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Abstract.
In this work, we propose a novel single-trace key recovery attack targeting side-
channel leakage from the key-generation procedure of Kyber KEM. Our attack
exploits the inherent nature of the Module-Learning With Errors (Module-LWE)
problem used in Kyber KEM. We demonstrate that the inherent reliance of Kyber
KEM on the Module-LWE problem results in higher number of repeated computations
with the secret key, compared to the Ring-LWE problem of similar security level. We
exploit leakage from the pointwise multiplication operation in the key-generation
procedure, and take advantage of the properties of the Module-LWE instance to
enable a potential single trace key recovery attack. We validated the efficacy of our
attack on both simulated and real traces, and we performed experiments on both the
reference and assembly optimized implementation of Kyber KEM, taken from the
pqm4 library, a well-known benchmarking and testing framework for PQC schemes
on the ARM Cortex-M4 microcontroller. We also analyze the applicability of our
attack on the countermeasures against traditional SCA such as masking and shuffling.
We believe our work motivates more research towards SCA resistant implementation
of key-generation procedure for Kyber KEM.
Keywords: Kyber · Side-Channel Attack · Single-Trace Attack · Post Quantum
Cryptography

1 Introduction
The NIST Post-Quantum Cryptography (PQC) standardization process for post-quantum
cryptography completed its third round in July 2022, when it announced the first list of
algorithms for Public Key Encryptoin (PKE), Key Encapsulation Mechanisms (KEMs) and
Digital Signatures schemes (DSS) that are intended to be standardized [NIS16]. Among the
several categories of PQC schemes that were considered in the NIST PQC standardization,
schemes from lattice-based cryptography dominated the field owing to its fine balance
of security and efficiency guarantees. In particular, NIST selected two schemes - Kyber
KEM [SAB+22] and Dilithium DSS [LDK+22] which are based on the well-known Module
Learning With Error (MLWE) problem.

The standardization of Kyber and Dilithium in particular, will ensure that they will
be implemented on a wide-range of computational platforms, starting from the low-
end microcontrollers, FPGAs all the way until general purpose PCs and workstations.
More importantly, we will also witness their rapid adoption in embedded devices which
naturally makes them susceptible to Side-Channel Attacks (SCA). Resistance of PQC
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implementations against SCA was also an important point of consideration during the
NIST PQC process [NIS16], and this resulted in a large body of work that studied the
susceptibility of PQC implementations on embedded devices, to SCA.

In particular, Kyber KEM has been subjected to a wide range of SCA, with most
attacks targeting leakage from the decapsulation procedure, to recover its long term
secret key. Such key recovery attacks can be split into two categories - (1) Single trace at-
tacks [PPM17] [PP19] [HHP+21] [LZH+22] and (2) Multi trace attacks [MWK+22] [YWY+23].
Multi trace attacks targeting the decapsulation procedure are applicable when Kyber is
used in a static-key setting. Multi-trace attacks are easier to mount than single-trace
attacks since they work by recovering incremental information about the secret key over
multiple executions. On the other hand, single trace attacks attempt to recover the secret
key of the size of a few thousand bits, in a single trace, by combining as much information
as possible from a single trace. Moreover, single trace attacks are much more susceptible
to noise and jitter in the side-channel measurements compared to multi-trace attacks.

Thus, it is natural for a designer to consider using Kyber in an ephemeral key setting,
where the secret key is refreshed for every key exchange. This requires to execute both
the key-generation procedure and decapsulation procedure on the target device, for every
key exchange. Thus, using Kyber KEM in an ephemeral setting can serve as an attractive
alternative for a designer, when SCA is considered to be a realistic threat, given that
generic side-channel protection, such as masking, incurs an almost 2-3x overhead in runtime
for Kyber KEM [BGR+21] [HKL+22].

Using Kyber KEM in an ephemeral setting only makes it susceptible to single-trace
attacks, since the secret key is only manipulated for a single execution. However, the
designer also needs to consider protecting the key-generation procedure against single-trace
attacks, as it needs to be executed for every key-exchange on the target device. In this
respect, the Number Theoretic Transform (NTT) used for polynomial multiplication within
Kyber KEM has been targeted by several single trace attacks like [PP19]. These attacks
are also applicable to the key-generation procedure, as the NTT is also applied over the
secret key polynomial to generate the public key. However, to the best of our knowledge,
we are not aware of any other attacks that are applicable specifically to the other parts in
decapsulation procedure. Thus, it is possible for a designer to contemplate protecting only
the NTT operation using dedicated shuffling and masking countermeasures against single
trace attacks [RPBC20]. This begets the question if "solely protecting the NTT operation
in the key-generation procedure suffices to provide concrete protection against single-trace
attacks. Are there any other vulnerabilities specifically in the key-generation procedure
that make them susceptible to single-trace attacks?"

In this work, we answer this question positively by assessing the possibility of single trace
attacks, targeting the pointwise multiplication operation in the key-generation procedure
of Kyber KEM. We demonstrate that the inherent reliance of Kyber KEM on the Module-
LWE problem results in a higher number of repeated computations with the secret key,
compared to the Ring-LWE problem of the similar security level. We exploit leakage from
the pointwise multiplication operation in the key-generation procedure, and take advantage
of the properties of the Module-LWE instance to enable potential single trace key recovery
attacks. Thus, our work demonstrates an additional side-channel vulnerability in the key-
generation procedure of Kyber KEM which should also be protected against single-trace
attacks, along with the NTT operation. Therefore, we believe our work motivates more
research towards SCA resistant implementation of key-generation procedure for Kyber
KEM. The contributions of our work are manifold:

Contribution
1. We propose a novel single-trace attack targeting the pointwise multiplication opera-

tion within the key-generation procedure of Kyber KEM. The use of the Module-
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LWE problem for Kyber KEM ensures that the pointwise multiplication operation
is computed between a public matrix of dimension (k × k), and the secret vector
of polynomials with dimension k. While the pointwise multiplication operation
between vectors of size k in the decapsulation procedure has been targeted by SCA in
[MWK+22], their attack required 200 traces for key recovery. However, our attack
exploits the polynomial multiplication between a public matrix and private vector
dimension k (k > 1), which results in multiple repeated computations manipulating
the secret key, whose side-channel leakage provides significantly more information
for potential single trace key recovery attacks.

2. We validated the efficacy of our attack on both simulated and real traces, and we
performed experiments on both the reference and assembly optimized implementation
of Kyber KEM, taken from the pqm4 library, a well-known benchmarking and
testing framework for PQC schemes on the ARM Cortex-M4 microcontroller. The
offline searching space of our single trace attack will be around 221 under specific
situation. We also demonstrate that key recovery can be significantly accelerated by
implementing the post-processing of the side-channel information on a GPU based
machine, that exploits the parallelization property of the polynomial multiplication
operation in Kyber KEM. The running time of the analysis phase is improved from
several minutes to only a few seconds.

3. We also analyze the applicability of our attack on the countermeasures against
traditional SCA. While we show that generalized masking can not be used to defend
against our attack, but shuffling the pointwise multiplication operation serves as a
concrete countermeasure against our attack.

4. Our work demonstrates an additional side-channel vulnerability in the key-generation
procedure of Kyber KEM, which should also be protected against single-trace
attacks, along with the NTT operation. Therefore, we believe our work motivates
more research towards SCA resistant implementation of key-generation procedure
for Kyber KEM.

Organization of the Paper
In Section. 2, the notations used in this paper, the introduction of LWE, Kyber and prior
works are provided. In Section. 3, we briefly introduce the template attack, and evaluate
the target of our template attack on Kyber. In Section. 4, we describe our key enumeration
method to locate the correct candidate after template attack. In Section. 5, we propose an
accelerated implementation of our attack using CUDA toolkit and GPU. In Section. 6, we
discuss the applicability of our attack to implementations protected with countermeasures
such as masking and shuffling. Conclusion and future works are listed in Section. 7.

2 Preliminaries
2.1 Notation
In this paper, the polynomial ring Zq[x]/φ(x) is denoted as Rq where φ(x) = xn + 1. The
variables and functions are written in italic style. One polynomial vector is denoted with
lowercase bold letters as a. The polynomial matrix is denoted with italic uppercase bold
letters as A, with one polynomial in i-th rows and j-th columns in matrix denoted as
Ai,j . The polynomial in Rq is denoted with regular letters as a, and one coefficient of this
polynomial can be denoted as a[i]. A ◦ s denotes that one polynomial matrix multiplies
one polynomial vector.
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2.2 M-LWE Problem

The lattice-based problems include The Closest Vector Problem (CVP), the Shortest
Vector Problem (SVP), Bounded-Distance Decoding Problem (BDD) and Learning with
Error Problem (LWE), etc. Among those problems, the LWE problem is frequently used
for constructing cryptographic schemes. In a basic LWE problem, a matrix A and vector
s, e, with coefficients sampled uniformly at random in Zm×n

q and Zn
q respectively, are

multiplied as b = As + e (mod q), where s, e are small and unknown vectors. The security
of LWE problem is based on the difficulty of recovering the secret vector s from A and b
in large dimension. While the operations of matrices require large memory resources with
the large dimension for security necessity.

Therefore, the structured LWE problems (e.g. Ring-LWE, Module-LWE) were proposed
for better performance within the cryptographic algorithms. In structured LWE problems,
the basic element is the polynomial ring as Rq = Zq[x]/φ(x). In Ring-LWE, one polynomial
is rotated and extended as a matrix A, i.e. every column of the matrix is rotated from
one polynomial. The computation form of R-LWE is the same as LWE that b = A ◦ s + e.
Ring-LWE offers key size reduction compared to standard LWE with just two polynomials
as the public key, rather than one matrix and a vector. However, the dimension of the
polynomial will increase rapidly when higher security level is required, which means the
implementation of polynomial multiplication need to be re-organized every time for different
n. And the additional structure of the elements may also leak more information of the
lattice. So the structured LWE problem needs to be further optimized.

Then the Module-LWE (M-LWE) problem was introduced. In M-LWE problem, s, e
are small polynomial vectors sampled from Rk

q with small coefficients, where k indicates k
polynomials in one vector. The polynomial matrix A is uniformly sampled from Rk×k

q .
The dimension of one polynomial in M-LWE is often fixed as n. So the multiplication
between two polynomials can be accelerated by a specific structure, for example, NTT.
The security level of the M-LWE problem can be improved simply by increasing value of
k, rather than larger n, while in this paper, we can prove that larger k may lead to more
side channel leakages.

2.3 Kyber

Kyber, an IND-CCA2-secure key encapsulation mechanism (KEM) based on the M-
LWE problem, is the only candidate in the finalist of the Public-key Encryption and
Key-establishment Algorithms, proposed by NIST after three rounds competition.

The basic version of Kyber is an IND-CPA-secure public key encryption (PKE) scheme,
which can encrypt messages with a fixed length. Using Fujisaki-Okamoto (FO) transform,
the Kyber.PKE scheme can be transformed into Kyber.KEM. The KEM can be used to
establish a session key between two parties.

As mentioned before, the basic elements in Kyber are sampled from Rk
q , where Rq =

Zq[x]/(xn + 1), q = 3329, n = 256. Kyber has three security levels, Kyber-512 (NIST Level
1), Kyber-768 (NIST Level 3) and Kyber-1024 (NIST Level 5) with k = 2, 3, 4, respectively.

The simplified version of Kyber.PKE is described in Algorithm. 1. Since the FO
transform is not our target in this paper, we do not list the description of KEM here.

In Algorithm. 1, the Parse,XOF,CBD, and PRF functions sample polynomials
from hashed random data. The Encode,Decode, Compress, and Decompress functions
transform the data between polynomials and binary value. The details of those functions
and NTT please refer to [SAB+22]. In this paper, we focus on the multiplication of the
two polynomials Â ◦ ŝ in NTT domain in KeyGen function.
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Algorithm 1 Simplified Kyber.CPA.PKE
1: procedure Kyber.PKE KeyGen

Input: None
Output: Public Key pk, Secret Key sk

2: (ρ, σ) = G(d), . randomly sampled d
3: Â = Parse(XOF (ρ))
4: s, e = CBD(PRF (σ)),ŝ = NTT (s), ê = NTT (e)
5: t̂ = Â ◦ ŝ + ê
6: pk, sk = Encode(t̂||ρ), Encode(ŝ)
7: end procedure
8: procedure Kyber.PKE Encryption

Input: pk,m(message), r(random seed)
Output: Ciphertext c

9: Â← ρ . ρ← pk
10: r, e1, e2 = CBD(PRF (r)),r̂ = NTT (r)
11: u = NTT−1(Â ◦ r̂) + e1
12: v = NTT−1(t̂ ◦ r̂) + e2 +Decompress(Decode(m)) . t̂← pk
13: c = (c1||c2) = Encode(Compress(u, v))
14: end procedure
15: procedure Kyber.PKE Decryption
Input: sk, c
Output: Recovered Message m
16: u, v ← Decode(c)
17: m = Encode(Compress(v −NTT−1(ŝ ◦NTT (u))))
18: end procedure

2.4 Prior Work
Lattice-based schemes have been subjected to a wide-variety of side-channel attacks,
intended to perform message recovery and key recovery attacks, targeting all the three
procedures (i.e.) key-generation, encapsulation and decapsulation procedures of Kyber
KEM. Several of these attacks have specifically targeted the polynomial multiplication
operation, and these attacks can be broadly split into two categories - (1) Multi trace
attacks and (2) Single trace attacks. Since our attack mainly deals with operations within
polynomial multiplication, we look into existing attacks targeting polynomial multiplication
in literature.

2.4.1 Single Trace Attacks on Polynomial Multiplication

In traditional SCA methods, the success rate can be improved by increasing the number
of side channel traces with statistical approach. As for lattice-based cryptography, single
trace attack has received more attention. One reason is that many variables are generated
randomly and used only once, which indicates that the attacker cannot obtain enough
traces. Especially for the Key Generation function, the secret key should change every
time when the attacker restarts this function.

In 2017, Primas et al. [PPM17] first introduced the SASCA method to solve the single
trace attack on lattice. In this work, the whole NTT function in the Decryption procedure
is abstracted into a factor graph with additional side channel information. Then Belief
Propagation(BP) is used for finding the most probable correct candidate, by updating the
information in the factor graph. In [PPM17], the side channel leakage comes from the
inconstant process time of multiplication. Later in 2019, Pessl et al. [PP19] improved the
attack, by changing the structure of one butterfly function in the factor graph for faster
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BP. They also replaced the source of side channel information, targeting the constant time
implementation, from timing leakage to the power leakage of loading/storing instruction.
In 2022, Li et al. [LZH+22] extended SASCA to Toom-Cook multiplication in Saber. They
utilized deep neural networks to enhance the template phase and optimized the factor
graph by merging tracks based on Bayes’ algorithm. Alternatively, In 2021, Aydin et
al. [AAT+21] first utilized the horizontal leakage from the school-book multiplication
operation in FrodoKEM. Even though the multiplication in FrodoKEM does not involve
polynomials, this kind of horizontal leakage gives us some inspiration for this work.

2.4.2 Multi-Trace Attacks on Polynomial Multiplication

Polynomial multiplication has also been targeted by multi-trace attacks. In 2021, Hamburg
et al. [HHP+21] exploited leakage from the NTT operation in a chosen-ciphertext setting,
and showed that an attacker can craft invalid ciphertexts, which amplifies leakage informa-
tion about the secret key from the INTT operation in the decryption procedure. Apart
from the NTT operation, in 2022, Mujdei et al. [MWK+22] proposed a Correlation Power
Analysis (CPA) targeting different kinds of polynomial multiplication strategies, including
the multiplication after NTT. In their attack on Kyber, a search over q2 = 11082241
guessing combinations needs to be applied and takes around 5 minutes on average. And
because of the features of CPA, they need 200 traces to recover all n coefficients. In 2023,
Yang et al. [YWY+23] also targeted the polynomial multiplication in Kyber using CPA.
The difference is that they use the Chosen Ciphertext Attack to reduce the required traces,
but nevertheless require a few hundred traces to perform full key recovery.

Those prior works can be categorized and compared with our attack in Table. 1. In
target function column, the Dec, Enc, KeyGen in the brackets means decryption, encryption
and key generation, respectively.

Table 1: Summary of Prior Works According to Attack Target and Number of Required
Traces

Target Function No.Traces
[PPM17] NTT (Dec) 1
[PP19] NTT (Enc) 1

[HHP+21] NTT (Dec) k
[LZH+22] Toom-Cook Based (Dec) 1
[AAT+21] Matrix Multiplication (KeyExchange) 1

[MWK+22] [YWY+23] Pointwise Multiplication after NTT (Dec) 20-200
Our work Pointwise Multiplication after NTT (KeyGen) 1

2.5 Motivation and Overview of Our Attack
According to Table. 1, there are several works targeting the NTT in the Decryption or
Encryption procedure with single trace, while other works concentrated on the pointwise
multiplication under NTT domain in Decryption procedure with multiple traces. A natural
question arises whether there are any additional vulnerabilities in the key generation
procedure. Note that the TLS 1.3 protocol utilizes the ephemeral key setting. Under
ephemeral settings, only single trace attacks are possible to recover the ephemeral key since
the key generation is a probabilistic procedure, where one computation will not repeat
again. So in this paper, we investigate the susceptibility of key generation procedure to
single trace attacks.

In this work, we however show that single trace attacks are indeed possible, and the
attack is enabled due to the structure of the M-LWE problem. Since the module dimension
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is more than 1 in the M-LWE problem, this allows an attacker to observe much higher
side channel leakage, as compared to the R-LWE problem.

So in the first phase of our attack, we leverage this new position of side channel leakage
by Template Attack, and demonstrate that the success rate of Template Attack is larger
than that in previous works.

In the second phase, we use our new key enumeration method to eliminate the error
candidates after Template Attack. Although we still use Factor Graph to explain our
method, we do not choose Belief Propagation in this phase, because of the structure of our
attack target. Note that the accuracy of this phase can also be influenced by the security
level of M-LWE problem.

The complete structure of our attack can be abstracted into the Pseudo Algorithm. 2.

Algorithm 2 Simplified Description of Our Attack (STAMP)
Input: Side Channel Leakage l, Public Key Matrix A
Output: Secret Key s

1: Fl = Rank of candidate for s← Template attack(l) . Phase 1
2: ↪→ Build Templates on Template Device
3: ↪→ Template Matching on Collected Traces from Targeted Device
4: Specific value of s← Key Enumeration(Fl,A) . Phase 2
5: ↪→ Use Information from Code and A
6: ↪→ Search the Correct Value of s

3 Attack Phase 1: Template Attack
Template Attack [CRR02] was first proposed in 2003. Template attack requires the attacker
to have access to a template device with the same character as the target device. First,
the attacker could acquire side channel information corresponding to all the candidate
values from the template device as templates. The attacker then can match the leakage
collected from target device with templates to recover the data processed by the target
device. We simply introduce the process of a traditional Template Attack below.

We denote the m collected template traces as tj(j ∈ [0,m − 1]) corresponding to a
candidate value si and the means of those traces as t̄. The noise vector denotes the
difference between each template trace and t̄ as Nj = tj − t̄. All the noise vectors can be
processed into a noise covariance matrix CMi corresponding to si. The elements of the
matrix can be defined as

CMi(u, v) = cov(Nu, Nv)

Then the attacker collects the trace, denoted as T , from the real target device. And the
noise vector here denotes the difference between the real trace and each templates as
Ni = T − t̄. The attacker could match this real trace with the i-th template by computing
the probability p:

p(i) = 1√
(2π)n |CMi|

· e− 1
2 NT

i CM−1
i

Ni

The closest template to the real trace with the highest probability p indicate the most
probable data.

In this work, we also use traditional template attack as our first phase of the attack,
but we want to leverage more information in a single trace to recover the secret key more
accurately.
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3.1 Vulnerability Analysis

In this section, we mainly take Kyber-768 with k = 3 as an explanation and we denote the
multiplication result as one polynomial vector p. Ai,j denotes the polynomial in row i and
column j of matrix A. As a feature of M-LWE, the multiplication of the matrix A and
secret key s named as polyvec_basemul_acc_montgomery is implemented as:

A0,0 ◦ s0 +A0,1 ◦ s1 +A0,2 ◦ s2 = p0 (1)
A1,0 ◦ s0 +A1,1 ◦ s1 +A1,2 ◦ s2 = p1 (2)
A2,0 ◦ s0 +A2,1 ◦ s1 +A2,2 ◦ s2 = p2 (3)

Each polynomial of s is involved in the computation three times, referring to the equations
above. As a result, the loading operation of all the coefficients within one polynomial (e.g.
s0) will repeat at least three times in computation of A0,0 ◦ s0, A1,0 ◦ s0, and A2,0 ◦ s0
seperately. The side channel leakages of those three loading operations reveal the same
data, although they are mutually independent. We can reduce the effect of noise and
enhance the success rate of template matching by utilizing multiple leakages.

Template attacks in recent works typically built the templates on the Hamming Weight
(HW) of the data rather than the specific value of data. In this work, we also build the
template on different HW. Since we simply target the loading/storing operation, rather
than the whole computation process. Even though the template is built on a specific value,
the different data with the same HW still leak the same side channel leakage according
to Hamming Weight model. However, our target is not NTT or Toom-Cook functions as
in previous works. Instead, we focus on the basemul function, which is used to multiply
two polynomials in the NTT domain in Kyber. The computation procedure for basemul is
shown in Alg. 3.

Algorithm 3 Pseudo Code of Basemul and Fqmul Function
1: procedure basemul(&r[2],&a[2],&b[2], zeta)
2: r0 = fqmul(a[1], b[1]) . &a[2] represents address of two coefficients from a
3: r0 = fqmul(r[0], zeta)
4: r0+ = fqmul(a[0], b[0])
5: r1 = fqmul(a[0], b[1])
6: r1+ = fqmul(a[1], b[0])
7: Return r[0], r[1]
8: end procedure
9: procedure fqmul(a, b)

10: m = montgomery_reduce(a ∗ b)
11: Return m
12: end procedure

In Kyber, the polynomial multiplication is implemented on every two coefficients in
pair with basemul function. For instance, the a[2] indicates two coefficients of A0,0 and
the b[2] indicates two coefficients of s0 with the same index as a[2]. The fqmul multiplies
two coefficients directly and then applies the montgomery reduce to the result.

Notice that in basemul, one coefficient will be loaded twice in different fqmul. In the
whole process of polyvec_basemul_acc_montgomery, one polynomial participates in k
polynomial multiplications. Then one coefficient within one polynomial will be loaded
3 ∗ 2 = 6 times when k = 3. Based on those conditions, we can build templates on the six
loading operations for a more accurate template matching result.
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3.2 Template Matching on Simulation Trace
First, we use ELMO [MOW17] as an auto-simulation tool to generate the power traces of
the basemul function for proving the existence of the side channel leakage. The ELMO will
generate noise-free power traces according to the compiled binary file with its own settings.
In this work, the POWERTRACES and CYCLEACCURATE options in ELMO are
defined to ensure that the value and cycles of simulated traces are close to real traces.
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Figure 1: The Simulated Trace for Three Basemul Function

For the demonstration, we only choose three basemul functions with same input b[2]
(the first two coefficients of secret polynomial s0), but different a[2] to generate the traces,
which indicates the basemul function on the first two coefficients of A0,0 ◦ s0,A1,0 ◦ s0,and
A2,0 ◦ s0 respectively. And the source codes that we used for the simulation come from
the reference implementation of Kyber. One simulated trace of the three basemul is
shown in Figure 1. The ELMO will also generate a text file called asm output, each
line of the assembly instruction in this text corresponding to one simulated point in the
trace. Referring to Figure 1 and asm output, three pairs of the points corresponding to
double loading operations with the same value can be found. The points with higher value
(12.4058) represent the loading operation at the beginning of the basemul computing r0.
And the lower one corresponds to the loading for computing r1. The difference between
those two values is caused by various load instructions. The higher value corresponds to
the ldr, while the other is ldrsh. According to the ARM architecture reference manual, the
ldr loads a word from memory, while the ldrsh loads a signed half word.

Those simulation results preliminarily demonstrate the existence of the leakage target.
We then build templates on those simulated traces and verify the success rate of template
matching. The template attack contains two phases, which are template building and
matching. The template matching will definitely succeed if no noise is factitiously added
to those traces during the template building phase.

Then we add the Gaussian noise with incremental standard deviation σ to imitate the
real traces. In the matching phase, we choose traces corresponding to the input value
in the range of [1, 3329], and examine whether those traces can be classified into correct
hamming weight. The results are listed in Table. 2. The template matching success rate
gets slightly influenced when the σ is in the [0.1, 0.4] range. Moreover, when the σ gets
larger than 0.5, the success rate will significantly decrease. We also list the experiment
results of building templates for different number of basemul functions. It is obvious that
more targeted locations lead to a higher success rate of template matching.

This can be explained from a theoretical perspective. Recall that the added artificial
noise follows the Gaussian distribution. If we apply the template matching on only one
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Table 2: Template Matching Results for Simulation

σ of Noise SR of 3 basemul SR of 2 basemul SR of 1 basemul
0.1 100.00% 96.13% 88.85%
0.2 98.97% 85.33% 76.33%
0.3 93.94% 75.23% 68.18%
0.4 88.42% 67.21% 59.37%
0.5 79.67% 58.90% 46.78%

point, the added noise still has a slight probability of making the value of this point closer
to a wrong candidate. However, if multiple points are considered, the covariance matrix of
those points will decrease the error probability as much as possible.

In the prior work [KPP20], the authors investigated the practical leakage model for
different platforms. The σ is around 0.5 for an 8-bit XMEGA, while in the range of
[0.4, 3.0] for the 32-bit STM32F4 board. According to our simulation results, the attack
will have enough success rate only when the σ is smaller than 0.4. Since our target Kyber
is commonly implemented on the 32-bit platform, it is necessary to validate the leakage
on the 32-bit device and test if we can still get the correct template matching result.

3.3 Template Matching on Real Trace
According to the simulation experiment, we could easily identify the target instruction
and associated locations in the traces. However, the real-world captured traces will not be
as ideal as simulated traces, so we need to locate the target points in real traces.

3.3.1 Experiment Setup

We choose the ChipWhisperer CW308-STM32F3 as the target board to collect the power
traces. This target board is also a candidate board in pqm4 [KPR+] open-source library. An
+20dB amplifier is used to guarantee the signal being clear. Then we use the KEYSIGHT
DSOX3034T as the external oscilloscope to capture the power traces. The whole capture
experiment device is shown in Figure 2.

Figure 2: Capture Experiment Device

3.3.2 Leakage Analysis of Reference Implementation

In this part, we target the reference implementation of Kyber with the same codes used
in the simulation section. One sample trace is shown in Figure 3. This captured trace is
obviously not as clear as the simulated trace. However, the trace can still be separated
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Figure 3: One Sample Trace for Ref Implementation

into three parts using SPA(Simple Power Analysis), marked in red. And each piece of the
trace in one red rectangle indicates one basemul function. To locate the specific target
points, we use Pearson Correlation of the secret key coefficients and identify the highest
correlation location. The correlation result is shown in Figure 4. The blue trace indicates
the correlation value of the secret key. There are many locations with the correlation value
higher than 0.6. With the help of Figure 3, the correlation trace can also be separated
into three parts with the same pattern. We mark the highest correlation point value in
every part, indicating our attack targets. However, there are also several peaks at the
beginning of the trace that do not follow the pattern (at positions around 1000 and 1500
on the x-axis). These isolated peaks correspond to other secret key-related instructions.
According to these patterns, three features of the correlation values can be summarized:

1. There are two obvious peaks in the part of the trace corresponding to one basemul
function. Each peak indicates one loading operation in the fqmul.

2. Other peaks, where the correlation values are higher than 0.5 but showing a downward
trend, correspond to the computation process in one basemul.

3. The value of the correlation coefficient decreases as the number of basemul increases.

Feature 1 and 2 can be utilized to locate the target points for template attack. Feature 3
shows that the same operation in real captured traces will have slightly different leakages
at different timing. And in [PP19] (Section 6.2), this feature was also discovered and
discussed by the authors. This feature can also provide evidence of our idea that we should
build the template for all three different loading locations, rather than just a single one.
Since those leakages from different locations will provide different additional information,
we should utilize them comprehensively rather than only considering one of them.

3.3.3 Template Attack on Real Traces

Based on the leakage analysis before and the discovered features, our template analysis
target is loading operations in multiple basemul functions with the same input. We recall
that those leakages of loading operations are mutually independent and slightly different.
Hence two methods for building the templates are considered:

A. Simply combining those peaks together and building the templates on those points
simultaneously.



12 STAMP-Single Trace Attack on M-LWE Pointwise Multiplication in Kyber

0 2000 4000 6000 8000 10000 12000 14000 16000
Time/Sample

0

0.5

1

1.5

2

2.5

C
or

re
la

tio
n 

V
al

ue

Correlation Value
Real Trace

X 2601
Y 0.843115

X 7594
Y 0.800577

X 12453
Y 0.772553

X 3993
Y 0.808772

X 8988
Y 0.659004

X 13888
Y 0.672206

Figure 4: Correlation Location of Loading Secret Key VS. Real Trace for Ref Implementa-
tion

B. By averaging the values of peaks in three different parts and building templates on
the mean of points.

We examine those two methods by comparing the template matching success rate on
the same dataset and list the result in Table. 3. The dataset contains 900 template traces
for each HW candidate, and we choose 5000 traces to test the template matching success
rate. In this table, Matching Success Rate indicates that the most possible candidate
in the template matching rank is the correct data. And the Total Success Rate means
that the first 5 possible candidates contain the correct one. It is obvious that combining
the peaks together can get better template matching results. So in later experiments we
will use method A to implement the template attack.

Table 3: Success Rate for Two Template Building Methods

Candidate Matching Success Rate Total Success Rate
A 91.69% 99.99%
B 57.99% 89.37%

3.3.4 Testing the Template Matching on Different Security Level

In the experiments before, our target is Kyber-768 (NIST Security Level 3), using k = 3.
Larger k implies a higher security level of Kyber. Theoretically, larger k also indicates
more multiplication operations for each secret coefficient and more side channel leakages,
which has been verified by simulation in Table. 2. Even though the number of the secret
coefficients gets larger, we can improve the total success rate by recovering single coefficient
more accurately. In this part, we validate this theory on the real device and check whether
different k leads to different template matching success rate.

Since we have obtained the real traces with k = 3, we use this dataset to test the
template matching success rate with k = 1 to 3. The results are shown in Table. 4. It
is shown that larger k still increases the success rate of template matching even on the
real collected traces. That means a higher security level of M-LWE problem will indeed
produce more side channel leakage.
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Table 4: Template Matching Results for Real Traces

k 1 2 3
SR 94.79% 98.89% 99.95%

3.3.5 Leakage Analysis of Optimized Implementation

We also investigated the same leakage from the optimized implementation of Kyber. The
target implementation comes from pqm4 [KPR+]1 public library. In the recent version of
pqm4, the basemul function is also optimized and re-written in ARM assembly code. We
located the loading operation of the secret key and found that to take full advantage of the
32-bit-register, the secret key is loaded pair-wisely in one loading instruction. Half of the
register has enough length to save one input coefficient. Meanwhile, one basemul function
will be accomplished in a single assembly function, rather than several sub functions(e.g.
basemul in C reference implementation with multiple fqmul). That means the input
coefficients only need to be loaded once in one basemul function. So the number of our
target operations decreased to 3, rather than 6.

We list the Total Success Rate of our template attack on optimized implementation
in Table. 5. In this experiment, we use 400 traces for each HW and test the success rate
on 4000 traces.

Table 5: Total Success Rate of Template Matching for pqm4 Traces

k 1 2 3
SR 97.48% 98.83% 99.44%

In fact, the template matching results are not affected significantly with all those
changes in pqm4. One possible reason is that the assembly implementation has fewer
redundant operations, which enhances the resolution of the collected trace. The correlation
value corresponding to input coefficient VS. one real trace for assembly implementation
are depicted in Figure. 5. It can be clearly seen that both the traces of correlation and
power show a more pronounced pattern than those in reference implementation.

There is one more difference between the analysis on pqm4 and reference implementation.
We need to build template for HW ranging from 0 to 24, rather than 12, because of
pairwise loading. So after template matching, we can only get the sum of the HW of two
input coefficients.

4 Attack Phase 2: Key Enumeration
Template matching is the first stage of our attack. The template matching can not
guarantee that the first candidate in the matching rank is the correct one. Therefore, we
combine the arithmetical information in the algorithm with the side channel leakages in
one trace together for higher attack accuracy.

It is widely studied that the Belief Propagation (BP) can be used in SASCA for the
second stage of template attack to identify the correct one in the rank. However, using BP
will meet several practical problems, e.g., the convergence of BP and the large memory
usage. It is known that imperfect factor graphs will make BP harder to converge. We
attempt to provide a more simple and quick analysis phase rather than BP.

1Our analysis and experiments were carried out on the implementation of Kyber-768 corresponding to
the commit hash 1eeb74e4106a80e26a9452e4793acd6f191fe413.
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Figure 5: Correlation Location of Loading Secret Key VS. Real Trace for Assembly
Implementation

4.1 Factor Graph
The factor Graph is the fundamental part of Belief Propagation. The detailed description
of BP can be found in [Mac03]. In the Factor Graph, the variables are represented by
circles, and we call those circles as variable nodes. The relationships among those variables
are represented by squares, named as factor nodes.

Our template target is the input and output of triple Basemul functions. In KeyGen
function, the polynomial multiplication is implemented between vector ŝ = NTT (s) and
matrix A as shown in Equation. 1. The matrix A can be computed from the public key,
so the attackers will easily get the specific value of A. The Factor graph of our target can
be represented as Figure 6. There are two kinds of factor nodes in this figure, Fl indicates
the side channel leakage of the connected variable. As mentioned before, our templates are
built on the HW of data, so the Fl indicates the rank of possible HW of the connected
variable nodes. Every specific candidate of this coefficient with the same HW will have
the same initial probability. The equation of FB is explained in Equation. 4.

FB =
{

1, r0, r1 = basemul(s0, s1, A0, A1)
0, else

(4)

In Figure 6, the variable nodes are marked in two colors. The input coefficients s0, s1 are
marked in red, which means those variables are loaded multiple times and can strengthen
the template matching. The parameter A is written in factor nodes of FB , which means
that those data will be used in Equation. 4 and are public to the attacker. And the output
of basemul is marked in blue. For those output results, we also attempt to recover their
HW with template attack on the loading/storing operation, but those data were only
stored once. So the template matching results of those blue data may not as accurate as
red data.

4.2 Searching the Correct Candidate
Belief Propagation can quickly eliminate incorrect candidates through its message updating
scheme, when dealing with large-scale factor graphs, such as those for a complete NTT
function. Notice that the number of iterations required for the convergence of BP also
depends on the structure of the factor graph.
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Figure 6: Factor Graph for Triple Basemul Function

In contrast to the complexity of NTT, which contains n · logn interconnected butterfly
units, our target graph is relatively simple, consisting of only 3 isolated FB coefficients.
As such, it is not necessary to utilize message scheduling in Belief Propagation, and the
probability distribution of candidates can be directly deduced using Equation. 4.

The detailed steps of our key enumeration method are listed below:

1. Reserve the top five most possible HW in Fl for later enumeration, denoted as
HW5.

2. Examine every candidates in HW5, then assign the probability of candidates with
the results of FB .

3. Identify the correct candidate whose probability does not decrease.

Referring to Table. 3, our template matching results demonstrate a potential Total
Success Rate up to 99.99%. That means the correct HW for the secret coefficient stands
a great chance to be captured in the retained HW5. So the least likely values of HW can
be directly discarded, roughly reducing the searching space by half.

4.3 Analysis of Second Phase Accuracy
Referring to Figure 6, the factor node FB is variable due to different values of A. For
specific values of A in the three FB nodes, several pairs of input may have the same
HW value, and their corresponding output from 3basemul may also have the same HW.
This means that several candidates may still have the same probability after the key
enumeration process. We refer to these pairs of input and output with the same HW as
CPIO, which means Confusing Pairs of Input and Output.

Since the values of A are randomly sampled, there are 3329∗3329 possible combinations
of two coefficients in A. It is not feasible to test all possible scenarios, so we randomly
generate some values of A to examine the likelihood of the above situation occurring. We
can also take Figure 6 as an example. We randomly generate values for A in the three
FB nodes and assign specific values within [0,3329] to s[0] and s[1]. We then compute
the HW of the input and output and examine how many pairs have the same HW. We
repeat this test 100 times with different values of A for the three FB nodes. The results
show that approximately 5% to 8% of pairs are CPIO for a specific value of A.

Note that CPIO does not necessarily mean that only two pairs of input and output
have the same HW. For a specific HW and value of A, there may be 2 to 4 inputs with
the same HW and their corresponding outputs also have the same HW. This means
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that for our attack, approximately 92% to 95% of the recovered coefficients are uniquely
determined, while the remaining locations require traversal to find the correct coefficient
within a search space of [2,4]. We also get the probability of each quantity of CPIO
through this test and listed the results in Table. 6. This indicates that most CPIO only
require searching within two pairs.

Table 6: Probability of the searching space of CPIO

Quantity of CPIO 2 3 4
Probability 74.72% 19.37% 4.59%

However, notice that the higher security level of Kyber, that is, larger value of k, leads
to less CPIOs. Because more basemul will increase more constraints into the factor graph,
which indicates that the additional basemul may decrease the probability of the incorrect
candidate in CPIOs to be zero.

There is also another method that can be utilized to decrease the false positive CPIO.
Referring to algorithm. 3, line 2 and line 3 represent the computation procedure and
intermediate variables of r0. According to Figure 4 and 5, the side channel leakage of
these computation instructions after the loading operation still show the relationship with
our target secret key (referring to the correlation value). The side channel leakage of
those variables can still be utilized, even though the template matching accuracy of those
instructions is lower than loading operation. But that means we need to add thousands of
templates for different location within a single trace and also large memory storage. So it
will be a trade-off between searching space and storage space.

4.4 Analysis of Accuracy for the Complete Attack
In this section, we first recall the two phases of the proposed attack. In the first phase,
template matching is performed on the trace, and the top 5 most likely matched Hamming
Weight for each variable are retained. In the second phase, the correct candidate value
is sought among the retained HW5. As long as the Hamming Weights of the correct
candidates retained in the first phase are correct, it can be guaranteed that they can be
found in the second phase, and only the size of the searching space needs to be considered.
Therefore, in this part, we discuss how large the overall theoretical searching space is in
the second phase, assuming that the first phase is correct.

Referring to Section. 4.3, the probability of the appearance of CPIO is 5% to 8% for a
specific value of A. We denote this probability as p(CPIO), which means that for our
attack, approximately p(CPIO) of n coefficients may have CPIO. We denote the quantity
of CPIO within one coefficient as #(CPIO), which means the theoretical searching space
will be #(CPIO) for one specific coefficient that has CPIO. And according to Table. 6,
we can compute the average quantity of each CPIO as:

2 ∗ 74.72% + 3 ∗ 19.37% + 4 ∗ 4.59% ≈ 2.2

We use the average value of p(CPIO) = 6.5% with #(CPIO) = 2.2 to represent the
ideal average search space for each CPIO. However, if we need to search for the correct
value in HW5, the searching space will increase to 2.2 ∗ 5 = 11. Therefore, the total
searching space for recovering one polynomial with n = 256 coefficients under HW5 might
be:

{5 ∗#(CPIO)}p(CP IO)∗n = 116.5%∗n = 1116.64 ≈ 257.5 (n = 256)

This searching space is somewhat close to a threshold 264 that indicate the theoretical
searching space ability with common computational resource.
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But assuming the case that we search the correct coefficient just in the correct HW,
the total searching space will decrease to:

36.5%∗n = 2.216.64 ≈ 221 (n = 256)

This searching space is much smaller than the threshold 264. That means, if we can use
more accurate side channel collection method or other methods like deep learning, to
increase the Matching Success Rate, rather than Total Success Rate, the searching
space of our attack can decrease significantly. And note that since our attack can recover
each polynomial in different computation device separately, we do not need to compute
the k power of the searching space like (221)k. So this searching space is still practical for
different value of k.

5 Accelerating Enumeration Phase by CUDA
In section 4, three basemul functions with same secret input are analyzed as a whole for
eliminating the correct input value. These three basemul are independent of other basemul
with different inputs. Therefore, the attacker can independently recover two coefficients
with our attack. Taking advantage of this feature, parallelization is the most suitable
method for acceleration. In this section, we provide a parallelized version of the Key
Enumeration phase as a DEMO to demonstrate the practicability of acceleration.

5.1 CUDA
In the computer architecture, a sequence of operations in the computer system can be
called a thread. The CPU is designed for executing several threads as fast as possible.
While the GPU aims at running thousands of threads together in parallel. Therefore, the
GPU is usually specialized for highly parallel computations, such as image processing and
machine learning. In GPU, plenty of threads gather together as a thread block. One block
may contain up to 1024 threads. And block can also be a unit of cluster.

The NVIDIA CUDA (Compute Unified Device Architecture) Toolkit is a computing
platform and programming model that leverages the parallel computing resources in
NVIDIA GPU. In CUDA, a specific function, called kernel, can be defined to be executed
N times in parallel by N threads. The architecture of GPU can be depicted as Figure 7(a).
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Figure 7: Structure Comparison of GPU and M-LWE Problem

5.2 Acceleration Implementation
Fortunately, the M-LWE problem can also be described in the same structure, as shown in
Figure. 7(b). We recall the parameters in Kyber in section 2, that n = 256, k = 2, 3, 4
respectively. Remember that our attack recovers two coefficients in one function. So
recovering one polynomial containing 256 coefficients can be assigned to one block, with
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128 threads in parallel. Different blocks can be in charge of different polynomials of the
secret key.

Furthermore, GPU can also be utilized to eliminate the wrong candidate caused by
CPIO. Different guess of one secret polynomial can be loaded into one thread and then
run the inverse NTT on this polynomial, only the correct polynomial has the result of
inverse NTT that satisfying the distribution of secret key.

One advantage of our attack is that the time of the GPU-based enumeration phase will
not be affected by the security level of the M-LWE problem. In the M-LWE problem, the
higher security level indicates more polynomials in secret key that need to be recovered.
While in our attack, larger k means executing more polynomial multiplications, along
with more instructions to be leveraged in template building and higher attack accuracy.
With the help of GPU, additional polynomials can be solved by configuring more blocks in
parallel.

Without other optimization, the parallelized analysis only takes 2 seconds for one
polynomial with 256 coefficients. For the comparison, in [PP19], it will take approximately
8min for a full iteration of BP. Our attack is hundreds faster than the unstable BP.

When executing polynomial multiplication Â ◦ ŝ, each polynomial of ŝ will multiply k
polynomials in one column of Â separately. That means in the memory of one block, k
polynomials of constant matrix Â are required. Besides, in each thread, the probability
distribution of candidates also needs space to be saved. Further optimization of memory
sharing will be our future work.

6 Attack on Countermeasures against SCA
In this section, we will discuss the applicability of our attacks on protected implementations
with certain countermeasures against SCA, such as masking and shuffling.

6.1 Masking
Masking is widely used for mitigating the threat from SCA attacks. In the masked
implementation, the secret variables will be split into several shares and processed by
carefully devised functions respectively. These shares will be re-combined together to
compute the real output after the masked domain. The attackers may not have sufficient
side channel information to recover every share on the masked implementation.

6.1.1 Generalized Masking

In the application of masking in lattice-based cryptography, functions such as NTT or
polynomial multiplication do not require adjustment for multiple shares due to their
linearity. For example, a bitslicing-based masking implementation was proposed in [BC22].
In this implementation, masking is applied to the Decapsulation in Kyber. The encryption
and decryption functions in Decapsulation are reorganized and shown in algorithm. 4.

We also mark the variables and functions by the colors as used in [BC22]. The green
parts do not require masking. The blue parts indicate the functions that can be applied
linearly to the shares, while the red parts represent non-linear functions with masking
gadgets. It is shown that our target is marked in blue and green, indicating that the
traditional masking method will not modify the implementation of this function.

Our proposed attack is not suitable for the decryption function in Kyber, as the
multiplication in decryption occurs between two polynomial vectors, rather than between
one vector and one matrix. As a result, each polynomial in the vector will only be multiplied
once, rather than k times. In this section, we discuss whether our attack still works when
this masking method is applied on the Key Generation function.
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Algorithm 4 Masked Implementation of Decapsulation in Kyber[BC22]
1: procedure Kyber.CPAPKE.Dec(ŝ, c)
2: u = Decompress(cu)
3: v = Decompress(cv)
4: ẑ = ŝT ◦NTT (u)
5: ω = v −NTT−1(ẑ)
6: Compress(ω)
7: end procedure
8: procedure Kyber.CPAPKE.Enc(pk,m, σ)
9: r, e1, e2 = CBD(PRF (σ))

10: r̂ = NTT (r)
11: û = NTT−1(Â−1 ◦ r̂) + e1
12: û = NTT−1(t̂−1 ◦ r̂) + e2+Decompress(m)
13: c = Compress(u, v)
14: end procedure
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Figure 8: The Relationship among Variables and Leakage

We note that more side channel information will leak if the shares of one polynomial
are not changed and regenerated for different basemul. For example, if one coefficient si

is split into two shares s′i and s′′i , for the first level masking, then basemul (s′i, Ai) and
basemul (s′′i , Ai) will leak the side channel information of s′i and s′′i . The recovery of
these two shares can proceed in the same manner as the attack on si in an unmasked
implementation. Additionally, in a masking implementation, we also have additional
information that si = s′i + s′′i .

Recall that the strategies discussed in Section. 3.3.3. The template matching success
rate gets higher because of combining the leakage from multi-locations. Theoretically, that
means the leakage from multi-locations can reduce the adverse effect from noise within
single location. We depict the relationship among those leakages in Figure. 8.

On the left side of Figure 8, the template attack on reference implementation is re-drawn.
Three leakages from basemul are combined to recover the si. We call those leakages from
three FB as horizontal leakage. In the masking scenario, the horizontal leakage still exists,
shown on the right side of Figure 8. At least we can recover s′i and s′′i with same success
rate as recovering si.

Note that the red circles in this figure indicate that s′i + s′′i should have a consistent
result si. This correlation can be named as vertical leakage. Those vertical leakages have
the same feature as the horizontal leakage that each of the leakage is mutually independent
with others, however indicating same operation and processed data. Using this information,
the success rate of our template matching phase can be closer to 100%.
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6.1.2 Specific Masking

There is another kind of masking method proposed by Ravi et al.[RPBC20] in 2020. Their
masking method especially aims at single trace attack on NTT like SASCA. The basic
operation butterfly unit in NTT takes two inputs (a, b) ∈ R2

q and a known twiddle constant
ω with two outputs (c, d) ∈ R2

q. The operation of one butterfly unit can be represented as:

c = a+ b · ω (5)
d = a− b · ω (6)

In that work, the butterfly unit of NTT is masked by adding a random mask ωs on the
twiddle constant like:

c′ = c · ωs (7)
= (a+ b · ω) · ωs (8)
= a · ωs + b · ω · ωs (9)

Refer to line 3 in Algorithm. 3, the zeta also represents the twiddle constant used in
NTT. In our attack, we only build the template on the input b[2] and the output r[2] in
line 4 and 6 in Algorithm. 3. So if the mask is applied on the zeta in line 3 as zeta · ωs,
the result r0 will be masked and we can not run the Key Enumeration just according to
FB as Equation. 4. That means this masking method could defend against our single trace
attack.

6.2 Shuffling
Shuffling is also a commonly used countermeasure against SCA. In cryptographic algorithms,
plenty of tiny operations are the same functions but processing different data. Shuffling
means shuffling the order of those operations randomly so the attackers can not match the
known information with collected traces.

In [RPBC20], Ravi et al. also proposed several shuffling methods for NTT. If those
methods are applied on the basemul, the order of loading operation or the order of basemul
in the whole polynomial multiplication may be shuffled. Under this countermeasure, it is
not possible to build templates on several locations of loading operation directly, so our
attack will also be mitigated by this kind of shuffling.

However, the attack against shuffling is also possible with more side channel information.
Note that even though the order of operations is changed, the corresponding constant Ai,j

remains unchanged. So if the loading operation of Ai,j can also be located and utilized by
more templates or Deep Learning-based analysis as in [LZH+22], it may still be possible
to locate the loading operation of secret key correctly.

7 Conclusion and Future Work
In conclusion, we propose a single trace attack on the key generation function in Kyber to
recover the generated secret key. Our attack mainly targets the basemul function, which is
used in the polynomial multiplication after NTT. And this k times leakage is caused by
the structured M-LWE problem, in which one polynomial participates the multiplication k
times. Although this location of leakage has been noticed before, their attack needs 20 to
200 traces, our attack only needs a single trace. Besides, larger k may also enhance our
attack in analysis phase. We validate our attack on simulated traces by ELMO, and real
traces of reference implementation and pqm4 implementation collected from STM32F3
board by oscilloscope. Because of the parallelization of basemul, we can utilize GPU to
accelerate the key enumeration phase of the attack. Furthermore, we also investigate
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the applicability of our attack on the traditional countermeasures against side channel
attack, such as masking and shuffling. The incomplete implementation of masking can not
effectively defend against our proposed attack. Moreover, we do not use the complex BP
algorithm for key recovery. So much simpler analysis is possible.

As the future works, first, we could optimize our accelerated attack by better assignment
of the shared memory.

Second, this attack may lead to the consideration that whether the structured LWE
problem has more unnoticed leakages in the implementation.

Third, our attack discover a new leakage from M-LWE problem. One natural question
is that whether the Dilithium has the same leakage. In this work, we take Kyber as an
example because the pointwise multiplication in Kyber has double loading operations for
every basemul. And this lead to double side channel leakage of secret key compared with
Dilithium. However, we also demonstrate that in pqm4 implementation, there is only one
loading operation in each basemul and we can also recover the secret key. So the attack on
the Dilithium may also be effective, but that will be our future work.
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