
Constructive t-secure Homomorphic Secret
Sharing for Low Degree Polynomials

Kittiphop Phalakarn1, Vorapong Suppakitpaisarn1,
Nuttapong Attrapadung2, and Kanta Matsuura1

1 The University of Tokyo, Tokyo, Japan
{kittipop,kanta}@iis.u-tokyo.ac.jp, vorapong@is.s.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
n.attrapadung@aist.go.jp

Abstract. This paper proposes t-secure homomorphic secret sharing
schemes for low degree polynomials. Homomorphic secret sharing is a
cryptographic technique to outsource the computation to a set of servers
while restricting some subsets of servers from learning the secret inputs.
Prior to our work, at Asiacrypt 2018, Lai, Malavolta, and Schröder pro-
posed a 1-secure scheme for computing polynomial functions. They also
alluded to t-secure schemes without giving explicit constructions; con-
structing such schemes would require solving set cover problems, which
are generally NP-hard. Moreover, the resulting implicit schemes would
require a large number of servers. In this paper, we provide a constructive
solution for threshold-t structures by combining homomorphic encryp-
tion with the classic secret sharing scheme for general access structure
by Ito, Saito, and Nishizeki. Our scheme also quantitatively improves the
number of required servers from O(t2) to O(t), compared to the implicit
scheme of Lai et al. We also suggest several ideas for future research
directions.

Keywords: Homomorphic secret sharing · Homomorphic encryption ·
Threshold non-access structure.

1 Introduction

Homomorphic secret sharing is one of the interesting techniques in cryptography
which introduces a way to outsource the computation to a set of servers while
restricting some subsets of servers from learning about the secret inputs. There
are several homomorphic secret sharing schemes that support polynomial com-
putation, including the scheme of Shamir [36], Catalano and Fiore [15], and Lai,
Malavolta, and Schröder [31].

The schemes of Catalano and Fiore [15], and Lai et al. [31] both used degree-
k homomorphic encryption, which supports computation of degree-k polynomial
of ciphertexts, as a building block. The scheme of Catalano and Fiore [15] out-
sources the secret inputs to two servers, and the maximum computable degree
of the scheme is 2k. Obviously, the security of the scheme is 1-secure, meaning
that the two servers cannot collude. The work of Lai et al. [31] improved the

results of Catalano and Fiore. The secret inputs are outsourced to m servers,
and the maximum computable degree of the scheme is (k + 1)m− 1.

The scheme of Lai et al. [31] has many applications. It can support out-
sourced computation of low-degree polynomials on private data, which appears
in private information retrieval system, non-linear function approximation in
neural networks [16, 24], and many other applications. It is also shown in [1]
that any P/poly functions can be evaluated using polynomials of degree 3 with
the assumption that there exists a pseudo-random generator in NC1.

However, the main scheme of Lai et al. [31] is still 1-secure. Any subsets of
m servers, including any pairs of servers, cannot collude, which is not a realis-
tic situation. The authors also discussed in the paper that the scheme can be
extended to t-secure, where a collusion of t servers does not violate the security
of the scheme. Their proposed construction requires solving set cover problems,
which are NP-complete. Since there is no efficient and accurate algorithms for
set cover problems, their scheme gives an implicit construction which requires a
large number of servers.

If we consider the secret sharing scheme of Shamir [36] instead, which is infor-
mation theoretic, the maximum computable degree of the scheme is equal to the
upper bound proved in [4]. Trying to further increase the maximum computable
degree of the scheme by using computational setting is not straightforward, since
the threshold of the scheme changes after performing computations.

All in all, finding a constructive t-secure homomorphic secret sharing that can
compute polynomials of degree higher than the limit set by [4] can be considered
as an open problem.

1.1 Our Contributions

In this paper, we propose t-secure homomorphic secret sharing scheme for low
degree polynomials. Our scheme improves the scheme of Lai et al. [31] so that it
can constructively support threshold security. The proposed scheme also inherits
the applications of [31], but with t-security for all possible t ≥ 1. Here, we
claim four contributions: (1) increasing the maximum degree of homomorphic
secret sharing from Shamir [36], (2) adding threshold structures to Lai et al., (3)
decreasing the number of required servers in t-secure scheme of Lai et al., and
(4) extending the capability of homomorphic encryption.

Before going into details, we briefly explain the overview of the proposed
scheme as shown in Fig. 1. There are three roles, namely n input clients (each
has secret input xi), m servers, and an output client. The goal is to let the output
client learn the value f(x1, . . . , xn) for some function f , while the unauthorized
sets of servers are restricted from knowing this value. In addition, both output
client and servers should not know the secret inputs. We scope the function f in
this paper to be a polynomial of the secret inputs.

In our proposed scheme, any homomorphic encryption scheme can be used
as the underlying scheme. Each input client divides its secret input into b shares,
xi = xi,1 + . . . + xi,b. These b shares are given to each computing server with
p shares as plaintexts (represented as yellow circles without border) and b − p

2

Fig. 1. The overview of our homomorphic secret sharing scheme.

shares as ciphertexts of the homomorphic encryption scheme (represented as
yellow circles with border). Each server then locally performs some computations
on the given shares, and send the result to the output client. The output client
combines all the shares into the final result.

We consider these parameters in this paper, including

– λ: The security parameter of the underlying homomorphic encryption scheme
– k: The maximum computable degree of the underlying homomorphic encryp-

tion scheme
– m: Number of servers
– t: The maximum number of colluding servers allowed
– b: Number of shares per input for each server
– p: Number of plaintext shares per input for each server
– d: The maximum computable degree of the homomorphic secret sharing

scheme

The results of previous works and our work are shown in Table 1. Note that
for t-secure scheme of Lai et al. [31], the values of k, t, p, and d are given as a
scheme specification, while in the other schemes, the values of k, m, and t are
given. Next, we claim four contributions of our work.

Increase the Maximum Degree of Homomorphic Secret Sharing from
Shamir [36]. It is well known that Shamir’s secret sharing scheme supports
threshold security. However, the threshold of the scheme changes after local
multiplication. If we consider Shamir’s secret sharing as a homomorphic secret
sharing scheme, the maximum polynomial degree of the homomorphic secret
sharing is d = bm−1t c, which is equal to the upper bound proved in [4] for
information theoretic setting. When a polynomial of degree higher than d is
computed, the computation result will not be able to be reconstructed. In our
proposed scheme, combining secret sharing of general access structure from Ito,
Saito, and Nishizeki [27] and homomorphic encryption allows us to construct
t-secure homomorphic secret sharing scheme, and increase the maximum degree

d to b (k+1)m−1
t c which is approximately k+1 times increasing comparing to [36]

with the same values of m and t.

Add Threshold Structures to Lai et al. [31]. The main scheme proposed
in [31] is 1-secure, which is secure only if no servers are colluding. This security

3

Table 1. Comparing homomorphic secret sharing schemes for polynomials.

Scheme k m t b p d

Shamir [36] - m t 1 1 bm−1
t
c

Catalano et al. [15] k 2 1 1, 2 1 2k

1-secure Lai et al. [31] k m 1 m m− 1 (k + 1)m− 1

t-secure Lai et al. [31]3 1 t2 t 2t+ 1 2 3

This work k m t
(
m
t

) (
m−1
t

)
b (k+1)m−1

t
c

model may not suffice for real-life applications. The authors of [31] also proposed
a t-secure scheme, but it is not so constructive: one needs to solve the set cover
problem in order to know which plaintext shares are distributed to which server.
In our work, we use the idea of secret sharing from Ito et al. [27] to realize
threshold non-access structures. Our scheme is constructive, and allows us to
use any values of threshold t. Although our scheme has more number of shares,
possible improvements are also mentioned in this paper.

Decrease the Number of Required Servers in t-secure Scheme of Lai
et al. [31]. For t-secure scheme of [31], they set the parameters as k = 1, d = 3,
p = 2, and b = 2t + 1 as shown in Table 1, and they claimed that the number
of required servers is m = t2, which is not efficient. With the same setting, our
scheme requires d 3t+1

2 e servers, which is linear in threshold t. Our scheme also
requires O(t) servers for any values of k, d, and t.

Extend the Capability of Homomorphic Encryption. The purpose of this
work is not to outperform homomorphic encryption, but to combine it with secret
sharing. It is known that computing complex polynomials using homomorphic
encryption is quite inefficient. Our proposed combination enables higher com-

putable degrees, from k to b (k+1)m−1
t c. Moreover, it can be seen that our setting

adds the capability in mitigating a single point of failure to the homomorphic
encryption scheme. Although we are not aiming to improve homomorphic en-
cryption, our scheme could be better than them for higher degree computation.

1.2 Overview of Our Techniques

We use the idea of secret sharing from Ito, Saito, and Nishizeki [27] to add
threshold structures to the work of Lai et al. [31]. Here, we explain the concept
of our scheme by using a simple example.

Example 1. Suppose we have two input clients. The first input client has a secret
input x1, and the second input client has a secret input x2. The goal of the
scheme is to let the output client learn the multiplication of the secret inputs
x1x2, but not the secret inputs x1 or x2. The input clients decide to outsource the
computation to three servers, and any collusion of two servers are not allowed to
learn the secret inputs. Suppose that the ID of the servers are 1, 2, and 3, we can

3 The construction is not explicitly provided.

4

write all the largest forbidden subsets of servers or “the maximum non-access
structure” as Γ ∗ = {{1, 2}, {1, 3}, {2, 3}}.

To secretly share the secret input x1 to the three servers, we randomly gener-
ate a share for each member of Γ ∗ according to Ito et al. [27] with the condition
that x1,{1,2} + x1,{1,3} + x1,{2,3} = x1. Suppose further that we use degree-1 ho-
momorphic encryption scheme, which supports additions between ciphertexts,
additions between ciphertexts and plaintexts, and multiplications between a ci-
phertext and plaintexts. For each share x1,γ , the j-th server will get the share as
a ciphertext if j ∈ γ, and as a plaintext otherwise. This process is also applied
to the secret input x2. Packages of shares S1, S2 and S3 of the secret inputs x1
and x2 for the three servers are

S1 =

[
x1,{1,2} x1,{1,3} x1,{2,3}

x2,{1,2} x2,{1,3} x2,{2,3}

]
S2 =

[
x1,{1,2} x1,{1,3} x1,{2,3}

x2,{1,2} x2,{1,3} x2,{2,3}

]

S3 =

[
x1,{1,2} x1,{1,3} x1,{2,3}

x2,{1,2} x2,{1,3} x2,{2,3}

]

where xi,γ denotes the ciphertext of xi,γ . Note that the plaintexts from any

pairs of servers are not enough to reconstruct the secret inputs. In contrast, in
the 1-secure scheme of Lai et al. [31], the number of shares per input is equal to
the number of servers. The j-th server will get only one share as a ciphertext,
the j-th share, and get the other shares as plaintexts. This makes the scheme of
Lai et al. only 1-secure.

To compute the multiplication x1x2, we have x1x2 =
∑
γ1,γ2∈Γ∗ x1,γ1x2,γ2 .

Using the properties of homomorphic encryption scheme, servers 1, 2, and 3 can
locally compute the ciphertexts

y1 = x1,{2,3} x2,{1,2} + x1,{2,3} x2,{1,3} + x1,{2,3}x2,{2,3}

y2 = x1,{1,3} x2,{1,2} + x1,{1,3}x2,{1,3} + x1,{1,3} x2,{2,3}

y3 = x1,{1,2}x2,{1,2} + x1,{1,2} x2,{1,3} + x1,{1,2} x2,{2,3}

respectively. Note that for each term, there is at most one ciphertext, so comput-
ing with degree-1 homomorphic encryption is possible. Each server then forwards
the result ciphertext yj to the output client who sums all the ciphertexts and

then decrypts to see the final result x1x2.

From the formula in Table 1 which we will prove in this paper, the maximum
polynomial degree that our homomorphic secret sharing scheme can compute is

b (1+1)3−1
2 c = 2. Other degree-2 polynomials can be computed in the same way.

This concept can also be generalized to any numbers of servers and any values
of threshold.

5

1.3 Related Works

One of the first secret sharing techniques is additive secret sharing [25], where
the j-th server gets a share si,j with the condition that the sum of all shares is
equal to the secret input

∑
j∈[m] si,j = xi. To perform the multiplication on this

scheme, a lot of communication between the servers are required. Optimization
techniques such as Beaver’s multiplication triple [5] are proposed in order to
reduce the communication costs.

Homomorphic secret sharing was first defined by Boyle, Gilboa, and Ishai
[11]. The scheme is designed in the way that the communication between the
servers are not required. Homomorphic secret sharing is shown in [12] to imply
a useful related primitive called server-aided secure multi-party computation
[29, 30]. In the scheme of Boyle et al. [11], a branching program is evaluated on
secret inputs using two computing servers, based on the decisional Diffie-Hellman
(DDH) assumption. However, the result from the scheme will be correct only with
probability 1

poly(λ) where λ is the security parameter.

Homomorphic encryption can also be used as a private outsourced compu-
tation scheme. Secret inputs are encrypted and are sent to only one server to
perform the computations, so the communication is minimized. The spooky en-
cryption of [17] is similar to multi-key homomorphic encryption and can also
be used for secure computation. However, using homomorphic encryption to
compute a polynomial with degree greater than 1 is not so efficient. Catalano
and Fiore [19] proposed a generic method to increase the degree of the homo-
morphic encryption from k to 2k. They also proposed two-server homomorphic
secret sharing scheme from homomorphic encryption. The work of Lai et al. [31]
further generalized this by sending plaintexts and ciphertexts to m servers. As
mentioned in [31], this classic technique to split the evaluation of polynomials
came from [3] and [7].

There are also other kinds of private outsourced computation. Function secret
sharing [10] and non-interactive secure multiparty computation [6] are different
from our scheme. The function secret sharing focused on the sharing of secret
functions which will be computed on public inputs, while our work focuses on
the sharing of secret inputs which will be computed on public functions. For
non-interactive secure multiparty computation, the work focused on the secret
sharing of public functions which will be computed on secret inputs. Note that
the secret inputs of this scheme are not shared.

2 Preliminaries

In this section, we first review the definition of non-access structure. Since our
homomorphic secret sharing scheme is based on homomorphic encryption, we
then introduce the definitions of homomorphic secret sharing together with ho-
momorphic encryption. We refer to some notations in [31].

Notations. We denote a set of positive integers {1, . . . , n} as [n]. We denote
the uniform sampling of an element x from a set S as x ← S. We denote any

6

function that is a polynomial in λ as poly(λ), and denote any function that is
negligible in λ as negl(λ).

2.1 Non-access Structure

Suppose there is a set of m servers defined as [m]. We define a non-access (ad-
versarial) set, a non-access (adversarial) structure, and the maximum non-access
(adversarial) structure according to [27] as follows.

Definition 1. A non-access set γ ⊂ [m] is a subset of servers that is restricted
from obtaining the secret. A non-access structure Γ ⊂ 2[m] is a set that contains
all selected non-access sets. The non-access structure should follow the monotone
property that if γ ∈ Γ and γ′ ⊂ γ, then γ′ ∈ Γ . The maximum non-access
structure Γ ∗ of Γ is defined as Γ ∗ = {γ ∈ Γ : @γ′ ∈ Γ, γ ⊂ γ′}.

In the case that Γ = {γ ⊂ [m] : |γ| ≤ t}, the non-access structure Γ is called
as (m, t)-threshold non-access structure.

The (maximum) non-access structure can be represented as a hyper-graph
H = (V,E) where the set of vertices is V = [m] and the set of hyper-edges is
E = Γ (or E = Γ ∗). Each vertex in V represents a server in [m], and each
hyper-edge in E represents a non-access set γ in Γ (or Γ ∗).

2.2 Homomorphic Secret Sharing (HSS)

Our setting is already described in Fig. 1. The scheme starts when the output
client generates a pair of a public key and a secret key, and distributes the public
key to all parties. Each input client then generates shares from its secret input
using the public key, and forwards the shares to each corresponding server. Each
server gathers the shares from input clients, and performs the computation on
the shares using the public key. The result from each server is then forwarded
to the output client. Finally, the output client combines all the results using
the secret key. We refer to the definitions in [31] as follows. More details can be
found in [9, 12].

Definition 2. Suppose there are n inputs and m servers, a homomorphic secret
sharing scheme consists of four algorithms HSS = (KGen,Share,Eval,Dec).

Key Generation. (pk, sk)← HSS.KGen(1λ) : The algorithm receives the security
parameter λ as an input, and then generates a pair of a public key and a secret
key (pk, sk).

Secret Sharing. (si,1, . . . , si,m) ← HSS.Share(pk, i, xi) : The algorithm receives
the public key pk, the index i of the input, and a secret input xi in a specified
input space, and then generates shares si,j for the j-th server.

Evaluation. yj ← HSS.Eval(pk, j, f, (s1,j , . . . , sn,j)) : The algorithm receives the
public key pk, the index j of the server, a function f , and the shares of the j-th
server s1,j , . . . , sn,j as inputs, and then returns the output of the evaluation yj.

7

Decoding. y ← HSS.Dec(sk, (y1, . . . , ym)) : The algorithm receives the secret key
sk, and the evaluation results from all servers (y1, . . . , ym) as inputs, and then
combines the results into y.

Correctness. The homomorphic secret sharing for degree-d polynomials with n
inputs and m servers is correct if, for any λ ∈ N, any n,m ∈ poly(λ), any key pair
(pk, sk)← HSS.KGen(1λ), any degree-d polynomial f , any secret inputs (x1, . . . ,
xn), any shares (si,1, . . . , si,m) ← HSS.Share(pk, i, xi) for all i ∈ [n], and any
yj ← HSS.Eval(pk, j, f, (s1,j , . . . , sn,j)) for all j ∈ [m], it holds that

Pr[HSS.Dec(sk, (y1, . . . , ym)) = f(x1, . . . , xn)] ≥ 1− negl(λ).

Security. The homomorphic secret sharing for degree-d polynomials with n
inputs and m servers is Γ -secure if, for any λ ∈ N, any n,m ∈ poly(λ), there
exists a negligible function negl(λ) such that for any probabilistic polynomial
time adversary A = (A0, A1),

|Pr[Security0A,HSS = 1]− Pr[Security1A,HSS = 1]| < negl(λ)

where SecuritybA,HSS is defined in Fig. 2 (left) for b ∈ {0, 1}. If Γ is (m, t)-threshold
non-access structure, we call Γ -security as t-security.

To explain in more details, adversaries A0 together with A1 are trying to
guess the bit b. After receiving the public key pk, adversary A0 generates two
secret inputs x0 and x1, chooses a non-access set γ from the non-access structure
Γ , and creates state to pass some messages to A1. Adversary A1 receives state
and all shares of the parties in the chosen non-access set γ, and then guesses
which input x0 or x1 that the shares are generated from.

Context Hiding. The output client should learn nothing from the shares except
the result of the evaluation. This means the distribution of shares (y1, . . . , ym)
from the actual evaluation function and the distribution of shares (si,1, . . . , si,m)
← HSS.Share(pk, i, f(x1, . . . , xn)) from secret sharing of the result f(x1, . . . , xn)
should be indistinguishable.

The homomorphic secret sharing for degree-d polynomials with n inputs and
m servers is context-hiding if, for any λ ∈ N, any n,m ∈ poly(λ), there exists a
probabilistic polynomial time algorithm SHSS and a negligible function negl(λ)
such that for any probabilistic polynomial time adversary A = (A0, A1),

|Pr[ContextHiding0A,SHSS,HSS = 1]− Pr[ContextHiding1A,SHSS,HSS = 1]| < negl(λ)

where ContextHidingbA,SHSS,HSS is defined in Fig. 2 (right) for b ∈ {0, 1}.
The explanation is similar to the definition of the security. Adversaries A0

together with A1 are trying to guess the bit b. After receiving the public key pk,
adversary A0 generates a function f , secret inputs x1, . . . , xn, and creates state
to pass some messages to A1. Adversary A1 receives state and the computation
results y1, . . . , ym. It has to guess whether the results are generated from the
actual homomorphic secret sharing, or are simulated by the algorithm SHSS.

8

SecuritybA,HSS(1λ) : ContextHidingbA,SHSS,HSS(1λ) :

(pk, sk)← HSS.KGen(1λ) (pk, sk)← HSS.KGen(1λ)
(x0, x1, γ ∈ Γ, state)← A0(pk) (f, x1, . . . , xn, state)← A0(pk)
(s1, . . . , sm)← HSS.Share(pk, b, xb) if b = 0 then
b′ ← A1(state, {sj : j ∈ γ}) (si,1, . . . , si,m)← HSS.Share(pk, i, xi) ∀i ∈ [n]
return b = b′ yj ← HSS.Eval(pk, j, f, (si,j)i∈[n]) ∀j ∈ [m]

else

(y1, . . . , ym)← SHSS(1λ, pk, f(x1, . . . , xn))
endif
b′ ← A1(state, (y1, . . . , ym))
return b = b′

Fig. 2. Security and context hiding for homomorphic secret sharing scheme

One of the most famous homomorphic secret sharing schemes is Shamir’s
secret sharing scheme [36]. To share a secret input in the (m, t)-threshold setting,
a degree-t polynomial P (x) is randomly generated with the constant term equals
to the secret input. The j-th server gets the share of the secret input as P (j).
If the servers locally add two shares, the results, which is also degree-t, will
represent the addition of the two corresponding inputs. However, the results of
locally multiplying two shares will correspond to a degree-2t polynomial, which
represents (m, 2t)-threshold setting. Thus, the maximum computable polynomial
degree d of Shamir’s scheme must satisfy dt < m in order to reconstruct the
computation result, and we have d ≤ bm−1t c.

Shamir’s scheme only supports threshold non-access structure. To realize any
general non-access structure Γ , the secret sharing technique of Ito et al. [27] can
be used. To share a secret input xi, generate a share xi,γ for each non-access
set γ in the maximum non-access structure Γ ∗ such that

∑
γ∈Γ∗ xi,γ = xi. The

share xi,γ is given to the j-th server if j /∈ γ. From this technique, each server
can get more than one shares per one secret input.

2.3 Homomorphic Encryption (HE)

Homomorphic encryption schemes let users perform operations on ciphertext in
the same way as performing on plaintext while keeping the plaintext secret. The
definition of homomorphic encryption scheme is as follows. More details can be
found in [33].

Definition 3. A homomorphic encryption scheme consists of four algorithms
HE = (KGen,Enc,Eval,Dec).

Key Generation. (pk, sk) ← KGen(1λ) : The algorithm receives the security
parameter λ as an input, and then generates a pair of a public key and a secret
key (pk, sk).

Encryption. c ← Enc(pk, x) : The algorithm receives the public key pk and
a plaintext x in a specified plaintext space as inputs, and then generates the
corresponding ciphertext c.

9

Evaluation. c ← Eval(pk, f, (c1, . . . , cn)) : The algorithm receives the public key
pk, a function f , and ciphertexts c1, . . . , cn as inputs, and then generates the
ciphertext of the evaluation c.

Decryption. x ← Dec(sk, c) : The algorithm receives the secret key sk and a
ciphertext c as inputs, and then decrypts into the corresponding plaintext x.

Compactness. The homomorphic encryption scheme is compact if the size of
the output from the evaluation algorithm HE.Eval is a polynomial in the security
parameter λ, independent to the size of the description of the function f .

Correctness. The homomorphic encryption scheme for degree-d polynomials
with n inputs is correct if, for any λ ∈ N, any n ∈ poly(λ), any key pair (pk, sk)←
HE.KGen(1λ), any degree-d polynomial f , any inputs (x1, . . . , xn), any cipher-
texts ci ← HE.Enc(pk, xi) for all i ∈ [n], and any ciphertext c ← HE.Eval(pk, f,
(c1, . . . , cn)), it holds that

Pr[HE.Dec(sk, c) = f(x1, . . . , xn)] ≥ 1− negl(λ).

Security. The homomorphic encryption scheme for degree-d polynomials with
n inputs is semantically secure [26] if, for any λ ∈ N, any n ∈ poly(λ), there
exists a negligible function negl(λ) such that for any probabilistic polynomial
time adversary A = (A0, A1),

Pr[SecurityA,HE = 1] ≤ 1

2
+ negl(λ)

where SecurityA,HE is defined in Fig. 3. The explanation of adversaries A0 and
A1 is similar to the explanation in Section 2.2.

Circuit Privacy. Similar to homomorphic secret sharing, the output client
should learn nothing from the ciphertexts except the result of the evaluation.
This means the distribution of the actual encrypted result c ← HE.Eval(pk, f,
(c1, . . . , cn)) and the distribution of newly encrypted result c← HE.Enc(pk, f(x1,
. . . , xn)) should be indistinguishable.

The homomorphic encryption scheme for degree-d polynomials with n inputs
is circuit-private if there exists a probabilistic polynomial time algorithm SHE

and a negligible function negl(λ) such that for any λ ∈ N, any n ∈ poly(λ),
any key pair (pk, sk) ← HE.KGen(1λ), any degree-d polynomial f , any inputs
(x1, . . . , xn), any ciphertext ci ← HE.Enc(pk, xi) for all i ∈ [n], it holds that

SD[HE.Eval(pk, f, (c1, . . . , cn)), SHE(1λ, pk, f(x1, . . . , xn))] < negl(λ)

where the statistical distance SD between random variables X and Y over a
finite set U is defined as

SD[X,Y] =
1

2

∑
u∈U
| Pr[X = u]− Pr[Y = u] | .

10

SecurityA,HE(1λ) :

(pk, sk)← HE.KGen(1λ)
(x0, x1, state)← A0(pk)
b← {0, 1}
c← HE.Enc(pk, xb)
b′ ← A1(state, pk, c)
return b = b′

Fig. 3. Security for homomorphic encryption scheme

In the literature, there exists homomorphic encryption schemes for degree-1
polynomials [18, 34] which are the most efficient, for degree-2 polynomials [2,
8, 15, 20] which are somewhat efficient, and for degree-k polynomials [13, 22, 37]
which are not efficient enough to be used in real applications when k is large.

3 Proposed Scheme

In this section, we show our construction of a t-secure homomorphic secret shar-
ing scheme for degree-d polynomials with n inputs and m servers from degree-k
homomorphic encryption scheme. Note again that the maximum polynomial de-

gree of our proposed scheme is d = b (k+1)m−1
t c. After that, we prove the formula

for the maximum polynomial degree d and the maximum number of servers m.
We also analyze correctness and security of the scheme, and suggest several
variants.

3.1 Construction

Given the number of inputs n, the number of servers m, and the threshold t, our
homomorphic secret sharing scheme consists of four algorithms as follows. We
also refer to some details of Lai et al. [31] for the sake of completeness of this
paper. Similar to [31], a specific type of ring mentioned in [15] is sufficient to be
our message space.

Key Generation. Output client generates a pair of a public key and a secret key
of the underlying degree-k homomorphic encryption (pk, sk) ← HE.KGen(1λ),
and publishes the public key pk to all parties.

Secret Sharing. Consider the maximum non-access structure Γ ∗ of the (m, t)-
threshold non-access structure. To secretly share an input xi from the mes-
sage space of the underlying homomorphic encryption scheme, randomly gen-
erate |Γ ∗| =

(
m
t

)
shares (xi,γ)γ∈Γ∗ corresponding to each γ ∈ Γ ∗ such that∑

γ∈Γ∗ xi,γ = xi as in Ito et al. [27]. In addition, randomly generate shares of zero
(zi,j)j∈[m] such that

∑
j∈[m] zi,j = 0. For the j-th server, define xi,γ,j as

HE.Enc(pk, xi,γ) if j ∈ γ, and define as xi,γ otherwise. Finally, the j-th server
gets si,j = ((xi,γ,j)γ∈Γ∗ , zi,j) as a share of xi. The shares si,j of the secret input
xi for the j-th server and all relevant values can be summarized as follows.

11

0
share−−−−→ (zi,j)j∈[m]

xi
share−−−−→ (xi,γ)γ∈Γ∗

separate−−−−−→ (xi,γ)γ∈Γ∗:j /∈γ , (xi,γ)γ∈Γ∗:j∈γ when consider the j-th server
encrypt−−−−−→ (xi,γ)γ∈Γ∗:j /∈γ , (xi,γ)γ∈Γ∗:j∈γ

si,j := (xi,γ)γ∈Γ∗:j /∈γ , (xi,γ)γ∈Γ∗:j∈γ , (zi,j)

Evaluation. To calculate a degree-d polynomial f with n variables (x1, . . . , xn),
we split the function f into (f1, . . . , fm) and assign fj to the j-th server. The first
condition for the split is

∑
j∈[m] fj(s1,j , . . . , sn,j) = f(x1, . . . , xn). The second

condition can be explained as follows.
Similar to [31], we write the polynomial f as a sum of monomials f(x1, . . . , xn)

=
∑
w awMw(x1, . . . , xn) where each w is a monomial of degree c ≤ d with co-

efficient aw. Consider each monomial w of degree c, say awMw(x1, . . . , xn) =
awxw1xw2 · · ·xwc for some indices w1, . . . , wc ∈ [n]. From the secret sharing al-
gorithm above, xi =

∑
γ∈Γ∗ xi,γ . Thus, we have

awMw(x1, . . . , xn) = awxw1
· · ·xwc

= aw
∏

i∈{w1,...,wc}

∑
γ∈Γ∗

xi,γ


=

∑
γ1,...,γc∈Γ∗

awxw1,γ1 · · ·xwc,γc

We prove in Section 3.2 that to calculate any monomial awxw1,γ1 · · ·xwc,γc

with c ≤ d, there must be at least one j-th server such that from all c variables,
awxw1,γ1,j · · ·xwc,γc,j , at most k of them are encrypted. Because the underlying
homomorphic encryption supports degree-k polynomials, the j-th server can
compute this monomial.

Each monomial will be assigned to one of the servers that can compute
that monomial. We define the homomorphic summation of all monomials as-
signed to the j-th server as gj(x1, . . . , xn). Finally, we define fj(x1, . . . , xn) =
gj(x1, . . . , xn) +

∑
i∈[n] zi,j . The j-th server then computes yj = fj(x1, . . . , xn)

using the operations of the underlying homomorphic encryption scheme, and
forwards yj to the output client.

Decoding. The output client homomorphically sums the results from all servers
y = y1+. . .+ym. The final result of f(x1, . . . , xn) is obtained from HE.Dec(sk, y).

3.2 The Maximum Degree d of the Proposed Scheme

We prove the upper bound of the maximum degree d of the proposed homo-
morphic secret sharing scheme in this section. We show that each monomial
awxw1,γ1 · · ·xwc,γc with degree c ≤ d can be assigned to one of the servers.

Theorem 1. The upper bound of the maximum degree d of the construction in

Section 3.1 is d ≤ (k+1)m−1
t .

12

Proof. We prove the theorem using hyper-graph representation of the non-access
structure. Do not confuse between the degree of the hyper-graph and the degree
of the polynomial.

Given the maximum non-access structure Γ ∗, we construct a hyper-graph
H = (V,E) with V = [m] and E = Γ ∗. A hyper-edge γ ∈ Γ ∗ represents a
non-access set, and is incident to a vertex j if and only if j ∈ γ. This also means
that the j-th server gets the γ-part of the share as a ciphertext.

To be able to calculate the degree-d monomials awxw1,γ1 · · ·xwd,γd , there
should be at least one servers that the number of encrypted variables is at most
k (the degree of the underlying homomorphic encryption scheme). Note that a
hyper-edge is corresponding to a non-access set and also corresponding to one
part of the shares. In the same way, if we choose any d hyper-edges, we want
that there exists at least one vertex that has at most k incident hyper-edges.
The degree of each hyper-edge is t. Thus, choosing d hyper-edges is equivalent to
dt incidences. From pigeonhole principle and the fact that H is a regular hyper-
graph, if there is at least one vertex that has at most k incident hyper-edges,
the maximum number of all incidences must not exceed

(k + 1) + · · ·+ (k + 1)︸ ︷︷ ︸
m−1 times

+k = (k + 1)m− 1

Thus, we have dt ≤ (k + 1)m− 1, and this concludes the proof. ut

3.3 Computational Complexity

The computational complexity of all parties must be a polynomial in the security
parameter λ. The output client only performs m homomorphic additions and one
decryption. If the underlying homomorphic encryption scheme is compact, it is
obvious that the computational complexity of the output client is poly(λ).

For the input clients, each one generates m-choose-t shares and encrypts
(m− 1)-choose-(t− 1) out of them per server. We know that

(
m
t

)
≤ (em)t where

e is Euler’s constant. Because t < m, the computational complexity of each input
client is O(mm). It is sufficient to set m = O(log λ

log log λ) to let this bound be a

polynomial in λ. This bound of m is equal to 1-secure scheme of Lai et al. [31].
The computational complexity of each server must also be a polynomial

in the security parameter λ. From Section 3.1, we define that each monomial
awMw(x1, . . . , xn) = awxw1

· · ·xwc
in f(x1, . . . , xn) is expanded to

∑
awxw1,γ1

· · ·xwc,γc . We now show that the number of monomials awxw1,γ1 · · ·xwc,γc as-
signed to each server for each monomial awMw(x1, . . . , xn) can be poly(λ).

The maximum number of degree-dmonomials awxw1,γ1 · · ·xwd,γd that a server

can calculate is equal to
∑k
`=0

(
d
`

)
(b− p)`pd−` =

∑k
`=0

(
d
`

)(
m−1
t−1
)`(m−1

t

)d−`
. The

idea is that a server can calculate all monomials with ` ≤ k encrypted shares.
For a monomial with ` encrypted shares, we can choose ` out of d positions to
be the encrypted shares. For each encrypted position, there are b − p =

(
m−1
t−1
)

choices of ciphertexts to choose from. For each plaintext position, there are
p =

(
m−1
t

)
choices of plaintexts to choose from. Thus the total combinations are

13

∑k
`=0

(
d
`

)(
m−1
t−1
)`(m−1

t

)d−`
. We show that this value can be a polynomial in λ if

we choose an appropriate value of m.

k∑
`=0

(
d

`

)(
m− 1

t− 1

)`(
m− 1

t

)d−`
≤

k∑
`=0

(
d

`

)
(em)`t(em)(d−`)t

= (em)dt
k∑
`=0

(
d

`

)
≤ (em)dt2d

≤ e(k+1)m2
(k+1)m

t m(k+1)m = mO(m)

It is sufficient to set m = O(log λ
log log λ) to let this bound be a polynomial in

λ. In addition, assume that the number of all monomials awMw(x1, . . . , xn) in
f(x1, . . . , xn) is also a polynomial in λ. Thus, the total number of monomials
awxw1,γ1 · · ·xwc,γc that a server has to calculate is a polynomial in λ. In case that
we want a larger value of threshold t, the maximum degree d of our homomorphic
secret sharing scheme will be smaller, and this will not affect the bound.

3.4 Correctness and Security

We have shown that the bound of the maximum degree d is correct, and the
number of servers can be a polynomial in the security parameter λ. In this
section, we extend the arguments of Lai et al. [31] to show correctness and
security of the proposed t-secure scheme. We first show that the proposed scheme
is correct.

Theorem 2. If the underlying homomorphic encryption scheme is correct, then
the proposed homomorphic secret sharing scheme is correct.

Proof. From Theorem 1, each monomial awxw1,γ1 · · ·xwc,γc with degree c ≤ d
can be assigned to one of the servers. Thus, according to the description of the
evaluation algorithm in Section 3.1, we have

∑
j∈[m] HE.Dec(sk, gj(x1, . . . , xn)) =

f(x1, . . . , xn). If the underlying homomorphic encryption scheme is correct, then

HE.Dec(sk, y) = HE.Dec(sk,
∑
j∈[m]

yj)

= HE.Dec(sk,
∑
j∈[m]

fj(x1, . . . , xn))

= HE.Dec(sk,
∑
j∈[m]

(gj(x1, . . . , xn) +
∑
i∈[n]

zi,j))

= HE.Dec(sk,
∑
j∈[m]

gj(x1, . . . , xn)) +
∑
i∈[n]

∑
j∈[m]

zi,j

=
∑
j∈[m]

HE.Dec(sk, gj(x1, . . . , xn)) + 0 = f(x1, . . . , xn)

which means the proposed scheme is also correct. ut

14

Next, we show that the proposed scheme is a t-secure homomorphic secret
sharing scheme.

Theorem 3. If the underlying homomorphic encryption scheme is semantically
secure, then the proposed homomorphic secret sharing scheme is t-secure.

Proof. We will show that if there is an adversaryA that can guess the input of our
homomorphic secret sharing with a non-negligible advantage, we can construct
an adversary A′ to break the semantic security of the underlying homomorphic
encryption scheme. The process is shown in Fig. 4.

Consider (m, t)-threshold non-access structure Γ . The process starts when
the oracle generates a public key pk of the homomorphic encryption scheme,
and forwards it to the adversary A′, which also forwards to the adversary A.
Adversary A then generates two inputs x∗0, x

∗
1, and a non-access set γ∗ ∈ Γ ∗,

and forwards to A′. (If the homomorphic secret sharing scheme is secure for Γ ∗,
then it is also secure for Γ .) A′ then generates a set of random shares S, and let
x0 and x1 be γ∗-part of the shares of x∗0 and x∗1, respectively. Adversary A′ sends
x0 and x1 to the oracle, and gets cb as a response. Adversary A′ forwards (S, cb)
as the shares of x∗b with γ∗-part encrypted. If the adversary A can correctly
guess the input x∗b with a non-negligible advantage, this guess also has the same
non-negligible advantage for adversary A′ to guess xb. ut

Finally, we state the theorem for context hiding as follows. The proof below
is similar to the proof in [31].

Theorem 4. If the underlying homomorphic encryption scheme is circuit-
private, then the proposed homomorphic secret sharing scheme is context-hiding.

Proof. According to the definition of context hiding, we must show that there
exists a probabilistic polynomial time algorithm SHSS. To process SHSS(1λ, pk,
f(x1, . . . , xn)), the algorithm SHSS generates random shares r1, . . . , rm such that∑
j∈[m] rj = f(x1, . . . , xn). The algorithm then generates yj ← HE.Enc(pk, rj)

for all j ∈ [m], and outputs (y1, . . . , ym).
We compare the distributions of the output from SHSS and the output from

HSS.Eval. Because the random shares of zeroes zi,j are added in the evaluation
algorithm HSS.Eval, the output from HSS.Eval can be any encrypted tuple that
adds up to f(x1, . . . , xn). In the same way, the output from the algorithm SHSS

is randomly generated such that the encrypted tuple adds up to f(x1, . . . , xn). If
the underlying homomorphic encryption is semantically secure, then these two
distributions must be indistinguishable. Thus, there is no adversary that can
distinguish these two distributions with non-negligible advantage. ut

3.5 Variants of the Scheme

Extending from Lai et al. [31], we present two variants of our homomorphic
secret sharing scheme.

15

Oracle Adversary A′ Adversary A

pk ← HE.KGen(1λ) ⇒ pk ⇒ pk
x∗0, x

∗
1, γ
∗ ⇐ Gen x∗0, x

∗
1, γ
∗

Gen S = (sγ)γ∈Γ∗∧γ 6=γ∗

x0 ⇐ x0 = x∗0 −
∑
s∈S s

x1 ⇐ x1 = x∗1 −
∑
s∈S s

Random b
cb ← HE.Enc(pk, xb) ⇒ cb

(S, cb) ⇒ (S, cb)
b′ ⇐ b′ ⇐ Guess b′

Fig. 4. Security proof of Theorem 3

Multi-key Homomorphic Encryption and Plain Model. There exists sev-
eral multi-key homomorphic encryption schemes in the literature [32]. We de-
scribe it as follows.

Definition 4. A multi-key homomorphic encryption scheme consists of four al-
gorithms MKHE = (KGen,Enc,Eval,Dec).

Key Generation and Encryption. The algorithms behave exactly the same as
simple homomorphic encryption scheme in Definition 3.

Evaluation. c ← Eval(f, ((pk1, c1), . . . , (pkn, cn))) : The algorithm receives a
function f , and the pairs of public key and the corresponding ciphertext (pk1, c1),
. . . , (pkn, cn) as inputs, and then generates the ciphertext of the evaluation c un-
der all the public keys pk1, . . . , pkn.

Decryption. x ← Dec((sk1, . . . , skn), c) : The algorithm receives the secret keys
sk1, . . . , skn and a ciphertext c encrypted under all the corresponding public keys
as inputs, and then decrypt into the plaintext x.

Similar to [31], our proposed scheme can be naturally extended to multi-
key plain model. In this setting, the output client does not have to generate
any key pairs. The i-th input client will generate its own key pair (pki, ski),
and publish pki to all parties. The secret input xi will be shared as si,j using
the public key pki. In addition, the shares of secret key ski are generated such
that

∑
j∈[m] ski,j = ski. Both si,j and ski,j are forwarded to the corresponding

j-th server. The j-th server then calculates fj using the multi-key evaluation
algorithm, and forwards the result together with the secret key shares to the
output client. Finally, the output client reconstructs the secret keys from all
shares, and uses the multi-key decryption algorithm to see the final result. It
can be proved similar to [31] that this variant is t-secure.

r-robustness. Suppose that only r servers can forward the results to the out-
put client, the scheme is not completely failed. Calculating some polynomials is
still possible in this setting. This property is called as r-robustness in [31]. The

16

maximum degree d of the scheme will be decreased to b (k+1)r−1
t c. This bound

can be proved in the same way as in Theorem 1.
There are some points to consider. Notice that in Section 3.1 and in the plain

model described in this section, the shares of zeroes and the shares of secret keys
can be reconstructed if all the servers are presented (m-out-of-m secret sharing).
These prevent the possibility of r-robustness. The solution for the shares of
zeroes is to use the secret sharing of the (m, t)-threshold non-access structure.
The secret sharing of secret keys can also be done in the same way. In addition,
threshold homomorphic encryption [28] may be used for this purpose.

4 Discussions

Compare to Lai et al. We consider these topics comparing to t-secure homo-
morphic secret sharing scheme of Lai et al. [31].

Number of Servers. For the t-secure scheme in [31], the authors fixed the degree
of homomorphic encryption k = 1, the degree of homomorphic secret sharing
d = 3, number of plaintext shares per input for each server p = 2, and number
of all shares per input for each server b = 2t+ 1. Then, the number of required
servers is m = t2 which is not efficient. In contrast, our scheme has m ≥ 3t+1

2

which is linear in t. This can be generalized to m ≥ dt+1
k+1 for all values of k, d,

and t, which is also linear in t.

Number of Shares. In 1-secure scheme of [31], the number of shares per input
for each server is equal to the number of servers, b = m, and the number of
plaintext shares per input for each server is p = m− 1. For the t-secure scheme,
the authors fixed the degree of homomorphic encryption k = 1 and the degree
of homomorphic secret sharing d = 3, then the suggested number of shares per
input for each server is b = 2t+ 1, and the number of plaintext shares per input
for each server is p = 2.

In our scheme, b =
(
m
t

)
and p =

(
m−1
t

)
. Increasing share size can be viewed

as a trade-off with security. Since [31] is the special case of ours, the share size
is the same when t = 1. We believe that the size is acceptable when t is small
or close to m. For t ≈ m/2, possible improvements are mentioned in Section 5.
Although, our scheme has more number of shares, the computational complexity
of the scheme is still a polynomial in the security parameter λ if the number of
servers m is O(log λ

log log λ). This bound is equal to the 1-secure scheme of [31].

Constructiveness. The concrete construction of the t-secure homomorphic secret
sharing scheme is not proposed in [31]. We have to solve set cover problem in
order to find the combination of encrypted shares for each server. Since the
set cover problem is NP-complete, their construction is not constructive. In our
scheme, the construction is concrete and clear. In addition, it is claimed in [31]
that the number of plaintext shares from t servers must not exceed the number
of all shares per input for each server, which can be written as t · p < b, in order
to keep the scheme secure. However, this is not mandatory. The plaintext shares
from different servers can be overlapped.

17

Compare to Homomorphic Encryption. Let m, t, and d be fixed constants.
Roughly comparing our scheme (with the BGN scheme [8] as the base scheme)
to the GSW scheme [23], with the security parameter λ, our share size and
computation time for each server are O(λ) and O(λ3), while the ciphertext size
and computation time of GSW are O(λ2 log λ) and O(λ3 log λ), respectively. Al-
though, our scheme has hidden constant

(
m
t

)
for share size, it can be smaller

than cλ log λ for small m and t, and c depends on the GSW implementation.
We mention again that the purpose of our work is not to outperform homomor-
phic encryption, but to combine it with secret sharing. The results are higher
computable degree and single-point-of-failure mitigation.

5 Possible Improvements from Non-threshold Structure

Until the previous section, we only focus on threshold non-access structures. In
fact, our proposed scheme also supports any non-access structures, including
non-threshold non-access structures. Some observations about the benefits from
non-threshold non-access structures are found, but they are not thoroughly un-
derstood. We give an example here how we can optimize the scheme using a
non-threshold non-access structure and a relaxed constraint.

Example 2. Consider a setting with m = 4 servers and threshold t = 2. We can
construct the maximum (4, 2)-threshold non-access structure Γ ∗1 = {{1, 2}, {1, 3},
{1, 4}, {2, 3}, {2, 4}, {3, 4}}. With this maximum threshold non-access structure,
each server gets b1 = |Γ ∗1 | = 6 shares, and the maximum degree of the homomor-
phic secret sharing scheme is d1 = 3. However, if we relax the constraint that
any three servers can reconstruct the secret, we can have the other maximum
non-threshold non-access structure Γ ∗2 = {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}. Any
two servers still cannot reconstruct the secret inputs. Using this non-threshold
structure, the number of shares for each server is reduced to b2 = |Γ ∗2 | = 4 while
the maximum computable degree is still d2 = 3. In this case, the numbers of
plaintext and ciphertext shares are different for each server.

In addition, we also find an improvement in 6-party non-threshold cases that
can reduce the share size from 20 to 10 shares. The setting is m = 6, t = 3,
and Γ ∗3 = {{1, 2, 3, 4}, {1, 2, 5}, {1, 2, 6}, {1, 3, 5, 6}, {1, 4, 5}, {1, 4, 6}, {2, 3, 5, 6},
{2, 4, 5}, {2, 4, 6}, {3, 4, 5, 6}}.

We have tried to find the relationship between non-threshold non-access
structures and the other parameters, but it is still unclear. We present four
possible improvements as follows.

Non-threshold Non-access Structure and the Maximum Degree d. To
find the maximum degree d of the homomorphic secret sharing scheme realized
any non-access structure, the exact formula is still unknown. However, we can
construct an optimization model from the corresponding hyper-graph. This op-
timization model can be solved using integer program (IP) as in Fig. 5. The idea
is to select the smallest number of hyper-edges which is adjacent to each vertex
more than k times.

18

Input Positive integers m, Non-negative integer k,
hyper-graph H = (V,E) = ([m], Γ ∗)

Output Non-negative integer d
Objective function Minimize d
Constraints Let xγ ∈ Z≥0 be a variable for each γ ∈ Γ ∗∑

γ∈Γ∗ xγ = d+ 1∑
γ∈Γ∗:j∈γ xγ > k for all j ∈ [m]

Fig. 5. Integer program to find the maximum degree d of any non-access structure.

In addition to the optimization model, the multiplicative property of the
non-access structure in [4] may also be considered. In the paper, the maximum
degree of computable polynomial is described for the case when homomorphic
encryption is not used (or the degree of the homomorphic encryption is k = 0).

Non-threshold Non-access Structure and Number of Shares b. It is pos-
sible to reduce the number of shares by using non-threshold non-access struc-
tures as in Example 2 above. The process may be considered as to union some
non-access sets in the threshold structure. However, we still do not know which
non-threshold structure should be used instead of the threshold one. General-
izing threshold structure to non-threshold structure can sometimes reduce the
maximum degree d of the homomorphic secret sharing scheme.

Extension of r-robustness. It may be possible to generalize the definition of
r-robustness to Γ̄ -robustness, where Γ̄ is the “access” structure that contains the
“access” sets. In Γ̄ -robustness, combining the result from an access set of server
γ̄ ∈ Γ̄ can reconstruct the secret. The relationship between Γ̄ and the maximum
degree d of the Γ̄ -robustness homomorphic secret sharing is also unknown. It
may be possible to use Γ̄ such that Γ ∩ Γ̄ = ∅ but Γ ∪ Γ̄ 6= 2[m].

Multi-use Context Hiding. For the sake of randomness, the shares of ze-
roes must be used for one time only. To evaluate several polynomials of the
same shares, Lai et al. [31] proposed a technique using random values from a
pseudo-random function. The key kj and kj+1 are given to the j-th server, and
PRF(kj , f)−PRF(kj+1, f) is used instead of the shares of zeroes. However, their
security threshold is only 1. If at least m/2 servers are colluding, they can learn
all the keys. The construction of multi-use context-hiding homomorphic secret
sharing scheme for threshold and non-threshold non-access structure Γ from a
pseudo-random function has not been proposed. Extending the idea to r-robust
and Γ̄ -robust multi-use context-hiding is also interesting.

6 Concluding Remarks

In this paper, we propose the constructive t-secure homomorphic secret shar-
ing scheme from homomorphic encryption. The maximum computable degree
of the scheme is proved using hyper-graph, and the number of required servers
is analyzed. We also proposed several variants and possible improvements from

19

non-threshold structure. To conclude the paper, two interesting settings are sug-
gested as future works.

Malicious Security. In the construction presented in Section 3, we only con-
sider semi-honest security where each party follows the protocol correctly, but
may try to collude and learn the secret inputs. However, a party may deviate
from the protocol arbitrarily. The input client may send different value of shares
to each server. The ciphertext and plaintext may represent different values. The
sum of all shares of zeroes may not be equal to zero. For the server, it may send
any value as the evaluation result to the output client.

We may have to change the security model to real-ideal model [14] to handle
the malicious security. The solution to these problems can be proposed in two
levels. The simpler solution is to detect the malicious behaviour, and abort if
some errors are detected. The better solution is to correct the errors, and then
continue to follow the protocol. The scheme with r-robustness or Γ̄ -robustness
can be useful. The idea of verifiable homomorphic encryption [19] and verifiable
secret sharing [21, 35] may also be used for this purpose.

Generalize to any Inner/Outer Scheme. In our construction, it can be seen
that we use homomorphic encryption as the inner scheme, and secret sharing
of Ito et al. as the outer scheme. It may be possible to generalize this idea
of homomorphic secret sharing construction to any combinations of inner and
outer schemes. Thus, we should have a better understanding of each secure
computation protocol, and how the combinations should be.

Acknowledgments. Nuttapong Attrapadung was partly supported by JST
CREST Grant Number JPMJCR19F6, and by JSPS KAKENHI Kiban-A Grant
Number 19H01109.

References

1. Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing
polynomials and their applications. Computational Complexity 15(2), 115–162
(2006)

2. Attrapadung, N., Hanaoka, G., Mitsunari, S., Sakai, Y., Shimizu, K., Teruya, T.:
Efficient two-level homomorphic encryption in prime-order bilinear groups and
A fast implementation in WebAssembly. In: Asia Conference on Computer and
Communications Security. pp. 685–697 (2018)

3. Babai, L., Kimmel, P.G., Lokam, S.V.: Simultaneous messages vs. communication.
In: Annual Symposium on Theoretical Aspects of Computer Science. pp. 361–372
(1995)

4. Barkol, O., Ishai, Y., Weinreb, E.: On d-multiplicative secret sharing. Journal of
cryptology 23(4), 580–593 (2010)

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Annual
International Cryptology Conference. pp. 420–432 (1991)

6. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-
Cherniavsky, A.: Non-interactive secure multiparty computation. In: Annual Cryp-
tology Conference. pp. 387–404 (2014)

20

7. Beimel, A., Ishai, Y.: Information-theoretic private information retrieval: A uni-
fied construction. In: International Colloquium on Automata, Languages, and Pro-
gramming. pp. 912–926 (2001)

8. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Theory of Cryptography Conference. pp. 325–341 (2005)

9. Boyle, E.: Recent advances in function and homomorphic secret sharing - (invited
talk). In: International Conference on Cryptology in India. pp. 1–26 (2017)

10. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Annual international
conference on the theory and applications of cryptographic techniques. pp. 337–367
(2015)

11. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure compu-
tation under DDH. In: Annual International Cryptology Conference. pp. 509–539
(2016)

12. Boyle, E., Gilboa, N., Ishai, Y., Lin, H., Tessaro, S.: Foundations of homomorphic
secret sharing. In: Innovations in Theoretical Computer Science Conference (2018)

13. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: IEEE Symposium on Foundations of Computer Science. pp.
97–106 (2011)

14. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science. pp. 136–145
(2001)

15. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: ACM SIGSAC Conference on Computer and
Communications Security. pp. 1518–1529 (2015)

16. Chabanne, H., de Wargny, A., Milgram, J., Morel, C., Prouff, E.: Privacy-
preserving classification on deep neural network. IACR Cryptology ePrint Archive
(2017)

17. Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its ap-
plications. In: Annual International Cryptology Conference. pp. 93–122 (2016)

18. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)

19. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: ACM SIGSAC Conference on Computer and Communications Security.
pp. 844–855 (2014)

20. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Annual International Conference on the The-
ory and Applications of Cryptographic Techniques. pp. 44–61 (2010)

21. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fast-track multiparty
computations with applications to threshold cryptography. In: ACM Symposium
on Principles of Distributed Computing. pp. 101–111 (1998)

22. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Sympo-
sium on Theory of Computing. pp. 169–178 (2009)

23. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Annual
Cryptology Conference. pp. 75–92 (2013)

24. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In: International Conference on Machine Learning. pp. 201–210 (2016)

25. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A
completeness theorem for protocols with honest majority. In: ACM Symposium on
Theory of Computing. pp. 218–229 (1987)

21

26. Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and Sys-
tem Sciences 28(2), 270–299 (1984)

27. Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access
structure. In: IEEE Global Telecommunication Conference. pp. 99–102 (1987)

28. Jain, A., Rasmussen, P.M.R., Sahai, A.: Threshold fully homomorphic encryption.
IACR Cryptology ePrint Archive (2017)

29. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
IACR Cryptology ePrint Archive (2011)

30. Kamara, S., Mohassel, P., Riva, B.: Salus: A system for server-aided secure function
evaluation. In: ACM Conference on Computer and Communications Security. pp.
797–808 (2012)

31. Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for low
degree polynomials. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 279–309 (2018)

32. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: ACM Symposium on
Theory of Computing. pp. 1219–1234 (2012)

33. Martins, P., Sousa, L., Mariano, A.: A survey on fully homomorphic encryption:
An engineering perspective. ACM Computing Surveys 50(6), 1–33 (2017)

34. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: International Conference on the Theory and Applications of Cryp-
tographic Techniques. pp. 223–238 (1999)

35. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Annual international cryptology conference. pp. 129–140 (1991)

36. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

37. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic en-
cryption over the integers. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 24–43 (2010)

22

