,m,w, k ≥ 0 where 0 ≤ w ≤ m, and m = p1p2, for two primes p1 < p2. Let
((ũi, ṽi))

N
i=1 be the basic matching vector family over Zh̃

m from Claim 4.1 For every i = (i1, . . . , ik) ∈
[N], let (ũ1,i1 , . . . , ũk,ik), and (ṽ1,i1 , . . . , ṽk,ik) be the decompositions for ũi, and ṽi respectively from
Claim 6.3.

Recall, in Construction 4.6, we defined up1,i = ũ⊗p1−1
i , and up2,i = (a1ũ

⊗1
i , . . . , adRũ

⊗dR
i) for some

polynomial R(x) =
∑dR

j=0 ajx
j; we defined vp1,i,vp2,i similarly.

For every t ∈ [k], we define

up1,t,it = ũ⊗p1−1
t,it

, up2,t,it =

{
(ũ⊗1

t,it
, . . . , ũ⊗dR

t,it
) if t < k,

(a1ũ
⊗1
t,it

, . . . , adRũ
⊗dR
t,it

) if t = k.

Similarly, we define vp1,t,it ,vp2,t,it .
Now, for every i ∈ [N], t ∈ [k], we define ut,it using the CRT per entry similarly to Construction 4.6, and
as in the construction in Construction 4.6, (we pad with zeros all vectors of length less than h). For every
ℓ ∈ [h] for h = h̃

max{⌊ w
p1

⌋,p1−1}, ut,it [ℓ] is the unique element in Zm s.t.

• ut,it [ℓ] ≡ up1,t,it [ℓ] (mod p1),

• ut,it [ℓ] ≡ up2,t,i2 [ℓ] (mod p2).

We define vt,it in the same way.

Claim 6.5. Let N, k,m, h > 0, and let (ui)
N
i=1 be a decomposable vector family over Zh

m, where for every
i = (i1, . . . , ik) ∈ [N] the decomposition of ui is (u1,i1 , . . . ,uk,ik). Then the r-th tensor power operation
preserves decomposability, i.e.

u⊗r
i = (u⊗r

1,i1
⊙ · · · ⊙ u⊗r

k,ik
).

36

Proof. Let ℓ = (ℓ1, . . . , ℓr) ∈ [h], then∏
t∈[k]

u⊗r
t,it

[ℓ] =
∏
t∈[k]

∏
j∈[r]

ut,it [ℓj] =
∏
j∈[r]

∏
t∈[k]

ut,it [ℓj] =
∏
j∈[r]

ui[ℓj] = u⊗r
i [ℓ].

The next proves Theorem 5.12.

Lemma 6.6. Let ((ui,vi))
N
i=1, be the matching vector family over Zh

m from Construction 4.6. For every i ∈
[N], (u1,i1 , . . . ,uk,ik) and (v1,i1 , . . . ,vk,ik) from Construction 6.4 are decomposition of ui, vi respectively.

Proof. For i ∈ [N], let up1,i,up2,i, vp1,i,vp2,i be the vectors from Construction 4.6. For every t ∈
[k], let up1,t,it ,up2,t,i2 , and vp1,t,it ,vp2,t,i2 be the vectors from Construction 6.4. Then, by Claim 6.5,
(up1,1,i1 , . . . ,up1,k,ik) and (up2,1,i1 , . . . ,up2,k,ik) are decompositions of up1,i,up2,i, respectively, over Zp1 ,
and Zp2 respectively. The same goes for vp1,i,vp2,i. Now we will see that (u1,i1 ,uk,ik) is a decomposition
of ui. Let ℓ ∈ [h], then

• ui[ℓ] ≡ up1,i[ℓ] ≡
∏

t∈[k] up1,t,it [ℓ] ≡
∏

t∈[k] ut,it [ℓ] (mod p1).

• ui[ℓ] ≡ up2,i[ℓ] ≡
∏

t∈[k] up2,t,it [ℓ] ≡
∏

t∈[k] ut,it [ℓ] (mod p2).

Therefore, by the CRT, and from the fact that ui ∈ Zm, where m = p1p2, we get

ui = u1,i1 ⊙ · · · ⊙ uk,ik mod m.

6.3 Decomposability of Kutin’s MVs

In this subsection, we will show that the techniques used in Construction 4.12 to construct Scan-matching
vector family from the basic matching vector from Claim 4.1 preserve decomposability, and thus will yield
a decomposition of the matching vectors in Construction 4.12.

Construction 6.7. Let N, k,m > 0, such that m = p1p2 for two primes p1 < p2, and let t = pe11 , pe22 for
some integers e1, e2 > 0. Let ((ũi, ṽi))

N
i=1 Z

h̃
m be the basic matching vector family over Zh̃

m from Claim 4.1,
and for every i = (i1, . . . , ik) ∈ [N], let (ũ1,i1 , . . . , ũk,ik) be the decomposition of ũi from Claim 6.3.
Let Qm,t(x) =

∑dQ
i=1 bi

(
x
i

)
be the BBR polynomial from Theorem 4.10. For every t ∈ [k], let At,it ⊆ [h̃] be

the subset defined by ũt,it , i.e., At,it = {ℓ ∈ [h] : ũt,it [ℓ] = 1}. We define the vectors ut,it , vt,it of length∑dQ
i=1

(
h
i

)
where for every ∅ ≠ S ⊆ [h̃] of size at most dQ we have the following coordinate in the vectors

• ut,it [S] =

{
1S⊆At,it

if t < k,

b|S| · 1S⊆At,it
if t = k.

• vt,it [S] = 1S⊆At,it
.

Claim 6.8. Let ((ui,vi))
N
i=1 be the matching vector family over Zh

m from Construction 4.3. For every
i = (i1, . . . , ik) ∈ [N], the vectors (u1,i1 , . . . ,uk,ik) and (v1,i1 , . . . ,vk,ik) from Construction 6.7 are a
decomposition of ui and vi, respectively.

37

Proof. Let i = (i1, . . . , ik) ∈ [N], and let Ai ⊆ [h̃] be the subset defined by ũi, i.e., Ai = {ℓ ∈ [h] : ũi[ℓ] =
1}, and let At,it as defined in Construction 6.7, for every t ∈ [k]. We make the following observation:⋂

t∈[k]

At,it =
⋂
t∈[k]

{ℓ ∈ [h] : ũt,it [ℓ] = 1}

= {ℓ ∈ [h] :
∏
t∈[k]

ũt,it [ℓ] = 1}

= {ℓ ∈ [h] : ũi[ℓ] = 1} = Ai.

Recall the definition of ui,vi from Construction 4.12, for every ∅ ≠ S ⊆ [h], s.t. |S| ≤ dQ:

• ui[S] = b|S| · 1S⊆Ai .

• vi[S] = 1S⊆Ai .

Thus, for every entry S:

•
∏

t∈[k] ut,it [S] = b|S| ·
∏

t∈[k] 1S⊆At,it
= b|S| · 1S⊆⋂

t∈[k] At,it
= b|S| · 1S⊆Ai = ui[S].

•
∏

t∈[k] vt,it [S] =
∏

t∈[k] 1S⊆At,it
= 1S⊆

⋂
t∈[k] At,it

= 1S⊆Ai = vi[S].

7 A Polynomial Secret Sharing Scheme for General Access Structures

CDS protocols were used in [34, 4, 13, 6] to construct secret-sharing schemes for arbitrary access structure.
Similarly to Applebaum et al. [4], we construct a secret-sharing scheme from k-server CDS protocols in
two steps, first constructing robust CDS protocols (i.e., RCDS protocols as defined in Definition 2.12), and
then constructing secret-sharing scheme for arbitrary access structures, while preserving the reconstruction
degree throughout the steps. Specifically, we use an improved analysis of this transformation given in [13].

7.1 A Polynomial t-RCDS Protocol

Beimel et al. [13] show a construction of a quadratic t-RCDS protocol based on a quadratic (i.e., degree 2)
k-server CDS protocol. Their construction is actually more general and applies to any reconstruction degree
and any communication complexity of the CDS protocol, as stated in the next theorem.

Theorem 7.1 ([13]). Assume that there is a k-server CDS protocol, with polynomial reconstruction function
of degree d and with communication complexity c(k,N, d) = N (k−1)/ξ(d), for some function ξ(d). Let
t < min{N/2k, 2

√
N/k}. Then there is a k-server t-RCDS protocol with reconstruction degree d and

message size

NO((k−1)/ξ(d)) · t(k−1)·(1−1/ξ(d))+1 · k3k·(1−1/ξ(d)) · log2N · log2k(1−1/ξ(d))(t)

= Õ(NO((k−1)/ξ(d)) · t(k−1)·(1−1/ξ(d))+1 · k3k·(1−1/ξ(d))).

Furthermore, the degree of encoding and decoding of this t-RCDS protocol is the degree of encoding and
decoding, respectively, of the underlying k-server CDS protocol.

38

Combining Theorem 7.1 with Theorem 5.14, we get

Corollary 7.2. Let t < min{N/2k, 2
√
N/k}. Then there is a degree-d k-server t-RCDS protocol with

message size

O(N
(k−1)·O

(
log log d
log d

)
· tk · k3k · log2N · log2k(t))

= Õ(N
(k−1)· log log d

log d · tk · k3k).

7.2 A Construction for All Access Structures

We present a theorem from [6] that constructs secret-sharing schemes from a k-server t-RCDS protocols.

Theorem 7.3 ([6]). Assume that for every function f : [N]k → {0, 1} there is a k-server t-RCDS protocol
with message size c(k,N, t, d), then there is a secret-sharing scheme realizing an arbitrary n-party access
structure with share size

max
{
c(
√
n, 2

√
n, 20.5

√
n, d),

max
0.5<β≤1

{c
(√

2n(1− β), 2
√

2n(1−β), 2
√

n(1−β)/2, d
)
· 2H2(β)n−2(1−β)n}

}
· 2o(n).

Furthermore, the degree of sharing and reconstruction of this secret-sharing scheme is the degree of encod-
ing and decoding, respectively, of the underlying RCDS protocol.

Combining Theorem 7.1 and, Theorem 7.3 we obtain the following result.

Theorem 7.4. Assume that there is a k-server CDS protocol, with degree-d reconstruction, with commu-
nication complexity c(k,N, d) = N (k−1)/ξ(d), for some function ξ(d) ≥ 2, then there is a secret-sharing
scheme realizing an arbitrary n-party access structure with share size

max
{
20.5n(1+1/ξ(d)), 2n(log(2

1/ξ(d)+2)−1)
}
· 2o(n).

Proof. Applying Theorem 7.1 we get a polynomial k-server t-RCDS protocol with degree-d reconstruction
and message size

c(k,N, t, d) = Õ(N (k−1)/ξ(d) · t(k−1)·(1−1/ξ(d))+1 · k3k·(1−1/ξ(d))).

We will need to compute

c
(√

2n(1− β), 2
√

2n(1−β), 2
√

n(1−β)/2, d
)

= Õ

(
2
√

2n(1−β)·
√

2n(1−β)−1

ξ(d) · 2
√

n(1−β)/2(
√

2n(1−β)−1)(1− 1
ξ(d)

)+1 ·
√
2n(1− β)

3
√

2n(1−β)(1− 1
ξ(d)

)
)

= 2
2n(1−β)

ξ(d) · 2n(1−β)(1− 1
ξ(d)

) · 2o(n)

= 2
n(1−β)(1

ξ(d)
+1) · 2o(n).

39

Next, we need to find

max
0.5≤β≤1

c
(√

2n(1− β), 2
√

2n(1−β), 2
√

n(1−β)/2, d
)
· 2H2(β)n−2(1−β)n

= 2
n(1−β)(1

ξ(d)
+1) · 2o(n) · 2H2(β)n−2(1−β)n

= max
0.5≤β≤1

2
n((1−β)(1

ξ(d)
−1)+H2(β)) · 2o(n).

Thus, we will maximize the function f(β) = (1− β)(1/ξ(d)− 1)+H2(β) by checking when derivative to
zero.

f ′(β) = 1− 1

ξ(d)
+ log

(
1− β

β

)
= 0

⇒ log

(
1− β

β

)
=

1

ξ(d)
− 1

⇒ 1− β

β
= 21/ξ(d)−1

⇒ β =
2

21/ξ(d) + 2
.

Since that for every ξ(d) > 1, 0.5β ≤ 1,

max
0.5≤β≤1

2n((1−β)(1/ξ(d)−1)+H2(β))

= 2
n

((
1− 2

21/ξ(d)+2

)(
1

ξ(d)
−1

)
+H2

(
2

21/ξ(d)+2

))

= 2
n

((
21/ξ(d)

21/ξ(d)+2

)(
1

ξ(d)
−1

)
+ 2

21/ξ(d)+2
·log

(
21/ξ(d)+2

2

)
+ 21/ξ(d)

21/ξ(d)+2
·log

(
21/ξ(d)+2

21/ξ(d)

))

= 2
n

((
21/ξ(d)

21/ξ(d)+2

)(
1

ξ(d)
−1

)
+ 2

21/ξ(d)+2
·(log(21/ξ(d)+2)−1)+ 21/ξ(d)

21/ξ(d)+2
·
(
log(21/ξ(d)+2)− 1

ξ(d)

))

= 2
n

((
21/ξ(d)

21/ξ(d)+2

)(
1

ξ(d)
−1

)
+log(21/ξ(d)+2)− 2

21/ξ(d)+2
− 1

ξ(d)
· 21/ξ(d)

21/ξ(d)+2

)

= 2n(log(2
1/ξ(d)+2)−1).

Thus, we obtain a secret-sharing scheme with reconstruction degree d, and the required share size.

Using Taylor expansion for log(2x + 2) we get the following corollary.

Corollary 7.5. Assume that there is a k-server CDS protocol, with degree-d reconstruction, with commu-
nication complexity c(k,N, d) = N (k−1)/ξ(d), for some function ξ(d) ≥ 2, then there is a secret-sharing
scheme realizing an arbitrary n-party access structure with share size

max

{
20.5n(1+1/ξ(d)), 2

n(0.585+ 1
3ξ(d)

+O
(

1

ξ(d)2

)
)
}
· 2o(n).

Proof. Using Taylor expansion, we get log(2x + 2) = log 3 + x
3 +O(x2), thus

log(21/ξ(d) + 2)− 1 = log 3 +
1

3ξ(d)
+O(

1

ξ2(d)
)− 1 = 0.585 +

1

3ξ(d)
+O

(
1

ξ(d)2

)
.

Thus, from Theorem 7.4 we get the required share size.

40

Combining Theorem 5.14 with Corollary 7.5 we get the following corollary.

Corollary 7.6. Let d > 2. Every n-party access structure can be realized by a secret-sharing scheme with

degree-d reconstruction and share size 2
n(0.585+O

(
log log d
log d

)
).

Remark 7.7. Applying Theorem 7.4 with the k-server CDS protocol from Remark 5.16 with communication
complexity O(N (k−1)/4) and reconstruction degree 243, we get a secret-sharing scheme for an arbitrary
access structure with share size 20.6731n+o(n), and reconstruction degree 243.

In comparison, Beimel et al. [13] constructed a quadratic (i.e., degree-2) secret-sharing scheme with
share size 20.705n+o(n), and Applebaum and Nir [6] constructs a linear secret-sharing scheme with share
size 20.7575n+o(n) and a general (non-polynomial) secret-sharing scheme with share size 20.585n+o(n). As
d increases, the share size in our secret-sharing scheme approaches 20.585n, i.e., it approaches the share
size of the scheme of Applebaum and Nir [6], the best known secret-sharing scheme for an arbitrary access
structure.

7.3 A Construction for Almost All Access Structures

By [10], almost all access structures can be realized by secret-sharing scheme with shares of size 2o(n) and
by a linear secret-sharing scheme with share size 2n/2+o(n). In [13], they showed that almost all access
structures can be realized by a quadratic secret-sharing scheme over F2 with share size 2n/3+o(n). We will
use the same technique, and construct a secret-sharing scheme with polynomial reconstruction and smaller
share size for almost all access structures.

Theorem 7.8 ([10]). Assume that there is a k-server CDS protocol, with reconstruction of degree-d and
with communication complexity c(k,N, d) = N (k−1)/ξ(d) for some function ξ(d) > 0. Then almost all
access structures can be realized by secret-sharing scheme with degree-d reconstruction and share size
2n/ξ(d)+o(n).

Combining Theorem 7.8, with our polynomial k-server CDS protocol with message size c(k,N, d) =

N
O((k−1)· log log d

log d
) from Theorem 5.14 we get the following theorem.

Corollary 7.9. Almost all access structures can be realized by secret-sharing scheme with degree-d recon-
struction and share size 2O(n log log d/ log d)+o(n).

As d grows, we get share size 2ϵn for every constant ϵ > 0. If we take d−O(log n) (or even d = o(1)),
then the share size is no(1), however larger than the share size of [10], where the degree of reconstruction is
not bounded.

References

[1] Martin Aigner and Günter M. Ziegler. Bertrand’s postulate. In Proofs from THE BOOK, pages 7–12.
Springer, Berlin, Heidelberg, 2010.

[2] Benny Applebaum, Barak Arkis, Pavel Raykov, and Prashant Nalini Vasudevan. Conditional disclosure
of secrets: Amplification, closure, amortization, lower-bounds, and separations. In CRYPTO 2017,
volume 10401 of LNCS, pages 727–757, 2017.

41

[3] Benny Applebaum, Amos Beimel, Oriol Farràs, Oded Nir, and Naty Peter. Secret-sharing schemes for
general and uniform access structures. In EUROCRYPT 2019, volume 11478 of LNCS, pages 441–471,
2019.

[4] Benny Applebaum, Amos Beimel, Oded Nir, and Naty Peter. Better secret sharing via robust condi-
tional disclosure of secrets. In 52nd STOC, pages 280–293, 2020.

[5] Benny Applebaum, Thomas Holenstein, Manoj Mishra, and Ofer Shayevitz. The communication
complexity of private simultaneous messages, revisited. In EUROCRYPT 2018, volume 10401 of
LNCS, pages 261–286, 2018.

[6] Benny Applebaum and Oded Nir. Upslices, downslices, and secret-sharing with complexity of 1.5n.
In CRYPTO 2021, volume 12827 of LNCS, pages 627–655, 2021.

[7] Benny Applebaum and Prashant Nalini Vasudevan. Placing conditional disclosure of secrets in the
communication complexity universe. In 10th ITCS, pages 4:1–4:14, 2019.

[8] László Babai, Anna Gál, and Avi Wigderson. Superpolynomial lower bounds for monotone span
programs. Combinatorica, 19(3):301–319, 1999.

[9] Amos Beimel. Secret-sharing schemes: A survey. In IWCC 2011, volume 6639 of LNCS, pages 11–46,
2011.

[10] Amos Beimel and Oriol Farràs. The share size of secret-sharing schemes for almost all access struc-
tures and graphs. In TCC 2020, volume 12552 of LNCS, pages 499–529, 2020.

[11] Amos Beimel, Oriol Farràs, Yuval Mintz, and Naty Peter. Linear secret-sharing schemes for forbidden
graph access structures. In TCC 2017, volume 10678 of LNCS, pages 394–423, 2017.

[12] Amos Beimel, Yuval Ishai, and Eyal Kushilevitz. General constructions for information-theoretic
private information retrieval. J. of Computer and System Sciences, 71(2):213–247, 2005.

[13] Amos Beimel, Hussien Othman, and Naty Peter. Quadratic secret sharing and conditional disclosure
of secrets. In CRYPTO 2021, volume 12827 of LNCS, pages 748–778, 2021.

[14] Amos Beimel and Naty Peter. Optimal linear multiparty conditional disclosure of secrets protocols. In
ASIACRYPT 2018, volume 11274 of LNCS, pages 332–362, 2018.

[15] Michael Bertilsson and Ingemar Ingemarsson. A construction of practical secret sharing schemes using
linear block codes. In AUSCRYPT ’92, volume 718 of LNCS, pages 67–79, 1992.

[16] George Robert Blakley. Safeguarding cryptographic keys. In Proc. of the 1979 AFIPS National Com-
puter Conference, volume 48, pages 313–317, 1979.

[17] László Csirmaz. The dealer’s random bits in perfect secret sharing schemes. Studia Sci. Math. Hungar.,
32(3–4):429–437, 1996.

[18] László Csirmaz. The size of a share must be large. J. of Cryptology, 10(4):223–231, 1997.

[19] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM J. Comput.,
40(4):1154–1178, 2011.

42

[20] Zeev Dvir and Sivakanth Gopi. 2-server PIR with sub-polynomial communication. In 47th STOC,
pages 577–584, 2015.

[21] Klim Efremenko. 3-query locally decodable codes of subexponential length. In STOC’09 - Proceed-
ings of the 2009 ACM International Symposium on Theory of Computing, Proceedings of the Annual
ACM Symposium on Theory of Computing, pages 39–44, November 2009. 41st Annual ACM Sym-
posium on Theory of Computing, STOC ’09 ; Conference date: 31-05-2009 Through 02-06-2009.

[22] Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J. Comput.,
41(6):1694–1703, 2012.

[23] Uri Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation. In 26th STOC, pages
554–563, 1994.

[24] Peter Frankl. Constructing finite sets with given intersections. In Combinatorial Mathematics, Pro-
ceedings of the International Colloquium on Graph Theory and Combinatorics 1981, volume 17 of
Annals of Discrete Mathematics, pages 289–291, 1983.

[25] Peter Frankl and Richard M. Wilson. Intersection theorems with geometric consequences. Combina-
torica, 1(4):357–368, 1981.

[26] Romain Gay, Iordanis Kerenidis, and Hoeteck Wee. Communication complexity of conditional dis-
closure of secrets and attribute-based encryption. In CRYPTO 2015, volume 9216 of LNCS, pages
485–502, 2015.

[27] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private infor-
mation retrieval schemes. JCSS, 60(3):592–629, 2000.

[28] V. Grolmusz. Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ram-
sey graphs. Combinatorica, 20:71–86, 2000.

[29] Yuval Ishai and Eyal Kushilevitz. Improved upper bounds on information theoretic private information
retrieval. In Proc. of the 31st ACM Symp. on the Theory of Computing, pages 79 – 88, 1999. Journal
version in [12].

[30] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect randomizing
polynomials. In Automata, Languages and Programming, 29th International Colloquium, ICALP
2002, Malaga, Spain, July 8-13, 2002, Proceedings, pages 244–256, 2002.

[31] Mitsuru Ito, Akira Saito, and Takao Nishizeki. Secret sharing schemes realizing general access struc-
ture. In Globecom 87, pages 99–102, 1987. Journal version: Multiple assignment scheme for sharing
secret. J. of Cryptology, 6(1), 15-20, 1993.

[32] Mauricio Karchmer and Avi Wigderson. On span programs. In 8th Structure in Complexity Theory,
pages 102–111, 1993.

[33] Samuel Kutin. Constructing large set systems with given intersection sizes modulo composite numbers.
Combinatorics, Probability Computing, Sep 2002.

[34] Tianren Liu and Vinod Vaikuntanathan. Breaking the circuit-size barrier in secret sharing. In 50th
STOC, pages 699–708, 2018.

43

[35] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Conditional disclosure of secrets via non-linear
reconstruction. In CRYPTO 2017, volume 10401 of LNCS, pages 758–790, 2017.

[36] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards breaking the exponential barrier
for general secret sharing. Announced in NY Crypto Day, Sep 15, https://nycryptoday.
wordpress.com/., 2017.

[37] Tianren Liu, Vinod Vaikuntanathan, and Hoeteck Wee. Towards breaking the exponential barrier for
general secret sharing. In EUROCRYPT 2018, volume 10820 of LNCS, pages 567–596, 2018.

[38] Anat Paskin-Cherniavsky and Artiom Radune. On polynomial secret sharing schemes. In ITC 2020,
volume 163 of LIPIcs, pages 12:1–12:21, 2020.

[39] Toniann Pitassi and Robert Robere. Lifting Nullstellensatz to monotone span programs over any field.
In 50th STOC, pages 1207–1219, 2018.

[40] Adi Shamir. How to share a secret. Communications of the ACM, 22:612–613, 1979.

[41] Triantafyllos Xylouris. On the least prime in an arithmetic progression and estimates for the zeros of
dirichlet l-functions. Acta Arithmetica, 150(1):65–91, 2011.

44

https://nycryptoday.wordpress.com/
https://nycryptoday.wordpress.com/

	Introduction
	Our Techniques
	Previous Works

	Preliminaries
	Notations
	Access Structures and Secret-Sharing Schemes
	Conditional Disclosure of Secrets
	Robust Conditional Disclosure of Secrets
	Degree-d Secret Sharing and Degree-d CDS Protocols
	Matching Vectors

	A Polynomial 2-Server CDS Protocol
	The CDS Protocol over m = p1p2
	Sparse Matching Vectors

	Constructions of d-Sparse Matching Vector Families
	Basic Tools
	Efremenko's Construction
	Our Construction
	Kutin's Construction
	Comparison of the Three Constructions

	A Polynomial k-Server CDS Protocol
	The Selection Protocol
	Protocols for Simulation Bob's Messages
	The k-Server CDS Protocol

	Construction of Decomposable Matching Vector families
	Decomposability of the Basic MV
	Decomposability of Efremenko's and Our MVs
	Decomposability of Kutin's MVs

	A Polynomial Secret Sharing Scheme for General Access Structures
	A Polynomial t-RCDS Protocol
	A Construction for All Access Structures
	A Construction for Almost All Access Structures

