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Abstract—Zero-knowledge range proofs play a critical role in
confidential transactions (CT) on blockchain systems. They are
used to prove the non-negativity of committed transaction pay-
ments without disclosing the exact values. Logarithmic-sized
range proofs with transparent setups, e.g., Bulletproofs, which
aim to prove a committed value lies in the range [0, 2𝑁 − 1]
where 𝑁 is the bit length of the range, have gained growing
popularity for communication-critical blockchain systems as
they increase scalability by allowing a block to accommodate
more transactions. In this paper, we propose SwiftRange, a
new type of logarithmic-sized zero-knowledge range argument
with a transparent setup in the discrete logarithm setting.
Our argument can be a drop-in replacement for range proofs
in blockchain-based confidential transactions. Compared with
Bulletproofs, our argument has higher computational effi-
ciency and lower round complexity while incurring comparable
communication overheads for CT-friendly ranges, where 𝑁 ∈
{32, 64}. Specifically, a SwiftRange achieves 1.61× and 1.32×
proving efficiency with no more than 1.1× communication costs
for both ranges, respectively. More importantly, our argument
offers a 2.3× increase in verification efficiency. Furthermore,
our argument has a smaller size when 𝑁 ≤ 16, making it
competitive for many other communication-critical applica-
tions. Our argument supports the aggregation of multiple
single arguments for greater efficiency in communication and
verification. Finally, we benchmarked our argument against the
state-of-the-art range proofs to demonstrate its practicality.
Index Terms—Zero-knowledge range argument, discrete loga-
rithm, logarithmic-size, transparent setup, confidential trans-
actions, blockchain

1. Introduction
Zero-knowledge proofs are crucial building blocks for a

variety of secure applications, e.g., confidential transactions,
signature schemes and anonymous credential systems, since
the first proposal in 1985 [1]. A zero-knowledge proof
allows a prover to prove the truth of a statement without
disclosing any secret information. More formally, given an
NP-language L, a prover can convince a verifier of knowing
a witness 𝜔 for a statement 𝑢 ∈ L. A zero-knowledge proof
should satisfy three key properties:

• Completeness. A prover can convince a verifier of 𝑢 ∈
L, if 𝑢 ∈ L.

• Soundness. A prover cannot convince a verifier of 𝑢 ∈
L if 𝑢 ∉ L.

• Zero-knowledge. The proof does not reveal anything
except 𝑢 ∈ L.

Having been developed for two decades, zero-knowledge
range proofs aim to prove that a committed value falls
within a specified range. They have been extensively used
in various applications, e.g., federated learning [2], e-cash
[3], multi-coupon systems [4] and electronic voting systems
[5], [6], where the privacy of the precise values needs to
be preserved. Recently, they have become more popular
because of the rise of confidential transactions (CT) [7]
on blockchain systems. Blockchain is a distributed ledger
technology that allows multiple parties to have a shared
and synchronized view of a ledger. It employs cryptographic
techniques to store data in linked blocks, making the ledger
immutable and tamper-proof. Blockchain is expected to
shape the future of our world by enabling secure, trans-
parent, decentralized peer-to-peer transactions without the
need for intermediaries. Nevertheless, privacy concerns have
been a hindrance to the broader adoption of blockchain,
as it does not inherently ensure privacy. Confidential trans-
actions protect privacy by using commitment schemes to
hide transaction values, which is particularly crucial for
businesses and individuals with sensitive information. Thus,
zero-knowledge range proofs are used to demonstrate the
possession of sufficient funds with non-negative balances in
a privacy-preserving manner.

Logarithmic-sized range proofs with transparent setups
have gained increasing popularity, which often leverage the
bit-decomposition approach to prove a committed value lies
in the range [0, 2𝑁 − 1], where 𝑁 is the bit length of the
range. On the one hand, shorter range proofs help increase
the number of transactions in a block, enhancing scalability
by a higher throughput of transactions, since scalability is a
major bottleneck for blockchain systems. On the other hand,
transparent or non-trusted setups are becoming a desirable
feature for zero-knowledge proofs. Trusted setups require a
specific group of trusted parties to generate public parame-
ters and destroy secret trapdoors, which not only undermine



TABLE 1: A comparison of the efficiency of state-of-the-art range arguments, where 𝑁 is assumed to be the power of 2. G
indicates a cyclic group of prime order 𝑝 and Z𝑝 is the ring of integers modulo 𝑝. We compare the group exponentiations
as they dominate the computational overheads. The complexity of proving and verification of Bulletproofs and our work has
been optimized for higher efficiency. The computational overheads of Bulletproofs+ are comparable to those of Bulletproofs
based on their experimental results.

Type Flashproofs [8] Bulletproofs [9] Bulletproofs+ [10] SwiftRange (𝑁 ≤ 8) SwiftRange (𝑁 > 8)

Prover
No. of Exps (G)

1
2
(𝑁 4

3 + 3𝑁 2
3 + 5𝑁 1

3 + 𝑁 + 6) 10𝑁 + 4 log 𝑁 + 7 ≈ Bulletproofs 1 8𝑁 − 79
Verifier

No. of Exps (G)
3
2
(𝑁 2

3 + 𝑁 1
3 + 2) 2𝑁 + 2 log 𝑁 + 7 ≈ Bulletproofs 𝑁 + 5 𝑁 + 4 log 𝑁 − 7

Proof Size
No. of Elements

𝑁
2
3 + 2 (G)

1
2
(𝑁 2

3 + 3𝑁 1
3 + 4) (Z𝑝 )

2 log 𝑁 + 4 (G)
5 (Z𝑝 )

2 log 𝑁 + 3 (G)
3 (Z𝑝 )

2 (G)
𝑁 + 1 (Z𝑝 )

4 log 𝑁 − 10 (G)
9 (Z𝑝 )

No. of Rounds 3 2 log 𝑁 + 5 2 log 𝑁 + 5 5 2 log 𝑁 − 1

blockchain decentralization nature but also expose the risk
of leaking trapdoor information that may compromise the
underlying security. The state-of-the-art Bulletproofs [9]
benefit from the logarithmic shortness and transparent setup
and are widely used in various blockchain systems, e.g.,
Monero, Grin, Beam. However, the proving and verification
overheads of Bulletproofs are dominated by 10𝑁 and 2𝑁
expensive group exponentiations, respectively. The range
proofs with higher computational efficiency and comparable
proof sizes can be more beneficial to blockchain-based
confidential transactions. Firstly, the proving efficiency de-
termines how fast a proof can be generated, which directly
affects user experience. More importantly, the verification
efficiency also greatly impacts the scalability as it dominates
the transaction validation efficiency for validating proofs.

1.1. Contributions

In this paper, our major contribution is the pro-
posal for SwiftRange, a new type of logarithmic-sized
zero-knowledge range argument in the discrete logarithm
(DLOG) setting with a transparent setup. We aim to provide
a robust alternative to the range proofs for blockchain and
many other privacy-preserving systems.

At a high level, SwiftRange is an interactive protocol
Πcrg between a prover and a verifier. It is a composition1

of a 5-round zero-knowledge range protocol Πrg and a se-
quence of non-zero-knowledge compression protocols Πac.
Our compression protocol is an adaptation of the protocol
Πc in [11] from linear relations to quadratic ones. Our
adaptation addresses the coupling issue of the protocol Πc
to improve the verification efficiency. The range protocol
Πrg alone can provide highly short range arguments when
𝑁 ≤ 8.

Πcrg = Πac ⋄ · · · ⋄Πac︸             ︷︷             ︸
log 𝑁−3 times

⋄Πrg (1)

When 𝑁 > 8, the prover can recursively apply log 𝑁 − 3
times of the compression protocol Πac to the range protocol

1. We follow the notation of [11] and write Π𝑏 ⋄Π𝑎 for the composition
of two interactive protocols Π𝑎 and Π𝑏 , where the composition indicates
that the final message of Π𝑎 is replaced by the execution of Π𝑏 .

Πrg until the witness dimension is reduced to 8 for the
minimum proof size as shown in Eqn. (1).

Our argument is short and computationally efficient
without the need for computationally expensive pairing
operations. For general ranges where 𝑁 > 8, it involves
4 log 𝑁 − 1 elements, 8𝑁 − 79 and 𝑁 + 4 log 𝑁 − 7 group
exponentiations for proving and verification, and 2 log 𝑁 −1
rounds, where the negative constant values result from the
early termination of the protocols. Moreover, we present an
optimization technique to use a single group exponentiation
in the proof generation when 𝑁 ≤ 82. Our argument also
supports aggregation for greater efficiency in communica-
tion and verification, where a prover can prove 𝐽 committed
values in batches by using additional 4 log 𝐽 group elements
over the size of a single argument. Finally, we benchmarked
our argument against the state-of-the-art range arguments
to demonstrate its practicality. 𝑁 and 𝐽 are powers of 2
throughout the paper, and we can pad with zeros if not.

1.2. Comparisons with the State-of-the-art

Flashproofs [8] and Bulletproofs3 [9] are two particular
bit-decomposition-based range arguments in the DLOG set-
ting with a transparent setup. Our secondary contribution is
to provide a comprehensive performance comparison of the
three arguments, allowing users to decide the appropriate
one based on their strengths and weaknesses.

Flashproofs are 3-round zero-knowledge range argu-
ments that achieve 𝑂 (𝑁 2

3 ) sub-linear efficiency in communi-
cation and verification. They have a highly efficient verifier,
which incurs comparable gas costs on smart contract plat-
forms to those of the most efficient zkSNARKs [12] that rely
on a trusted setup. Smart contracts are publicly verifiable
computer programs running on blockchain systems, which
serve as a “decentralized executor”. Note that the executions
on smart contract systems require gas fees proportional to
the amount of computational operations. Bulletproofs have
gained wide popularity for blockchain applications due to

2. The proving complexity of our argument would be dominated by
𝑂 (𝑁 ) group multiplications when 𝑁 ≤ 8.

3. Flashproofs and Bulletproofs consist of multiple zero-knowledge
proofs. We only refer to their range proofs in our paper.



TABLE 2: The comparison of the proof sizes in bytes, where
32-bit and 64-bit ranges are commonly used for confidential
transactions on blockchain systems.

𝑁 8 16 32 64 128
Flashproofs 385 513 738 994 1444
Bulletproofs 482 546 610 674 739

Bulletproofs+ 386 450 514 578 643
SwiftRange 353 481 610 738 867

their logarithmic succinctness. The basic idea consists in
using an inner product argument to recursively compress a
5-round zero-knowledge range argument until the witness
dimension is reduced to 1 for the minimum communication
complexity. They involve 𝑂 (𝑁) number of group expo-
nentiations in proving and verification. Bulletproofs+ [10]
are an improved version, which require 3 fewer elements
and achieve comparable computational efficiency to Bul-
letproofs. According to the experimental results [10], for
64-bit ranges, Bulletproofs+ run 6.2% faster in proving but
5.8% slower in verification. For 32-bit ranges, the efficiency
discrepancy is smaller.

Tables 1 and 2 show two efficiency comparisons of
the state-of-the-art range arguments with ours. Flashproofs
have a sub-linearly efficient verifier and constant round
complexity but produce larger proof sizes for 𝑁 > 16,
making it better suited for confidential transactions on smart
contract systems, where the verification efficiency matters
the most. We essentially focus on the comparisons between
Bulletproofs-based arguments and ours as all of them feature
logarithmically short proof sizes. These short arguments are
more suitable candidates for confidential transactions on
blockchain systems where the block size is critical. Regard-
ing the proof size, despite having a two-fold growth rate
in the communication complexity, our argument involves
comparable communication costs to the Bulletproofs-based
ones for CT-friendly ranges where 𝑁 ∈ {32, 64}, since
the latter ones have large constants in their complexity.
Specifically, for 32-bit ranges, our argument is of the same
size as Bulletproofs and 18.7% larger than Bulletproofs+.
For 64-bit ranges, our argument demands 9.5% and 27.7%
more communication costs than the two, respectively. For
16-bit ranges, our argument is only 6.9% larger than Bul-
letproofs+ but 11.9% smaller than Bulletproofs. Further-
more, our argument for 8-bit ranges achieves the smallest
353 bytes proof size among these four, making it more
competitive for communication-critical applications. For the
computational overhead, our argument requires fewer com-
putationally expensive group exponentiations in proving
and verification than Bulletproofs-based ones. Specifically,
SwiftRange achieves 1.61× and 1.32× proving efficiency
for CT-friendly ranges. More importantly, our argument
improves verification efficiency by a factor of 2.3. Another
advantage lies in the security aspect. Our protocol enables
tighter security than Bulletproofs-based ones in the random
oracle model due to the lower round complexity as the
round complexity has a strong impact on the tightness of
the security loss in the random oracle model [13].

The performance of zero-knowledge proofs, namely
proof size and verification efficiency, significantly impacts
CT platforms’ scalability, measured by transactions per sec-
ond (TPS). The higher the TPS, the more transactions the
platforms can handle in a given time frame. Our argument
can serve as a robust alternative to Bulletproofs for confi-
dential transactions on blockchain systems. A typical appli-
cation is Monero, a leading CT platform that has dynamic
demand-driven block size. Compared to Bulletproofs, our
argument achieves 2.3× verification efficiency at the expense
of no more than 1.1× communication cost for CT-friendly
ranges. For a block consisting of hundreds of transactions,
our argument has great potential to not only offset the
decrease in TPS caused by the proof size gap but also to
further enhance the overall TPS.

1.3. Outline of Our Paper

Our paper is organized as follows. First, we review the
related work in Section 2, and introduce the cryptographic
preliminaries in Section 3. We give an overview of the bit-
decomposition approach in Section 4, and elaborate the core
techniques of our range argument in Section 5. We describe
the adapted compression protocol in Section 6. We present
our full protocol and the aggregation of multiple arguments
in Section 7. We provide a comprehensive performance
evaluation and comparison with the state-of-the-art range
arguments in Section 8. Finally, we discuss some typical
applications in Section 9.

2. Related Work

This section gives a survey of most of the other existing
range proofs in the literature at the time of writing, which
incorporates three mainstream constructions of range proofs:
bit-decomposition-based, square-decomposition-based and
signature-based ones.
Bit-Decomposition Constructions. There are three other
range arguments in the DLOG setting. The argument [14]
has 𝑂 (𝑁) complexity in communication and computation.
Another argument [15] achieves logarithmic shortness, in-
volving 2⌈log(2𝑁 + 5)⌉ + 8 elements. However, it merely
proves that a committed bit-vector comprises zeros and ones
to implicitly demonstrate that the constituted value lies in
the range [0, 2𝑁 − 1], which has limited applications. The
most recent one, SymmeProof [16], is another improved ver-
sion of Bulletproofs, which benefits from special challenges
to halve the communication complexity. Their approach
requires each challenge 𝑐 to satisfy a quadratic residue
𝑐2 ≡ 1 (mod 𝑝) over a non-standard elliptic curve group of
composite order 𝑝, which may be hard to achieve in practice.
On the one hand, the authors described a computationally
expensive method to obtain these special challenges and
suggested converting the standard challenges to these special
ones when producing the arguments. However, they did not
provide an efficient algorithm to achieve the conversion.
On the other hand, the computations over the non-standard
groups are far less efficient than over the standard ones.



Square-Decomposition Constructions. The square decom-
position consists in representing a committed value as a
sum of squares to prove its non-negativity. The exploration
of square-decomposition-based range proofs has witnessed
over two decades of history. The first construction was
proposed by Boudot [17], which represents a value 𝑥 into a
sum of the greatest square less than 𝑥 and another positive
value. Lipmaa [18] used Lagrange’s four squares theorem
[19] to represent a value by a sum of four squares. Groth
[6] improved the construction based on his observation
that 4x+1 can always be represented into a sum of three
squares for a target value 𝑥. If 4𝑥 + 1 is non-negative, then
𝑥 ≥ − 1

4 would be a non-negative integer. Deng et al. [20]
designed a constant-size range proof based on the RSA
assumption by adapting Bulletproofs for Lagrange’s four-
square theorem. However, these range proofs rely on RSA-
based integer-commitment schemes, which require a trusted
setup to generate RSA modulus.

Recently, two new range proofs, CKLR21 [13] and
Sharp [21], revived the square-decomposition approach and
presented the constructions in the DLOG setting by lever-
aging a bounded integer commitment scheme, where the
latter is an improved version of the former. They proposed
an encoding scheme to transform the standard Pedersen
commitment scheme from over Z𝑝 to over a small bounded
integer range. Their techniques are a two-edged sword,
which enable, on the positive side, higher efficiency than
bit-decomposition constructions in computation and com-
munication but also reduce soundness on the negative side.
The proofs use a considerably smaller challenge space to
accommodate the standard group sizes, e.g., 256-bit, which
leads to increased soundness errors. Otherwise, the proofs
must use dramatically large group sizes or multiple iterations
to maintain negligible soundness errors. Moreover, their
approaches restrict the provers to rational witnesses rather
than integer ones in the target ranges, which becomes a
hindrance to the applications of blockchain-based confiden-
tial transactions that have stringent security requirements.
Sharp also presented two constructions in RSA and class
groups to mitigate the relaxed soundness. Nevertheless, on
the one hand, RSA groups require trusted setups. On the
other hand, class groups are often too large in practice.
A recent study [22] suggests that 3392-bit class groups
can barely achieve 128-bit security as 256-bit DLOG-based
elliptic curve groups.
Signature-Based Constructions. Signature-based construc-
tions require the verifier to pre-compute a digital signature
for each element in the range. The prover then signs a
selected element with a blind signature, making it computa-
tionally hard to know the signed element. Finally, the verifier
checks if the blinded signature belongs to the range of the
precomputed signatures. Camenisch et al. [23] proposed a
range proof based on the Boneh-Boyen signature schemes
under the 𝑞-Strong Diffie-Hellman assumption. But the com-
munication complexity is 𝑂 (𝑁), where 𝑁 is the number of
elements. An improved version was proposed [24] to reduce
the complexity by a factor of 2. However, both of the range
proofs require a trusted setup.

3. Preliminaries

Let 𝜆 and negl(𝜆) be the security parameter and a
negligible function. Denote a cyclic group of prime order
𝑝 by G, and the ring of integers modulo 𝑝 by Z𝑝 . Let Z∗𝑝
be Z𝑝\{0}. Let 𝑔, 𝜌, (𝑔𝑖)𝑛−1

𝑖=0
$←− G be uniformly random

generators from G. Let 𝑥
$←− Z∗𝑝 be uniformly random

element from Z∗𝑝 . Denote the vector spaces of dimension
𝑛 over G and Z𝑝 by G𝑛 and Z𝑛𝑝 , respectively. PPT stands
for probabilistic polynomial time.

We will use the vector notations in our protocol.
Bold font denotes vectors or matrices. For example, a =

(𝑎0, ..., 𝑎𝑛−1) ∈ Z𝑛𝑝 denotes a vector of scalars. g =

(𝑔0, ..., 𝑔𝑛−1) ∈ G𝑛 and 𝝆 = (𝜌0, ..., 𝜌𝑛−1) ∈ G𝑛 denote two
generator vectors. |a| denotes the dimension of the vector
a. We define some basic vector operations below:
• 𝑐 = a · b =

∑𝑛−1
𝑖=0 𝑎𝑖 · 𝑏𝑖 ∈ Z𝑝 .

• c = a + b = (𝑎0 + 𝑏0, ..., 𝑎𝑛−1 + 𝑏𝑛−1) ∈ Z𝑛𝑝 .
• c = a ◦ b = (𝑎0 · 𝑏0, ..., 𝑎𝑛−1 · 𝑏𝑛−1) ∈ Z𝑛𝑝 .
• 𝑔′ = ga =

∏𝑛−1
𝑖=0 𝑔

𝑎𝑖
𝑖
∈ G.

• g′ = ga ◦ 𝝆 = (𝑔𝑎0
0 · 𝜌0, ..., 𝑔

𝑎𝑛−1
𝑛−1 · 𝜌𝑛−1) ∈ G𝑛.

where ◦ denotes the component-wise Hadamard product.

3.1. Cryptographic Assumption

Definition 1
(
Discrete Logarithm (DLOG)

)
. The discrete

logarithm assumption holds for all PPT adversaries A:

𝑃𝑟


(𝑥𝑖)𝑛−1

𝑖=0 ← A
(
(𝑔𝑖)𝑛−1

𝑖=0
)
,

𝑛−1∏
𝑖=0

𝑔
𝑥𝑖
𝑖

= 𝜂

�������
G← G(𝜆),

(𝑔𝑖)𝑛−1
𝑖=0

$←− G


≤ negl(𝜆)

where G(𝜆) is the setup algorithm.
The assumption states that no computationally bounded

adversaries can find such non-trivial discrete logarithm rela-
tions that satisfy

∏𝑛−1
𝑖=0 𝑔

𝑥𝑖
𝑖

= 𝜂 for an arbitrary 𝜂 ∈ Z∗𝑝 and
randomly chosen generators. To avoid a trusted setup, the
random generators (𝑔𝑖)𝑛−1

𝑖=0 can be independently generated
by using a collision-resistant hash function to map from
random values in Z∗𝑝 to G\{1}. Thus, the non-trivial discrete
logarithm relations among the generators are unknown.

3.2. Pedersen Commitment Schemes

In this work, we consider the Pedersen commitment
scheme and the Pedersen vector commitment scheme under
the DLOG assumption. Both commitment schemes are:
• Perfectly Hiding: Computationally unbounded adver-

saries cannot infer any information about the commit-
ted values.

• Computationally Binding: Computationally bounded
adversaries have negligible probability of opening a
commitment to two distinct values.

We define the Pedersen vector commitment scheme and the
Pedersen commitment scheme is a special case where 𝑛 = 1.



Definition 2 (Pedersen Vector Commitment). Given the
message space M = Z𝑛𝑝 , the randomness space R = Z∗𝑝 ,
the commitment space C = G of prime order p and

(𝑔0, ..., 𝑔𝑛−1, 𝜌)
$←− G:

Com(𝑥0, ..., 𝑥𝑛−1; 𝑟) ≜
𝑛−1∏
𝑖=0

𝑔
𝑥𝑖
𝑖
𝜌𝑟

The Pedersen vector commitment satisfies the following
homomorphic property:

Com(𝑥0, ..., 𝑥𝑛−1; 𝑟𝑥) · Com(𝑦0, ..., 𝑦𝑛−1; 𝑟𝑦)
= Com(𝑥0 + 𝑦0, ..., 𝑥𝑛−1 + 𝑦𝑛−1; 𝑟𝑥 + 𝑟𝑦)

We will use capital letters to denote the commitments in the
following, e.g., 𝑋 =

∏𝑛−1
𝑖=0 𝑔

𝑥𝑖
𝑖
𝜌𝑟 .

3.3. Zero-Knowledge Argument of Knowledge

A zero-knowledge argument is an interactive protocol
Π for a relation R between a prover P and a verifier V. It
is a zero-knowledge proof with computational soundness in
the sense that no probabilistic polynomial-time provers can
deceive a verifier into accepting it. It takes an NP public
statement 𝑢, and the prover’s witness 𝜔 (private input), then
outputs the verifier’s decision on whether to accept or reject
the prover’s claim of knowing the witness. The messages
communicated in the protocol are called a transcript. An
interactive protocol is called public-coin if the verifier’
messages are all randomly generated and independent of
the prover’ messages. The verifier’ messages are also called
challenges. The public-coin protocols can be transformed
into non-interactive ones using Fiat-Shamir heuristics [25],
where the prover can use the hash values of previously
revealed messages as the public-coin challenges.

An interactive protocol is (perfecly) complete if the pred-
icate (𝑢, 𝜔) ∈ R is always true on any input. We consider
(2𝜇+1)-move public-coin protocols, which have (𝜃1, ..., 𝜃𝜇)-
special soundness as demonstrated in [11]. An interactive
protocol is (𝜃1, ..., 𝜃𝜇)-special sound if there exists an effi-
cient algorithm that a (𝜃1, ..., 𝜃𝜇)-tree accepting transcripts
outputs a witness 𝜔 on any statement 𝑢. A (𝜃1, ..., 𝜃𝜇)-tree
accepting transcripts is a set of

∏𝜇

𝑖=1 𝜃𝑖 accepting transcripts
arranged in a tree structure, where the nodes are the prover’
messages, and the edges are the verifier’ challenges. Every
transcript includes the messages along the path from the
root to a leaf node. 𝜃-special soundness is a special case of
(𝜃1, ..., 𝜃𝜇)-special soundness, where 𝜇 = 1. An interactive
protocol is (perfect) special honest-verifier zero-knowledge
(SHVZK) if given the challenges, there exists an efficient
simulator that can always simulate an indistinguishable tran-
script of the argument without the knowledge of the witness.

4. Overview of Bit-Decomposition

Bit-decomposition is a popular approach for constructing
range proofs. Our goal is to find an efficient method to prove
the following relation:{
𝑔, 𝜌, 𝑋 ∈ G, 𝑁, 𝑥, 𝑟𝑥 ∈ Z𝑝 : 𝑋 = 𝑔𝑥𝜌𝑟𝑥 ∧ 𝑥 ∈ [0, 2𝑁 − 1]

}

We begin with a brief overview of the techniques of Flash-
proofs and Bulletproofs before presenting ours.

4.1. Flashproofs

Flashproofs [8] leverage a quadratic-term cancellation
technique to efficiently prove that a committed value can
be represented in binary form. The intuition behind Flash-
proofs is that a prover expresses the committed value
𝑥 =

∑𝑁−1
𝑖=0 2𝑖𝑏𝑖 as a sequence (𝑤0, 𝑤1, ..., 𝑤𝑁−1) for the

range [0, 2𝑁 − 1], where 𝑏𝑖 ∈ {0, 1} and 𝑤𝑖 = 2𝑖𝑏𝑖 , 𝑖 ∈
{0, 1, ..., 𝑁 − 1}. Then the prover folds the sequence and
arranges all the terms (𝑤𝑖)𝑁−1

𝑖=0 in an 𝐿 × 𝐾 matrix, where
𝐿 and 𝐾 indicate the number of rows and columns, re-
spectively. The prover computes a series of values (𝑣𝑙 =∑𝐾−1
𝑘=0 𝑤𝑙𝐾+𝑘𝑒𝑘 + 𝑟𝑙)𝐿−1

𝑙=0 after acquiring a challenge vector
(𝑒0, ..., 𝑒𝐾−1)⊺ from the verifier, where 𝑟𝑙 is a random value.

©­­«
𝑣0
...

𝑣𝐿−1

ª®®¬ =
©­­­­«

𝑤0 . . . 𝑤𝐾−1
𝑤𝐾 . . . 𝑤𝐾+𝐾−1
...

. . .
...

𝑤 (𝐿−1)𝐾 . . . 𝑤 (𝐿−1)𝐾+𝐾−1

ª®®®®¬
·
©­­«
𝑒0
...

𝑒𝐾−1

ª®®¬ (2)

The verifier computes a value 𝑓𝑙 by subtracting 𝑣𝑙 from∑𝐾−1
𝑘=0 2𝑙𝐾+𝑘𝑒𝑘 for each 𝑙 ∈ {0, ..., 𝐿 − 1}:

𝑓𝑙 =

𝐾−1∑︁
𝑘=0

2𝑙𝐾+𝑘𝑒𝑘 − 𝑣𝑙 =
𝐾−1∑︁
𝑘=0
(2𝑙𝐾+𝑘 − 𝑤𝑙𝐾+𝑘)𝑒𝑘 − 𝑟𝑙 (3)

Next, the verifier computes 𝑓𝑙 · 𝑣𝑙 to generate a series of
cross-terms in Eqn. (5). The objective is to confirm that the
quadratic terms (𝑒2

𝑘
)𝐾−1
𝑘=0 in the challenges are all cancelled

out. In this case, the verifier can conclude that 𝑤𝑙𝐾+𝑘 ∈
{0, 2𝑙𝐾+𝑘} for each 𝑙𝐾 + 𝑘 where 𝑘 ∈ {0, ..., 𝐾 − 1}.

𝑓𝑙 · 𝑣𝑙
?
=

𝐾−1∑︁
𝑘=0

𝑤𝑙𝐾+𝑘 (2𝑙𝐾+𝑘 − 𝑤𝑙𝐾+𝑘)𝑒2
𝑘︸                                 ︷︷                                 ︸

= 0, if 𝑤𝑙𝐾+𝑘 ∈{0,2𝑙𝐾+𝑘 }

(4)

+
𝑘=𝐾−2, 𝑗=𝐾−1∑︁

𝑘=0, 𝑗=1
𝑡𝑙,𝑘, 𝑗𝑒𝑘, 𝑗 +

𝐾−1∑︁
𝑘=0

𝑞𝑙,𝑘𝑒𝑘 + 𝑞𝑙,𝐾 (5)

where 𝑡𝑙,𝑘, 𝑗 and 𝑞𝑙,𝑘 are the coefficients that must be com-
mitted by the prover before seeing the challenges.

Finally, the prover flattens the two-dimension matrix to
a one-dimension vector and proves that 𝑥 is the sum of 𝐾
values, such that 𝑥 =

∑𝐾−1
𝑘=0 𝑠𝑘 , where 𝑠𝑘 =

∑𝐿−1
𝑙=0 𝑤𝑙𝐾+𝑘 is

the sum of 𝐿 coefficients (𝑤𝑙𝐾+𝑘)𝐿−1
𝑙=0 in the 𝑘-th column.

4.2. Bulletproofs

Bulletproofs [9] take advantage of an improved inner
product argument [26], which allows a prover to convince a
verifier of knowing two committed vectors a and b to satisfy
the following relation:{

g, 𝝆 ∈ G𝑁 , 𝑃 ∈ G,
𝑐 ∈ Z𝑝 , a, b ∈ Z𝑁𝑝

: 𝑃 = ga𝝆b, 𝑐 = ⟨𝑎, 𝑏⟩
}

(6)



The intuition behind Bulletproofs is that a prover pre-
pares a vector commitment to the vector b and the vec-
tor a = b − 1N, where b is the bit vector of 𝑥. The
prover constructs Eqn. (7) to prove the three constraints: (1)
⟨b, 2N⟩ = 𝑥, (2) ⟨b− 1N − a, yN⟩ = 0 and (3) ⟨b, a ◦ yN⟩ = 0.

𝑧2 · ⟨b, 2N⟩ + 𝑧 · ⟨b − 1N − a, yN⟩ + ⟨b, a ◦ yN⟩ = 𝑧2 · 𝑥 (7)

where 𝑦, 𝑧 ∈ Z∗𝑝 are two random challenges provided by
the verifier. 1N = (1, 1, ..., 1) is a vector of 1. 2N =

(20, 21, ..., 2𝑁−1) and yN = (𝑦0, 𝑦1, ..., 𝑦𝑁−1) are vectors of
powers of 2 and 𝑦. ⟨·, ·⟩ denotes the inner product.
Eqn. (7) can be rewritten as follows:

⟨b − 𝑧 · 1N, yN ◦ (a + 𝑧 · 1N) + 𝑧 · 2N⟩ = 𝑧2 · 𝑥 + 𝛿(𝑦, 𝑧) (8)

where 𝛿(𝑦, 𝑧) = (𝑧 − 𝑧2) · ⟨1N, yN⟩ − 𝑧3 · ⟨1N, 2N⟩ ∈ Z𝑝 .
The prover recursively compresses the inner product of

the two vectors b − 𝑧 · 1N and yN ◦ (a + 𝑧 · 1N) + 𝑧 · 2N in
log 𝑁 rounds until the vector dimension is reduced to 1. The
technique helps achieve 𝑂 (log 𝑁) communication efficiency
but requires at least 10𝑁 and 2𝑁 group exponentiations for
proving and verification, respectively. Notably, the 2𝑁 group
exponentiations in verification are attributed to using 2𝑁
generators g, 𝝆 ∈ G𝑁 to commit to the two vectors b and a.

In addition, Bulletproofs+ [10] follow the same idea
but replace the inner product argument with a weighted
inner product argument for slightly higher communication
efficiency.

5. Techniques of Our Argument

5.1. Intuition

Different from Bulletproofs, we design a new variant of
the bit-decomposition approach to construct zero-knowledge
range arguments, which needs only one committed vector
(rather than two in Bulletproofs). Given a non-negative value
𝑥, we can write it as a bit vector b = (𝑏0, 𝑏1, ..., 𝑏𝑁−1),
where 𝑏𝑖 ∈ {0, 1} is the 𝑖-th bit. Then 𝑥 can be represented
as 𝑥 =

∑𝑁−1
𝑖=0 2𝑖𝑏𝑖 and committed as 𝑋 = 𝑔

∑𝑁−1
𝑖=0 2𝑖𝑏𝑖 𝜌𝑟𝑥 ∈ G,

where 𝑔, 𝜌 ∈ G, 𝑟𝑥
$←− Z∗𝑝 . Notably, we apply a trick by

rewriting 𝑋 as
∏𝑁−1
𝑖=0 (𝑔2𝑖 )𝑏𝑖 𝜌𝑟𝑥 , which can also be regarded

as a commitment to the bit vector b, where the 𝑖-th generator
is 𝑔2𝑖 . We define a polynomial function 𝑓 (b) for the bit
vector b over group elements:

𝑓 (b) ≜
( 𝑁−1∏
𝑖=0
(𝑔2𝑖 )𝑏𝑖︸       ︷︷       ︸

=𝑋·𝜌−𝑟𝑥

)𝑒 · 𝑁−1∏
𝑖=0

𝑔
𝑏𝑖−𝑏2

𝑖

𝑖︸       ︷︷       ︸
=1

= (𝑋 · 𝜌−𝑟𝑥 )𝑒
(9)

where 𝑔, (𝑔𝑖)𝑁−1
𝑖=0

$←− G are 𝑁 + 1 distinct base generators

and 𝑒
$←− Z∗𝑝 is an arbitrary value.

The function 𝑓 (b) consists of two multiplicative factors
and should be evaluated to (𝑋 · 𝜌−𝑟𝑥 )𝑒 if b is a valid bit
vector. The high-level ideas are explained as below:

• The first factor
∏𝑁−1
𝑖=0 (𝑔2𝑖 )𝑏𝑖 aims to represent the

witness 𝑥 hidden in 𝑋 .
• The second factor

∏𝑁−1
𝑖=0 𝑔

𝑏𝑖−𝑏2
𝑖

𝑖
should be equal to 1

for a valid bit vector. The hardness of the discrete
logarithm relations between any two generators implies
for each 𝑖 ∈ {0, ..., 𝑁 − 1} that:

𝑏𝑖 − 𝑏2
𝑖 = 𝑏𝑖 · (1 − 𝑏𝑖) = 0⇐⇒ 𝑏𝑖 ∈ {0, 1}

• The value 𝑒 is used to compartmentalize the two fac-
tors. The equality must hold for an arbitrary 𝑒 to ensure
that they do not affect each other.

Next, we re-write Eqn. (9) as follows:

𝑓 (b) =
𝑁−1∏
𝑖=0
(𝑔2𝑖𝑒𝑔𝑖)𝑏𝑖 ·

𝑁−1∏
𝑖=0

𝑔
−𝑏2
𝑖

𝑖
= (𝑋 · 𝜌−𝑟𝑥 )𝑒 (10)

=⇒ 𝑓 (b) = hb · g−b2
= (𝑋 · 𝜌−𝑟𝑥 )𝑒 (11)

where we define two generator vectors by g ≜
(𝑔0, ..., 𝑔𝑁−1) ∈ G𝑁 and h ≜ (𝑔𝑒𝑔0, ..., 𝑔

2𝑁−1𝑒𝑔𝑁−1) ∈ G𝑁 .
Note that h is a composite vector of generators built on
the base generators 𝑔 and (𝑔𝑖)𝑁−1

𝑖=0 . Next, we will construct
a 5-round zero-knowledge range protocol Πrg to prove the
equality in Eqn. (11).

5.2. Zero-knowledge Range Protocol Πrg

Let P and V be the prover and verifier, respectively.
Given a commitment 𝑋 = 𝑔𝑥𝜌𝑟𝑥 , P aims to convince V of
knowing the witness 𝑥 ∈ [0, 2𝑁 − 1] hidden in 𝑋 . At a high
level, P generates a linearly masking vector z = b+m ·𝑦 and
substitutes it for the bit-vector b in proving hb ·g−b2

. P must
ensure that the new function hz ·g−z2

evaluates to the product
of a series of pre-defined commitments, including 𝑋 . The
protocol Πrg to prove Eqn. (11) is described as follows:

P : (𝑚𝑖)𝑁−1
𝑖=0 , 𝑟𝑞 , 𝑟𝑡

$←− Z∗𝑝 (12)

P ⇒ V : 𝑄 ≜ 𝜌𝑟𝑞
𝑁−1∏
𝑖=0

𝑔
−𝑚2

𝑖

𝑖
∈ G (13)

P ⇐ V : 𝑒 $←− Z∗𝑝 (14)

P ⇒ V : 𝑇 ≜ 𝜌𝑟𝑡 (𝑔
∑𝑁−1
𝑖=0 2𝑖𝑚𝑖 )𝑒

𝑁−1∏
𝑖=0

𝑔
(1−2𝑏𝑖 )𝑚𝑖
𝑖

∈ G (15)

P ⇐ V : 𝑦 $←− Z∗𝑝 (16)

P ⇒ V : z ≜ (𝑧𝑖 = 𝑏𝑖 + 𝑚𝑖 · 𝑦)𝑁−1
𝑖=0 ∈ Z

𝑁
𝑝 (17)

𝑠 ≜ 𝑟𝑥 · 𝑒 + 𝑟𝑡 · 𝑦 + 𝑟𝑞 · 𝑦2 ∈ Z𝑝 (18)

V : hz · g−z2 ?
= 𝜌−𝑠 · 𝑋𝑒 · 𝑇 𝑦 · 𝑄𝑦2 (19)

where −z2 ≜ −z ◦ z.



We elaborate on Eqn. (19) with a more detailed explanation:

hz · g−z2
=

𝑁−1∏
𝑖=0
(𝑔2𝑖𝑒𝑔𝑖)𝑧𝑖 ·

𝑁−1∏
𝑖=0

𝑔
−𝑧2
𝑖

𝑖
(20)

=

𝑁−1∏
𝑖=0

𝑔2𝑖𝑒𝑏𝑖+2𝑖𝑒𝑚𝑖 𝑦 · 𝑔𝑏𝑖+𝑚𝑖 𝑦−𝑏
2
𝑖
−2𝑏𝑖𝑚𝑖 𝑦−𝑚2

𝑖
𝑦2

𝑖
(21)

= 𝜌−𝑠 · (𝜌𝑟𝑥𝑔
∑𝑁−1
𝑖=0 2𝑖𝑏𝑖︸          ︷︷          ︸
=𝑋

)𝑒 ·
𝑁−1∏
𝑖=0

𝑔
𝑏𝑖−𝑏2

𝑖

𝑖︸       ︷︷       ︸
=1

(22)

·
(
𝜌𝑟𝑡 (𝑔

∑𝑁−1
𝑖=0 2𝑖𝑚𝑖 )𝑒

𝑁−1∏
𝑖=0

𝑔
(1−2𝑏𝑖 )𝑚𝑖
𝑖︸                                   ︷︷                                   ︸

=𝑇

) 𝑦 (23)

· (𝜌𝑟𝑞
𝑁−1∏
𝑖=0

𝑔
−𝑚2

𝑖

𝑖︸          ︷︷          ︸
=𝑄

)𝑦2
(24)

Computing hz·g−z2
will generate a tuple of multiplicative

factors. The verifier needs to ensure that all the four bases
𝜌, 𝑋 , 𝑇 and 𝑄 on the right-hand side of Eqn. (19) have
the proper exponents, −𝑠, 𝑒, 𝑦 and 𝑦2, respectively. In the
following, we provide some intuition of the protocol.

• The computation of z and −z2 results in the existence
of the two exponents 𝑦 and 𝑦2 on the right-hand side,
which indicates that each element of the vector z and
𝑦 satisfies a linear relation.

• The linear form z = b+m · 𝑦 should be satisfied. Other-
wise, a non-one factor

∏𝑁−1
𝑖=0 𝑔

𝑚𝑖−𝑚2
𝑖

𝑖
≠ 1 would appear

on the right-hand side instead of
∏𝑁−1
𝑖=0 𝑔

𝑏𝑖−𝑏2
𝑖

𝑖
= 1. We

apply a trick here to remove the dependencies between
the protocols Πrg and Πac by using the former linear
form to construct b−b2 in Eqn. (22), where the witness
vector b is put as the z-intercepts instead of the slopes.
Using the latter linear form requires to compute 𝑒z−z2

to construct 𝑒2 · (b − b2). This would introduce the
challenge 𝑒 in the subsequent compression protocols,
which increases the computational overhead.

• V computes the generators (𝑔2𝑖𝑒)𝑁−1
𝑖=0 to ensure 𝑋 is

composed of the generator 𝑔 by checking whether the
exponent of 𝑋 is the random challenge 𝑒.

• Based on the above analysis, computing hz · g−z2

gives rise to the appearance of the constant factor∏𝑁−1
𝑖=0 𝑔

𝑏𝑖−𝑏2
𝑖

𝑖
on the right-hand side. P is required to

provide 𝑋 before seeing 𝑒 and (𝑇,𝑄) before seeing 𝑦.
Without knowing 𝑒 and 𝑦 beforehand, it is computa-
tionally infeasible for a probabilistic polynomial-time
P to pre-define 𝑋 , 𝑇 and 𝑄 such that these three factors
𝑋𝑒, 𝑇 𝑦 and 𝑄𝑦

2
can cancel out the factor

∏𝑁−1
𝑖=0 𝑔

𝑏𝑖−𝑏2
𝑖

𝑖
unless 𝑏𝑖 ∈ {0, 1} ∀ 𝑖 ∈ {0, ..., 𝑁 − 1}. Thus, V would

be convinced with an overwhelming probability that:(
𝑏𝑖 ∈ {0, 1}

)𝑁−1
𝑖=0 ⇐⇒

𝑁−1∏
𝑖=0

𝑔
𝑏𝑖−𝑏2

𝑖

𝑖
= 1

Remarks: The range protocol Πrg achieves 𝑂 (𝑁) com-
plexity in communication and computation. Compared with
Bulletproofs, our approach only uses 𝑁 + 1 distinct gener-
ators, (𝑔𝑖)𝑁−1

𝑖=0 and 𝑔. Thus, using the multi-exponentiation
technique [27], the verification of our argument would be
dominated by 𝑁 group exponentiations instead of 2𝑁 re-
quired by Bulletproofs-based arguments. We will elaborate
on the technique in Section 7.1.2. We stress that the protocol
Πrg can directly instantiate a range argument for 𝑁 ≤ 8. In
the next section, we describe an adapted compression pro-
tocol Πac to achieve 𝑂 (log 𝑁) communication complexity
for 𝑁 > 8.
Corollary 1. The range argument Πrg is a 5-move pro-
tocol, which has perfect completeness, computational 3-
special soundness and perfect special honest-verifier zero-
knowledge (SHVZK).
The range argument is a special case of the aggregate range
argument Πarg in Section 7.2 where 𝐽 = 1. Thus, it is a
corollary of Theorem 2.

6. Compression for Logarithmic Size

To achieve 𝑂 (log 𝑁) communication complexity for
𝑁 > 8, we employ a different compression protocol Πac
from the one in Bulletproofs. We adapt from the compressed
Σ-protocol in [11] that was originally designed to reduce the
communication complexity of proving a committed vector
z satisfies a public linear relation 𝑓 (z) = gz from linear to
logarithmic. Our protocol Πac is compatible with our range
protocol Πrg. We first introduce the compressed Σ-protocol
Πc in [11], before describing our adapted protocol Πac.

6.1. Compression Protocol Πc

Given a witness vector z ∈ Z𝑁𝑝 , a generator vector g ∈
G𝑁 and an input 𝑓 (z) ∈ G, the protocol Πc to prove 𝑓 (z) =
gz is described as follows:

P ⇒ V : 𝐴 ≜ gz𝐿
𝑅
, 𝐵 ≜ gz𝑅

𝐿
∈ G (25)

P ⇐ V : 𝑐 $←− Z∗𝑝 (26)

P ⇒ V : z′ ≜ z𝐿 + 𝑐z𝑅 ∈ Z
𝑁
2
𝑝

(27)

V : g′ ≜ g𝑐𝐿 ◦ g𝑅 ∈ G
𝑁
2 (28)

𝑓 (z′) = (g′)z′ ?
= 𝐴 · 𝑓 (z)𝑐 · 𝐵𝑐2 (29)

where z𝐿 = (𝑧0, ..., 𝑧 𝑁
2 −1) and z𝑅 = (𝑧 𝑁

2
, ..., 𝑧𝑁−1) are the

left-half and right-half vectors of z, respectively. Similarly,
g𝐿 = (𝑔0, ..., 𝑔 𝑁

2 −1) and g𝑅 = (𝑔 𝑁
2
, ..., 𝑔𝑁−1). One can

apply Πc recursively, until |z𝐿 | = |z𝑅 | = 1.
We elaborate on Eqn. (29) with a more detailed explanation:

(g′)z′ = (g𝑐𝐿◦g𝑅)z𝐿+𝑐z𝑅 = gz𝐿
𝑅︸︷︷︸
=𝐴

·(gz𝐿
𝐿

gz𝑅
𝑅︸ ︷︷ ︸

= 𝑓 (z)

)𝑐 · ( gz𝑅
𝐿︸︷︷︸
=𝐵

)𝑐2
(30)



The compression technique hinges on Eqn. (27), which
halves the dimension of the vector z. V can construct new
generators g′ in Eqn. (28) by raising the left-half generators
gL to the power of the challenge 𝑐 and compute (g′)z′ to
check whether the input 𝑓 (z) is the base of the challenge 𝑐
on the right-hand side of Eqn. (29). Then P can continue
to run the protocol Πc with the input 𝑓 (z′) to further
compress the vector z′. In this case, P can recursively
run the protocols to reduce the dimension of the witness
vector. However, this technique has a coupling issue among
recursions that the output 𝑓 (z) in Eqn. (29) must be raised
to the power of the challenge 𝑐. Inductively, the exponent of
𝑓 (z) will be magnified by a factor of the challenge of each
subsequent recursion. Thus, V must consider the challenges
of all the subsequent recursions when computing the final
exponent of 𝑓 (z). We will optimize the protocol to mitigate
this issue and reduce the computational overheads. Note that
the compression protocol Πc has perfect completeness and
3-special soundness. It does not have zero-knowledge as the
elements of the vector z′ are not masked by random values.

6.2. Adapted Compression Protocol Πac

Since the function in Eqn. (9) satisfies a quadratic group
relation rather than a linear one, we adapt the compression
protocol Πc to the quadratic setting. Given a witness vector
z ∈ Z𝑁𝑝 , two generator vectors g, h ∈ G𝑁 and an input
𝑓 (z) ∈ G, the adapted compression protocol Πac to prove
𝑓 (z) = hzg−z2

is described as follows:

P ⇒ V : 𝐴 ≜ g−z2
𝐿

𝑅
, 𝐵 ≜ hz𝐿

𝑅
g−2z𝐿z𝑅
𝑅

∈ G (31)

𝐷 ≜ hz𝑅
𝐿

g−2z𝐿z𝑅
𝐿

, 𝐸 ≜ g−z2
𝑅

𝐿
∈ G (32)

P ⇐ V : 𝑐 $←− Z∗𝑝 (33)

P ⇒ V : z′ ≜ z𝐿 + 𝑐z𝑅 ∈ Z
𝑁
2
𝑝

(34)

V : h′ ≜ h𝐿 ◦ h𝑐
−1

𝑅 ∈ G 𝑁
2 (35)

g′ ≜ g𝐿 ◦ g𝑐
−2

𝑅 ∈ G 𝑁
2 (36)

(h′)z′ (g′)−z′2 ?
= 𝐴𝑐

−2
𝐵𝑐
−1
𝑓 (z) 𝐷𝑐𝐸𝑐2 (37)

We elaborate on Eqn. (37) with a more detailed explanation:

(h′)z′ (g′)−z′2 = (h𝐿h𝑐
−1

𝑅 )z𝐿+𝑐z𝑅 (g𝐿g𝑐
−2

𝑅 )−z2
𝐿
−2z𝐿z𝑅𝑐−z2

𝑅
𝑐2

(38)

= ( g−z2
𝐿

𝑅︸︷︷︸
=𝐴

)𝑐−2 · (hz𝐿
𝑅

g−2z𝐿z𝑅
𝑅︸       ︷︷       ︸
=𝐵

)𝑐−1
(39)

· hz𝐿
𝐿

hz𝑅
𝑅

g−z2
𝐿

𝐿
g−z2

𝑅

𝑅︸               ︷︷               ︸
= 𝑓 (z)

(40)

· (hz𝑅
𝐿

g−2z𝐿z𝑅
𝐿︸       ︷︷       ︸
=𝐷

)𝑐 · ( g−z2
𝑅

𝐿︸︷︷︸
=𝐸

)𝑐2
(41)

where z𝐿z𝑅, z2
𝐿

and z2
𝑅

are all Hadamard products, which
are equivalent to z𝐿 ◦ z𝑅, z𝐿 ◦ z𝐿 and z𝑅 ◦ z𝑅, respectively.

We allowV to construct new generators h′ and g′ before
substituting the vector z with the compressed vector z′ in
Eqn. (37). The quadratic relations force each recursion to use
4 additional group elements 𝐴, 𝐵, 𝐷 and 𝐸 on the right-
hand side, which are raised to the power of 𝑐−2, 𝑐−1, 𝑐 and
𝑐2, respectively. The major difference from the protocol Πc
is that we construct new generators h′ and g′ by raising
the two right-half generators, h𝑅 and g𝑅, to the power of
𝑐−1 and 𝑐−2 in Eqn. (35) and (36) such that 𝑓 (z) would
be a constant factor without any exponent on the right-hand
side of Eqn. (37). This optimization effectively decouples
the recursions to save computational overheads such that
the group elements of previous recursions no longer need
to consider the challenges of subsequent recursions for
verification. Likewise, for the protocol Πc, V can construct
a new generator g′ by raising the right-half generator g𝑅
to the power of 𝑐−1 for the sake of decoupling. Then V
needs to compute 𝐴−𝑐 · 𝑓 (z) · 𝐵𝑐 on the right-hand side
of Eqn. (29). Note that the protocol Πac only contributes to
reducing the communication complexity to logarithmic with
little help in improving the computational efficiency.
Theorem 1. The adapted compression protocol Πac is a
3-move protocol, which has perfect completeness and com-
putational 5-special soundness.
Please see Appendix A for the proof of Theorem 1.

7. Compressed Range Protocol Πcrg

We combine the range protocol Πrg with a sequence of
the adapted compression protocol Πac to obtain the final
compressed range protocol Πcrg when 𝑁 > 8. To minimize
the communication overheads, the prover can recursively
apply log 𝑁 − 3 times the compression protocol Πac to the
range protocol Πrg until the witness dimension is reduced to
8. We present the recursive composition of our compression
protocol Πac, which is defined with the input (h, g,𝑊, z),
where z is the witness vector of dimension |z| > 8:

If |z| ≤ 8 : (42)
P ⇒ V : z (43)

V : hzg−z2 ?
= 𝑊 (44)

Else : (45)

P ⇒ V : 𝐴 ≜ g−z2
𝐿

𝑅
, 𝐵 ≜ hz𝐿

𝑅
g−2z𝐿z𝑅
𝑅

∈ G (46)

𝐷 ≜ hz𝑅
𝐿

g−2z𝐿z𝑅
𝐿

, 𝐸 ≜ g−z2
𝑅

𝐿
∈ G (47)

P ⇐ V : 𝑐 $←− Z∗𝑝 (48)

P and V : h′ ≜ h𝐿 ◦ h𝑐
−1

𝑅 ∈ G 𝑁
2 (49)

g′ ≜ g𝐿 ◦ g𝑐
−2

𝑅 ∈ G 𝑁
2 (50)

𝑊 ′ ≜ 𝐴𝑐
−2 · 𝐵𝑐−1 ·𝑊 · 𝐷𝑐 · 𝐸𝑐2 (51)

P : z′ = z𝐿 + 𝑐z𝑅 ∈ Z
𝑁
2
𝑝

(52)

Recursively run Πac on input (h′, g′,𝑊 ′, z′) (53)

To construct the argument Πcrg, P generates the range
argument Πrg in Section 5.2 before calling Πac with



𝑊 = 𝜌−𝑠𝑋𝑒𝑇 𝑦𝑄𝑦
2
. Therefore, the final verification equation

would be:

ĥẑ · ĝ−ẑ2 ?
= 𝜌−𝑠𝑋𝑒𝑇 𝑦𝑄𝑦

2
log 𝑁−3∏
𝑙=1

𝐴
𝑐−2
𝑙

𝑙
𝐵
𝑐−1
𝑙

𝑙
𝐷
𝑐𝑙
𝑙
𝐸
𝑐2
𝑙

𝑙
(54)

where ẑ, ĥ and ĝ are the final compressed vectors of
witnesses and generators.

We generalize a formula to calculate the number of
elements |Π | = 𝛾 + 4(log 𝑁 − log 𝛾) + 3, where 𝛾 = |ẑ|
represents the terminating dimension. Consequently, when
𝛾 ∈ {4, 8}, |Π | reaches its minimum based on the derivative
of the formula 1 − 4

𝛾 ·ln 2 . The argument with 𝛾 = 4 requires
four more group elements than that with 𝛾 = 8 due to
an extra recursion. Hence, the argument with 𝛾 = 8 has
the minimum proof size in bytes since a group element is
generally larger than a field element.
Corollary 2. The compressed range protocol Πcrg is a
(2 log 𝑁−1)-move protocol, which has perfect completeness,
computational (3, 5, ..., 5)-special soundness and perfect
special honest-verifier zero-knowledge (SHVZK).
The compressed range argument is a special case of the
compressed aggregate range argument Πcarg in Section 7.2,
where 𝐽 = 1. Therefore, it is a corollary of Theorem 3.

7.1. Optimizations

We introduce two optimization techniques to improve
the efficiency of proving and verification, respectively.

7.1.1. Proving. We present an idea to improve proving
efficiency, which applies to all the other range proof systems
in Table 1. The prover can pre-compute a portion of group
exponentiations and store the pairs of group elements and
their exponents, e.g., (𝑚𝑖 , 𝑔𝑚𝑖 )∞𝑖=0, in a lookup table. When
producing proofs, the prover can retrieve them directly from
the look-up table to save computational overheads with-
out the need for re-computation. The pre-computed group
exponentiations include those where the bases and their
exponents are already known by the prover beforehand. We
summarize two cases where the group exponentiations can
be pre-computed:

1) When the exponents are public constants or bits, e.g.,
𝑔2𝑖𝑏𝑖 , 𝑔 (1−2𝑏𝑖 )

𝑖
.

2) When the exponents are random values that are only
known to the prover, e.g., 𝑔𝑚𝑖

𝑖
, 𝑔
−𝑚2

𝑖

𝑖
, ℎ𝑟𝑡 and ℎ𝑟𝑞 .

With the help of the optimization technique, the prover only
needs to perform one single group exponentiation, raising
the value 𝑔

∑𝑁−1
𝑖=0 2𝑖𝑚𝑖 to the power of 𝑒 in Eqn. (76) when

generating the commitment 𝑇 in the range protocol Πrg.
This optimization saves 2𝑁 + 3 group exponentiations in
generating 𝑇 and 𝑄.

7.1.2. Verification. We employ the multi-exponentiation
technique [27] used by Bulletproofs to improve the verifica-
tion efficiency. In our compressed range protocol, the verifier
must compute two generator vectors h′ and g′ in each round,

which requires a total of 2𝑁 − 16 group exponentiations
within log 𝑁 − 3 rounds:

2 · 𝑁
2
+ 2 · 𝑁

4
+ 2 · 𝑁

8
+ ... + 2 · 8︸                                      ︷︷                                      ︸

log 𝑁−3 terms

= 2𝑁 − 16

However, the generators h′ and g′ are all computed based
on the initial base generators (𝑔𝑖)𝑁−1

𝑖=0 and 𝑔. Thus, the
verification can be reduced to a single multi-exponentiation
of these generators by delaying all the exponentiations to
the last round. The verifier can aggregate the exponents of
these generators before performing one-off exponentiations
for verification using Eqn. (55):

𝑔𝑎
𝑁−1∏
𝑖=0

𝑔
𝑎𝑖
𝑖

?
= 𝜌−𝑠𝑋𝑒𝑇 𝑦𝑄𝑦

2
log 𝑁−3∏
𝑙=1

𝐴
𝑐−2
𝑙

𝑙
𝐵
𝑐−1
𝑙

𝑙
𝐷
𝑐𝑙
𝑙
𝐸
𝑐2
𝑙

𝑙
(55)

where 𝑎 and (𝑎𝑖)𝑁−1
𝑖=0 indicate the aggregated expo-

nents for the corresponding generators. Finally, the multi-
exponentiation optimization helps reduce 2𝑁 − 16 group
exponentiations to only 𝑁 + 1.

7.2. Aggregate Range Argument

SwiftRange also supports the aggregation of multiple
single arguments for further efficiency improvements in
communication and verification. The aggregation allows
a prover to prove 𝐽 committed values lie in a specific
range at the same time. We call it a 𝐽-aggregate argu-
ment. Given 𝐽 witnesses (𝑥 𝑗 )𝐽−1

𝑗=0 and their commitments
(𝑋 𝑗 = 𝑔𝑥 𝑗 𝜌

𝑟𝑥 𝑗 )𝐽−1
𝑗=0 , each witness can be written in its

binary form 𝑥 𝑗 =
∑𝑁−1
𝑖=0 2𝑖𝑏 𝑗 ,𝑖 , where 𝑏 𝑗 ,𝑖 ∈ {0, 1}. We use

𝐽 × 𝑁 generators to combine 𝐽 range arguments based on
the following equality:

𝑓 (b) =
𝐽−1∏
𝑗=0

( 𝑁−1∏
𝑖=0

𝑔2𝑖𝑏 𝑗,𝑖 )𝑒 𝑗+1 ·𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔
𝑏 𝑗,𝑖−𝑏2

𝑗,𝑖

𝑗 ,𝑖︸               ︷︷               ︸
=1

=

𝐽−1∏
𝑗=0

𝑋𝑒
𝑗+1
𝑗 ·𝜌−𝑠

where 𝑒 ∈ Z∗𝑝 is an arbitrary value and 𝑠 =
∑𝐽−1
𝑗=0 𝑟𝑥 𝑗 · 𝑒 𝑗+1

We can re-write the above equation:

𝑓 (b) =
𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0
(𝑔2𝑖𝑒 𝑗+1𝑔 𝑗 ,𝑖)𝑏 𝑗,𝑖 ·

𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔
−𝑏2

𝑗,𝑖

𝑗 ,𝑖 (56)

=

𝐽−1∏
𝑗=0

𝑋𝑒
𝑗+1
𝑗 · 𝜌−𝑠 (57)

=⇒ 𝑓 (b) = hb · g−b2
= Xe · 𝜌−𝑠 (58)

where h = h0 | | h1 | | ... | | h𝐽−1 and | | is a concatenation
operator. h 𝑗 = (𝑔𝑒 𝑗𝑔 𝑗 ,0, 𝑔2𝑒 𝑗𝑔 𝑗 ,1, ..., 𝑔

2𝑁−1𝑒 𝑗𝑔 𝑗 ,𝑁−1), g =

(𝑔0,0, ..., 𝑔0,𝑁−1, 𝑔1,0, ..., 𝑔1,𝑁−1, ..., 𝑔𝐽−1,0, ..., 𝑔𝐽−1,𝑁−1),
b = (𝑏0,0, ..., 𝑏0,𝑁−1, 𝑏1,0, ..., 𝑏1,𝑁−1, ..., 𝑏𝐽−1,0, ..., 𝑏𝐽−1,𝑁−1).
X = (𝑋0, ..., 𝑋𝐽−1) and e = (𝑒, ..., 𝑒𝐽 ).

Next, we describe a generalized zero-knowledge aggre-
gate range protocol Πarg. Given 𝐽 commitments (𝑋 𝑗 =



𝑔𝑥 𝑗 ℎ
𝑟𝑥 𝑗 )𝐽−1

𝑗=0 , P can simultaneously convince V of knowing
the witnesses (𝑥 𝑗 ∈ [0, 2𝑁 − 1])𝐽−1

𝑗=0 :

P : (𝑚 𝑗 ,𝑖)𝐽−1,𝑁−1
𝑗=0,𝑖=0 , 𝑟𝑞 , 𝑟𝑡

$←− Z∗𝑝 (59)

P ⇒ V : 𝑄 ≜ ℎ𝑟𝑞
𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔
−𝑚2

𝑗,𝑖

𝑗 ,𝑖 (60)

P ⇐ V : 𝑒 $←− Z∗𝑝 (61)

P ⇒ V : 𝑇 ≜ ℎ𝑟𝑡𝑔
∑𝐽−1
𝑗=0 (

∑𝑁−1
𝑖=0 2𝑖𝑚 𝑗,𝑖 )𝑒 𝑗+1

𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔
(1−2𝑏 𝑗,𝑖 )𝑚 𝑗,𝑖
𝑗 ,𝑖

(62)

P ⇐ V : 𝑦 $←− Z∗𝑝 (63)

P ⇒ V : z ≜ (𝑧 𝑗 ,𝑖 = 𝑏 𝑗 ,𝑖 + 𝑚 𝑗 ,𝑖 · 𝑦)𝐽−1,𝑁−1
𝑗=0,𝑖=0 ∈ Z𝐽𝑁𝑝 (64)

𝑠 ≜
𝐽−1∑︁
𝑗=0
𝑟𝑥 𝑗 · 𝑒 𝑗+1 + 𝑟𝑡 · 𝑦 + 𝑟𝑞 · 𝑦2 (65)

V : hz · g−z2 ?
= 𝜌−𝑠 ·

𝐽−1∏
𝑗=0

𝑋𝑒
𝑗+1
𝑗 · 𝑇 𝑦 · 𝑄𝑦2

(66)

The dimension of the witness vector is 𝐽 × 𝑁 . We can
recursively apply the protocol Πac to Πarg to obtain the com-
pressed aggregate range protocol Πcarg until the dimension
of the vector z is reduced to 8. The number of elements for
a 𝐽-aggregate argument would be 4 log(𝐽𝑁) − 1. The single
argument is a special case of the aggregate argument, where
𝐽 = 1. We can observe that doubling the aggregation size
would involve 4 additional group elements. The verification
of a 𝐽-aggregate argument can be reduced to a multi-
exponentiation of 𝐽𝑁 + 4 log(𝐽𝑁) + 𝐽 − 8, which is more
cost-effective than naively performing 𝐽𝑁 + 4𝐽 log 𝑁 − 7𝐽
group exponentiations to verify 𝐽 single arguments.
Theorem 2. The aggregate range protocol Πarg is a 5-move
protocol, which has perfect completeness, computational
(J+2)-special soundness and perfect special honest-verifier
zero-knowledge (SHVZK).
Please see Appendix B for the proof of Theorem 2.
Theorem 3. The compressed aggregate range protocol Πcarg
is a (2 log 𝑁−1)-move protocol, which has perfect complete-
ness, computational (J+2, 5, ..., 5)-special soundness and
perfect special honest-verifier zero-knowledge (SHVZK).
Please see Appendix C for the proof of Theorem 3.

8. Experimental Evaluation

We conducted comprehensive performance evaluations
to benchmark SwiftRange against the state-of-the-art Flash-
proofs and Bulletproofs-based arguments. In our experi-
ments, we employed the standard elliptic curve group on
Ethereum, BN-1284, for the Pedersen commitment schemes.
This elliptic curve has 254-bit keys and guarantees the same
127-bit security as RSA groups of 3072-bit order based

4. Other standard elliptic curves can also be used, e.g., secp256k1.

on the NIST recommendations5. Furthermore, we used the
well-known Bouncy Castle Crypto APIs [28] to implement
the BN-128 elliptic curve for a fair comparison since they
were initially used in the Java implementations of Bullet-
proofs6 and Flashproofs7. All the experiments were executed
on the Java Virtual Machine 15 in a single thread with an
Apple M1 Pro processor. Note that the Java implementations
were only intended for performance evaluation, which may
not yield the optimal efficiency in practice. Rust and C
programming languages are more suitable candidates for
practical efficiency.

8.1. Line Charts

8.1.1. Computational Overhead. We measured the run-
ning time of proving and verification of Flashproofs, Bul-
letproofs and SwiftRange, where the pre-computation op-
timization was applied to the three arguments and the
multi-exponentiation optimization was applied to the two
compression-friendly ones for fair efficiency comparisons.

For single arguments, Figure 1a and 1b graphically show
the running time of proving and verification in millisec-
onds. Our experimental results show that Flashproofs run
the fastest, followed by SwiftRange. Bulletproofs compare
unfavorably with SwiftRange in terms of computational ef-
ficiency. Specifically, SwiftRange achieves 1.61× and 1.32×
proving efficiency for 32-bit and 64-bit ranges, respectively.
What is more, SwiftRange runs 2.3× as fast as Bullet-
proofs in verification for both ranges. We also compared
the proving running time of our optimized and unoptimized
single arguments in Table 3. It is noteworthy that our pre-
computation optimization remarkably improves the proving
efficiency. Regarding the aggregate arguments, Figure 2a
and 2b present running time comparisons in seconds for 64-
bit ranges. The running time of both compression-friendly
arguments grows linearly with the increased aggregation
size. Compared with Bulletproofs, SwiftRange still main-
tains a slight and a significant advantages in the efficiency
of proving and verification, respectively. However, neither
of them can outmatch Flashproofs. Additionally, Table 4
shows a decent efficiency improvement of SwiftRange in
verification that benefits from our aggregation technique in
Section 7.2.

TABLE 3: The comparison of proving running time in
milliseconds of different ranges between optimized and
unoptimized single arguments.

𝑁 8 16 32 64

Unoptimized (ms) 30.6 117.5 309.2 702.5
Optimized (ms) 5.6 78.7 232 550

Saving (%) 82% 33% 25% 22%

5. https://www.keylength.com/en/4/
6. https://github.com/bbuenz/BulletProofLib
7. https://github.com/wangnan-vincent/Flashproofs



(a) The proving running time in milliseconds. (b) The verification running time in milliseconds.

Figure 1: The computational overheads of single range arguments.

(a) The proving running time in seconds. (b) The verification running time in seconds.

Figure 2: The computational overheads of aggregate range arguments.

(a) The proof size of single range arguments. (b) The proof size of aggregate range arguments.

Figure 3: The communication overheads of range arguments.

TABLE 4: The comparison of verification running time in
milliseconds between a 𝐽-aggregate argument and 𝐽 single
arguments for 64-bit ranges.

𝐽 2 4 8 16 32

𝐽-Aggregate (ms) 164 324 579 1218 2310
𝐽 Singles (ms) 195 390 780 1560 3120

8.1.2. Communication Overhead. We measured the proof
sizes in bytes over a 256-bit field. To save space, we used
the compressed form of elliptic curve points, which can be

stored as a 256-bit value plus an extra bit indicating one of
the two possible y coordinates.

We plotted a line graph in Figure 3a to provide a more
straightforward comparison of single arguments than Table
2. The proof sizes of the compression-friendly arguments
grow logarithmically as 𝑁 increases, whereas that of Flash-
proofs grows far quicker than the other three. SwiftRange
exhibits a slightly sharper growth in the proof size from
the smallest 353 bytes as 𝑁 grows. Figure 3b illustrates a
comparison of 64-bit aggregate range arguments. We can
see that the compression-friendly arguments have a signif-
icant advantage over Flashproofs. Our aggregate argument
presents a logarithmically quicker growth with the increased



(a) 8-bit comparison. (b) 16-bit comparison.

(c) 32-bit comparison. (d) 64-bit comparison.

Figure 4: The efficiency comparisons of different ranges in radar charts concerning proof size, proving and verification
running time, where the closer the vertices to the center, the higher efficiency.

aggregate size than Bulletproofs-based ones. Specifically, 22
million8 64-bit 4-aggregate Bulletproofs and Bulletproofs+
take up around 16.4 GB and 14.4 GB, which are 19.2%
and 29.1% smaller than SwiftRange, respectively. For 32-
bit arguments, the figures are reduced to 14.7% and 26%,
respectively. However, we can argue that both arguments
demand more than twice the verification time as SwiftRange.

8.2. Radar Charts

We provide four radar charts in Figure 4 to give more
straightforward efficiency comparisons of the three bit-
decomposition-based arguments for different ranges, which
can help users select appropriate range arguments for their
specific scenarios.

8. In Bulletproofs [9], the authors estimated the proof sizes of the
aggregate range arguments required for 22 million Bitcoin transactions.
So we apply the same to Bulletproofs+ and SwiftRange for comparison.

For 8-bit ranges, SwiftRange outperforms Flashproofs
in both proving and communication efficiency. For 16-bit
ranges, SwiftRange loses its proving advantage but still
incurs less communication overheads than Flashproofs. Bul-
letproofs are the least efficient arguments for both ranges
since the radar charts of Bulletproofs fully enclose those of
Flashproofs and SwiftRange. The features of the three argu-
ments start to emerge when range sizes become larger. The
communication advantage of Bulletproofs and SwiftRange
over Flashproofs stands out prominently when 𝑁 ≥ 32. In
comparison with Bulletproofs alone, SwiftRange starts to
incur more communication overheads when 𝑁 ≥ 64. We
can also see that the efficiency gap of proving between
Bulletproofs and SwiftRange gradually diminishes whereas
that of verification becomes larger as 𝑁 increases.

In summary, Flashproofs are more appropriate for
computation-critical applications, whereas Bulletproofs and
SwiftRange are better candidates for communication-critical



TABLE 5: Suggested applications of different range sizes.

Range 8-bit 16-bit 32-bit 64-bit

Applications
age, humidity,
temperature,

exam grades, etc.

utilities bills, vehicle speed,
healthcare data (e.g. blood pressure),

height, weight, postcode, etc.

transaction amounts,
timestamps,
votes, etc.

transaction amounts,
timestamps,
votes, etc.

applications. For 32-bit and smaller ranges, SwiftRange
entirely outperforms Bulletproofs. For 64-bit ranges, Swif-
tRange maintains the significant advantage over Bullet-
proofs in verification efficiency but slightly falls behind
in communication efficiency. For ranges larger than 64-bit,
SwiftRange is more suitable for the scenarios where com-
putational efficiency matters far more than communication
efficiency.

9. Discussion of Applications

Our range argument can be applied to various practical
applications for preserving privacy, not limited to confi-
dential transactions on blockchain systems. We exemplify
some applications of different range sizes in Table 5. We
believe that our range argument can be applied to even more
scenarios beyond the examples as below:
Black-Box Accumulation (BBA). Black-box accumulation
enables privacy-preserving point collection and redemption
on cryptographic tokens, which is an important building-
block for various user-centric protocols such as loyalty,
payment and incentive systems. [29], [30] proposed privacy-
preserving schemes for resource-constrained wearable de-
vices and smart phones. When a user spends points, she
needs to use range proofs to ensure the committed balances
are non-negative after deduction. Thus, [30] used 16-bit Bul-
letproofs to guarantee the validity of the updated balances
at the time of their writing. Based on the Figure 4b, it can
easily be observed that our argument is a stronger alternative
for these systems as it has higher computational and com-
munication efficiency for 16-bit ranges than Bulletproofs.
Crowdsensing. Privacy-preserving crowdsensing [31] relies
on users voluntarily contributing their data to gain global
knowledge that benefits all participants. One typical appli-
cation is privacy-preserving transportation planning, where
users share their speed data to enable others to predict traffic
conditions and travel times. Each user is required to submit
speed commitments for a large number of roads, while
keeping their own location hidden. Rather than generating
separate range proofs for each commitment to demonstrate
the non-negativity of the committed speed, each user can
provide a short aggregate argument to save communica-
tion costs. Subsequently, all users verify each other’s ar-
guments before jointly performing multi-party computa-
tion protocols to compute the average speed values of all
roads in a privacy-preserving manner. Benefiting from the
logarithmic shortness and high verification efficiency, our
range argument serves as a more competitive candidate than
Bulletproofs-based arguments to achieve real-time feedback
for timely traffic predictions.

Collaborative Consumption. Privacy-preserving collabo-
rative consumption is becoming one of the most typical
practices in real-world scenarios. It enables fair cost-sharing
for using resources or services among a group of users. For
example, [32] proposed an energy sharing application, where
a group of users can share the costs of an energy storage
service at peak electricity usage periods to avoid purchasing
costly power from the grid. Each user is required to submit
demand commitments for a series of time slots along with
range arguments to demonstrate the non-negativity of the
committed demand. All the users can then jointly compute
the fairly-split payments in a secure manner. Our argument
is a suitable solution that provides high communication and
computational efficiency.
Smart IoT. An increasing number of battery-powered IoT
(Internet of Things) devices equipped with sophisticated
sensors have been deployed ubiquitously thanks to ease of
use and flexible installation. Untrusted IoT devices are en-
couraged to report their collected data via wireless commu-
nication modules to form global knowledge collectively. For
the sake of privacy concerns, the data must be committed or
encrypted before submission. Range proofs can effectively
prevent malicious devices from polluting global knowledge
by restricting the submitted data to allowed ranges. Besides,
the lifespan of IoT devices essentially hinges on energy
consumption. The more transferred data and the more in-
tensive computations, the more energy consumption. Our
range argument, especially the 8-bit one, can be a robust
candidate for these scenarios.

10. Conclusion

In this paper, we presented SwiftRange, a new type of
logarithmic-sized zero-knowledge range argument with a
transparent setup in the discrete logarithm setting. Our range
argument can be a drop-in substitute for Bulletproofs-based
arguments in blockchain-based confidential transactions and
many other privacy-preserving applications as it has higher
computational efficiency and lower round complexity while
incurring comparable communication overheads for CT-
friendly ranges. Moreover, our argument has a smaller proof
size when the range size is smaller than 32-bit, making it
suitable for more communication-critical applications. In the
future, we will improve its efficiency by further reducing the
proof size or verification running time. We also hope that our
work can be applied to a wider range of privacy-preserving
applications [31]–[33].
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Appendix A.
Proof of Theorem 1

Proof. Perfect completeness follows by carefully inspecting
the verification equation in Πac:

(h′)z′ (g′)−z′2 = ( g−z2
𝐿

𝑅︸︷︷︸
=𝐴

)𝑐−2 · (hz𝐿
𝑅

g−2z𝐿z𝑅
𝑅︸       ︷︷       ︸
=𝐵

)𝑐−1
(67)

· hz𝐿
𝐿

hz𝑅
𝑅

g−z2
𝐿

𝐿
g−z2

𝑅

𝑅︸               ︷︷               ︸
= 𝑓 (z)

(68)

· (hz𝑅
𝐿

g−2z𝐿z𝑅
𝐿︸       ︷︷       ︸
=𝐷

)𝑐 · ( g−z2
𝑅

𝐿︸︷︷︸
=𝐸

)𝑐2
(69)

where z𝐿z𝑅, z2
𝐿

and z2
𝑅

are all Hadamard products, which
are equivalent to z𝐿 ◦ z𝑅, z𝐿 ◦ z𝐿 and z𝑅 ◦ z𝑅, respectively.

Then, we prove computational 5-special soundness.
Note that the soundness of our zero-knowledge argument
is based on the hardness of the discrete logarithm assump-
tion that the non-trivial discrete logarithm relations among
the public generators are unknown to all computationally
bounded adversaries. If the soundness holds, we can easily
extract the witnesses in expected polynomial-time. Other-
wise, if the soundness fails to hold, we can instead extract
the discrete logarithm relations, which breaks the discrete
logarithm assumption. A knowledge emulator runs the ar-
gument in expected polynomial time and rewinds the prover
until it acquires five accepting transcripts. Then we compute
the challenge matrix c, which is invertible for being a special
Vandermonde matrix:

c =

©­­­­­«
𝑐−2

0 𝑐−1
0 1 𝑐0 𝑐2

0
𝑐−2

1 𝑐−1
1 1 𝑐1 𝑐2

1
𝑐−2

2 𝑐−1
2 1 𝑐2 𝑐2

2
𝑐−2

3 𝑐−1
3 1 𝑐3 𝑐2

3
𝑐−2

4 𝑐−1
4 1 𝑐4 𝑐2

4

ª®®®®®¬
Finally, we can acquire the openings of the commitments
𝐴, 𝐵, 𝑓 (z) and 𝐷, 𝐸 on the right-hand side of Eqn. (29) by
computing:

c−1 ·

©­­­­­­­­­«

𝑧′0
(0) . . . 𝑧′𝑁

2 −1
(0) (−𝑧′0

(0) )2 . . . (−𝑧′𝑁
2 −1

(0) )2

𝑧′0
(1) . . . 𝑧′𝑁

2 −1
(1) (−𝑧′0

(1) )2 . . . (−𝑧′𝑁
2 −1

(1) )2

𝑧′0
(2) . . . 𝑧′𝑁

2 −1
(2) (−𝑧′0

(2) )2 . . . (−𝑧′𝑁
2 −1

(2) )2

𝑧′0
(3) . . . 𝑧′𝑁

2 −1
(3) (−𝑧′0

(3) )2 . . . (−𝑧′𝑁
2 −1

(3) )2

𝑧′0
(4) . . . 𝑧′𝑁

2 −1
(4) (−𝑧′0

(4) )2 . . . (−𝑧′𝑁
2 −1

(4) )2

ª®®®®®®®®®¬
Once we have these openings, the following relations hold

for each challenge 𝑐:

𝐴𝑐
−2
𝐵𝑐
−1
𝑓 (z) 𝐷𝑐𝐸𝑐2

= hz𝐿+𝑐z𝑅
𝐿

· h𝑐
−1 (z𝐿+𝑐z𝑅 )
𝑅

(70)

· g−(z
2
𝐿
+2z𝐿z𝑅𝑐+z2

𝑅
𝑐2 )

𝐿
(71)

· g−𝑐
−2 (z2

𝐿
+2z𝐿z𝑅𝑐+z2

𝑅
𝑐2 )

𝑅
(72)

= (hL · hR
𝑐−1)z𝐿+𝑐z𝑅 (73)

· (gL · gR
𝑐−2)−(z𝐿+𝑐z𝑅 )2 (74)

Note that ℎ𝑖 = 𝑔2𝑖𝑒𝑔𝑖 , and hL, hR can be expressed by
gL, gR, 𝑔. If the above relations do not hold, then we can
extract non-trivial discrete logarithm relations among the
independently generated 𝑔 and (𝑔𝑖)𝑁−1

𝑖=0 , which breaks the
DLOG assumption.

Appendix B.
Proof of Theorem 2

Proof. Perfect completeness follows by carefully inspecting
the verification equation in Πarg:

hz · g−z2

= 𝜌−𝑠 ·
𝐽−1∏
𝑗=0
(𝜌𝑟𝑥 𝑗 𝑔

∑𝑁−1
𝑖=0 2𝑖𝑏 𝑗,𝑖︸             ︷︷             ︸

=𝑋 𝑗

)𝑒 𝑗+1 ·
𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔
𝑏 𝑗,𝑖−𝑏2

𝑗,𝑖

𝑗 ,𝑖︸               ︷︷               ︸
=1

(75)

·
(
ℎ𝑟𝑡𝑔

∑𝐽−1
𝑗=0 (

∑𝑁−1
𝑖=0 2𝑖𝑚 𝑗,𝑖 )𝑒 𝑗+1

𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔
(1−2𝑏 𝑗,𝑖 )𝑚 𝑗,𝑖
𝑗 ,𝑖︸                                                      ︷︷                                                      ︸

=𝑇

) 𝑦
(76)

· (ℎ𝑟𝑞
𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔
−𝑚2

𝑗,𝑖

𝑗 ,𝑖︸                 ︷︷                 ︸
=𝑄

)𝑦2
(77)

Then we describe a perfect SHVZK simulation. A zero-
knowledge argument ensures that no information, other than
the witness, can be deduced from the statement. To establish
that an argument possesses SHVZK, a general approach
involves creating a simulator that is aware of the challenge
and can produce the entire interaction of the argument
without having knowledge of the witness. Given two ran-
dom challenges (𝑒, 𝑦) and a series of target commitments
(𝑋 𝑗 )𝐽−1

𝑗=0 , a simulator can simulate the transcript (𝑇,𝑄, z, 𝑠):
it randomly chooses one group element 𝑄, a vector of field
elements z and a field element 𝑠 so that 𝑇 can be uniquely
determined according to the equation:

𝑇 =
(
hz · g−z2 · 𝜌𝑠 ·

𝐽−1∏
𝑗=0

𝑋−𝑒
𝑗+1

𝑗 · 𝑄−𝑦2 ) 𝑦−1
(78)

By the perfectly hiding property, the Pedersen commitments
in a real argument are uniformly random, as in the simu-
lation. The field elements in a real argument are also uni-
formly random due to the random choices of (𝑚 𝑗 ,𝑖)𝐽−1,𝑁−1

𝑗=0,𝑖=0 ,



(𝑟𝑥 𝑗 )𝐽−1
𝑗=0 , 𝑟𝑡 and 𝑟𝑞 . Therefore, we have identical distribu-

tions of real and simulated arguments for the given chal-
lenges.

Finally, we prove computational (𝐽 +2)-special sound-
ness. An emulator runs the argument with random chal-
lenges and rewinds the prover until it obtains 𝐽+2 accepting
transcripts. Then we compute the challenge matrix y, which
is invertible since all the rows and columns are linearly
independent.

y =
©­­«
𝑒0 . . . 𝑒𝐽0 𝑦0 𝑦2

0
...

. . .
...

...
...

𝑒𝐽−1 . . . 𝑒𝐽
𝐽−1 𝑦𝐽−1 𝑦2

𝐽−1

ª®®¬
Finally, we can acquire the openings of the commitments
(𝑋 𝑗 )𝐽−1

𝑗=0 , 𝑇 and 𝑄 on the right-hand side of Eqn. (66) by
computing:

y−1 ·
©­­­«
𝑧
(0)
0 . . . 𝑧

(0)
𝑁−1 (−𝑧 (0)0 )

2 . . . (−𝑧 (0)
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2 𝑠0
...

. . .
...

...
. . .

...
...

𝑧
(𝐽+1)
0 . . . 𝑧

(𝐽+1)
𝑁−1 (−𝑧 (𝐽+1)0 )2 . . . (−𝑧 (𝐽+1)

𝑁−1 )
2 𝑠𝐽+1

ª®®®¬
Once we have the openings, the following relations hold for
the challenges 𝑒 and 𝑦:

𝐽−1∏
𝑗=0

𝑋𝑒
𝑗+1
𝑗 𝑇 𝑦 𝑄𝑦

2

= 𝑔
∑𝐽−1
𝑗=0 (

∑𝑁−1
𝑖=0 2𝑖𝑏 𝑗,𝑖 )𝑒 𝑗+1 (79)

· (ℎ𝑟𝑡𝑔
∑𝐽−1
𝑗=0 (

∑𝑁−1
𝑖=0 2𝑖𝑚 𝑗,𝑖 )𝑒 𝑗+1

𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔
(1−2𝑏 𝑗,𝑖 )𝑚 𝑗,𝑖
𝑗 ,𝑖

)𝑦 (80)

· (ℎ𝑟𝑞
𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔
−𝑚2

𝑗,𝑖

𝑗 ,𝑖
)𝑦2

(81)

=

𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔𝑒
𝑗+12𝑖 (𝑏 𝑗,𝑖+𝑚 𝑗,𝑖 𝑦) (82)

·
𝐽−1∏
𝑗=0

𝑁−1∏
𝑖=0

𝑔
−(𝑏 𝑗,𝑖+𝑚 𝑗,𝑖 𝑦)2
𝑗 ,𝑖

· 𝜌
∑𝐽−1
𝑗=0 𝑟𝑥 𝑗 ·𝑒

𝑗+1+𝑟𝑡 ·𝑦+𝑟𝑞 ·𝑦2
(83)

Otherwise, if the above relations do not hold, then we can
extract non-trivial discrete logarithm relations among the
independently generated 𝑔 and (𝑔 𝑗 ,𝑖)𝐽−1,𝑁−1

𝑗=0,𝑖=0 . which breaks
the DLOG assumption.

Appendix C.
Proof of Theorem 3

Proof. Perfect completeness follows by carefully inspecting
the generalized final verification equation derived from Eqn.
(54):

ĥẑ · ĝ−ẑ2 ?
= 𝜌−𝑠

𝐽−1∏
𝑗=0

𝑋𝑒
𝑗+1
𝑗 𝑇 𝑦𝑄𝑦

2
log 𝑁−3∏
𝑙=1

𝐴
𝑐−2
𝑙

𝑙
𝐵
𝑐−1
𝑙

𝑙
𝐷
𝑐𝑙
𝑙
𝐸
𝑐2
𝑙

𝑙
(84)

where ẑ, ĥ and ĝ are the final compressed vectors of
witnesses and generators.

The perfect SHVZK of the compressed aggregate range
argument Πcarg follows from the perfect SHVZK property
of the aggregate range argument Πarg based on the following
composition structure:

Πcarg = Πac ⋄ · · · ⋄Πac︸             ︷︷             ︸
log 𝑁−3 times

⋄ Πarg

A simulator of Πcarg runs the simulator of Πarg and substi-
tutes the final messages of the simulated transcripts by hon-
estly executing Πac ⋄ · · · ⋄Πac. The subsequent compression
protocols Πac remain zero knowledge. The field vector z′ is
the sum of two zero-knowledge field elements zL and 𝑐zR.
Furthermore, the Pedersen commitments are perfectly hiding
and uniformly random. Thus, the zero-knowledge property
of the overall protocol Πcarg remains unchanged.

Finally, we follow the soundness proof in [11] to ar-
gue the computational special soundness of Πcarg. The
protocol Πcarg is the composition of (𝐽 + 2)-special sound
aggregate range protocol Πarg and a sequence of 5-special
sound compression protocols Πac. Thus, it can be observed
that Πcarg is (𝐽 + 2, 5, ..., 5)-special sound such that there
exists an efficient knowledge emulator that can extract the
witnesses of the commitments along the path from the leaves
to the root of the (𝐽 + 2, 5, ..., 5)-tree of (𝐽 + 2) · 5log 𝑁−3

accepting transcripts. We can see that the emulator uses
(𝐽 + 2) · 5log 𝑁−3 < (𝐽 + 2) · 8log 𝑁 = (𝐽 + 2) · 𝑁3 transcripts
and thus runs in expected polynomial-time in 𝑁 and 𝐽.
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