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Abstract—Byzantine fault-tolerant state machine replication
(BFT-SMR) replicates a state machine across a set of replicas,
and processes requests as a single machine even in the presence
of Byzantine faults. Recently, synchronous BFT-SMRs have
received tremendous attention due to their simple design and
high fault-tolerance threshold.

In this paper, we propose Arena, the first multi-leader
synchronous BFT-SMR. Thanks to the synchrony assumption,
Arena gains the performance benefit from multi-leader with a
much simpler design (compared to other partially synchronous
multi-leader designs). Furthermore, it is more robust: “no
progress” of a leader will not trigger a view-change. Our ex-
perimental results show that Arena achieves a peak throughput
of up to 7.7× higher than the state-of-the-art.

1. Introduction

Byzantine fault-tolerant state machine replication (BFT-
SMR) replicates a state machine across a set of replicas, and
ensures that the service is both safe and live even in the pres-
ence of Byzantine faults. BFT-SMRs based on a synchrony
assumption have the advantage of tolerating up to one-half
Byzantine faults [1], but they are typically considered to
be slow as their commit latency depends on the pessimistic
bound of the network delay ∆. In comparison, asynchronous
or partially synchronous BFT-SMRs are responsive, i.e.,
their commit latency only depends on the actual network
delay δ. Nevertheless, synchronous BFT-SMRs have still
received tremendous attention due to their simple and intu-
itive designs, and great breakthroughs have been made. For
example, recent synchronous BFT-SMRs [2], [3], [4] allow
the replicas to commit responsively (independent of ∆)
when some optimistic conditions are met, a.k.a. optimistic
responsiveness.

However, these synchronous BFT-SMRs rely on a
single-leader to coordinate the protocol, which in turn en-
forces disproportionately high load on that leader. Fur-
thermore, when the system is geo-replicated, clients might
have to communicate with a remote server, which incurs
additional overhead. In this paper, we aim to improve the
performance of synchronous BFT-SMR by leveraging a
multi-leader design, s.t., clients can choose which replica to

∗Jian Liu is the corresponding author

send requests to and the loads are distributed evenly among
all replicas.

A straightforward way to design a multi-leader BFT-
SMR is to run multiple single-leader instances in parallel,
each of which has a different leader. Most existing multi-
leader designs [5], [6], [7], [8] follow this paradigm, but
they are extremely complex due to their partial synchrony
assumption. Furthermore, they require all replicas to vote for
all replicas’ proposals separately, which is a huge burden
in both communication and computation (due to signature
generation and verification). Interestingly, the synchrony
assumption allows us to significantly simplify the multi-
leader design. For example, we could have a replica vote
for multiple proposals with a single vote, which is difficult
to achieve in an asynchronous or partially synchronous
network, because there is no guarantee when a replica can
gather enough proposals.
Our contribution. In this paper, we propose Arena, which
(to the best of our knowledge) is the first synchronous
BFT-SMR. It has two prominent advantages over existing
synchronous BFT-SMRs [2], [3], [4], [9], [10]:

• Efficiency: All replicas simultaneously propose re-
quests so that the network bandwidth can be fully uti-
lized. As a result, it achieves a much higher throughput.

• Robust: “No progress” of a leader will not trigger a
view-change. In contrast, prior solutions need to run
view-change when a leader either equivocates or stalls.

In more detail, we propose two versions of Arena. The
first version simply has all replicas run in two ∆-epochs (in
a steady-state): (1) gather proposals from other replicas in
the first ∆-epoch, and (2) vote for the received proposals in
the second ∆-epoch. Notice that if all non-crash replicas
are honest and they start the protocol at the same time
(i.e., synchronized starts), they will receive the same set of
proposals and send the same vote. Once a replica receives
different votes, it will initiate a view-change protocol, after
which the potentially faulty replicas will be prohibited to
make proposals. This aggressive view-change allows us to
maintain safety for our extremely simple steady-state proto-
col. We further improve its performance by piggybacking its
vote-epoch on the next propose-epoch. We name this version
pipelined Arena.

The second version of Arena achieves optimistic respon-
siveness. In its fast path, a replica can vote directly upon



Notation Description

R Replica
n number of replicas
f number of faulty replicas
v view number
b a batch of proposed requests
B a block of requests
C(B) a commit certificate for B
H() hash function
Sig() signing function
σ a signature
Σ a set of signatures
∆ pessimistic bound of the network delay
δ actual network delay
L leader for coordinating view-change

TABLE 1: Summary of frequent notations.

receiving all n proposals and commit directly upon receiving
all n non-conflicting votes. That means it has a responsive
commit latency of 2δ when no faults exists. In its slow path,
a replica waits for 2∆ to gather proposals and waits for
another ∆ before sending its vote; it commits upon receiving
non-conflicting votes from more than one-half replicas.

This is a common design for optimistic protocols. In
scenarios like SMRs or consortium blockchains, no-fault
is the commonest case. We name this version optimistic
Arena. We remark that our optimistic Arena does not require
an explicit switch between the two paths; instead, replicas
exist in both paths simultaneously. Furthermore, it no longer
needs to assume synchronized starts: it works as long as all
honest replicas are initialized and start to propose within a
time interval of ∆.

We evaluate Arena on a testbed consisting of 91 AWS
VMs. Our experimental results show that Arena achieves a
peak throughput of up to 819 708 TPS, 4.2× higher than
Sync HotStuff [2], 3.6× higher than OptSync [4].
Organization. In the remainder of this paper, we first pro-
vide some essential definitions for synchronous BFT-SMRs
in Section 2. In Section 3, we show the design overview
of Arena. Then, we provided the details and proofs for
both pipelined Arena and optimistic Arena in Section 4
and Section 5 respectively. Next, we extensively evaluate its
performance and compare it to the state-of-the-art in Sec-
tion 6. In the end, we survey related work in Section 7 and
conclude the paper in Section 8. A summary of frequently
used notations is listed in Table 1.

2. Model and Definitions

In this section, introduce some necessary concepts and
definitions for this paper.
Byzantine fault-tolerant state machine replication (BFT-
SMR). A BFT-SMR replicates a state machine across a

set of n replicas Rs, and processes clients’ requests as a
single machine, even if f replicas behave arbitrarily (i.e.,
Byzantine faults). Typically, it runs as follows: (i) clients
submit requests to replicas and wait for responses; (ii) repli-
cas run a consensus protocol to agree on the order of
request; (iii) replicas execute the operations in the requests
following the agreed order; and (iv) replicas respond to the
corresponding clients with the execution results. Clearly, the
core component of a BFT-SMR is its consensus protocol,
which ensures the following two properties:

• Safety: all non-faulty replicas execute the requests in
the same order, a.k.a. agreement; each executed request
was proposed by a client, a.k.a. validity.

• Liveness: a request proposed by a client will eventually
be executed, a.k.a. termination.

Synchrony. We assume the communication between replicas
is synchronous. Namely, messages between replicas may
take at most ∆ time to deliver; in other words, an adversary
can delay a message for an arbitrary time upper bounded
by ∆. However, the actual message delay is δ, which is
much smaller than ∆. It is commonly known that under
a synchrony assumption, a BFT-SMR of n replicas can
tolerate f < n/2 Byzantine faults [1].
View-based execution. Most BFT-SMRs progress through a
series of views that are sequentially numbered. Within each
view, a.k.a. a steady state, a designated leader is expected
to propose values and make progress by committing client
requests at increasing heights. If replicas detect equivocation
or lack of progress in the current view, they collectively per-
form a view-change to replace the faulty leader. It is worth
mentioning that, in our proposed protocols, view-change
only happens for equivocation, not for lack of progress of
the protocol.
Blocks and block certificates. We have all n replicas
propose requests in batches bs. The proposed requests are
later combined into a block Bk pointing to its predecessor
Bk−1, i.e., Bk := (bk,1||...||bk,n, H(Bk−1)), where H() is
a cryptographic hash function. Notice that a request will be
removed from Bk if it conflicts with another request in front
of it. We call a block’s position in the chain as its height.
We say Bk extends Bl (k ≥ l) if Bl is an ancestor of Bk;
Bk and B′

k′ equivocate each other if they are not equal to
and do not extend one another.

A block certificate (a.k.a. commit certificate) represents
a set of signatures (or an aggregate signature) on a block
by a quorum of replicas, denoted by Cα

v (Bk), where α is
the quorum size and v is the view number. Whenever the
quorum size is not important, we represent the certificate by
Cv(Bk) for simplicity. Replicas lock on certified blocks at
the beginning of each view.

3. Design Overview

In this section, we show step-by-step how we design a
multi-leader synchronous BFT-SMR.



3.1. Pipelined Arena

We start from an extremely simple design: we assume
all honest replicas start the protocol at the same time i.e.,
synchronized starts (we will show how we get rid of this
assumption later), and they run in lock-steps: start and end
every ∆-epoch at the same time. The run the following two
∆-epochs:

• Propose. At the beginning of this epoch, each honest
replica broadcasts a proposal, which includes a batch
of requests together with a signature of this batch. The
epoch is long enough (i.e., ∆) such that each replica
is guaranteed to receive all proposals sent by honest
replicas.

• Vote. At the beginning of this epoch, each honest
replica combines the proposals (received during the
propose-epoch) into a block and broadcasts a vote
for this block. Again, at the end of this epoch, each
replica is guaranteed to receive all votes sent by honest
replicas.

A proposal is valid only if:
• it has been included in at least (f + 1) votes; and
• there is no equivocating proposal sent by the same

replica.
Next, the requests inside the valid proposals are commit-

ted corresponding to the order of senders’ IDs. In particular,
a request will be neglected if it conflicts with another request
in front of it. It is guaranteed that all honest replicas will
commit the same set of requests in the same order.

Notice that if all non-crash replicas are honest (i.e., send
the same proposal to all other replicas), they will receive
the same proposals and send the same vote. On the other
hand, a faulty replica can either (1) send different messages
to different replicas, or (2) send the same message to a
subset of replicas. Both of such misbehaviours can be caught
in the end of the vote-epoch and trigger view-change. In
case (1), these equivocating messages can serve as proof
for Byzantine behaviors. Once received, an honest replica
will trigger view-change. However, case (2) is tricky as we
cannot determine who is cheating. For example, there are
three replicas R1, R2, and R3, which propose b1, b2 and
b3 respectively; if R2 only votes for b2 and b3, we cannot
determine whether this is because R1 did not send b1 to
R2, or because R2 did not include b1 in its vote. However,
due to synchrony, if R1 has broadcasted b1, R2 must have
received it; therefore, either R1 did not send the proposal
to R2 or R2 did not include that proposal in its vote; they
cannot both be honest. To this end, we take an aggressive
approach by prohibiting both R1 and R2 to make proposals
thereafter. We will prove the following Lemmas:

• All honest replicas ban the same replicas (cf.
Lemma 6).

• Honest majority always holds among the replicas that
can make proposals (cf. Lemma 7).

In the worst case, there will be one honest replica left and the
protocol becomes a single-leader BFT-SMR. After a certain
period, we could allow the prohibited replicas to make

proposals again. We remark that this aggressive approach for
banning replicas is necessary: if we do not ban any replica,
the faulty replicas can make view-change keep happening,
harming liveness; if we do not ban a pair of replicas, it is
possible that there is a single faulty replica left in the end.

Recently, a pipelined-BFT paradigm was proposed to
improve protocol performance: if a block requires two
rounds of voting, we could piggyback the second round on
the next block’s voting. Although our protocol only requires
one round of voting, we could still leverage it to propose
new blocks. Namely, replicas can combine the vote-epoch
of height-k with the propose-epoch of height-(k + 1). The
communication pattern of this pipelined Arena is shown in
Figure 1.
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Figure 1: Communication patterns for pipelined Arena.

This multi-leader BFT-SMR has two prominent advan-
tages over existing single-leader designs [2], [3], [4]:

1) Empirically, the block proposing phase is the most
expensive phase of an SMR protocol. In a single-
leader SMR, the throughput is limited by the outbound
bandwidth of the proposing replica, resulting in wasted
outbound bandwidth from other replicas. Conversely,
multi-leader SMR allows for full utilization of all repli-
cas’ outbound bandwidth.

2) If honest replicas crashes or faulty replicas stalls, there
are still at least (f+1) honest replicas that will propose
requests to keep the protocol running. In other words,
view-change occurs only when there is a Byzantine
leader. In contrast, in a single leader design, if the
leader crashes or stalls, view-change needs to be trig-
gered.

Next, we show how we further reduce its response
latency.

3.2. Optimistic Arena

The protocol described in 3.1 has a commit latency
that depends on the pessimistic network delay ∆. On the
other hand, a protocol is responsive if its commit latency
only depends on the actual network delay δ (rather than
∆). In this section, we seek to make Arena responsive
when some optimistic conditions are met, i.e., optimistic
responsiveness [2], [3], [4].

The key observation is that a replica can vote directly
upon receiving (2f + 1) proposals (without having to wait
until the end of the propose-epoch); similarly, it can com-
mit directly upon receiving (2f + 1) non-conflicting votes



(without having to wait until the end of the vote-epoch).
That means the responsive commit latency can be as small
as 2δ.

However, after such responsive commits, replicas may
end up making the next proposals at different time points,
rendering our protocol incorrect. We tackle this issue in two
directions: (1) limit such time discrepancies among honest
replicas to ∆ and (2) tolerate the ∆ time discrepancy.

To limit the time discrepancies among honest replicas,
we have each replica forward its (2f + 1) received votes
immediately after a responsive commit. Suppose an honest
replica responsively commits at t, then other honest replicas
are able to commit before t+∆. Consequently, all replicas
will start the next round within a time interval of ∆.

Nevertheless, due to this ∆ time discrepancy, it can no
longer guarantee that a replica will receive all proposals
from honest replicas in the next ∆-epoch. Interestingly, we
can resolve this problem by extending the duration of the
propose-epoch from ∆ to 2∆. Specifically, each replica
locally sets a propose-timer of 2∆ after sending a proposal;
then, it is for sure that a replica will receive all proposals
from honest replicas before propose-timer reaching 0, even
though other honest replicas may send the proposals ∆ later.
A side benefit we get from this strategy is that we no longer
need the assumption of synchronized starts; instead, we only
need to assume that all honest replicas are initialized within
a time interval of ∆.

Similar to the propose-epoch, we could extend the vote-
epoch to 2∆ so that each replica can receive all votes from
other honest replicas. However, this is an overkill and we
would like to stick to the ∆-epoch for “vote”. To achieve
this, we borrow the idea from OptSync [4]: we have replicas
wait for ∆ before sending their votes. Specifically, in the
slow path, each replica forwards its received proposals in an
ack after the 2∆ propose-epoch, and then sets a vote-timer
to ∆; a replica can vote only when its vote-timer reaching 0,
thereafter it can commit the requests upon receiving (f+1)
non-conflicting votes. In the fast path, a replica can send
the ack immediately after receiving (2f + 1) proposals and
it can commit immediately after receiving (2f + 1) non-
conflicting acks. In both paths, a replica needs to broadcast
its commit certificate, i.e., (2f + 1) acks or (f + 1) votes,
which can be combined with its next proposal. It is worth
mentioning that the commit certificate can be an aggregate
signature.

Figure 2 shows the communication patterns for both fast
path and slow path. We remark that Arena replicas exist
in both paths simultaneously without requiring an explicit
switch. In contrast, the general strategy employed in the
slow-path/fast-path paradigm [11] is to initially start in one
of the two paths; when certain conditions are met, an explicit
switch is performed to move to the other path. The explicit
switch between the paths incurs a latency in such protocols.

4. Pipelined Arena in Detail

In this section, we provide a detailed description and
correctness proof for pipelined Arena.

4.1. The protocol

We present the details of pipelined Arena in Figure 3.
As we mentioned in Section 3.1, all replicas run in lock-

steps: start and end every ∆-epoch at the same time. In
the beginning of the kth epoch, each replica Ri proposes
a batch of requests for height-k. To process requests in
a pipelined manner, it also votes for height-(k − 1) and
commits for height-(k − 2). The propose message is a
batch of requests together with a signature on the batch:
σk,i := Sig(ski, H(bk,i)||v||k).

The vote message is a signature on the proposals to
be voted: σ′

k−1,i := Sig(ski, σk−1,1||...||σk−1,n). It is im-
portant to include Σk−1,i := {σk−1,1, ..., σk−1,n} in the
vote message; otherwise, if inconsistent votes appear, an
honest replica is not able to determine who is misbehaving.
Specifically, if Ri receives two different votes from Rh and
Rj , it can check Σk−1,h and Σk−1,j to see which σk−1 leads
to the inconsistency, and broadcasts the corresponding blame
message.

To commit, Ri checks the ≥ (f+1) non-⊥ signatures in
{σ′

k−2,1, ..., σ
′
k−2,n}. If they are all consistent, Ri commits

Bk−2 := (bk−2,1||... ||bk−2,n, H(Bk−3)) and broadcasts
a commit certificate Cf+1

v (Bk−2) that is computed as an
aggregate signature of {σ′

k−2,1, ..., σ
′
k−2,n}. Otherwise, Ri

broadcasts a blame message signaling equivocation or miss-
ing proposals to trigger view-change. In fact, we could
use a less aggressive approach for view-change here, i.e.,
they continue with the steady state as long as they receive
≥ (f + 1) consistent votes, despite of other inconsistent
votes.

After triggering the view-change, Ri waits for 2∆ before
entering the next view, which is useful in proving Lemma 2.
During this 2∆, Ri keeps sending blames when receiving
messages that can trigger “Blame and quit view”. This is
important to have all replicas receive the same set of blame
messages so that they can determine the correctness of the
new-view message.

For each view, we introduce a leader that is only for
coordinating the view-change. Specifically, it is responsible
for sending a new-view message that contains the latest
commit certificate and a set of replicas to be banned to
propose blocks. In particular, for “Quit view on detecting
missing proposals”, the sender Rj of the proposal and the
sender Rh of the vote (that does not contain that proposal)
will be banned. For example, Ri reports having received
a proposal from Rj in its vote, while Rh’s vote does not
contain this proposal. As per the rule, Rj and Rh will be
banned. Due to synchrony, if Rj has broadcasted a proposal,
Rh must have received it. Therefore, either Rj did not send
the proposal to Rh or Rh did not include that proposal in
its vote. They cannot both be honest. If there are multiple
pairs of such replicas, pick Rj and Rh with the smallest IDs.
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Figure 2: Communication pattern for optimistic Arena.

This is important for proving Lemma 7: if we ban multiple
of such replicas, it is possible to ban more honest replicas
than faulty ones. Before sending the new-view message, the
new leader needs to wait for 2∆ to gathering the blame and
Status messages, which is useful in proving Lemma 4.

If the new-view message is detected to be wrong,
the replicas will initialize another view-change. Otherwise,
the replicas start processing requests by making the first
proposals in this view. They will also forward the new-
view message. If the view leader only sends the new-view
message to a subset of replicas, the rest can still receive the
forwarded new-view message and they will start to propose
from the next epoch.

4.2. Safety and liveness

We firstly prove safety.

Lemma 1. If an honest replica commits a block Bk in view
v, then a commit certificate for an equivocating block of Bk

will never exist in view v.

Proof. Suppose an honest replica Ri commits a block Bk

at the end of epoch-(k+1) (in view v). Then, it must have
voted for Bk in the beginning of epoch-(k+1) (say at time
point t). If a commit certificate for an equivocating block
B′

k′ exists, it must be one of two following two cases:
1) At least f + 1 replicas vote for B′

k′ at ≥ t +∆. That
means at least one honest replica voted for B′

k′ after
seeing Ri’s vote, which will not happen.

2) At least f+1 replicas vote for B′
k′ at ≤ t. In this case,

Ri will receive at least one vote for B′
k′ by t+∆ and

it will not commit Bk.
It is worth mentioning that no honest replica will vote during
(t, t+∆) as they run in lock-step.

Lemma 2. If an honest replica commits a block Bk in view
v, then all honest replicas lock on a certified block that is
ranked higher than or equal to Cv(Bk) before entering view
v + 1.

Proof. Suppose an honest replica Ri commits a block Bk at
the end of epoch-(k + 1) (say at time point t). All replicas
will receive Cv(Bk) by t + ∆. It is easy to show that
each honest replica Rj will still be in view v at t + ∆:
otherwise, due to the conditions for entering a new view, Rj

must have sent a blame message at time ≤ t −∆; Ri will
receive this blame message by t and it will not commit Bk.

Therefore, all honest replicas will receive Cv(Bk) before
entering view v+1. Furthermore, as we proved in Lemma 1,
a certificate for an equivocating block will not exist in view
v. Therefore, all honest replicas will lock on a certified block
ranked higher than or equal to Cv(Bk) before entering view
v + 1.

Lemma 3. If an honest replica commits a block Bk in view
v, then any certified block ranked equal to or higher than
Cv(Bk) must extend Bk.

Proof. By Lemma 1, no equivocating certificate exists in
view v. Then, any certified block B′

k′ in view v that is
ranked equal to or higher than Cv(Bk) must extend Bk.
For larger views, we prove by contradiction.

Let S be a non-empty set of certified blocks ranked
higher than Cv(Bk), but do not extend Bk. Let Cv∗(Bk∗)
be the block ranked the lowest in S. Notice that if Bk∗

does not extend Bk, neither Bk∗−1. To have Cv∗(Bk∗)
exist, at least one honest replica must have received ei-
ther ⟨propose, v∗, bk∗,j , σk∗,j , Cv′(Bk∗−1))⟩j (with v′ <
v∗) or ⟨propose/vote, v∗, (bk∗+1,j , σk∗+1,j), (σ

′
k∗,j ,Σk∗,j),

Cv∗(Bk∗−1)⟩j .
• If it is the former, Cv′(Bk∗−1) must be ranked higher

than or equal to Cv(Bk) due to Lemma 2. Then,
Cv′(Bk∗−1) should be in S, which contradicts the fact
that Cv∗(Bk∗) has the lowest rank in S.

• If it is the later, Cv∗(Bk∗−1) must be ranked higher
than Cv(Bk) as v∗ > v, which leads to the same
contradiction as above.

Therefore, the set S is empty.

Theorem 1 (Safety). Honest replicas will not commit equiv-
ocating blocks at any height.

Proof. We prove by contradiction. Suppose two equivocat-
ing blocks Bk and B′

k are committed at height k. Without
loss of generality, we assume k ≤ k′. Then, by Lemma 3,
B′

k extends Bk, which leads to a contradiction.

Next, we prove liveness.

Lemma 4. When an honest new leader L′ sends the
new-view message for view v + 1, all honest replicas are
in view v+1 and L′ has received the Status messages from
all other honest replicas.

Proof. Suppose an honest new leader L′ sends the
new-view message for view v + 1 at time t. It must have



Steady state. While in view v, a replica Ri runs as follows in the beginning of each ∆-epoch:
1) Epoch-k. Ri proposes for height-k, votes for height-(k − 1), and commits for height-(k − 2).

a) Propose. Ri constructs a batch bk,i of requests and computes σk,i := Sig(ski, H(bk,i)||v||k).
b) Vote.

• Let {(bk−1,1, σk−1,1), ..., (bk−1,n, σk−1,n)} be the proposals received by Ri in epoch-(k − 1). Notice
that (bk−1,j , σk−1,j) = (⊥,⊥) if Ri did not receive a proposal from Rj in epoch-(k − 1).

• Let σ′
k−1,i := Sig(ski, σk−1,1||...||σk−1,n) and Σk−1,i := {σk−1,1, ..., σk−1,n}.

c) Commit.
• Let {(bk−2,1, σk−2,1), ..., (bk−2,n, σk−2,n)} be the proposals received by Ri in epoch-(k − 2). Again,
(bk−2,j , σk−2,j) = (⊥,⊥) if Ri did not receive a proposal from Rj .

• Let {σ′
k−2,1, ..., σ

′
k−2,n} be the signatures in the votes received Ri in epoch-(k − 1). Again, σ′

k−2,j =⊥
if Ri did not receive a vote from Rj . Notice that the number of non-⊥ signatures is at least f + 1.

• If the number of non-⊥ signatures in {σ′
k−2,1, ..., σ

′
k−2,n} is ≥ (f + 1) and they are identical, Ri

constructs Bk−2 := (bk−2,1||...||bk−2,n, H(Bk−3)). Notice that a request will be removed from Bk−2 if
it conflicts with another request in front of it. The commit certificate Cf+1

v (Bk−2) is computed as an
aggregate signature of {σ′

k−2,1, ..., σ
′
k−2,n}.

Ri broadcasts
〈
propose/vote, v, (bk,i, σk,i), (σ

′
k−1,i,Σk−1,i), C

f+1
v (Bk−2)

〉
i
.

2) Blame and quit view.

a) Quit view on detecting equivocation. If Rj is detected for equivocation, Ri constructs
〈
blame,mk,j ,m

′
k,j

〉
i
,

where mk,j and m′
k,j are two equivocating messages (propose/vote, blame, new-view) sent by Rj .

b) Quit view on detecting missing proposals. If Ri receives two votes vk,h and vk,j that contain different Σs, it
constructs ⟨blame, vk,j , vk,h⟩i.

In either case, it stops committing any blocks in the current epoch and broadcasts the blame message in the
beginning of the next epoch.

View change. Let L and L′ be the leaders of view v and v + 1 respectively for coordinating the view-change. Ri

runs the following steps to switch from view v to v + 1.
1) Status. Upon receiving a valid blame message, Ri stops committing any blocks in the current epoch and

forwards it to all other replicas in the beginning of the next epoch. Then, it waits for 2∆, during which it
keeps sending blames when receiving messages that can trigger “Blame and quit view”. Upon timeout, it
locks on Cv′(Bk′), where Bk′ is the highest certified block known to it. Then, it sends a Status message that
contains Cv′(Bk′) to the new leader L′, and enters view v + 1.

2) New-view. L′ waits for 2∆ after entering view v + 1. Then, it broadcasts ⟨new-view, v + 1, {R}, Cv′(Bk′)⟩L′ ,
where Cv′(Bk′) is a highest certified block known to L′, and {R} is a set of replicas to be banned to propose
blocks:
• For “Quit view on detecting equivocation”, the equivocation sender Rj will be banned.
• For “Quit view on detecting missing proposals”, the sender Rj of the proposal and the sender Rh of the

vote (that does not contain that proposal) will be banned. If there are multiple pairs of such replicas, pick
Rj and Rh with the smallest IDs.

3) First propose. Upon receiving ⟨new-view, v + 1, {R}, Cv′(Bk′)⟩L′ ,
• if Cv′(Bk′) has a rank lower than Ri’s locked block, or {R} includes a pair (Rj ,Rh) with IDs higher than

the pair in the blame sent by Ri, Ri initializes view-change again by broadcasting a blame;
• otherwise, Ri broadcasts ⟨new-view, v + 1, {R}, Cv′(Bk′)⟩L′ and ⟨propose, v + 1, bk′+1,i, Cv′(Bk′))⟩i in the

beginning of the next epoch.

Pipelined Arena

Figure 3: Pipelined Arena.



forwarded a valid blame message at time t − 4∆. Then,
other honest replicas must have received this blame message
by t− 3∆; they will enter view v + 1 and send the Status
messages by time t−∆. L′ must have received these Status
messages by t.

Lemma 5. Assume all replicas are initialized (and start to
propose) at the same time. Then, they will always run in
lock-step: start and end every ∆-epoch at the same time.

Proof. In a steady state, it is clear that all replicas run in
lock-steps. When view-change happens,

1) If L′ is honest, by Lemma 4, it will run with other
replicas in lock-steps;

2) If L′ faulty, it will trigger another view-change, until
case 1 happens.

Lemma 6. All honest replicas ban the same replicas.

Proof. Suppose the view-leader-of-the-next-view L′ re-
ceives a blame in epoch e (or it receives a message that
can trigger “blame and quit view” in epoch e), it stops
committing any blocks in the current epoch, and forwards
the blame to all other replicas in the beginning of the epoch
e+ 1 (say at time t).

Due to synchrony, all replicas will receive this blame by
t+∆. They will wait for 2∆ before entering the new-view,
during which they keep sending and forwarding blames.
They will enter the new-view at t+3∆ (L′ enters the new-
view at t+ 2∆).

After entering the new-view, L′ waits for another 2∆
and then broadcasts the new-view message. Namely, it
broadcasts the new-view message at t + 4∆. As long as a
replica has sent a blame to one honest replica by t+3∆, this
message will be forwarded and received by L′ by t+ 4∆.

As other replicas stop sending/forwarding blames at t+
3∆, L′ is guaranteed to receive all blames by t+4∆. That
is to say, L′ will hold a complete set of blame messages.

Of course, a faulty L′ can equivocate in the new-
view message (sending different banned replicas to different
subsets of replicas). However, this new-view message will
be forwarded by replicas. Therefore, replicas can detect
the equivocation by L′ and trigger another view-change. A
faulty L′ can also send a blame that is not the one with the
smallest IDs, which can also trigger a view-change.

Lemma 7. Honest majority always holds among the repli-
cas that can make proposals.

Proof. We assume that, after initialization, f of the (2f+1)
replicas are faulty, which satisfies honest majority. However,
after a view-change, some replicas will be banned to make
proposals. By Lemma 6, all honest replicas ban the same
replicas. Now, we need to prove that the number of banned
honest replicas is no more than that of faulty replicas. Recall
that there are two kinds of blame messages:

1) Quit view on detecting equivocation. Notice that an
honest replica will neither propose nor vote for equiv-
ocating proposals. Therefore, this blame will never ban
an honest replica.

2) Quit view on detecting an inconsistency between a
proposal and a vote. Notice that when an honest replica
proposes bi in the beginning of an epoch, this proposal
is guaranteed to be received by all other replicas at
the end of the epoch. As replicas always run in lock-
steps (by Lemma 5), bi will be included in all honest
replicas’ votes. Consequently, this blame happens only
when a faulty replica sends a proposal to a subset of
replicas, or a faulty replica falsely claims that it did not
receive a proposal from another replica. Therefore, this
blame will ban two replicas and at most one of them
is honest.

As a result, honest majority also holds for the rest of replicas
after view-change.

Theorem 2 (Liveness). A legitimate request will be com-
mitted eventually.

Proof. Recall that faulty replicas can prevent progress
through two strategies: stalling and equivocating.

• If they stall and do not make proposals, there will
always be honest replicas left (by Lemma 7) to keep
the protocol running.

• If they equivocate, view-change will be triggered and
at least one replica will be banned. Therefore, view-
change can be triggered for at most f times.

In summary, a legitimate request will eventually be commit-
ted in a steady state.

5. Optimistic Arena in Detail

In this section, we provide a detailed description and
correctness proof for optimistic Arena.

5.1. The protocol

We present the details of optimistic Arena in Figure 4.
Optimistic Arena only requires replicas to be initialized

(and start to propose) within a time interval of ∆. As we
mentioned in Section 3.2, we rely on the commit certificate
to limit the discrepancies among honest replicas to ∆ for
all time. That is, a replica Ri can propose for height-k only
when it has received a certificate for height-(k − 1) or it
has received enough information to form a certificate for
height-(k − 1).

The propose message is the same as that in pipelined
Arena: it includes a batch of requests together with a
signature on the batch. The vote message in optimistic
Arena is different from that in pipelined Arena. It does not
need to include the signatures, because replicas can detect
misbehaviours based on the ack messages: if faulty replicas
equivocate, honest replicas will receive different acks.

It is worth mentioning that, due to the ∆ discrepancy,
it is possible for a replica to receive (f + 1) consistent
votes before receiving the conflict acks. In this case, a
block certificate will be formed and broadcasted by this
replica; and other replicas will receive and follow this block



Steady state. While in view v, a replica Ri runs the following steps in iterations:

1) Propose. Upon receiving Cv(Bk−1), Ri constructs a batch bk,i of requests, computes
σk,i := Sig(ski, H(bk,i)||v||k), and broadcasts ⟨propose, v, bk,i, σk,i, Cv(Bk−1)⟩. Meanwhile, it sets
propose-timerk,i to 2∆ and starts counting down.

2) Ack. Let {(bk,1, σk,1), ..., (bk,n, σk,n)} be the proposals received by Ri. Notice that (bk,j , σk,j) = (⊥,⊥) if Ri

did not receive a proposal from Rj . Let σ′
k,i := Sig(ski, σk,1||...||σk,n) and Σk,i := {σk,1, ..., σk,n}. Ri

broadcasts
〈
ack, v, σ′

k,i,Σk,i

〉
to other replicas using either of the following rules:

a) Responsive ack. Upon receiving (2f + 1) proposals, it stops propose-timerk,i and broadcasts.

b) Synchronous ack. Upon the timeout of propose-timerk,i, it broadcasts.

In either case, Ri sets vote-timerk,i to ∆ and starts counting down.

3) Vote. Upon the timeout of vote-timerk,i, Ri broadcasts ⟨vote, v,H(Bk)⟩i, where
Bk := (bk,1||...||bk,n, H(Bk−1)). Notice that a request will be removed from Bk if it conflicts with another
request in front of it.

4) Commit. Ri commits Bk using either of the following rules:

a) Responsive commit. Upon receiving (2f + 1) non-conflicting acks for Bk, it stops vote-timerk,i and
commits Bk. It computes the commit certificate Cn

v (Bk) as an aggregate signature of {σ′
k,1, ..., σ

′
k,n}.

b) Synchronous commit. Upon receiving (f + 1) non-conflicting votes for Bk, it commits Bk. It computes the
commit certificate Cf+1

v (Bk) as an aggregate signature of the (f + 1) votes.

In either case, it needs to broadcast Cv(Bk), but this message is combined with the next proposal.

5) Blame and quit view.
a) Quit view on detecting equivocation. If Rj is detected for equivocation, Ri broadcasts〈

blame,mk,j ,m
′
k,j

〉
i
, where mk,j and m′

k,j are two equivocating messages (propose, ack, vote, blame,
new-views) sent by Rj .

b) Quit view on detecting missing proposals. If Ri receives two acks ak,h and ak,j that contain different Σs, it
broadcasts ⟨blame, ak,j , ak,h⟩i.

In either case, it aborts all view v timers and quit view v.

View change. Let L and L′ be the leaders of view v and v + 1 respectively for coordinating the view-change. Ri

runs the following steps to switch from view v to v + 1.
1) Status. Upon receiving a valid blame message, Ri stops committing any blocks in the current epoch and

forwards it to all other replicas in the beginning of the next epoch. Then, it waits for 2∆, during which it
keeps sending blames when receiving messages that can trigger “Blame and quit view”. Upon timeout, it
locks on Cv′(Bk′), where Bk′ is the highest certified block known to it. Then, it sends a Status message that
contains Cv′(Bk′) to the new leader L′, and enters view v + 1.

2) New-view. L′ waits for 2∆ after entering view v + 1. Then, it broadcasts ⟨new-view, v + 1, {R}, Cv′(Bk′)⟩L′ ,
where Cv′(Bk′) is a highest certified block known to L′, and {R} is a set of replicas to be banned to propose
blocks:

• For “Quit view on detecting equivocation”, the equivocation sender Rj will be banned.

• For “Quit view on detecting missing proposals”, the sender Rj of the proposal and the sender Rh of the ack
will be banned. If there are multiple pairs of such replicas, pick Rj and Rh with the smallest IDs.

3) First propose. Upon receiving ⟨new-view, v + 1, {R}, Cv′(Bk′)⟩L′ ,

• if Cv′(Bk′) has a rank lower than Ri’s locked block, or {R} includes a pair (Rj ,Rh) with IDs higher than
the pair in the blame sent by Ri, Ri initializes view-change again by broadcasting a blame;

• otherwise, Ri broadcasts ⟨new-view, v + 1, {R}, Cv′(Bk′)⟩L′ and ⟨propose, v + 1, bk′+1,i, Cv′(Bk′))⟩i.

Optimistic Arena

Figure 4: Optimistic Arena.



certificate before entering the next view (we prove this in
Lemma 9).

The fast path of optimistic Arena requires only 2δ to
commit a block. We remark that this is likely to be the
common case, as replicas rarely experience crashes or faults,
and network connections tend to be reliable. We could
also include the proposals in the ack messages to increase
the possibility of the fast path being taken. However, this
incurs more communication overhead for broadcasting the
ack messages. This design choice can be determined based
on the quality of the network connection.

The blame mechanism and the view-change protocol in
optimistic Arena are similar to those in pipelined Arena.

5.2. Safety and liveness

Lemma 8. If an honest replica commits a block Bk in view
v, then a commit certificate for an equivocating block of Bk

will never exist in view v.

Proof. We first consider responsive commit. If an honest
replica Ri commits a block Bk in view v using the re-
sponsive commit rule, it must have received 2f + 1 acks,
i.e., Cn

v (Bk), which means all replicas have sent the same
Σ. On the other hand, if a certificate (either responsive or
synchronous) for an equivocating block B′

k′ exists in view
v, there must be at least one honest replica that sent ack
for B′

k′ in view v. This is a contradiction because an honest
replica will never send acks for equivocating blocks.

Next, we consider that an honest replica Ri commits
Bk in view v using the synchronous commit rule. Then, it
will never send an ack for an equivocating block B′

k′ in the
same view. Consequently, a responsive certificate for B′

k′

will never exits in view v, as it requires 2f + 1 acks. To
this end, we only need to consider synchronous certificates
for B′

k′ . Suppose Ri commits Bk at time t, there must be
at least one honest replica Rj that has sent a vote for Bk at
time ≤ t (sent an ack for Bk at time ≤ t − ∆), Then, all
replicas must have received Rj’s ack by time t.

• No honest replica will send an ack or a vote for an
equivocating block B′

k′ at time ≥ t.
• No honest replica will send an ack for an equivocating

block B′
k′ at time < t −∆ (otherwise Ri will receive

the ack and will not commit Bk). Consequently, no
honest replica will send a vote for B′

k′ at time < t.
This implies that no honest replica will vote for B′

k′ in
view v, hence a synchronous certificate for B′

k′ that requires
(f + 1) votes will not exit in view v.

Lemma 9. If an honest replica commits a block Bk in view
v, then all honest replicas lock on a certified block that is
ranked higher than or equal to Cv(Bk) before entering view
v + 1.

Proof. Suppose an honest replica Ri commits a block Bk

at time point t. All replicas will receive Cv(Bk) by t+∆.
It is easy to show that each honest replica Rj will still be
in view v at t + ∆: otherwise, due to the conditions for
entering a new view, Rj must have sent a blame message at

time ≤ t−∆; Ri will receive this blame message by t and
it will not commit Bk. Therefore, all honest replicas will
receive Cv(Bk) before entering view v + 1. Furthermore,
as we proved in Lemma 8, a certificate for an equivocating
block will not exist in view v. Therefore, all honest replicas
will lock on a certified block ranked higher than or equal
to Cv(Bk) before entering view v + 1.

Lemma 10. If an honest replica commits a block Bk in
view v, then any certified block ranked equal to or higher
than Cv(Bk) must extend Bk.

The proof is similar to that of Lemma 3 except that
Lemma 8 and 9 need to be invoked.

Proof. By Lemma 8, no equivocating certificate exists in
view v. Then, any certified block B′

k′ in view v that is
ranked equal to or higher than Cv(Bk) must extend Bk.
For larger views, we prove by contradiction.

Let S be a non-empty set of certified blocks ranked
higher than Cv(Bk), but do not extend Bk. Let Cv∗(Bk∗)
be the block ranked the lowest in S. Notice that if Bk∗

does not extend Bk, neither Bk∗−1. To have Cv∗(Bk∗)
exist, at least one honest replica must have received
⟨propose, v∗, bk∗,j , σk∗,j , Cv′(Bk∗−1))⟩j .

• If v′ < v∗, Cv′(Bk∗−1) must be ranked higher
than or equal to Cv(Bk) due to Lemma 9. Then,
Cv′(Bk∗−1) should be in S, which contradicts the fact
that Cv∗(Bk∗) has the lowest rank in S.

• If v′ = v∗, Cv′(Bk∗−1) must be ranked higher than
Cv(Bk) due to the fact that v∗ > v, which leads to the
same contradiction as above.

Therefore, the set S is empty.

Theorem 3 (Safety). Honest replicas will not commit equiv-
ocating blocks at any height.

Proof. We prove by contradiction. Suppose two equivocat-
ing blocks Bk and B′

k are committed at height k. Without
loss of generality, we assume k ≤ k′. Then, by Lemma 10,
B′

k extends Bk, which leads to a contradiction.

Next, we prove liveness.

Lemma 11. Assume all replicas are initialized (and start to
propose) within a time interval of ∆. Then, the time interval
for all honest replicas to propose blocks is always ∆.

Proof. Given that all replicas are initialized (and start to
propose) within a time interval of ∆, replicas are guaranteed
to receive all proposals sent from honest replicas within 2∆.
Then, there are two cases:

1) View-change does not happen. Whenever an honest
replica commits a block and proposes the next block, it
will include the commit certificate in its proposal. Other
honest replicas, receiving the commit certificate within
∆, will propose their blocks immediately as well.

2) View-change happens. Suppose an honest replica Ri

receives a blame and forwards it to others at t.
• If the sender of the blame is honest, it must have

sent this blame to all replicas at time t′ with t −



∆ < t′ < t. Then, all other honest replicas must
receive this blame at time between t′ and t′ + ∆,
with t′ < t < t′ +∆.

• If the sender of the blame is faulty and it sends
the blame to a subset of replicas (w.l.o.g., Ri is the
first receiver), all honest replicas will still receive the
forwarded blame from Ri by t+∆.

In either case, all honest replicas will enter the new
view and make the next proposal within a time interval
of ∆.

Lemma 12. All honest replicas ban the same replicas.

Proof. The proof of this lemma is similar to that of
Lemma 6. Replicas are no longer run in an epoch style. Sup-
pose the view-leader-of-the-next-view L′ receives a blame
at t (or it receives a message that can trigger “blame and
quit view” at t), it stops committing any blocks and forwards
the blame to all other replicas. Then, the remaining proof
is the same as that of Lemma 6.

Lemma 13. Honest majority always holds among the repli-
cas that can propose blocks.

Proof. We assume that, after initialization, f of the (2f+1)
replicas are faulty, which satisfies honest majority. However,
after a view-change, some replicas will be banned to make
proposals. By Lemma 12, all honest replicas ban the same
replicas. Now, we need to prove that the number of banned
honest replicas is no more than that of faulty replicas. Recall
that there are two kinds of blame messages:

1) Quit view on detecting equivocation. Notice that an
honest replica will never propose, ack or vote for equiv-
ocating proposals. Therefore, this blame will never ban
an honest replica.

2) Quit view on detecting an inconsistency between a
proposal and an ack. Notice that when an honest
replica proposes bi, this proposal is guaranteed to be
received by all other replicas (by Lemma 11 and the
fact that honest replicas will wait for 2∆ after sending a
proposal). That means bi will be included in all honest
replicas’ acks. Consequently, this blame happens only
when a faulty replica sends a proposal to a subset of
replicas, or a faulty replica falsely claims that it did not
receive a proposal from another replica. Therefore, this
blame will ban two replicas and at most one of them
is honest.

As a result, honest majority also holds for the rest of replicas
after a view-change.

Theorem 4 (Liveness). A legitimate request will be com-
mitted eventually.

Proof. Recall that faulty replicas can prevent progress
through two strategies: stalling and equivocating.

• If they stall and do not make proposals, there will
always be honest replicas left (by Lemma 13) to keep
the protocol running.

• If they equivocate, view-change will be triggered and
at least one replica will be banned. Therefore, view-
change can be triggered for at most f times.

In summary, a legitimate request will eventually be commit-
ted in a steady state.

6. Implementation and Evaluation

In this section, we systematically evaluate Arena and
compare it with the state-of-the-art synchronous BFT-SMRs:
Sync HotStuff [2] and the fast path of OptSync [4]1. We
remark that our experimental setup closely follows Opt-
Sync [4]; we aim to provide a head-to-head comparison with
OptSync, as it is our closest competitor.

6.1. Implementation

We implemented Arena, based on the open-source C++
implementation of Sync HotStuff2. It is worth mentioning
that the open-source code of OptSync is also based on
this implementation. Therefore, all three BFT-SMRs to be
evaluated have the same code base.

Each replica runs on a separate AWS VM with eight
3.3GHz vCPUs and 16 GB RAM, running Ubuntu Server
18.04.1 LTS 64. The maximum network bandwidth is
5Gbps. We generate open-loop clients on a separate VM
with the same configuration. The RTT (which can be con-
sidered as δ) between any two VMs is 0.1ms, and we set
∆ as 300ms3.

Following the setting of [4], we batch 400 requests in
a proposal for all three BFT-SMRs. We consider two types
of request size: 8-byte and 1KB, which correspond to the
0/0 payload and 1024/1024 payload in [4]. Also, following
[4], we only measure the fast path performance (where no
faulty replica exists), as the slow path performance of such
protocols solely depends on ∆.

We repeat all experiments five times and report the av-
erage values with error bars indicating standard deviations.

6.2. Throughput vs. latency

We fix the number of replicas (n) as three, increase the
number of concurrent clients, and measure throughput vs.
latency. At first, when more clients are added, the throughput
increases while the latency stays the same. However, once
the system becomes saturated, the throughput remains con-
stant, causing the latency to increase with additional clients.

Figure 5a shows the results for the case where the
request size is small (8-byte). The fast path of optimistic
Arena can reach a peak throughput of 570 261 TPS, with a
latency of around 4.9ms It has a comparable stable latency to

1. There are two versions of OptSync and their fast paths have the same
performance.

2. https://github.com/hot-stuff/librightstuff
3. A common way for reducing fragility of synchronous protocol is

setting a large ∆, and our protocol can still have a good performance
due to the optimistic responsiveness.

https://github.com/hot-stuff/librightstuff
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(a) Throughput vs. Latency with request size of 8-byte.
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Figure 5: Throughput vs. Latency (n = 3, f = 1, ∆ = 300ms).
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Figure 6: Scalability (request size of 8-byte).

OptSync, but with 1.6× higher peak throughput. Its advan-
tage is more prominent when compared with Sync HotStuff:
20.8× lower latency and 1.7× higher throughput.

Figure 5b shows the results for processing 1KB requests.
The throughput becomes lower for all systems due to the
larger bandwidth consumption for each request. However,
the peak throughput of optimistic Arena (fast path) is still
around 1.8× higher than that of Sync HotStuff and 1.7×
higher than that of OptSync. It can reach a peak throughput
246 703 TPS, with a latency of around 9.71ms.

6.3. Scalability

Next, we measure the scalability by increasing the num-
ber of replicas (n). We measure the throughput and latency
when systems become saturated. Figure 6 and 7 show the
results.

Figure 6a and Figure 7a present the throughput of
these systems for 8-byte and 1KB requests respectively.
Sync HotStuff and OptSync suffer significant throughput
drops with more replicas, because more replicas incur more

communication for these systems. This is also the case
for Arena, but all replicas in Arena can propose requests,
making its throughput higher. When n = 15, optimistic
Arena (fast path) achieves a throughput (819 708 TPS)
around 4.3× higher than Sync HotStuff, and 3.6× higher
than OptSync for 8-byte requests; it achieves a throughput
(306 183 TPS) 5.2× higher than Sync HotStuff and 3.2×
higher than OptSync for 1KB requests. As the number
of replicas increases, Arena becomes more advantageous.
Specifically, when n = 91, optimistic Arena (fast path)
achieves a throughput (1 656 TPS) around 4.4× higher
than Sync HotStuff, 3.7× higher than OptSync for 8-byte
requests; it achieves a throughput (157.079 TPS) 8.9× than
Sync HotStuff and 7.7× than OptSync for 1KB requests.

When considering latency, optimistic Arena (fast path)
and OptSync is superior due to their responsive commit.
OptSync scales better than Arena, because OptSync requires
fewer votes to trigger responsive commit. When n =15, op-
timistic Arena (fast path) is 28.6× faster than Sync HotStuff
and 3.8× slower than OptSync for 8-byte requests; and it
is 10.6× faster than Sync HotStuff and 6.9× slower than
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OptSync for 1KB requests. When n = 91, optimistic Arena
(fast path) is 2.3× faster than Sync HotStuff and 10.7×
slower than OptSync for 8-byte requests; and it is 1.4×
faster than Sync HotStuff and 10.3× slower than OptSync
for 1KB requests.

7. Related Works

7.1. Synchronous BFT-SMR

Dfinity [9] is a synchronous BFT-SMR that runs in lock-
steps. In the beginning of every epoch, a leader proposes
a block and waits for 2∆, during which replicas vote for
the best ranked block(s) they received. Namely, a replica
forwards its voted block to all other replicas; if a replica
receives a block with a rank equal to or better than the best
ranked block it has voted so far, it votes for that block. This
process continues until a certificate is formed, after which
they enter the next epoch. At first glance, Dfinity follows
a multi-leader design. However, unlike multi-leader SMR,
Dfinity can only commit one proposal in each consensus
round.

Guo et al. [12] introduce the mobile sluggish model,
which allows some replicas to be sluggish, i.e., messages
sent/receive by sluggish replicas can be more than ∆.
PiLi [10] is a BFT-SMR that runs in the mobile sluggish
model. It also executes in lock-steps, where each epoch lasts
for 5∆. It commits five blocks for every 13 consecutive
epochs.

Sync HotStuff [2] gets rid of the lock-step execution
based on a very simple and intuitive design. In more detail,
it introduce a leader for proposing blocks (like PBFT [13]
or Paxos [14]); each replica can commit after waiting for
the maximum round-tip delay (i.e., 2∆) unless it receives
by that time an equivocating block signed by the leader. If
the leader does not propose until a timeout, replicas run a
view-change to perform a leader change. Abraham et al. [3]
further reduce the commit latency from 2∆ to ∆+ 2δ.

7.2. Optimistic responsiveness

The notion of optimistic responsiveness was firstly in-
troduced in Thunderella [11], which makes the observation
that it is safe to commit a block in O(δ) if > 3n/4 votes
have been received. If the responsive commit (i.e., fast path)
cannot be made, an explicit switch is performed to move to
a Nakamoto-style consensus (i.e., slow path). This explicit
switch between the two paths incurs an undesired latency.

Shrestha et al. [4] propose two BFT-SMRs with opti-
mistic responsiveness, but do not require any explicit switch
between the fast path and slow path, i.e., replicas exist in
both paths simultaneously. Our optimistic Arena follows this
paradigm with a higher throughput.

7.3. Multi-leader SMR

To improve the performance of leader-based SMRs,
multi-leader SMRs have been proposed. For example, in
Mencius [15], every replica acts as a leader for the sequence
numbers assigned to it. For example, Ri is a leader for all
sequence numbers j that satisfies (j mod n = i). Ideally,
Mencius can achieve a throughput that is n times larger
than leader-based SMRs. However, once a crash occurs,
the throughput of Mencius will quickly drop to zero until
a revocation starts that makes all correct replicas learn
of no-ops for instances coordinated by the faulty replica.
EPaxos [16] introduces a dependency graph to track the re-
lationship of different requests. Benefits from this approach,
non-conflicting requests can be committed in a fast path of
two message delays. However, replicas need to spend more
time for checking the dependencies; and in the presence
of conflicts, it takes a slow path of four message delays.
M2Paxos [17] gets rid of the dependency graph by assigning
different objects to different replicas and enforcing requests
accessing the same objects to be ordered by the same
replica. However, a request may access objects maintained
by different replicas, hence M2Paxos still needs to resolve
conflicts. Based on the observation that concurrent failures
in geo-distributed systems are rare, Enes et al. presented
Atlas [18], which is a multi-leader SMR trading off fault



tolerance for scalability. The size of the fast quorum Q
depends on f : Q = ⌊n/2⌋+ f .

7.4. DAG

Idit et al. [19] propose a DAG-based protocol named
DAG-Rider using reliable broadcast as a basic building
block to construct a DAG. Replicas order the proposals
based on the local DAG without communication. How-
ever, DAG-Rider takes in expectation six rounds of reliable
broadcast, resulting in a long tail latency. Tusk [20] and
Bullshark [21] exploit synchronous periods to improve the
rounds of reliable broadcast to five and two, respectively.

7.5. Asynchronous BFT

Ben-Or’s randomized binary consensus [22] is the main
component for constructing a leaderless SMR. Ezhilchel-
van et al. [23] use a common coin [24] to reduce the
average number of message delays and allow proposers
to propose arbitrary values. Pedone et al. [25] exploit the
weakly ordering guarantees from the network layer. Cachin
et al. [26] propose a Diffie-Hellman based coin-tossing
protocol and construct a practical and theoretically optimal
Byzantine agreement protocol. Its efficiency and robustness
were further improved in [27], [28], [29], [30].

8. Conclusion

In this paper, we introduce a completely novel direction
for running synchronous SMRs, dubbed Arena. Compared
with other partially synchronous multi-leader SMR, Arena
has a much simpler design, thanks to the synchrony as-
sumption. Furthermore, Arena is more robust: “no progress”
of a leader will not trigger a view-change. Arena sig-
nificantly outperforms the state-of-the-art in head-to-head
comparisons. We fully implement Arena and systematically
evaluate its performance. Our experimental results show that
Arena achieves a peak throughput up to 8.9× higher than
Sync HotStuff and 7.7× higher than OptSync.
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