
Attribute-Based Multi-Input FE (and more)
for Attribute-Weighted Sums

Shweta Agrawal1, Junichi Tomida2, and Anshu Yadav1

1 IIT Madras, Chennai, India
shweta@cse.iitm.ac.in, anshu.yadav06@gmail.com

2 NTT Social Informatics Laboratories
tomida.junichi@gmail.com

Abstract. Recently, Abdalla, Gong and Wee (Crypto 2020) provided the first functional en-
cryption scheme for attribute-weighted sums (AWS), where encryption takes as input N (un-
bounded) attribute-value pairs {xi, zi}i∈[N] where xi is public and zi is private, the secret key is
associated with an arithmetic branching programs f , and decryption returns the weighted sum∑

i∈[N]f(xi)
>zi, leaking no additional information about the zi’s.

We extend FE for AWS to the significantly more challenging multi-party setting and provide
the first construction for attribute-based multi-input FE (MIFE) supporting AWS. For i ∈ [n],
encryptor i can choose an attribute yi together with AWS input {xi,j , zi,j} where j ∈ [Ni] and
Ni is unbounded, the key generator can choose an access control policy gi along with its AWS
function hi for each i ∈ [n], and the decryptor can compute∑

i∈[n]

∑
j∈[Ni]

hi(xi,j)
>zi,j iff gi(yi) = 0 for all i ∈ [n]

Previously, the only known attribute based MIFE was for the inner product functionality (Ab-
dalla et al. Asiacrypt 2020), where additionally, yi had to be fixed during setup and must remain
the same for all ciphertexts in a given slot.

Our attribute based MIFE implies the notion of multi-input attribute based encryption (MIABE)
recently studied by Agrawal, Yadav and Yamada (Crypto 2022) and Francati, Friolo, Malavolta
and Venturi (Eurocrypt 2023), for a conjunction of predicates represented as arithmetic branching
programs (ABP).

Along the way, we also provide the first constructions of multi-client FE (MCFE)3 and dynamic
decentralized FE (DDFE) for the AWS functionality. Previously, the best known MCFE and
DDFE schemes were for inner products (Chotard et al. ePrint 2018, Abdalla, Benhamouda and
Gay, Asiacrypt 2019, and Chotard et al. Crypto 2020).

Our constructions are based on pairings and proven selectively secure under the matrix DDH
assumption.

3 The literature considers two notions termed as MCFE, one strictly stronger than the other. The stronger
notion implies MIFE while the weaker does not. Here, we refer to the stronger notion, making MCFE a
strict generalization of MIFE.

Table of Contents

1 Introduction . 3
1.1 Our Results . 5
1.2 New Applications . 7
1.3 Technical Overview . 8

2 Preliminaries . 17
2.1 Computation Models . 17
2.2 Computation Models . 18
2.3 Basic Cryptographic Notions . 18
2.4 Variants of Functional Encryption . 21

3 Attribute-Based FE for Attribute-Weighted Sums with Inner Product 22
3.1 Construction . 23

4 Attribute-Based MIFE for Attribute-Weighted Sums . 29
4.1 Construction . 30
4.2 Security against Any Keys in AB-MIFE for AWS . 32

5 Multi-Client FE for Attribute-Weighted Sums . 33
5.1 Construction . 35

6 Dynamic Decentralized FE for Attribute Weighted Sums . 37
6.1 Definition . 37
6.2 Construction . 39

References . 43
A Detailed Comparison with Prior Work . 47
B Multi-Party Functional Encryption . 47

B.1 Dynamic Multi-Party Functional Encryption . 49
B.2 Capturing our primitives in the MPFE framework . 51

1 Introduction

Multi-Party Functional Encryption. Functional encryption (FE) [SW05, BSW11] is a general-
ization of public key encryption which enables learning specific useful functions of encrypted data
via “functional” keys. In FE, a secret key SKf is associated with a function f , a ciphertext CTx is
associated with a message x and decryption allows to compute f(x) and nothing else. FE has been
researched intensely in the community, with a long sequence of works that achieve increasingly pow-
erful functionalities from diverse assumptions – please see [SW05,GPSW06,BSW07,KSW08,AFV11,
ABV+12,GVW12,Wat12,GVW13,BGG+14,ABDP15,GVW15,Wee17a,AGW20,ACGU20,LL20a] and
references therein.

While initially defined and constructed in the single input setting, i.e. with only one encryptor and
one key generator, FE soon began to be generalized to distributed settings to capture the decentralized
nature of both data and authority in the modern world. Computation on encrypted data generated
independently at multiple sources, with fine-grained control on which data may be combined and with
secret keys supporting decryption of meaningful aggregate functionalities, holds the promise of making
FE much more relevant for real-world applications. These generalizations took different forms, from
multi-input FE [GGG+14a] to multi-authority FE [Cha07] to multi-client FE [CDG+18a] to dynamic
decentralized FE [CDSG+20] and such others [ACF+20]. These generalizations were captured via
the abstraction of multi-party FE [AGT21], which sought to unify these different notions in a single
framework.

The Attribute-Weighted Sums Functionality. Recently, Abdalla, Gong, and Wee [AGW20]
introduced the functionality of Attribute-Weighted Sums (AWS) which supports computation of aggre-
gate statistics on encrypted databases. Concretely, consider a database with N attribute-value pairs
(xi, zi)i∈[N] where xi is a public attribute associated with user i, and zi is private. Given a function
f , the AWS functionality on input (xi, zi)i∈[N] is defined as∑

i∈[N]
f(xi)

>zi.

The AWS functionality is very natural, and Abdalla, Gong, and Wee suggested several compelling
applications for it – for example, when f is a Boolean predicate then AWS can capture (i) the average
salaries of minority groups holding a particular job title – here, zi represents salary, while f(xi) tests
for membership in the minority group, (ii) approval ratings of an election candidate amongst specific
demographic groups in a particular state – here, zi is the rating, while f(xi) computes membership in
said group. Similarly, when zi is Boolean, AWS can capture average age of smokers with lung cancer,
where zi is lung cancer and f computes average age.

Distributing the Data. In this work, we argue that for several applications of AWS, including
the motivating examples provided by [AGW20], the data (xi, zi)i∈[N] is likely to be distributed across
multiple sources which must compute ciphertexts independently. Concretely, in the example of com-
puting average salaries of minority groups holding a particular job title, the data about the individuals
would be generated across organizations, which are unlikely to even be in the same location. Similarly,
when we compute whether a user is in a specific demographic group in a particular state, it is natu-
ral that user data would be distributed across different states, indeed even across different cities in a
given state. In the third example, data about patients with lung cancer will naturally be generated and
maintained at different hospitals that offer treatment for lung cancer, which would again be distributed
geographically.

Thus, to capture data generation by independent sources, we extend FE for AWS to the multi-party
setting. Concretely, we focus on the following primitives:

1. Multi-Input FE (MIFE): The primitive of multi-input FE (MIFE) [GGG+14b] allows the input to
a function to be distributed among multiple (say n) parties. In more detail, the ith party encrypts

3

its input zi to obtain CTi, a key authority holding a master secret generates a functional key SKf

and these enable the decryptor to compute f(z1, . . . , zn) and nothing else.
We consider a further generalization of MIFE, namely attribute-based MIFE introduced by Abdalla
et al. [ACGU20], which enables greater control on the leakage inherent by the functionality of
MIFE, making it more suitable for practical applications. In an AB-MIFE for some functionality
f , an attribute yi is associated with a ciphertext for slot i, in addition to an input zi. The secret
key is associated with an access control policy g in addition to the function input c. Decryption
first checks if g(y1, . . . ,yn) = 1, and if so, it computes the MIFE functionality f({zi}, c).

2. Multi-Client FE (MCFE): MCFE [GGG+14b,CDG+18a,CDG+18b] is a generalization of MIFE.
In MCFE, the inputs zi are additionally associated with public “labels” Li and inputs can only
be combined with other inputs that share the same label. As in MIFE, a functional key SKf is
provided which allows the decryptor to compute f(z1, . . . , zn) as long as the corresponding labels
match, i.e. L1 = . . . = Ln.

3. Dynamic Decentralized FE (DDFE): DDFE [CDSG+20], as the name suggests, is a decentralized
variant of FE, where not only can ciphertexts be generated locally and independently but so can
the keys. In DDFE for some functionality f , the setup step is localized and run independently by
users, letting them generate their private and public keys individually. During encryption, the set
of users with whom a given input or key object should be combined can be chosen dynamically.
In more detail, each party can specify the set of parties with which its input may be combined, a
label that controls which values should be considered together and the input zi itself. Similarly,
every user can also generate a key object which specifies the set of parties with which the key may
be combined, and a key vector ci. For decryption, the ciphertexts and keys from the parties who
mutually agree to combine their inputs and keys are put together to compute f({zi}i, {cj}j).
Note that DDFE implies MCFE which implies MIFE4.

Prior Work. We summarize the state of the art below.
The AWS Functionality. For the AWS functionality, even the weakest multi-input notion, namely MIFE
is not known to the best of our knowledge. We note Abdalla et al. [AGW20] did propose a multi-party
extension to their FE for AWS. However, this scheme is a much weaker primitive than the standard
notion of MCFE (or even MIFE), since this scheme natively only supports a single ciphertext query
per slot. To extend it the setting of multiple queries, the authors make use of non-interactive MPC to
enable the parties to obtain a random secret sharing of 0.

In more detail, while their scheme supports labels, the difference from standard MCFE schemes
is that in their scheme each party uses a one-time secret key for each encryption instead of long-
term encryption key, and the one-time keys are generated via non-interactive MPC run between the
parties. Specifically, their scheme consists of five algorithms (Setup,OTSKGen,Enc,KeyGen,Dec), and
Setup,KeyGen,Dec are the same as those in standard MCFE. OTSKGen(1λ) is a non-interactive proto-
col where party i obtains one-time secret key otski as the output of the protocol. Enc(otski,xi) takes
otski and a message xi and outputs a ciphertext CTi for party i. Correctness holds, i.e., decrypting
a set {CTi}i∈[n] of ciphertexts with a secret key for f reveals f(x1, . . . ,xn), only when the set of
ciphertexts are generated under the one-time secret keys {otski}i∈[n] derived from a single running of
OTSKGen(1λ). The one-time secret-key can be used only once for encryption, otherwise security does
not hold any more. Thus, this notion is even weaker than the variant of MCFE with one-time labeling
restriction [CDG+18a] and in particular, does not imply MIFE.
Multi-Input Attribute Based Encryption. An attribute based MIFE scheme implies a multi-input at-
tribute based encryption scheme as a special case. In an MIABE scheme, encryptor i encodes a secret
message mi together with an attribute yi. The function key encodes a circuit g so that decryption
4 In this paper, we use the term MCFE as a generalization of MIFE, so that it allows multiple use of labels

[CDG+18b]. In contrast, a weaker notion of MCFE where each label can be used only once does not imply
MIFE [GGG+14b,CDG+18a].

4

outputs (m1, . . . ,mn) if g(y1, . . . ,yn) = 1. The generalization to multi-input predicate encryption
additionally allows to hide the attributes yi.

In this setting, Agrawal, Yadav and Yamada [AYY22] recently provided a construction for arbitrary
predicates in NC1 from pairings and Learning With Errors. Additionally, Francati et al. [FFMV23] also
provided a multi-input predicate encryption scheme for a conjunction of predicates. Their construction
supports the class P and is based on the Learning With Errors problem. Moreover, if the arity of the
function is restricted to a constant, their security game also supports user corruptions. However, their
construction does not support collusions, which is one of the most important and technically challenging
aspects of designing attribute based encryption schemes.
AB-MIFE, MCFE and DDFE. For AB-MIFE, the best known attribute-based MIFE scheme is for
the inner product functionality [ACGU20]. Moreover, in the AB-MIFE construction by Abdalla et
al. [ACGU20], the ABE attribute yi

5 associated with the ith slot is fixed in the setup phase and must
remain the same for all ciphertexts, instead of being chosen dynamically by the encryptor for each
encryption. For MCFE [ABG19] as well as DDFE [CDSG+20], the largest achievable function class is
linear functions (or inner products), albeit with function hiding [AGT21].

1.1 Our Results

In this work, we significantly extend the reach of multi-input functional encryption schemes by pro-
viding the first AB-MIFE, MCFE and DDFE schemes that support the AWS functionality. Our con-
structions satisfy the standard (selective) indistinguishability based security and rely on the matrix
DDH assumption on bilinear groups. We discuss each of these contributions below.
AB-MIFE for AWS: We provide the first attribute-based MIFE for the AWS functionality. In our
AB-MIFE, each encryptor can choose an attribute yi specific to its AWS input {xi,j , zi,j}j∈[Ni], the
key generator can choose an access control policy gi along with its AWS function hi for i ∈ [n] and
decryption computes:

f((y1, {x1,j , z1,j}j∈[N1]), . . . , (yn, {xn,j , zn,j}j∈[Nn]))

=

{∑
i∈[n]

∑
j∈[Ni]

〈hi(xi,j), zi,j〉 (g1(y1) = · · · = gn(yn) = 0)

⊥ (otherwise)

Here, yi,xi,j are public while zi,j is private, and gi, hi belong to arithmetic branching programs (ABP).
We note that the number of slots Ni for i ∈ [n] can be unbounded, and chosen by the encryptor
dynamically.

Connection with Multi-Input Attribute-Based Encryption. We observe that this functionality also
implies the notion of multi-input attribute-based encryption (MIABE) [AYY22] for a conjunction of
predicates represented as ABP. Thus, our construction supports the functionality g(y1, . . . ,yn) =∧
(gi(yi) = 0), where each gi is an ABP.

In contrast, the MIABE construction of [AYY22] supports an arbitrary g ∈ NC1 but only outputs a
fixed message whereas our construction supports the AWS functionality. Additionally, our construction
also supports a stronger security model which allows user corruption. In more detail, the MIABE
construction of [AYY22] requires all encryptors to share the same master secret key, which obviously
cannot be provided to the adversary. In contrast, different encryptors in our construction have different
encryption keys, and we allow the adversary to obtain some of these in the security game. By applying
the MIABE to MIPE compiler of [AYY22], we obtain a multi-input predicate encryption scheme for
constant arity, albeit without support for user corruptions, due to the design of the compiler.
5 In their notation, the embedding of access control policy and attribute are swapped to the ciphertext-policy

setting – thus, for them yi is an access control policy.

5

Work Arity Corruption Collusion Function Class Assumption

[FFMV23] Poly No No Conjunctions in P LWE
[FFMV23] Constant Yes No Conjunctions in P LWE

[AYY22] 2 No Yes NC1
Koala

and LWE
This (MIABE) Poly Yes Yes Conjunctions in NC1 Matrix DDH

This (MIPE) Constant No Yes Conjunctions in NC1
Matrix DDH

and LWE
Table 1. Comparison with Prior Work in MIABE and MIPE. Note that Koala is a non-standard knowledge
type assumption on pairings. For [FFMV23] and [AYY22], the results for MIABE and MIPE are identical, but
we achieve different results for the two. We consider CPA-1 sided security for the comparison with [FFMV23].

We also compare with the recent work of Francati et al. [FFMV23]. As discussed above, their MI-
ABE construction supports no collusions and user corruptions only for constant (not polynomial) arity.
In contrast, our construction of AB-MIFE supports unbounded collusions, as well as user corruptions
for polynomial arity. However, our construction, being based on pairings, only supports the function
class NC1 while they support P. Additionally our construction supports computation of the expressive
AWS functionality while theirs just recovers a fixed message (i.e. our scheme is an FE not an ABE). In
the setting of MIPE, our construction does not support corruption but does support collusions, while
theirs achieves the opposite. Please see Table 1 for a detailed comparison.

Multi-Client FE for AWS. We construct the first MCFE for Attribute-Weighted Sums, which
generalizes MIFE described above. In more detail, each encryptor can choose input {xi,j , zi,j}j∈[Ni]

together with a label Li, the key generator can choose ABPs {fi}i∈[n] and decryption computes:

f({x1,j , z1,j}j∈[N1], . . . , {xn,j , zn,j}j∈[Nn]) =
∑
i∈[n]

∑
j∈[Ni]

〈fi(xi,j), zi,j〉

as long as all the Li are equal. This is the first MCFE that supports a functionality beyond inner
products to the best of our knowledge. Moreover, the number of slots Ni allowed to each party i are
unbounded, though the number of parties n is bounded – this feature was not achieved by prior MCFE
schemes for inner products as far as we are aware.

This functionality is captured by separable functions defined by Ciampi et al. [CSW21]. A multi-
input function f is separable if it can be described as f(x1, . . . , xn) = f1(x1) + · · · + fn(xn) for
some functions f1, . . . , fn. They constructed MCFE for separable functions where f1, . . . , fn belong to
poly-size circuits from function-hiding FE for general circuits. Their scheme is secure against a priori
bounded number of ciphertext queries. Our results differ significantly from theirs because our schemes
are secure against unbounded number of ciphertext queries and use only the much weaker MDDH
assumption.

Dynamic Decentralized FE for AWS. Next, we extend our MCFE to the much more challenging
setting of DDFE. For the setting of AWS, the ith encryptor chooses a set of users UM,i with whom its
input may be combined, some label Li to constrain which values should be considered together, aside
from its AWS inputs {zi,j}j∈[Ni] which are private and {xi,j}j∈[Ni] which are public. For key generation,
the ith user also chooses a set of users UK,i and a set of ABPs f̄i = {fj}j∈UK,i

. If all the sets UM,i

and UK,i match up (to some U ′
K) and if the labels in all n ciphertext slots are equal, then decryption

computes the AWS functionality. Formally, for ki = (f̄i,UK,i) and mi = ({xi,j , zi,j}j∈[Ni],UM,i, Li),

6

Work
(Pub, Pri)

CT
Key Functionality

MIFE [AGT22] (⊥, zi) c 〈c, z⊗ z〉
AB-MIFE [ACGU20] (⊥, zi) {yi, ci}i∈S

∧
i∈S fi(yi) ·

∑
i∈S

〈zi, ci〉

AB-MIFE, §4 ((yi, {xi,j}j), {zi,j}j) {gi, hi}i∈[n]

∧
i(gi(yi) = 0) ·

∑
i∈[n]

∑
j∈[Ni]

hi(xi,j)
>zi,j

MCFE [CDG+18b,ABG19] (⊥, zi) c 〈c, z〉
MCFE, §5 ({xi,j}j , {zi,j}j) {fi}i∈[n]

∑
i∈[n]

∑
j∈[Ni]

fi(xi,j)
>zi,j

DDFE, [CDSG+20,AGT21] (⊥, zi) c 〈c, z〉
DDFE, §6 ({xi,j}j , {zi,j}j) {fi}i∈S

∑
i∈S

∑
j∈[Ni]

fi(xi,j)
>zi,j

Table 2. Prior state of the art and our results. We do not consider function hiding or MCFE schemes with
only one time labels. Above, we denote y = (y1, . . . ,yn), z = (z1, . . . , zn) or z = (zi)i∈S . S is some subset of
authorized users for a given key. A function fi is a monotone span programs fixed in setup. Functions fi, gi, hi

are arithmetic branching programs chosen in key generation.

the functionality computes:

f ′({i, ki}i∈U ′
K
, {i,mi}i∈U ′

M
) ={∑

i∈U ′
K

∑
j∈[Ni]

〈fi(xi,j), zi,j〉 if the conditions below are satisfied
⊥ otherwise

The conditions are:

1. U ′
K = U ′

M and ∀ i ∈ U ′
K , UK,i = UM,i = U ′

K .
2. ∀i,i′∈U ′

K
, f̄i = f̄i′ and Li = Li′ .

We summarize prior work in Table 2. Please see Appendix A for a more detailed summary. We
explain our functionalities in the framework of multi-party FE [AGT21] in Appendix B.

1.2 New Applications

Our attribute-based MIFE enables several new and exciting applications that were not possible before.
Let us begin with the example for AWS suggested by [AGW20], of computing average age of smokers
who have lung cancer. In this case, the access control layer on top of the MIFE can capture the
willingness of a user to even participate in such a study involving their medical data. For example,
perhaps a user is willing to participate in this computation if certain criteria are satisfied, for instance
if the study is being performed by doctors with certain specializations. Moreover, these criteria can be
different for different users. This is exactly the kind of access control that an ABE system is designed to
enforce. The required criteria can be specified by each user using its attribute yi while the key holder’s
input gi must encode her privileges so that she learns the AWS output only if gi(yi) is satisfied for all
i ∈ [n].

In the context of MIABE, Agrawal, Yadav and Yamada [AYY22] provided the following motivating
example: a doctor is treating Covid patients and desires to understand the relation between Covid and
other medical conditions such as asthma or cancer, each of which are treated at different locations.
The records of a given patient are encrypted independently and stored in a central repository, and
the doctor can be given a key that filters stored (encrypted) records according to criteria such as
condition = ‘Covid’ and condition = ‘asthma’ and age group =‘60-80’ and enables decryption of these.
Note that our AB-MIFE can already support a conjunction of predicates and suffices to enable the
functionality of the above example. Moreover, in addition to supporting decryption of messages as in

7

MIABE, our AB-MIFE will even allow computing some aggregates on the private data, something
beyond the capability of MIABE.

For MCFE and DDFE, generalizing inner products to AWS is clearly meaningful – all applications of
AWS in the single input setting are meaningful in the setting with multiple users, with the additional
expressiveness offered by MCFE and DDFE. For instance in DDFE, the number of users who can
participate in a computation are unbounded and moreover, users can join dynamically – this is useful
in real world applications such as the examples involving patients in the lung cancer study or users in
the minority group discussed earlier.

1.3 Technical Overview

Recap of AGW. Our starting point is the functional encryption scheme by Abdalla, Gong, and Wee
[AGW20], henceforth AGW, which provides the first construction supporting the AWS functionality
for ABP from standard assumptions on bilinear maps. In more detail, the encryptor6 computes a
ciphertext encoding {xj , zj}j∈[N] where N is unbounded, xj are public and zj are private, the key
generator computes a secret key encoding an ABP f and decryption recovers

∑
j∈[N]〈f(xj), zj〉. At a

high level, their construction proceeds in two steps: (i) construct a single slot scheme, i.e. N = 1, which
supports computation of 〈f(x), z〉, (ii) extend this to support unbounded N by running N instances
of the single slot scheme, and cleverly handling leakage and size blowup that occurs along the way. As
discussed by AGW, step (i) can be achieved by adapting a framework by Wee [Wee17b], and the main
conceptual and technical novelty lies in achieving step (ii), especially in supporting unbounded N .

We review step (ii) next, as the ideas herein form the basis of our multi-input constructions. As
discussed above, the first idea to handle N > 1 is to simply run N instances of the single slot scheme
but this evidently does not work, since it would allow the decryptor to learn partial sums 〈f(xj), zj〉
which are not revealed by the ideal functionality. To address this leakage, the single slot scheme is
extended to handle “randomization offsets”, namely to add masking values wjr to the partial sums,
where wj are sampled randomly by the encryptor such that

∑
wj = 0, and r is sampled randomly

by the key generator. These masking values hide intermediate partial sums 〈f(xj), zj〉, but when the
partial sums are added, we recover

∑
j∈[N]〈f(xj), zj〉 as desired.

To make the secret key size independent of N , AGW construct a hybrid argument over the N slots,
collecting “partial sums” along the way – the details of this technique are not relevant for our purposes.
They achieve selective simulation based security from the standard k-linear assumption over bilinear
groups.

They then extend this construction to a setting where the N slots can be owned by N independent
parties – to enforce the constraint that

∑
j∈[N] wj = 0, they make use of a non-interactive MPC

protocol where the parties communicate to generate these shares prior to each encryption. While
this construction provides a first feasibility result for FE supporting the AWS functionality in the
multi-party setting, it falls short of achieving the standard notion of MCFE in many important ways:

1. The MPC step introduces an additional round of interaction prior to each encryption7 – this
violates the primary demand of non-interaction that is placed on FE.

2. The ciphertexts constructed in different “iterations”, i.e. generated via different runs of the MPC
cannot talk to each other, thus failing to satisfy the main functionality requirement of even an
MIFE scheme, which explicitly requires supporting such combinations. In more detail, consider
a two slot MIFE scheme, where the first slot ciphertexts encode xj for j ∈ [Q1], the second
slot ciphertexts encode yi for i ∈ [Q2] and the secret key encodes some function f . Then MIFE
explicitly requires that f(xj ,yi) should be computable for any pair j, i. Indeed, the standard notion
of MCFE generalizes MIFE by additionally supporting labels in each ciphertext that dictate how
ciphertexts may be combined. The multi-party scheme of AGW does not imply an MIFE.

6 Here we discuss the single input construction of AGW, the multi-input construction is discussed later.
7 This can done in a offline phase, but then places a bound on the number of ciphertexts which can be

computed.

8

3. The security game of the multi-client AGW construction does not handle the multi-challenge setting,
which is the main technical challenge in any MIFE or MCFE construction. Indeed, handling the
multi-challenge setting would disallow the usage of simulation security due to an impossibility
result by Boneh, Sahai and Waters [BSW11] – since the AGW constructions satisfy simulation
security, any generalization to the multi-input setting must necessarily take a different route.

Thus, the question of even constructing an MIFE for AWS, let alone generalizations to AB-MIFE,
MCFE and DDFE, is completely open. We provide an outline of the AGW construction in Figure 1.

One Slot FE for
AWS

(Sec 5)

One Slot FE for
AWS-IP
(Sec 6)

Unbounded Slot
FE for AWS

(Sec 7)

Multi-Party
(single CT)
FE for AWS

(Sec 8)

Fig 1. Construction Outline of AGW Multi-Client Scheme. All constructions satisfy simulation security. The
multi-client scheme only supports a single ciphertext in each slot (and uses MPC to support many).

Building MIFE for AWS. In an MIFE for AWS, we have n parties, where the ciphertext computed
by the ith party embeds inputs {xi,j , zi,j}j∈[Ni] where Ni is unbounded, the secret key embeds a set
of ABPs {fi}i∈[n], and decryption computes

f({x1,j , z1,j}j∈[N1], . . . , {xn,j , zn,j}j∈[Nn]) =
∑
i∈[n]

∑
j∈[Ni]

〈fi(xi,j), zi,j〉

Recall that xi is public while zi is private, i.e., a ciphertext only hides zi.
A natural idea would be to begin with the multi-party8 construction of AGW and try to get rid of

the MPC. In fact, removing the usage of MPC is not very difficult by using PRFs to compute a secret
sharing of 0 for any given label9, but this would still only lead to a weak variant of MCFE which has
the so called “one time label” restriction. Intuitively, an MCFE with a one time label restriction, as
the name suggests, allows each label to be used only one time for each input; this primitive therefore
no longer implies MIFE. Handling combinations of multiple ciphertexts is the core functionality of
MIFE and forms the basis for most applications, so the one time label restriction is quite a significant
limitation. Indeed, in the inner product setting, early constructions of MCFE suffered from the one
time label restriction [CDG+18a] and were upgraded to full-fledged MCFE by follow-up work using
nontrivial ideas [CDG+18b,ABG19].

Another point to note is the handling of unbounded slots for each client. Concretely, let us say there
are n clients, and the ith one chooses Ni (unbounded) internal slots for their data. Now, the AGW
multi-party construction can easily handle unbounded N by instantiating

∑
i∈[n] Ni nominal clients

and having each client internally handle Ni of these. This trick does not work out of the box anymore
in the MIFE setting due to the requirement of supporting combinations of all ciphertexts across slots.

8 Since the AGW construction does not satisfy the standard definition of MCFE in several important ways as
discussed above, we refer to their construction as a multi-party construction, in the sense of [AGT21].

9 Consider the 3 party case. Let us say that parties have PRF keys (k1, k2), (k2, k3), and (k3, k1) respectively.
Then we can use the fact for every label L, F (k1, L) +F (k2, L),−F (k2, L) +F (k3, L),−F (k3, L)−F (k1, L)
are pseudorandom shares of 0 [KDK11,ABG19].

9

Our Approach. Taking a step back, a natural approach is to ask whether existing transformations of
FE from the single to multi-input setting for the inner product functionality can help us overcome the
challenges faced in designing this generalization for AWS. Towards this approach, we observe that all
IP-MIFE (or IP-MCFE) schemes in the literature are constructed by (explicitly or implicitly) running
an IPFE scheme in parallel for each input and handling leakage issues along the way. At a high level,
these works can be classified into two categories based on which property of the underlying IPFE
is required in the security proof: 1) ciphertext homomorphism, e.g., [AGRW17, CDG+18b, ACF+18,
ABG19] or 2) function-hiding security, e.g., [DOT18,Tom19,AGT21].

While IPFE schemes have ciphertext homomorphism (a ciphertext is a group element, and adding
ciphertexts of x1 and x2 results in a ciphertext of x1 + x2), this is not the case in FE for AWS due to
public inputs for ABPs. Since ABPs are not linear functions, it is hopeless to equip an FE scheme for
AWS with ciphertext homomorphism. It is worth noting that the reason that the AB-MIFE scheme
in [ACGU20] can handle only a limited form of access control, i.e., only secret keys are associated
with attributes, and access control is done between the attributes and the public fixed policy, comes
from the fact that their scheme relies on the former approach and cannot associate ciphertexts with
attributes or a policy as the case of the single input AB-FE schemes.

Fortunately, the latter approach is not ruled out, and indeed, we show that it can be made to
work even for the AWS functionality. We observe that works in the latter category use function-hiding
security of the underlying scheme to obtain function-hiding in the resultant IP-MIFE scheme. In this
work, however, we will use function-hiding for a completely different purpose – to transform a singe-
input scheme into a multi-input scheme without relying on ciphertext homomorphism of the underlying
scheme. In particular, we will not achieve function-hiding security in our final MIFE for AWS scheme.

Recap: Construction of IP-MIFE from IPFE. Our starting point is therefore the FE to MIFE trans-
formation for inner products by Datta, Okamoto and Tomida [DOT18] (henceforth DOT), which we de-
scribe next. Recall that IP-MIFE supports functions f : (Zd

p)
n → GT specified by (c1, . . . , cn) ∈ (Zd

p)
n

and defined as f(x1, . . . ,xn) = [
∑

i∈[n]〈xi, ci〉]T . While the DOT IP-MIFE scheme is a direct construc-
tion based on pairings, it can be viewed as a generic construction from a function-hiding FE scheme
for inner product (IPFE) as described in the next paragraph. Recall that in an IPFE scheme, the
ciphertext and secret key are associated with x ∈ Zd

p and c ∈ Zd
p respectively, and decryption reveals

[〈x, c〉]T . The function-hiding property guarantees that the secret key hides c along with hiding x in
the ciphertext.

Let iFE = (iSetup, iEnc, iKeyGen, iDec) be a function-hiding IPFE scheme with the vector be-
ing d + 1. Then the IP-MIFE scheme is constructed as follows. Setup generates master secret keys
iMSK1, . . . , iMSKn ← iSetup(1λ) and sets EKi = iMSKi,MSK = {iMSKi}i∈[n]. Encryption of xi for
slot i computes iCTi ← iEnc(iMSKi, (xi, 1)) and outputs CTi = iCTi. Key generation, given input
(c1, . . . , cn), randomly chooses r1, . . . , rn ← Zp such that

∑
i∈[n] ri = 0, computes iSKi ← iKeyGen

(iMSKi, (ci, ri)) for i ∈ [n], and outputs SK = {iSKi}i∈[n]. Decryption outputs
∑

i∈[n] iDec(iCTi, iSKi) =

[
∑
〈xi, ci〉]T , since

∑
ri = 0. Here, the random element ri is used to hide partial decryption values

〈xi, ci〉.
Let us now turn our attention to the security proof. Since we need neither function hiding nor

adaptive security for the multi-input scheme in our purpose, we can make the proof much simpler
than that by DOT as follows. We will denote iEnc(iMSKi,v) and iKeyGen(iMSKi,v) by iCTi[v] and
iSKi[v], respectively. Now, in the original game, the adversary is given iCTi[(x

j,β
i , 1)] for the j-th

challenge message (xj,0
i ,xj,1

i) and {iSKi[(c
`
i , r

`
i)]}i∈[n] for the `-th secret key of (c`1, . . . , c`n), where β is

the challenge bit. Thus, the goal of the proof is to delete the information of β from the ciphertexts in
an indistinguishable manner. In what follows, we omit index ` for conciseness since all secret keys can
be handled in the same manner.

The security proof uses two hybrids. In the first hybrid, the j-th ciphertext for slot i is changed
to iCTi[(x

j,0
i , 1)] while all secret keys are changed to {iSKi[(ci, ri + 〈x1,β

i , ci〉 − 〈x1,0
i , ci〉)]}i∈[n] for all

i, j. The indistinguishability of the original game and the first hybrid follows from the security of the

10

function-hiding IPFE scheme and the following constraint:

〈xj,β
i , ci〉 − 〈xj,0

i , ci〉 = 〈x1,β
i , ci〉 − 〈x1,0

i , ci〉 for all i, j (1.1)

which follows from the fact that the adversary can inherently learn 〈xj,β
i , ci〉−〈x1,β

i , ci〉 from challenge
queries (originally observed in [AGRW17, page 4]). In the second hybrid, all secret keys are changed to
{iSKi[(ci, ri)]}i∈[n] for all i, which readily follows from the fact that the two distributions are equivalent:

{(r1, . . . , rn) : r′1, . . . , r′n ← Zp s.t.
∑

r′i = 0, ri = r′i + 〈x
1,β
i , ci〉 − 〈x1,0

i , ci〉}

{(r1, . . . , rn) : r1, . . . , rn ← Zp s.t.
∑

ri = 0}

This is because we have that
∑

i∈[n](〈x
1,β
i , ci〉 − 〈x1,0

i , ci〉) = 0 due to the admissibility condition on
the queries. At this point, the advantage of the adversary is 0 since its view contains no information
about β.

Generalizing the FE to MIFE to support AWS. Next, we show how to generalize the FE to MIFE
compiler of DOT to handle the AWS functionality. In this step, we make use of an insight developed
by AGW to handle unbounded slots, namely, to leverage a (single input) FE scheme that supports
unbounded-slot AWS together with randomization offsets. In more detail, a ciphertext is associated
with (v,p) ∈ X × Zm

p , a secret key is associated with (F,q) ∈ F × Zm
p , and decryption reveals

[F (v) + 〈p,q〉]T . Here, we assume that F is a set of functions belong to unbounded-slot AWS and X
is its input space, but observe that the argument below can be applied to any function classes. For
security, we require that both p,q are hidden. In what follows, we call this functionality AWS with
inner product (AWSw/IP).

We emphasize that while this is also the functionality achieved by AGW [AGW20][Sec 6], the
security achieved by these is quite different: our construction must satisfy partially function hiding
indistinguishability based security, while theirs satisfies simulation based security without function
hiding. Additionally, our construction will support the additional inner product functionality with
respect to unbounded-slot AWS, while AGW support it for only single-slot AWS.

Suppose we have a partially function-hiding FE scheme for the AWSw/IP functionality, denoted
as aFE = (aSetup, aEnc, aKeyGen, aDec). Then, we can construct MIFE that supports functions F :
(X)n → GT specified by (F1, . . . , Fn) ∈ Fn and defined as F (v1, . . . ,vn) = [

∑
i∈[n] Fi(vi)]T from aFE

by following the template of DOT, as described next. Looking ahead, F can be instantiated to capture
either AWS or attribute based AWS to obtain MIFE for AWS or AB-MIFE for AWS respectively.
For instance, for MIFE, we set vi = {xi,j , zi,j}j∈[Ni], F = (f1, . . . , fn) where fi are ABPs, and
F (v1, . . . ,vn) =

∑
i∈[n]

∑
j∈[Ni]

〈fi(xi,j), zi,j〉.

Construction 1 (MIFE for AWS).

Setup(1λ): It outputs EKi = aMSKi ← aSetup(1λ) for i ∈ [n] and MSK = {aMSKi}i.
Enc(EKi,vi): It outputs CTi = aCTi ← aEnc(aMSKi, (vi, 1)).
KeyGen(MSK, (F1, . . . , Fn)): It outputs SK = {aSKi}i∈[n] where r1, . . . , rn ← Zp s.t.

∑
ri = 0 and

aSKi ← aKeyGen(aMSKi, (Fi, ri)).
Dec(CT1, . . . ,CTn,SK): It outputs

∑
i∈[n] aDec(aCTi, aSKi) = [

∑
Fi(vi)]T .

The security proof is essentially the same as in the case of IP-MIFE, discussed above. We use the
following two hybrids: in the first hybrid, the j-th ciphertext for slot i is changed from aCTi[(v

j,β , 1)]

to aCTi[(v
j,0, 1)] while all secret keys are changed from {aSKi[(Fi, ri)]}i∈[n] to {aSKi[(Fi, ri+Fi(v

1,β
i)−

Fi(v
1,0
i))]}i∈[n]. In this step, we leverage the important observation that a constraint similar to Eq.(1.1)

holds in MIFE for the function class we consider, where the final output is the summation of the output
of each slot. Specifically, we have Fi(v

j,β
i)−Fi(v

j,0
i) = Fi(v

1,β
i)−Fi(v

1,0
i) for all i, j. Hence we can use

11

the function-hiding security of aFE to change the second element of the function in secret keys from
ri to ri + Fi(v

1,β
i) − Fi(v

1,0
i) in a indistinguishable manner. In the second hybrid, we bring back all

secret keys to the form {aSKi[(Fi, ri)]}i∈[n]. This transition is possible as the case of IP-MIFE, that
is, we use the fact that the following distributions are equivalent:

{(r1, . . . , rn) : r′1, . . . , r′n ← Zp s.t.
∑

r′i = 0, ri = r′i + Fi(v
1,β
i)− Fi(v

1,0
i)}

{(r1, . . . , rn) : r1, . . . , rn ← Zp s.t.
∑

ri = 0}

which follows from the query condition
∑

i∈[n](Fi(v
1,β
i)− Fi(v

1,0
i)) = 0. At this point, the advantage

of the adversary is 0.

Partial Function Hiding FE for AWS with Inner Product. It remains to construct the single input,
unbounded slot FE scheme for the AWSw/IP functionality which satisfies partial function hiding. As
discussed, the AGW scheme achieves simulation-based security but not function hiding. Our idea of
extending AGW to function-hiding to the multi-challenge setting is to design AGW using a function-
hiding IPFE scheme, which is inspired by the constructions of ABE for ABP and FE for AWS from
(slotted) function-hiding IPFE in [LL20a,DP21].

Recall that AGW first constructs a one-slot scheme that can handle randomization offsets, the
construction of which basically follows the ABE scheme by [Wee17b], and then converts it to an
unbounded-slot scheme in a modular manner. The spirit of our construction follows their blueprint,
that is, we first construct a function-hiding one-slot scheme that can handle randomization offsets
using a function-hiding IPFE scheme, and then convert it to a unbounded-slot scheme. However, we
present the unbounded construction directly since later we will need to extend this to attribute based
FE for AWSw/IP, and the modular construction does not apply to that setting. To see this, note that
in an attribute-based FE for AWSw/IP, an attribute is associated with an unbounded-slot message
and how to deconstruct the attribute for a one-slot message is unclear.

The key building block of [LL20a, DP21] is the arithmetic key garbling scheme (AKGS), which
is specialized for constructing attribute-based encryption schemes. In our work, however, we use the
(extended) partially-garbling scheme (PGS) for ABP [IW14, AGW20] together with function-hiding
IPFE since PGS is more suitable for FE that computes ABPs and AWSs directly. Informally, it uses an
algorithm pgb(f,x, z, δ; t) that takes an ABP f : Zn0

p → Zn1
p , a public string x ∈ Zn0

p , private strings
z ∈ Zn1

p and δ ∈ Zp, and a random tape t ∈ Zt−1
p , and outputs

L = (〈L1t,x
′〉+ δ, 〈L2t,x

′〉, . . . , , 〈Lst,x
′〉, z[1] + 〈Ls+1t,x

′〉, . . . , z[n1] + 〈Ltt,x
′〉)

where x′ = (x, 1), and s, t ∈ N,Li ∈ Z(n0+1)×(t−1)
p are deterministically computed from f . The

algorithm pgb satisfies:

Corrrectness: we can efficiently compute a vector bf,x ∈ Zt
p from f,x such that 〈L,bf,x〉 = 〈f(x), z〉+δ;

Security: we can efficiently simulate the distribution of L over t← Zt−1
p from (f,x, 〈f(x), z〉+ δ).

Then, we can construct FE for AWSw/IP as follows. Let iFE be a function-hiding IPFE scheme as
above.

Construction 2 (FE for AWSw/IP).

Setup(1λ): It outputs (PP,MSK) = (iPP, iMSK)← iSetup(1λ).
Enc(MSK, ({xj , zj}j∈[N],p)): It chooses u1, . . . , uN , w1, . . . , wN ← Zp s.t.

∑
j∈[N] wj = 0. It defines

Xj =

{
(ujx

′
j , zj , wj ,p, 0ρ) (j = 1)

(ujx
′
j , zj , wj , 0

m, 0ρ) (j > 1)

and computes iCTj ← iEnc(iMSK,Xj) for j ∈ [N]. It outputs CT = ({xj , iCTj}j). Note that the
last ρ entries are used only for the security proof.

12

KeyGen(MSK, (f,q)): It chooses r ← Zp, t← Zt−1
p and computes L1, . . . ,Lt from f . It defines

Yj =


(Ljt, 0

n1 , r, q, 0ρ) (j = 1)

(Ljt, 0
n1 , 0, 0m, 0ρ) (1 < j ≤ s)

(Ljt, ej−s, 0, 0
m, 0ρ) (s < j ≤ t)

. (1.2)

where ei is one-hot vector with the i-th element being 1. Finally it computes iSKj ← iKeyGen(iMSK,Yj)
for j ∈ [t] and outputs SK = (f, {iSKj}j).

Dec(CT,SK): It computes [dj,`]T = iDec(iCTj , iSK`) for all j ∈ [N], ` ∈ [t] and bf,x describe above. It
outputs

∑
j∈[N]

∑
`∈[t][bf,x[`] · dj,`]T .

In decryption, it follows that

(dj,1, . . . , dj,t) =

{
pgb(f,xj , zj , rwj + 〈p,q〉;ujt) (j = 1)

pgb(f,xj , zj , rwj ;ujt) (j > 1)

and thus
∑

j∈[N]

∑
`∈[t] bf,x[`] ·dj,` =

∑
j∈[N](〈f(xj), zj〉+ rwj +(j = 1)〈p,q〉) =

∑
j∈[N]〈f(xj), zj〉+

〈p,q〉. Roughly speaking, the partially function-hiding security of this scheme follows from the following
observations:

– Thanks to the function-hiding property of iFE, what the adversary can learn from CT and SK is
{[(dj,1, . . . , dj,t)]T }j∈[N].

– The random tape {[ujt]T }j∈[N] used to compute {dj,`} looks random under the SXDH assumption,
and (dj,1, . . . , dj,t) for each j appear to be generated by a fresh random tape.

– Thanks to the security of the PGS, the only information about ({zj},p,q) contained in (dj,1, . . . , dj,t)
is 〈f(xj), zj〉+ rwj + (j = 1)〈p,q〉.

– Under the SXDH assumption, {[rwj]T }j∈[N] looks random with the constraint that the summa-
tion of these is [0]T . Thus, the only information about ({zj},p,q) in {[(dj,1, . . . , dj,t)]T }j∈[N] is∑
〈f(xj), zj〉+ 〈p,q〉.

We remark that we can easily modify the scheme such that Enc and KeyGen take vectors p and q as
a vector of group elements. We will use this property later in the overview for DDFE for AWS.

Attribute-Based MIFE for AWS. Next, we explain how to make the above MIFE for AWS
construction attribute-based. At a high level, we do the following: (i) Make FE for AWSw/IP Attribute-
Based, (ii) Use the FE to MIFE compiler discussed above to “lift” this to AB-MIFE for AWS. We
expand on these below.

Step 1: Make FE for AWSw/IP Attribute-Based. We extend FE for AWSw/IP such that it incorpo-
rates an ABP predicate which controls decryption, similarly to attribute-based encryption. Specifically,
we add a public vector y to the message in the ciphertext and a public ABP g to the function in the
secret key, and allow decryption only when g(y) = 0.

A naive idea is to define x′
j = (y,xj), z

′
j = (v, zj) and f ′(x′) = (a · g(y), f(x)) where a, v ← Zp and

use {x′
j , z

′
j} and f ′ as inputs for encryption and key generation of FE for AWSw/IP, respectively. Note

that f ′ is an ABP if f, g in turn are ABPs. Then, decryption outputs [
∑

j∈[N](av ·g(y)+ 〈f(xj), zj〉)+
〈p,q〉]T . Since [av · g(y)]T looks random if g(y) 6= 0 under the SXDH assumption, the decryptor can
learn [

∑
j∈[N]〈f(xj), zj〉+ 〈p,q〉]T only when g(y) = 0.

However, this idea does not work since a needs to be provided in the clear in the secret key for
decryption, and this disallows the reliance on the SXDH assumption (recall that we need f and x
to compute bf,x in the decryption of the FE for AWSw/IP). To avoid this, we directly embed a in
Ys+1 so that we can perform decryption without the knowledge of a. Concretely, we define f ′ as
f ′(x′) = (g(y), f(x)) instead of f ′(x′) = (a · g(y), f(x)) and define Ys+1 = (Ls+1, ae1, 0, 0

m, 0ρ) in

13

Eq. (1.2). Then, the decryption result is the same as the naive construction, which follows from the
correctness of the PGS, but f ′ does not contain information about a in this construction.

The proof of function-hiding security of this scheme is inspired from the proof in AGW [AGW20,
Section 7], but with the following key differences: 1) we need to prove IND-based function-hiding
security in the secret-key multi-challenge setting while AGW proves SIM-based security in the public-
key setting (thus not function-hiding); 2) Our scheme is attribute-based while AGW is not. Hence
we need to handle secret key queries that cannot decrypt some challenge ciphertexts, and for such
ciphertexts the function values in β = 0 and β = 1 can be different (β is the challenge bit). Please see
Section 3 for details.

Step 2: AB-MIFE for AWS. Suppose we have an FE scheme aFE where a ciphertext is associated
with (c,v,p) while a secret key is associated with (k, F,q), and decryption reveals [F (v) + 〈p,q〉]T if
P(c, k) = 1 for some predicate P and ⊥ otherwise. We also assume that aFE is partially function-hiding,
so that the ciphertext hides (a part of) v and p, and the secret key hides q.

At first glance, it seems that we can construct AB-MIFE for F ′ from aFE by using Construction 1,
where F ′ consists of functions F ′ : (C × X)n → GT specified by ((k1, F1), . . . , (kn, Fn)) ∈ (K × F)n
and defined as

F ′((c1,v1), . . . , (cn,vn)) =

{
[
∑

i∈[n] Fi(vi)]T P(ci, ki) = 1 for all i
⊥ otherwise

Note that AB-MIFE for AWS corresponds to the case where c = y,v = {xj , zj}j∈[N], k = g where g is
an ABP, P(c, k) = 1 iff g(y) = 0, and F is specified by an ABP f and defined as F (v) =

∑
〈f(xj), zj〉.

We can also observe that aFE for the above setting corresponds to attribute-based FE for AWSw/IP.
However the above construction is insufficient due to the following reason. Let us consider a two-

input scheme where an adversary obtains ciphertexts of (c11,v
1
1) and (c21,v

2
1) for slot 1 (denoted by

CT1
1,CT

2
1), a ciphertext of (c12,v1

2) for slot 2 (denoted by CT1
2), and a secret key for ((k1, F1), (k2, F2))

(denoted by SK) such that P(cj1, k1) = 1 for both j ∈ {1, 2} while P(c12, k2) = 0. Note that CTj
i

denotes the j-th ciphertext for slot i. In this case, the adversary should not obtain any information
about private inputs, since the predicate of slot 2 is never satisfied. However, the adversary can learn
[F1(v

2
1)− F1(v

1
1)]T in this construction (recall that it can learn [F1(v

1
1) + r1]T and [F1(v

2
1) + r1]T by

decryption of aFE in slot 1). This is leakage which we need to avoid.
An important fact is that this leakage is inherent if the adversary additionally obtains a ciphertext

of (c22,v2
2) for slot 2 (denoted by CT2

2) such that P(c22, k2) = 1. This is because it can learn [F1(v
2
1)−

F1(v
1
1)]T by Dec(CT2

1,CT
2
2,SK) − Dec(CT1

1,CT
2
2,SK). By generalizing this observation, it turns out

that such leakage appears only when the adversary obtains an illegitimate secret key, which cannot
decrypt any combinations of ciphertexts that the adversary has. More formally, we say a secret key for
((k1, F1), . . . , (kn, Fn)) is illegitimate if there exists slot i and the adversary does not have a ciphertext
of (ci, ∗) for slot i such that P(ci, ki) = 1. In other words, the above construction is secure in the model
where the adversary never asks for illegitimate secret keys – we refer to this notion as security against
legitimate keys.

Achieving Security against Any Keys. We next show how to remove this restriction and achieve se-
curity against any keys starting with a scheme secure against legitimate keys. Our idea is to encrypt
all secret keys and allow the adversary to decrypt only legitimate secret keys. We achieve such a
construction by leveraging an n-out-of-n secret sharing scheme and an attribute-based encryption
scheme ABE for the dual predicate of P, denoted by P. Note that P : K × C → {0, 1} is defined as
P(k, c) = 1⇔ P(c, k) = 1. We describe this conversion next.

Let wmFE = (wmSetup,wmEnc,wmKeyGen,wmDec) be an AB-MIFE scheme for F ′ secure against
legitimate keys. The setup algorithm generates n master secret keys abMSK1, . . . , abMSKn of ABE and
sets (abMSKi,wmEKi) as an encryption key for slot i. Encryption of (ci,vi) for slot i is the same as
wmEnc except that it appends a secret key of ABE for ci to wmCTi. Key generation of {ki, Fi} runs

14

wmSK← wmKeyGen(wmMSK, {ki, Fi}), secret shares wmSK to σ1, . . . , σn, encrypts σi with attribute
ki to abCTi by ABE, and outputs {abCTi}. In this construction, observe that the adversary cannot
obtain illegitimate secret keys. Recall that in AB-MIFE for AWS, an ABE scheme for P corresponds
to ciphertext-policy ABE (CP-ABE) for ABPs, which was recently proposed by Lin and Luo [LL20b].

We observe that this security against legitimate vs. any keys in the context of AB-MIFE can be
seen as generalization of security against complete vs. incomplete (or zero vs. multiple) queries in the
context of MIFE [AGRW17]. Recall that incomplete queries refers to the case where an adversary
does not make a ciphertext query for some inputs. Therefore, in the context of plain MIFE, all secret
keys become illegitimate if the adversary makes incomplete queries and legitimate otherwise. On the
other hand, in the context of AB-MIFE, whether each secret key become legitimate or illegitimate
crucially depends on which attributes are queried in both ciphertext and secret-key queries, and thus
the situation is much more complex. This is why we need an advanced primitive, namely, ABE to
upgrade the security of AB-MIFE while MIFE secure against complete queries can be upgraded to
that secure against incomplete queries using only symmetric key encryption.

Security under corruptions. The above transformation works only in the secret-key setting where the
adversary cannot corrupt encryption keys. Intuitively, this limitation arises from the fact that there
exist ABPs that never evaluate to 0 (we call such ABPs null ABPs). For the transformation to work
in the corruption model, we require the underlying CP-ABE scheme to have the property that the
adversary cannot decrypt ciphertexts for null ABPs even if it obtains the master secret key. However,
in the only known CP-ABE scheme for ABPs by [LL20b], the master secret key has the ability to
decrypt ciphertexts for null ABPs. Indeed, such a CP-ABE scheme implies witness encryption for NP
relations verifiable in NC1, and seems quite challenging to obtain from standard assumptions.

To circumvent this problem, we introduce wildcards for the access-controlling functionality similarly
to [FFMV23]. In more detail, for the wildcard input ? and all ABPs (including null ABPs) g, we always
have g(?) = 0. In this functionality, the adversary that corrupts i-th input can admissibly generate a
ciphertext for slot i that satisfies any i-th predicate of secret keys, and the leakage of the master secret
key of the CP-ABE scheme does not give any additional information to the adversary. As observed
in [FFMV23], although multi-input ABE with corruptions in general implies witness encryption, their
constructions do not yield witness encryption because of the use of wildcards. The same applies to our
work as well.

To allow our AB-MIFE scheme to support wildcards, the underlying AB-FE scheme for AWSw/IP
also needs to have the wildcard functionality. This modification is quite simple: just setting v = 0 (see
step 1 above) in encryption with the wildcard attribute suffices.

Comparison with [NPP22]. Very recently, Nguyen, Phan and Pointcheval proposed an attribute-
based MCFE scheme for inner product (see Table 3 for precise functionality). Their scheme is in the
weaker MCFE model where each label can be used only once per input, and does not imply standard
MIFE for the same function class. In [NPP22, Remark 16], they informally state that we can apply
1) the technique in [CDG+18b] to convert their scheme into the MCFE in the stronger notion and 2)
All-or-Nothing Encapsulation [CDSG+20] to achieve security against incomplete queries. We believe
that both claims are false.

Regarding item 1, as we discussed previously, the technique in [CDG+18b] to remove the one-time
restriction requires ciphertext homomorphism of the underlying scheme. However, their underlying
single client scheme is not ciphertext homomorphic, and thus how to use the technique in [CDG+18b]
is unclear. Regarding item 2, as discussed above, in the context of the attribute-based setting, All-or-
Nothing Encapsulation would be insufficient to achieve full-fledged security in the AB-MIFE setting,
which can handle only the issue of complete vs. incomplete queries in the non-attribute-based setting.
Hence, their result does not appear to imply AB-MIFE scheme as claimed.

15

Multi-Client FE for AWS. To construct MCFE for AWS, we follow the blueprint by [AGT21]
where they construct an MCFE scheme for inner products from a function-hiding IPFE scheme.
Roughly speaking, we replace the function-hiding IPFE scheme in their scheme with our FE scheme
for AWSw/IP. However, following this approach leads to obstacles in the security proof, to handle
which, we need to modify their blueprint. To see this, first consider the MCFE construction for AWS
that is obtained by applying their blueprint straightforwardly to our setting. Let H : {0, 1}∗ → G1 be
a hash function and aFE be a FE scheme for AWSw/IP. The scheme is given as follows:

Construction 3 (Candidate MCFE for AWS).

Setup(1λ): It outputs EKi = aMSKi ← aSetup(1λ) for i ∈ [n] and MSK = {aMSKi}i.
Enc(EKi,vi, L): It outputs CTi = aCTi ← aEnc(aMSKi, (vi, [(vL, 0)]1)) where [vL]1 = H(L).
KeyGen(MSK, (F1, . . . , Fn)): It outputs SK = {aSKi}i∈[n] where r1, . . . , rn ← Zp s.t.

∑
ri = 0 and

aSKi ← aKeyGen(aMSKi, (Fi, [(ri, 0)]2)).
Dec(CT1, . . . ,CTn,SK): It outputs

∑
i∈[n] aDec(aCTi, aSKi) = [

∑
Fi(vi)]T .

Let us try to prove the security of this MCFE candidate similarly to Construction 1. In what follows, we
denote aEnc(aMSKi, (v, [p]1)) and aKeyGen(aMSKi, (F, [q]2)) by aCTi[v,p] and aSKi[F,q], respectively.
To see why the security proof does not work in this construction, considering the simple case suffices
where an adversary queries only one challenge ciphertext for each slot after which it makes secret-key
queries adaptively. In the original game, the adversary is given aCTi[v

β
i , (vL, 0)] for a challenge message

(v0
i ,v

1
i , L) and {aSKi[Fi, (ri, 0)]}i∈[n] for a secret key of (F1, . . . , Fn). In the first hybrid, the ciphertext

for slot i is changed to aCTi[v
0, (0, 1)] while all secret keys are changed to {aSKi[Fi, (ri, vLri+Fi(v

β
i)−

Fi(v
0
i))]}i∈[n]. The indistinguishability of the original game and the hybrid follows from the partially

function-hiding security of aFE. The next step will be to change [vLri]2 to [r̃i]2 where r̃i is a random
element in Zp such that

∑
r̃i = 0. If we can show this indistinguishability, r̃i absorbs the term

Fi(v
β
i)−Fi(v

0
i) and we can conclude the proof, but this is not the case. This is because the adversary

can compute [vL]1 by the hash function, and thus we cannot use the SXDH assumption in G2.
We solve this by modifying Construction 3 as follows: Let PRF : {0, 1}∗ → Zp be a pseudorandom

function with a key space K.

Construction 4 (MCFE for AWS).

Setup(1λ): It chooses Ki,j ← K for i, j ∈ [n], i < j, and sets Ki,j = Kj,i for j < i. It outputs
EKi = (aMSKi ← aSetup(1λ), {Ki,j}i 6=j) for i ∈ [n] and MSK = {aMSKi}i.

Enc(EKi, xi, L): It outputs CTi = aCTi ← aEnc(aMSKi, (x, [(vL,i, 0)]1)) where vL,i =
∑

j∈[n]\{i}(−1)j<iPRFKi,j (L).
KeyGen(MSK, (f1, . . . , fn)): It outputs SK = {aSKi}i∈[n] where r ← Zp and aSKi ← aKeyGen(aMSKi,

(fi, [(r, 0)]2)).
Dec(CT1, . . . ,CTn,SK): It outputs

∑
i∈[n] aDec(aCTi, aSKi) = [

∑
fi(xi)]T .

This construction is inspired by the MIFE scheme in [AGRW17], in which the randomizing term vi in
ciphertexts are generated in the setup phase (not by a PRF). Note that this is enough for MIFE, but in
our case we extend the technique to generate the term vL,i for each label on the fly via PRF to handle
an exponentially large number of labels. Observe that

∑
i∈[n] vL,i = 0 for all L and correctness holds.

Such a usage of PRF in MCFE was first introduced by [ABG19], but again their MCFE construction
requires ciphertext homomorphism and is not applicable to AWS functionality. This is why we devise
a new construction based on DOT combining ideas from [AGRW17,ABG19].

In this construction, the above proof strategy works. At a high level, this is due to the following
reasons:

– {vL,i} looks random with the constraint
∑

vL,i = 0 for each label if the PRF is secure.
– In contrast to Construction 3, the adversary cannot compute vL,i publicly.

In fact, Construction 4 is a secure MCFE scheme for AWS. For a detailed description, we refer the
reader to Section 5.

16

Dynamic Decentralized FE for AWS. Given an MCFE scheme for AWS, we now convert it to
DDFE using the template provided by [AGT21]. The high-level idea of the blueprint is to allow parties
in the system to generate an independent MCFE instance in Construction 4 for each user set U by
using a PRF on the fly. First, each party joins the system dynamically by generating a key Ki of a
pseudorandom function (PRF) as a master secret key. In encryption and key generation for party set U ,
party i ∈ U generates aMSKi,U = aSetup(1λ;PRFKi(U)), which is unique to (i,U). For key generation
of ({fi},U), party i computes a common random element ri,U = H({fi},U) by a hash function and
outputs aSKi,U as KeyGen in Construction 4. In encryption of (xi,U , L), party i generates Ki,j via non-
interactive key exchange, and outputs aCTi,U in the same manner as Enc in Construction 4. Observe
that aCTi,U/{aSKi,U}i∈U is a valid ciphertext/secret key of the MCFE scheme in Construction 4 with
respect to U . For more details, please see Section 6.

We provide an overview of our constructions in Figure 2.

Fig 2. Outline of our constructions. For the implication to MCFE and DDFE, the underlying construction for
AWSw/IP need not be attribute based.

2 Preliminaries

In this section, we give definitions needed for this paper.

Notations. We use [n] to denote the set {1, . . . , n}. For vector v, v[i] denotes the i-th element
of v. For vectors v1, . . . ,vn, (v1, . . . ,vn) denotes the vector concatenation as row vectors regardless
of whether each vi is a row or column vector. For a matrix A = (aj,`)j,` over Zp, [A]i denotes a
matrix over Gi whose (j, `)-th entry is g

aj,`

i , and we use this notation for vectors and scalars similarly.
We use addition for the group operation in every group in bilinear groups. For vectors a ∈ Zn

p and
b ∈ Gn where G is a cyclic group of order p, we abuse the notation of inner product and denote∑

i∈[n] a[i][b[i]] by 〈a, [b]〉. For a matrix M ∈ Za×b
p and vectors a ∈ Za

p,b ∈ Zb
p, we denote a vector m

such that 〈a⊗ b,m〉 = a>Mb by vec(M).

2.1 Computation Models

Definition 2.1 (Arithmetic Branching Programs (ABPs)). An arithmetic branching program
f : Zn0

p → Zp is defined by a prime p, a directed acyclic graph (V,E), two special vertices v0, v1 ∈ V ,
and a labeling function σ : E → FAffine, where FAffine consists of all affine functions g : Zn0

p → Zp. The

17

size of f is the number of vertices |V |. Given an input x ∈ Zn0
p to the ABP, we can assign a Zp element

to edge e ∈ E by σ(e)(x). Let P be the set of all paths from v0 to v1. Each element in P can be
represented by a subset of E. The output of the ABP on input x is defined as

∑
E′∈P

∏
e∈E′ σ(e)(x).

We can extend the definition of ABPs for functions f : Zn0
p → Zn1

p by evaluating each output in a
coordinate-wise manner and denote such a function class by FABP

n0,n1
.

Note that we can convert any boolean formula, boolean branching program or arithmetic formula
to an arithmetic branching program with a constant blow-up in the representation size. Thus, ABPs
are a stronger computational model than all of the above.

Notations. We use [n] to denote the set {1, . . . , n}. For vector v, v[i] denotes the i-th element
of v. For vectors v1, . . . ,vn, (v1, . . . ,vn) denotes the vector concatenation as row vectors regardless
of whether each vi is a row or column vector. For a matrix A = (aj,`)j,` over Zp, [A]i denotes a
matrix over Gi whose (j, `)-th entry is g

aj,`

i , and we use this notation for vectors and scalars similarly.
We use addition for the group operation in every group in bilinear groups. For vectors a ∈ Zn

p and
b ∈ Gn where G is a cyclic group of order p, we abuse the notation of inner product and denote∑

i∈[n] a[i][b[i]] by 〈a, [b]〉. For a matrix M ∈ Za×b
p and vectors a ∈ Za

p,b ∈ Zb
p, we denote a vector m

such that 〈a⊗ b,m〉 = a>Mb by vec(M).

2.2 Computation Models

Definition 2.2 (Arithmetic Branching Programs (ABPs)). An arithmetic branching program
f : Zn0

p → Zp is defined by a prime p, a directed acyclic graph (V,E), two special vertices v0, v1 ∈ V ,
and a labeling function σ : E → FAffine, where FAffine consists of all affine functions g : Zn0

p → Zp. The
size of f is the number of vertices |V |. Given an input x ∈ Zn0

p to the ABP, we can assign a Zp element
to edge e ∈ E by σ(e)(x). Let P be the set of all paths from v0 to v1. Each element in P can be
represented by a subset of E. The output of the ABP on input x is defined as

∑
E′∈P

∏
e∈E′ σ(e)(x).

We can extend the definition of ABPs for functions f : Zn0
p → Zn1

p by evaluating each output in a
coordinate-wise manner and denote such a function class by FABP

n0,n1
.

Note that we can convert any boolean formula, boolean branching program or arithmetic formula
to an arithmetic branching program with a constant blow-up in the representation size. Thus, ABPs
are a stronger computational model than all of the above.

2.3 Basic Cryptographic Notions

Definition 2.3 (Bilinear Groups). Let {Gλ}λ∈N be a family of bilinear groups. Bilinear groups
Gλ=(p,G1, G2, GT , g1, g2, e) are specified by a prime p, cyclic groups G1, G2, GT of order p, generators
g1 and g2 of G1 and G2 respectively, and a bilinear map e : G1 ×G2 → GT , which has two properties.

– (Bilinearity): ∀h1 ∈ G1, h2 ∈ G2, a, b ∈ Zp, e(h
a
1 , h

b
2) = e(h1, h2)

ab.
– (Non-degeneracy): For g1 and g2, gT = e(g1, g2) is a generator of GT .

In what follows, we omit the index λ from Gλ and abuse notation by denoting a family of bilinear
groups {Gλ}λ∈N also by G if it is clear in the context.

Definition 2.4 (Dj,k-MDDH Assumption [EHK+17]). Let {G} be a family of bilinear groups.
For j > k, let Dj,k be a matrix distribution over matrices in Zj×k

p , which outputs a full-rank matrix
with overwhelming probability. We can assume that, wlog, the first k rows of a matrix chosen from
Dj,k form an invertible matrix. We consider the following distribution: A ← Dj,k, m ← Zk

p, k0 =

Am, k1 ← Zj
p, Pi,β = (G, [A]i, [kβ]i). We say that the Dj,k-MDDH assumption holds with respect to

{G} if, for any PPT adversary A,

Adv
Dj,k-MDDH
A = max

i∈{1,2}
|Pr[1← A(Pi,0)]− Pr[1← A(Pi,1)]| ≤ negl(λ).

18

In what follows, we denote Dk+1,k by Dk. Note that the well-known k-Lin assumption can be captured
as the Dk-MDDH assumption.
Uniform Distribution. Let Uj,k be a uniform distribution over Zj×k

p . Then, the following holds with
tight reductions: Dk-MDDH⇒ Uk-MDDH⇒ Uj,k-MDDH. We denote Dk-MDDH by MDDHk.
Random Self-Reducibility. We can obtain arbitrarily many instances of the Dj,k-MDDH prob-
lem from a single instance. For any n ∈ N, we define the following distribution: A ← Dj,k, M ←
Zk×n
p , K0 = AM, K1 ← Zj×n

p , Pi,β = (G, [A]i, [Kβ]i). The n-fold Dj,k-MDDH assumption is simi-
larly defined to the Dj,k-MDDH assumption. Then, the n-fold Dj,k-MDDH assumption is implied by
the Dj,k-MDDH assumption with security loss of min{n, j − k}.

Definition 2.5 (Pseudorandom functions (PRFs)). A pseudorandom function (PRF) family F =
{PRFK}K∈K with a key space K, a domain X , and a range Y is a function family that consists of
functions PRFK : X → Y. Let R be a set of functions consisting of all functions whose domain and
range are X and Y respectively. A PRF family F is said to be secure if for any PPT adversary A, the
following condition holds,

|Pr[APRFK(·)(1λ) = 1]− Pr[AR(·)(1λ) = 1]| ≤ negl(λ),

where K ← K and R←R.

Definition 2.6 (Secret Sharing Scheme). A (n out of n) secret sharing scheme consists of Share
and Rec.

Share(s, n): It takes a secret s ∈ {0, 1}m and a number of shares n and outputs shares σ1, . . . , σn ∈
{0, 1}m.

Rec(σ1, . . . , σn): It takes shares σ1, . . . , σn ∈ {0, 1}m and outputs a bit string s′.

A secret sharing scheme has two properties.

Correctness: For all n,m ∈ N, s ∈ {0, 1}m,

Pr[Rec(σ1, . . . , σn) = s : σ1, . . . , σn ← Share(s, n)] = 1.

Security: For all n,m ∈ N, s ∈ {0, 1}m, S ([n], the following distributions are identical:

{{σi}i∈S : σ1, . . . , σn ← Share(s, n)} and {{σi}i∈S : σ1, . . . , σn ← {0, 1}m}

Definition 2.7 (Non-interactive key exchange (NIKE)). A NIKE scheme for shared key space
K consists of the three algorithms.

Setup(1λ)→ PP: It takes a security parameter 1λ and outputs a public parameter PP.
KeyGen(PP)→ (PK,SK): It takes PP and outputs a public key PK and the corresponding secret key

SK.
SharedKey(PK,SK)→ K: It takes PK and SK and deterministically outputs a shared key K ∈ K.

Correctness. A NIKE scheme is correct if, for all λ ∈ N, we have

Pr

Ki,j = Kj,i :

PP← Setup(1λ)

(PKi,SKi), (PKj ,SKj)← KeyGen(PP)

Ki,j = SharedKey(PKi,SKj)

Kj,i = SharedKey(PKj ,SKi)

 = 1.

19

Security. We say a NIKE scheme is IND-secure if, for all stateful PPT adversaries A, we have

Pr


β = β′ :

β ← {0, 1}, PP← Setup(1λ)

S ← A(PP)
(PKi,SKi)← KeyGen(PP)

CS, (i′, j′)← A({PKi}i∈S) where i′, j′ ∈ S\CS and i′ 6= j′

K0
i′,j′ = SharedKey(PKi′ ,SKj′), K

1
i′,j′ ← K

β′ ← A({SKi}i∈CS ,K
β
i′,j′)


≤ 1/2 + negl(λ).

Definition 2.8 (Partial Garbling Scheme for FABP
n0,n1

). We use the following partial garbling
scheme for FABP

n0,n1
[IW14] (please see Definition 2.2) for the construction of our FE schemes. A partial

garbling scheme for FABP
n0,n1

consists of the four algorithms. Note that lgen and rec are deterministic
algorithms while pgb and pgb∗ are probabilistic algorithms.
lgen(f): It takes f ∈ FABP

n0,n1
and outputs L1, . . . ,Lt ∈ Z(n0+1)×(t−1)

p where t depends on f .
pgb(f,x, z; t): Let x′> = (x, 1). It takes f ∈ FABP

n0,n1
,x ∈ Zn0

p , z ∈ Zn1
p , and a random tape t ∈ Zt−1

p . It
then outputs

(x′>L1t, . . . ,x
′>Lst, z[1] + x′>Ls+1t, . . . , z[n1] + x′>Ltt) ∈ Zt

p

where s = t− n1 and (L1, . . . ,Lt) = lgen(f).
pgb∗(f,x, µ; t): It takes µ ∈ Zp and f,x, t as above and outputs

(x′>L1t+ µ,x′>L2t, . . . ,x
′>Ltt) ∈ Zt

p

where (L1, . . . ,Lt) = lgen(f).
rec(f,x): It takes f,x ∈ Zn0

p and outputs df,x ∈ Zt
p.

The concrete description of lgen, rec that satisfy the following properties is found in [AGW20,
Appendix A]. We slightly modify the format of the output of lgen from [AGW20] for convenience in
our construction, but note that they are essentially the same.
Correctness. The garbling scheme is correct if for all f ∈ FABP

n0,n1
,x ∈ Zn0

p , z ∈ Zn1
p , t ∈ Zt−1

p , we have

〈pgb(f,x, z; t), rec(f,x)〉 = 〈f(x), z〉.

Security. The garbling scheme is secure if for all f ∈ FABP
n0,n1

,x ∈ Zn0
p , z ∈ Zn1

p , the following
distributions are statistically close:

pgb(f,x, z; t) and pgb∗(f,x, 〈f(x), z〉; t)

where the random tape is chosen over t← Zt−1
p .

Extension of Partial Garbling Scheme. We can construct an additional partial garbling algorithm
pgb+ with the following properties [AGW20, Appendix A].
pgb+(f,x, z, δ; t): Let x′> = (x, 1). It takes f ∈ FABP

n0,n1
,x ∈ Zn0

p , z ∈ Zn1
p , δ ∈ Zp, and a random tape

t ∈ Zt−1
p . It then outputs

(x′>L1t+ δ ,x′>L2t, . . . ,x
′>Lst, z[1] + x′>Ls+1t, . . . , z[n1] + x′>Ltt) ∈ Zt

p

where s = t− n1 and (L1, . . . ,Lt) = lgen(f).

Correctness. For all f ∈ FABP
n0,n1

,x ∈ Zn0
p , z ∈ Zn1

p , t ∈ Zt−1
p , we have

〈pgb+(f,x, z, δ; t), rec(f,x)〉 = 〈f(x), z〉+ δ.

Security. For all f ∈ FABP
n0,n1

,x ∈ Zn0
p , z ∈ Zn1

p , the following distributions are statistically close:

pgb+(f,x, z, δ; t) and pgb∗(f,x, 〈f(x), z〉+ δ; t)

where the random tape is chosen over t← Zt−1
p .

Linearlity. Observe that pgb+ is affine in z[1], t, δ, and pgb∗ is affine in µ.

20

2.4 Variants of Functional Encryption

Definition 2.9 (Attribute-Based Encryption (ABE)). Let P : X × Y → {0, 1} be a predicate
where X and Y denote ciphertext-attribute and key-attribute spaces. An attribute-based encryption
(ABE) scheme for a predicate family P consists of four algorithms:

Setup(1λ): It takes a security parameter 1λ, and outputs a public key PK and a master secret key
MSK. The other algorithms implicitly take PK.

Enc(x,M): It takes PK, an attribute x ∈ X and a message M ∈M as inputs, and outputs a ciphertext
CT. (Note that we let M be specified in PK.)

KeyGen(MSK, y): It takes PK,MSK, and an attribute y ∈ Y as inputs, and outputs a secret key SK.
Dec(CTx,SKy): It takes PK,CT and SK as inputs, and outputs a message M ′ or a symbol ⊥.

Correctness. An ABE scheme is correct if it satisfies the following condition. For all λ ∈ N, x ∈ X ,
y ∈ Y such that P(x, y) = 1, and M ∈M, we have

Pr

M = M ′ :

(PK,MSK)← Setup(1λ, κ)

CT← Enc(x,M)

SK← KeyGen(MSK, y)

M ′ = Dec(CT,SK)

 = 1.

Security. An ABE scheme is selectively secure in the multi-challenge setting if it satisfies the following
condition. That is, the advantage of A defined as follows is negligible in λ for all stateful PPT adversary
A:

AdvABEA (λ) = Pr

β = β′ :

β ← {0, 1}
(PK,MSK)← Setup(1λ, κ)

{xj
j ,M

k
0 ,M

j
1}j∈[qc] ← A(PK)

CTj ← Enc(xj ,M j
β) for j ∈ [qc]

β′ ← AKeyGen(MSK,·)({CTj}j∈[qc])

−
1

2

where all {y`}`∈[qk] on which A queries KeyGen must satisfy P(xj , y`) = 0.

Definition 2.10 (Secret-Key Functional Encryption). Let F be a function family such that,
for all f ∈ F , f : X → Z. A secret-key functional encryption (SK-FE) scheme for F consists of four
algorithms.

Setup(1λ): It takes a security parameter 1λ and outputs a public parameter PP, and a master secret
key MSK. The other algorithms implicitly take PP.

Enc(MSK, x): It takes MSK and x ∈ X and outputs a ciphertext CT.
KeyGen(MSK, f): It takes MSK and f ∈ F , and outputs a secret key SK.
Dec(CT,SK): It takes CT and SK, and outputs a decryption value d ∈ Z or a symbol ⊥.

Correctness. An SK-FE scheme is correct if it satisfies the following condition. For all λ ∈ N, x ∈
X , f ∈ F , we have

Pr

f(x) = Dec(CT,SK) :

(PP,MSK)← Setup(1λ)

CT← Enc(MSK, x)

SK← KeyGen(MSK, f)

 = 1.

Security. We consider the case where each x ∈ X consists of a public part xpub and a private part
xpriv, i.e., x = (xpub, xpriv), and each f ∈ F consists of a public part fpub and a private part fpriv, i.e.,

21

f = (fpub, fpriv). An SK-FE scheme is selectively partially function-hiding if for every stateful PPT
adversary A, there exists a negligible function negl such that for all λ ∈ N, the following holds

Pr

β = β′ :

β ← {0, 1}
(PP,MSK)← Setup(1λ)

β′ ← AQEncβ(),QKeyGenβ()(PP)

 ≤ 1

2
+ negl(λ)

where xj,β = (xj
pub, x

j,β
priv), fβ = (fpub, f

β
priv), QEnc

β(x0, x1) returns Enc(MSK, xβ), and QKeyGenβ(f0, f1)

returns KeyGen(MSK, fβ). The admissible adversary’s queries must satisfy the following condition:

1. A cannot query QEncβ after querying QKeyGenβ even once.
2. If (x0, x1) is included in the query to QEncβ and (f0, f1) is queried to QKeyGenβ , then f0(x0) =

f1(x1).

3 Attribute-Based FE for Attribute-Weighted Sums with Inner Product

In this section, we present an attribute-based FE for attribute-weighted sums with inner product (AB-
FE for AWSw/IP). In Appendix B, we show how it can be captured using the notation of MPFE. We
will need the following definitions.

Definition 3.1 (Inner Product Functional Encryption). Inner product functional encryption
(IPFE) is a class of secret-key functional encryption (SK-FE) that supports the following functionality.
Let G be bilinear groups. Let X = Gm

1 be a message space. Let F = Gm
2 be a family of functions,

where f = [c]2 ∈ F represents the function f : X → GT defined as f([x]1) = [〈x, c〉]T where x, c ∈ Zm
p

are both private inputs.

A function-hiding IPFE scheme can be constructed from the MDDH assumption [Tom19, Appendix
A].

Definition 3.2 (FE for AWSw/IP). An FE scheme for attribute-weighted sums with inner product
(AWSw/IP) is a class of SK-FE that supports the following functionality. Let G be bilinear groups of
order p. Let X =

⋃
i∈N(Zn0

p ×Zn1
p)i×Gm

1 be a message space. Let F = FABP
n0,n1

×Gm
2 (see Definition 2.2

for FABP
n0,n1

) be a family of functions, where f ′ = (f, [q]2) ∈ F represents the function f ′ : X → GT

defined as
f ′(({xi, zi}i∈[N], [p]1)) = [

∑
i∈[N]

〈f(xi), zi〉+ 〈p,q〉]T

where {xi}, f are public elements while {zi}, [p]1, [q]2 are private elements.

Definition 3.3 (AB-FE for AWSw/IP). An attribute-based FE scheme for attribute-weighted
sums with inner product (AB-FE for AWSw/IP) is a class of SK-FE that supports the following
functionality. Let G be bilinear groups. Let X = (Zn′

0
p ∪ {?})×

⋃
i∈N(Zn0

p × Zn1
p)i ×Gm

1 be a message
space. Let F = FABP

n′
0,1
×FABP

n0,n1
×Gm

2 be a family of functions, where f = (g, h, [q]2) ∈ F represents the
function f : X → GT defined as

f((y, {xj , zj}j∈[N], [p]1)) =

{
[
∑

j∈[N]〈h(xj), zj〉+ 〈p,q〉]T g(y) = 0 ∨ y = ?

⊥ g(y) 6= 0

where y, {xi}, g, h are public elements while {zi}, [p]1, [q]2 are private elements. For notational conve-
nience, we define g(?) = 0 for all ABPs g (even for ABPs g such that g(y) 6= 0 for all y ∈ Zn′

0
p).

Remark 3.1. As explained in the introduction, we need the wildcard functionality to make our AB-
MIFE scheme secure in the corruption model. This is why we define the functionality of AB-FE for
AWSw/IP such that it also supports wildcards, which we will use to construct our our AB-MIFE
scheme as a building block.

22

3.1 Construction

Let k be the parameter for the MDDHk assumption. Let iFE = (iSetup, iEnc, iKeyGen, iDec) be a
function-hiding IPFE scheme with the vector length being k(n′

0+n0+3)+n1+2m+2. The last m+2
elements are used for only the security proof. Let (lgen, pgb, pgb+, pgb∗, rec) be a partially garbling
scheme for ABPs (Definition 2.8). Our AB-FE scheme for AWSw/IP is given in Figure 3.

Setup(1λ): It runs iPP, iMSK← iSetup(1λ) and outputs (PP,MSK) = (iPP, iMSK).
Enc(MSK, (y′, {xj , zj}j∈[N], [p]1)): It samples u1, . . . ,uN ,w1, . . . ,wN−1 ← Zk

p and sets wN = −
∑

j∈[N−1] wj .
If y′ = ?, it sets y = 0n

′
0 and v = 0k, otherwise it sets y = y′ and v← Zk

p. Then, it defines

χ>
j = (y,xj , 1), Xj =

{
(χj ⊗ uj , zj ,wj ,v, p, 0m+2) (j = 1)

(χj ⊗ uj , zj ,wj , 0
k, 0m, 0m+2) (j > 1)

and computes iCTj ← iEnc(iMSK, [Xj]1) for all j ∈ [N]. It outputs CT = (y, {xj , iCTj}j∈[N]).
KeyGen(MSK, (g, h, [q]2)): It samples r, s ← Zk

p and defines an ABP φ : Zn′
0+n0

p → Z1+n1
p as φ((y,x)) =

(g(y), h(x)) for y ∈ Zn′
0

p ,x ∈ Zn0
p . It computes L1, . . . ,Lt ← lgen(φ) and T← Z(t−1)×k

p and defines

Yj =


(vec(LjT), 0n1 , r, 0k,q, 0m+2) (j = 1)

(vec(LjT), 0n1 , 0k, 0k, 0m, 0m+2) (1 < j ≤ s)

(vec(LjT), 0n1 , 0k, s, 0m, 0m+2) (j = s+ 1)

(vec(LjT), ej−s−1, 0
k, 0k, 0m, 0m+2) (s+ 1 < j)

where s is the parameter of the partial garbling scheme defined in Definition 2.8. It computes iSKj ←
iKeyGen(iMSK, [Yj]2) for all j ∈ [t] and outputs SK = (φ, {iSKj}j∈[t]).

Dec(CT,SK): It parse CT, SK as (y, {xj , iCTj}j∈[N]) and (φ, {iSKj}j∈[t]), respectively. It outputs ⊥ if g(y′) 6= 0.
Otherwise, it computes [dj,`]T = iDec(iCTj , iSK`) for j ∈ [N], ` ∈ [t] and outputs

[d]T =
∑
j∈[N]

〈[dj]T , rec(φ, (y,xj))〉.

where dj = (dj,1, . . . , dj,t).

Fig 3. Attribute-Based FE for AWSw/IP

Correctness and Security. In decryption, due to the correctness of iFE, we have

dj =

{
pgb+(φ, (y,xj), (〈s,v〉, zj), 〈r,wj〉+ 〈p,q〉;Tuj) (j = 1)

pgb+(φ, (y,xj), (0, zj), 〈r,wj〉 ;Tuj) (j > 1)

where v = 0 if y′ = ?. Thanks to the correctness of the partial garbling scheme, we have

〈dj , rec(φ, (y,xj))〉 =

{
〈s,v〉g(y) + 〈h(xj), zj〉+ 〈r,wj〉+ 〈p,q〉 (j = 1)

〈h(xj), zj〉+ 〈r,wj〉 (j > 1)

In the above, we use the fact that φ((y,xj)) = (g(y), h(xj)) ∈ Z1+n1
p . Hence d =

∑
j∈[N]〈h(xj), zj〉+

〈p,q〉 if g(y′) = 0, since
∑

j∈[N]〈r,wj〉 = 0.

Remark 3.2. A partially-hiding FE scheme for AWSw/IP can be obtained from a partially-hiding
AB-FE scheme for AWSw/IP by setting n′

0 = 0 and g as the constant function that outputs 0.

23

We argue security via the following theorem.
Theorem 3.1. If iFE is function-hiding, the partial garbling scheme is secure, and the MDDHk as-
sumption holds in G, then the proposed AB-FE scheme for AWSw/IP is partially function-hiding as
per Definition 2.10.

Proof. We prove the theorem via a series of hybrid games Hβ
` for ` ∈ [qc] where qc is the number

of ciphertext queries by the adversary. We show that Hβ
s ≈c Hβ

1 ≈c · · · ≈c Hβ
qc ≈c Hβ

f , where Hβ
s for

β ∈ {0, 1} is the original security game. Intuitively, in Hβ
` , we program the vectors Xj and Yj in the

ciphertexts and secret keys queried by the adversary such that the challenge ciphertexts in the first
` queries decrypt to

∑
〈h(xj), z

0
j 〉 + 〈p0,q0〉 while the rest of ciphertexts decrypts to

∑
〈h(xj), z

β
j 〉 +

〈pβ ,qβ〉. Then, in the last hybrid, the adversary obtains no information about β, and we can conclude
the proof.

Recall that in Hβ
s the challenger replies

Enc(MSK, (y′, {xj , z
β
j }j∈[N], [p

β]1)) for QEncβ(y′, {xj , z
0
j , z

1
j}j∈[N], [p

0]1, [p
1]1)

KeyGen(MSK, (g, h, [qβ]2)) for QKeyGenβ(g, h, [q0]2, [q
1]2)

where Enc and KeyGen work as specified in Fig 3. The hybrid Hβ
` is the same as Hβ

s except the way of
defining Xj in Enc and Yj in KeyGen in the replies for ciphertext and secret-key queries. Specifically,
Xj in the `′-th ciphertext query is defined as

X`′

j =

{
(χj ⊗ uj , z

0
j ,wj ,v, 0m,p0, 02) (j = 1)

(χj ⊗ uj , z
0
j ,wj , 0

k, 0m, 0m+2) (j > 1)
(`′ ≤ `)

X`′

j =

{
(χj ⊗ uj , z

β
j ,wj ,v, pβ , 0m+2) (j = 1)

(χj ⊗ uj , z
β
j ,wj , 0

k, 0m, 0m+2) (j > 1)
(`′ > `)

and Yj for all queries are defined as

Yj =


(vec(LjT), 0n1 , r, 0k,qβ , q0, 02) (j = 1)

(vec(LjT), 0n1 , 0k, 0k, 0m, 0m+2) (1 < j ≤ s)

(vec(LjT), 0n1 , 0k, s, 0m, 0m+2) (j = s+ 1)

(vec(LjT), ej−s−1, 0
k, 0k, 0m, 0m+2) (s+ 1 < j)

The hybrid Hβ
f is the same as Hβ

qc except that Y1 for all queries are defined as

Y1 = (vec(L1T), 0n1 , r, 0k, 0m,q0, 02)

Note that the advantage of the adversary is 0 in Hβ
f since it does not obtain the information of β.

Hence, the theorem holds from Lemmata 3.1 and 3.2. ut

Lemma 3.1. Hβ
qc ≈c H

β
f if iFE is function-hiding.

Proof. Observe that in Hβ
qc , Xj is defined as

Xj =

{
(χj ⊗ uj , z

0
j ,wj ,v, 0m,p0, 02) (j = 1)

(χj ⊗ uj , z
0
j ,wj , 0

k, 0m, 0m+2) (j > 1)

for all queries to QEnc. Therefore, for all queries to QEnc and QKeyGen, we have

〈Xj ,Y1〉 = χ>
j L1Tuj + 〈wj , r〉+ 〈p0,q0〉

in both Hβ
qc and Hβ

f . Hence, the indistinguishability of Hβ
qc and Hβ

f readily follows from the function-
hiding security of iFE. ut

24

Lemma 3.2. Let Hβ
0 = Hβ

s . For all ` ∈ [qc], we have Hβ
`−1 ≈c H

β
` .

Proof. What this lemma asserts is that for the `-th ciphertext CT` and any secret key SK, the
cases where decryption of these reveals γβ =

∑
〈h(x`), z`,β〉 + 〈p`,β ,qβ〉 or ⊥ and where it reveals

γ0 =
∑
〈h(x`), z`,0〉 + 〈p`,0,q0〉 or ⊥ are indistinguishable. Note that γβ = γ0 = γ due to the query

condition. As in [AGW20], our goal is the hybrid where CT` is simulatable without zβ ,p`,β , and SK
is simulatable from γ. At this point, we can use the equality γβ = γ0 to switch the β-system to the
0-system through the following two equivalent hybrids.

Hβ
`,1: This hybrid is the same as Hβ

`−1 except that Xj in the `-th ciphertext query is defined as

X`
j =

{
(0n0k, 0n1 , 0k, 0k, 0m, 0m, 1, 0) (j = 1)

(χj ⊗ uj , 0
n1 ,wj , 0

k, 0m, 0m, 0, 0) (j > 1)

and Yj for all queries are defined as

Yj =


(vec(LjT), 0n1 , r, 0k,qβ , q0, dj , 0) (j = 1)

(vec(LjT), 0n1 , 0k, 0k, 0m, 0m, dj , 0) (1 < j ≤ s)

(vec(LjT), 0n1 , 0k, s, 0m, 0m, dj , 0) (j = s+ 1)

(vec(LjT), ej−s−1, 0
k, 0k, 0m, 0m, dj , 0) (s+ 1 < j)

where t̃← Zt−1
p , ṽ ← Zp (if y′` 6= ?), ṽ = 0 (if y′` = ?) and

(d1, . . . , dt) = pgb∗(φ, (y`,x`
1), ṽg(y

`) +
∑

j∈[N(`)]

〈h(x`
j), z

`,β
j 〉+ 〈p

`,β ,qβ〉+ 〈w`
1, r〉; t̃). (3.1)

Hβ
`,2: This hybrid is the same as Hβ

`,1 except that (d1, . . . , dt) in Eq. (3.1) is defined as

(d1, . . . , dt) = pgb∗(φ, (y`,x`
1), ṽg(y

`) +
∑

j∈[N(`)]

〈h(x`
j), z

`,0
j 〉+ 〈p

`,0,q0〉+ 〈w`
1, r〉; t̃).

We prove that Hβ
`−1 ≈c Hβ

`,1 = Hβ
`,2 ≈c Hβ

` . We can see that Hβ
`,1 = Hβ

`,2 by considering the two
cases. If g(y′`) = 0 (that is, g(y`) = 0 or ṽ = 0), we have

∑
j∈[N(`)]〈h(x`

j), z
`,β
j 〉 + 〈p`,β ,qβ〉 =∑

j∈[N(`)]〈h(x`
j), z

`,0
j 〉+ 〈p`,0,q0〉 due to the admissibility of the adversary. Otherwise, the term ṽg(y`)

is uniformly distributed in Zp and works as a one-time pad.
Proving Hβ

`−1 ≈c Hβ
`,1 and Hβ

`,2 ≈c Hβ
` are similar, and we prove only the former. To this end, we

introduce further intermediate hybrids Ĥβ
`,ν,1, . . . , Ĥ

β
`,ν,5 for ν ∈ [N (`)] and show that Hβ

`−1 ≈c Ĥ
β
`,1,1 ≈c

· · · ≈c Ĥβ
`,1,5 ≈c Ĥβ

`,2,1 ≈c · · · ≈c Ĥβ
`,N(`),5

= Hβ
`,1. Intuitively, what we are doing in these steps is to

move the information of z`,βν from X`
ν to {Yj}j∈[t] step by step for ν ∈ [N `]. Each hybrid is defined as

follows.

Ĥβ
`,ν,1: This hybrid is the same as Hβ

`−1 except that Xj in the `-th ciphertext query is defined as

X`
j =


(0n0k, 0n1 , 0k, 0k, 0m, 0m, 1, 0) (j = 1)

(χj ⊗ uj , 0
n1 ,wj , 0

k, 0m, 0m, 0, 0) (1 < j < ν)

(0n0k, 0n1 , 0k, 0k, 0m, 0m, 0, 1) (1 < j = ν)

(χj ⊗ uj , z
β
j , wj , 0

k, 0m, 0m, 0, 0) (ν < j)

25

and Yj for all queries are defined as

Yj =


(vec(LjT), 0n1 , r, 0k,qβ , q0, dj , d

′
j) (j = 1)

(vec(LjT), 0n1 , 0k, 0k, 0m, 0m, dj , d
′
j) (1 < j ≤ s)

(vec(LjT), 0n1 , 0k, s, 0m, 0m, dj , d
′
j) (j = s+ 1)

(vec(LjT), ej−s−1, 0
k, 0k, 0m, 0m, dj , d

′
j) (s+ 1 < j)

where t̃← Zt−1
p , ṽ ← Zp (if y′` 6= ?), ṽ = 0 (if y′` = ?) and

(d1, . . . , dt) =

{
pgb+(φ, (y`,x`

1), (〈s,v`〉, z`,β1), 〈p`,β ,qβ〉+ 〈w`
1, r〉;Tu`

1) (ν = 1)

pgb∗(φ, (y`,x`
1), ṽg(y

`) +
∑

j∈[ν−1]〈h(x`
j), z

`,β
j 〉+ 〈p`,β ,qβ〉+ 〈w`

1, r〉; t̃) (ν > 1)

(d′1, . . . , d
′
t) =

{
0 (ν = 1)

pgb+(φ, (y`,x`
ν), (0, z

`,β
ν), 〈w`

ν , r〉;Tu`
ν) (ν > 1)

Ĥβ
`,ν,2: This hybrid is the same as Ĥβ

`,ν,1 except that di, d
′
i for i ∈ [t] is defined as

(d1, . . . , dt) =

{
pgb+(φ, (y`,x`

1), (ṽ, z
`,β
1), 〈p`,β ,qβ〉+ 〈w`

1, r〉; t̃) (ν = 1)

pgb∗(φ, (y`,x`
1), ṽg(y

`) +
∑

j∈[ν−1]〈h(x`
j), z

`,β
j 〉+ 〈p`,β ,qβ〉+ r̃1; t̃) (ν > 1)

(d′1, . . . , d
′
t) = pgb+(φ, (y`,x`

ν), (0, z
`,β
ν), r̃ν ; t̃

′) (ν > 1)

where t̃, t̃′ ← Zt−1
p , r̃1,← Zp and r̃ν = −r̃1 −

∑
i∈[N`]\{1,ν}〈w`

i , r〉.
Ĥβ

`,ν,3: This hybrid is the same as Ĥβ
`,ν,2 except that di, d

′
i for i ∈ [t] is defined as

(d1, . . . , dt) = pgb∗(φ, (y`,x`
1), ṽg(y

`) + 〈h(x`
1), z

`,β
1 〉+ 〈p`,β ,qβ〉+ 〈w`

1, r〉; t̃) (ν = 1)

(d′1, . . . , d
′
t) = pgb∗(φ, (y`,x`

ν), 〈h(x`
ν), z

`,β
ν 〉+ r̃ν ; t̃

′) (ν > 1)

Ĥβ
`,ν,4: For ν = 1, this hybrid is the same as Ĥβ

`,1,3. Otherwise, this hybrid is the same as Ĥβ
`,ν,3 except

that di, d
′
i for i ∈ [t] is defined as

(d1, . . . , dt) = pgb∗(φ, (y`,x`
1), ṽg(y

`) +
∑
j∈[ν]

〈h(x`
j), z

`,β
j 〉+ 〈p

`,β ,qβ〉+ r̃1; t̃) (ν > 1)

(d′1, . . . , d
′
t) = pgb∗(φ, (y`,x`

ν),������〈h(x`
ν), z

`,β
ν 〉+ r̃ν ; t̃

′) (ν > 1)

Ĥβ
`,ν,5: For ν = 1, this hybrid is the same as Ĥβ

`,1,4. Otherwise, this hybrid is the same as Ĥβ
`,ν,4 except

that Xj in the `-th ciphertext query is defined as

X`
j =


(0n0k, 0n1 , 0k, 0k, 0m, 0m, 1, 0) (j = 1)

(χj ⊗ uj , 0
n1 ,wj , 0

k, 0m, 0m, 0, 0) (1 < j≤ν)
(χj ⊗ uj , z

β
j , wj , 0

k, 0m, 0m, 0, 0) (ν < j)

and Yj for all queries are defined as

Yj =


(vec(LjT), 0n1 , r, 0k,qβ , q0, dj , 0) (j = 1)

(vec(LjT), 0n1 , 0k, 0k, 0m, 0m, dj , 0) (1 < j ≤ s)

(vec(LjT), 0n1 , 0k, s, 0m, 0m, dj , 0) (j = s+ 1)

(vec(LjT), ej−s−1, 0
k, 0k, 0m, 0m, dj , 0) (s+ 1 < j)

where t̃← Zt−1
p and

(d1, . . . , dt) = pgb∗(φ, (y`,x`
1), ṽg(y

`) +
∑
j∈[ν]

〈h(x`
j), z

`,β
j 〉+ 〈p

`,β ,qβ〉+ 〈w`
1, r〉; t̃)

26

Thanks to Lemmata 3.3 to 3.7, Lemma 3.2 holds. ut

Lemma 3.3. Let Ĥβ
`,0,5 = Hβ

`−1. For all ν ∈ [N (`)], we have Ĥβ
`,ν−1,5 ≈c Ĥ

β
`,ν,1 if iFE is function-hiding.

Proof. Observe that the difference of Ĥβ
`,ν−1,5 and Ĥβ

`,ν,1 is described as the two cases:

ν = 1: In this case, X`
1 in the `-th ciphertext and Yj in all the secret keys in Ĥβ

`,0,5 = Hβ
`−1 are defined

as follows:

X`
1 = (χ1 ⊗ u1, zβ1 , w1,v, pβ , 0m+2)

Yj =



(vec(LjT), 0n1 , r, 0k,qβ , 0m+2) (j = 1, ` = 1)

(vec(LjT), 0n1 , r, 0k,qβ , q0, 02) (j = 1, ` > 1)

(vec(LjT), 0n1 , 0k, 0k, 0m, 0m+2) (1 < j ≤ s)

(vec(LjT), 0n1 , 0k, s, 0m, 0m+2) (j = s+ 1)

(vec(LjT), ej−s−1, 0
k, 0k, 0m, 0m+2) (s+ 1 < j)

while the corresponding vectors in Ĥβ
`,1,1 are defined as

X`
1 = (0n0k, 0n1 , 0k, 0k, 0m, 0m, 1, 0)

Yj =


(vec(LjT), 0n1 , r, 0k,qβ , q0, dj , 0) (j = 1)

(vec(LjT), 0n1 , 0k, 0k, 0m, 0m, dj , 0) (1 < j ≤ s)

(vec(LjT), 0n1 , 0k, s, 0m, 0m, dj , 0) (j = s+ 1)

(vec(LjT), ej−s−1, 0
k, 0k, 0m, 0m, dj , 0) (s+ 1 < j)

where (d1, . . . , dt) = pgb+(φ, (y`,x`
1), (〈s,v`〉, z`,β1), 〈p`,β ,qβ〉+ 〈w`

1, r〉;Tu`
1). It is not hard to see

that for all secret keys and j, 〈X`
1,Yj〉 in Hβ

`−1 and that in Ĥβ
`,1,1 are both equal to dj . Hence,

thanks to the function-hiding security of iFE, the two hybrids are indistinguishable. Note that the
second to last entry of Xj other than X`

1 is 0, and thus the change of Yj does not affect the other
vectors.

ν > 1: In this case, X`
ν in the `-th ciphertext and Yj in all the secret keys in Ĥβ

`,ν−1,5 are defined as
follows:

X`
ν = (χν ⊗ uν , zβν , wν , 0

k, 0m, 0m, 0, 0)

Yj =


(vec(LjT), 0n1 , r, 0k,qβ , q0, dj , 0) (j = 1)

(vec(LjT), 0n1 , 0k, 0k, 0m, 0m, dj , 0) (1 < j ≤ s)

(vec(LjT), 0n1 , 0k, s, 0m, 0m, dj , 0) (j = s+ 1)

(vec(LjT), ej−s−1, 0
k, 0k, 0m, 0m, dj , 0) (s+ 1 < j)

while the corresponding vectors in Ĥβ
`,ν,1 are defined as

X`
ν = (0n0k , 0n1 , 0k, 0k, 0m, 0m, 0, 1)

Yj =


(vec(LjT), 0n1 , r, 0k,qβ , q0, dj , d

′
j) (j = 1)

(vec(LjT), 0n1 , 0k, 0k, 0m, 0m, dj , d
′
j) (1 < j ≤ s)

(vec(LjT), 0n1 , 0k, s, 0m, 0m, dj , d
′
j) (j = s+ 1)

(vec(LjT), ej−s−1, 0
k, 0k, 0m, 0m, dj , d

′
j) (s+ 1 < j)

where (d′1, . . . , d
′
t) = pgb+(φ, (y`,x`

ν), (0, z
`,β
ν), 〈w`

ν , r〉;Tu`
ν). It is not hard to see that for all secret

keys and j, 〈X`
ν ,Yj〉 in Ĥβ

`,ν−1,5 and that in Ĥβ
`,ν,1 are both equal to d′j . Hence, thanks to the

function-hiding security of iFE, the two hybrids are indistinguishable. Note that the last entry of
Xj other than X`

ν is 0, and thus the change of Yj does not affect the other vectors. ut

27

Lemma 3.4. For all ν ∈ [N (`)], we have Ĥβ
`,ν,1 ≈c Ĥ

β
`,ν,2 if the MDDHk assumption holds in G.

Proof. Observe that the difference of Ĥβ
`,ν,1 and Ĥβ

`,ν,2 is described as the two cases:

ν = 1: In this case, dj in Yj in Ĥβ
`,1,1 is generated as

(d1, . . . , dt) = pgb+(φ, (y`,x`
1), (〈s,v`〉, z`,β1), 〈p`,β ,qβ〉+ 〈w`

1, r〉;Tu`
1)

while the corresponding terms in Ĥβ
`,1,2 is generated as

(d1, . . . , dt) = pgb+(φ, (y`,x`
1), (ṽ, z

`,β
1), 〈p`,β ,qβ〉+ 〈w`

1, r〉; t̃).

Observe that Ĥβ
`,1,1 = Ĥβ

`,1,2 if y′` = ?. Hence, we focus on the case y′` 6= ?. Recall that pgb+ is
efficiently computable if the random tape is given as group elements due to its linearity. Hence,
Ĥβ

`,1,1 ≈c Ĥ
β
`,1,2 is reduced to

[{Tκ, sκ,Tκu1, 〈sκ,v`〉}κ∈[qk]]2 ≈c [{Tκ, sκ, t̃κ, ṽκ}κ∈[qk]]2

where qk is the number of queries to QKeyGenβ , which are essentially what the MDDHk assumption
asserts. Thanks to the linearity of pgb+, this reduction is efficient.

ν > 1: In this case, dj and d′j in Yj in Ĥβ
`,ν,1 are generated as

(d1, . . . , dt) =pgb∗(φ, (y`,x`
1), ṽg(y

`) +
∑

j∈[ν−1]

〈h(x`
j), z

`,β
j 〉+ 〈p

`,β ,qβ〉+ 〈w`
1, r〉; t̃)

(d′1, . . . , d
′
t) =pgb+(φ, (y`,x`

ν), (0, z
`,β
ν), 〈w`

ν , r〉;Tu`
ν)

while the corresponding term in Ĥβ
`,ν,2 are generated as

(d1, . . . , dt) =pgb∗(φ, (y`,x`
1), ṽg(y

`) +
∑

j∈[ν−1]

〈h(x`
j), z

`,β
j 〉+ 〈p

`,β ,qβ〉+ r̃1; t̃)

(d′1, . . . , d
′
t) =pgb+(φ, (y`,x`

ν), (0, z
`,β
ν), r̃ν ; t̃

′)

The indistinguishability between Ĥβ
`,ν,1 and Ĥβ

`,ν,2 can be shown by two steps. The first step changes
the random tape in pgb+ from Tuν to t̃′. This can be proven in the same way as the case ν = 1.
The second step changes 〈w`

1, r〉 and 〈w`
ν , r〉 to r̃1 and r̃ν . In this step, we would like to prove that

({[rκ]2, [〈w`
1, r

κ〉]2, [〈w`
ν , r

κ〉]2}κ∈[qk], {w
`
j}j∈[N`]\{1,ν})

≈c ({[rκ]2, [r̃(κ)1]2, [r̃
(κ)
ν]2}κ∈[qk], {w

`
j}j∈[N`]\{1,ν})

where rκ ← Zk
p, w`

1, . . . ,w
`
N(`) ← Zk

p s.t.
∑

j∈[N(`)] w
`
j = 0, and r̃

(κ)
1 , r̃

(κ)
ν ← Zp s.t. r̃(κ)1 + r̃

(κ)
ν +∑

j∈[N(`)]\{1,ν}〈w`
j , r

κ〉 = 0. It is not hard to see that the following indistinguishability suffices to
prove the above indistinguishability:

([A]2, [Am1]2, [Am2]2,m3, . . . ,md) ≈c ([A]2, [s1]2, [s2]2,m3, . . . ,md)

where d > 1, n are any natural numbers, A ← Zn×k
p , m1, . . . ,md ← Zk

p s.t.
∑

i∈[d] mi = 0, and
s1, s2 ← Zn

p s.t. s1 + s2 +
∑

i∈{3,d} Ami = 0. It is easy to see that they are distributed the same if
n ≤ k, so we consider the case n > k. The above relation can be rewritten as

([A]2, [Am1]2, [−Am1 − b]2,m3, . . . ,md)

≈c ([A]2, [s1]2, [−s1 − b]2,m3, . . . ,md)

where b =
∑

i∈{3,d} Ami. Hence, this is implied by the MDDHk assumption, which assert that
([A]2, [Am1]2) ≈c ([A]2, [s1]2). Thanks to the linearity of pgb+ and pgb∗, this reduction is efficient.

ut

28

Lemma 3.5. For all ν ∈ [N (`)], we have Ĥβ
`,ν,2 ≈s Ĥ

β
`,ν,3 if the partial garbling scheme is secure.

Proof. The lemma readily follows from the security of the extension of the partial garbling scheme.
ut

Lemma 3.6. For all ν ∈ [N (`)], we have Ĥβ
`,ν,3 = Ĥβ

`,ν,4.

Proof. Recall that r̃1 and r̃ν are randomly distributed such that r̃1 + r̃ν = −
∑

i∈[N`]\{1,ν}〈w`
i , r〉.

Therefore, r̃′1 = r̃1 + 〈h(x`
ν), z

`,β
ν 〉 and r̃′ν = r̃ν − 〈h(x`

ν), z
`,β
ν 〉 are also randomly distributed such that

r̃′1 + r̃′ν = −
∑

i∈[N`]\{1,ν}〈w`
i , r〉. By applying this replacement, we can see that both hybrids are

identical. ut

Lemma 3.7. For all ν ∈ [N (`)], we have Ĥβ
`,ν,4 ≈c Ĥ

β
`,ν,5 if iFE is function-hiding, the partial garbling

scheme is secure, and the MDDHk assumption holds in G.

Proof. The proof of this lemma is similar to that of Ĥβ
`,ν−1,5 ≈c Ĥ

β
`,ν,3. ut

4 Attribute-Based MIFE for Attribute-Weighted Sums

In this section, we present our AB-MIFE for AWS in two steps as discussed in Section 1. In Appendix B,
we show how it can be captured in the context of MPFE.

Definition 4.1 (Multi-Input Functional Encryption). Let F be a function family such that, for
all f ∈ F , f : Xn → Z.10 An MIFE scheme for F consists of four algorithms.

Setup(1λ, 1n): It takes a security parameter 1λ and a number 1n of slots, and outputs a public pa-
rameter PP, encryption keys {EKi}i∈[n], a master secret key MSK. The other algorithms implicitly
take PP.

Enc(EKi, xi): It takes EKi and xi ∈ X and outputs a ciphertext CTi.
KeyGen(MSK, f): It takes MSK and f ∈ F , and outputs a secret key SK.
Dec(CT1, . . . ,CTn,SK): It takes CT1, . . . ,CTn and SK, and outputs a decryption value d ∈ Z or a

symbol ⊥.

Correctness. An MIFE scheme is correct if it satisfies the following condition. For all λ, n ∈
N, (x1, . . . , xn) ∈ Xn, f ∈ F , we have

Pr

d = f(x1, . . . , xn) :

(PP, {EKi},MSK)← Setup(1λ, 1n)

CTi ← Enc(EKi, xi) for i ∈ [n]

SK← KeyGen(MSK, f)

d = Dec(CT1, . . . ,CTn,SK)

 = 1.

Security. We consider the case where each xi ∈ X consists of a public part xi,pub and a private part
xi,priv, i.e., xi = (xi,pub, xi,priv). An MIFE scheme is selectively partially-hiding if for every stateful PPT
adversary A, there exists a negligible function negl such that for all λ, n ∈ N, the following holds

Pr

β = β′ :

β ← {0, 1}
(PP, {EKi},MSK)← Setup(1λ, 1n)

β′ ← AQCor(),QEncβ(),KeyGen(MSK,·)(PP)

 ≤ 1

2
+ negl(λ)

where QCor(i) outputs EKi, and QEncβ(i, x0
i , x

1
i) outputs Enc(EKi, x

β
i). Let qc,i be the numbers of

queries of the forms of QEncβ(i, ∗, ∗). Let HS be the set of parties on which the adversary has not
queried QCor at the end of the game, and CS = [n]\HS. Then, the admissible adversary’s queries must
satisfy the following conditions.
10 In general, the domain of each slot can be different, i.e., f can be defined as f : X1 · · · × Xn → Z. In this

paper, however, we only handle the case where Xi = X for all i ∈ [n].

29

– For i ∈ CS, the queries QEncβ(i, x0
i , x

1
i) must satisfy x0

i = x1
i .

– For i ∈ HS, the queries QEncβ(i, x0
i , x

1
i) must satisfy x0

i,pub = x1
i,pub.

– f(x0
1, . . . , x

0
n) = f(x1

1, . . . , x
1
n) for all sequences (x0

1, . . . , x
0
n, x

1
1, . . . , x

1
n, f) that satisfy the two con-

ditions:
• For all i ∈ [n], [QEncβ(i, x0

i , x
1
i) is queried and i ∈ HS] or [x0

i = x1
i ∈ Xi and i ∈ CS].

• KeyGen(MSK, f) is queried.
– The adversary must make all queries to QCor and QEnc in one shot. That is, first it outputs

(CS, {i, x0
i , x

1
i }) and obtains the response: ({EKi}i∈CS , {Enc(EKi, x

β
i)}). Only after the one-shot

query, the adversary can query KeyGen adaptively.

We formally define attribute-based MIFE scheme for attribute-weighted sums and its security.

Definition 4.2 (AB-MIFE for AWS). Attribute-based MIFE for Attribute-Weighted Sums (AB-
MIFE for AWS) is a class of MIFE (Definition 4.1) that supports the following functionality. Let G be
bilinear groups. Let X = (Zn′

0
p ∪{?})×

⋃
i∈N(Zn0

p ×Zn1
p)i be a message space. Let F = (FABP

n′
0,1
×FABP

n0,n1
)n

be a family of functions, where ((g1, h1), . . . , (gn, hn)) ∈ F represents the function f : Xn → GT defined
as

f((y1, {x1,j , z1,j}j∈[N1]), . . . , (yn, {xn,j , zn,j}j∈[Nn]))

=

{
[
∑

i∈[n]

∑
j∈[Ni]

〈hi(xi,j), zi,j〉]T (gi(yi) = 0 for all i ∈ [n])

⊥ (otherwise)

where yi,xi,j are public inputs while zi,j is a private input, and we always have gi(?) = 0.

Definition 4.3 (Security of AB-MIFE for AWS). We say that an AB-FE scheme for AWS satis-
fies security against legitimate keys if the scheme is secure against adversaries that follows the condition
defined below in addition to the conditions defined in Definition 4.1. Let (CS, {i, x`,0

i , x`,1
i }i∈[n],`∈[qc,i], {fη}η∈[qk])

be the query of the adversary, where qk is the number of queries to KeyGen, x`,β
i = (y`

i , {x`
i,j , z

`,β
i,j }j∈[N`

i]
)

and fη = {gηi , h
η
i }i∈[n]. We say that fη is legitimate if for all i ∈ HS, there exists `′i ∈ [qc,i] such that

gηi (y
`′i
i) = 0. In security against legitimate keys, fη must be legitimate for all η ∈ [qk]. In contrast, we

say that an AB-FE scheme for AWS satisfies security against any keys if the scheme is secure against
adversaries that follows just the condition defined in Definition 4.1.

4.1 Construction

Let aFE = (aSetup, aEnc, aKeyGen, aDec) be an FE scheme for AB-FE for AWSw/IP. Then our AB-
MIFE scheme for AWS is given in Figure 4.
Correctness and Security. Due to the correctness of aFE, we have

di =
∑

j∈[Ni]

〈f(xi,j), zi,j〉+ ri

Hence d =
∑

i∈[n]

∑
j∈[Ni]

〈f(xi,j), zi,j〉 since
∑

i∈[n] ri = 0.
The proposed scheme is secure against legitimate keys as stated by the following theorem.

Theorem 4.1. If aFE is partially function-hiding, then the proposed AB-MIFE scheme for AWS
satisfies security against legitimate keys as per Definition 4.3.

Proof. We prove the theorem via two hybrids Hβ
1 and Hβ

2 . We show that Hβ
s ≈c H

β
1 = Hβ

2 , where Hβ
s

for β ∈ {0, 1} is the original security game. Recall that in Hβ
s the challenger replies

aEnc(aMSKi, (yi, {xi,j , z
β
i,j}j∈[Ni], [1]1)) and {aKeyGen(aMSKi, (gi, hi, [ri]2))}i∈[n]

30

Setup(1λ, 1n): It runs aPPi, aMSKi ← aSetup(1λ) for i ∈ [n] and outputs

PP = {aPPi}i∈[n], EKi = aMSKi for i ∈ [n], MSK = {EKi}i∈[n].

Enc(EKi, (yi, {xi,j , zi,j}j∈[Ni])): It outputs

CTi = aCTi ← aEnc(aMSKi, (yi, {xi,j , zi,j}j∈[Ni], [1]1)).

KeyGen(MSK, {gi, hi}i∈[n]): It samples r1, . . . , rn−1 ← Zp, sets rn = −
∑

i∈[n−1] ri, and outputs SK =

{aSKi}i∈[n] where
aSKi ← aKeyGen(aMSKi, (gi, hi, [ri]2)).

Dec(CT1, . . . ,CTn,SK): It parse CTi, SK as aCTi, {aSKi}i∈[n], respectively. If there exists i such that gi(yi) 6= 0,
it outputs ⊥. Otherwise, it computes [di]T = aDec(aCTi, aSKi) for i ∈ [n], and outputs [d]T =

∑
i∈[n][di]T .

Fig 4. Attribute-Based MIFE for AWS

for the queries QEncβ(i, x0
i , x

1
i) and KeyGen(MSK, f), respectively, where

xβ
i = (yi, {xi,j , z

β
i,j}j∈[Ni]) and f = {gi, hi}i∈[n].

The hybrid Hβ
1 is the same as Hβ

s except that for all i ∈ HS, the challenger replies

aEnc(aMSKi, (yi, {xi,j , z
0
i,j}j∈[Ni], [1]1)) and

{aKeyGen(aMSKi, (gi, hi, [ri +
∑

j∈[N
`i
i]

〈hi(x
`i
i,j), z

`i,β
i,j 〉 −

∑
j∈[N

`i
i]

〈hi(x
`i
i,j), z

`i,0
i,j 〉]2))}i∈[n]

for the queries QEncβ(i, x0
i , x

1
i) and KeyGen(MSK, f), respectively, where {x`i

i,j , z
`i,0
i,j , z`i,1i,j }j∈[N

`i
i]

are
the components of the `i-th challenge message, and `i = min{`′ ∈ [qc,i] | gi(y`′

i) = 0} for i ∈ HS. Since
all secret keys are legitimate, such `i always exists for each key query.

The hybrid Hβ
2 is the same as Hβ

1 except that for all i ∈ HS, the challenger replies

aEnc(aMSKi, (yi, {xi,j , z
0
i,j}j∈[Ni], [1]1)) and

{aKeyGen(aMSKi, (gi, hi, [ri +

((((((((((((((((((((∑
j∈[N

`i
i]

〈hi(x
`i
i,j), z

`i,β
i,j 〉 −

∑
j∈[N

`i
i]

〈hi(x
`i
i,j), z

`i,0
i,j 〉]2))}i∈[n]

for the queries QEncβ(i, x0
i , x

1
i) and KeyGen(MSK, f), respectively. Note that the advantage of the

adversary is 0 in Hβ
2 since it does not obtain the information of β. Hence the theorem follows from

Lemmata 4.1 and 4.2. ut

Lemma 4.1. We have Hβ
s ≈c H

β
1 if aFE is partially function-hiding.

Proof. Let qc.i be the number of the ciphertext queries for slot i, and qk be the number of the secret
key queries. For µ ∈ [qc,i] and ν ∈ [qk], let aCTµ

i be the µ-th challenge ciphertext for slot i, and aSKν
i be

the i-th element of the ν-th secret key. For j ∈ {s, 1}, let δµ,νj,i = aDec(aCTµ
i , aSK

ν
i) be the decryption

value in Hβ
j . Then, what we need to prove is δµ,νs,i = δµ,ν1,i for all i ∈ HS, µ ∈ [qc,i], ν ∈ [qk].

This can be proven by the three cases.

– If gνi (y
µ
i) 6= 0, we have δµ,νs,i = δµ,ν1,i = ⊥ for all i ∈ HS, µ ∈ [qc,i], ν ∈ [qk].

– If µ = `i, we have δµ,νs,i = δµ,ν1,i =
∑

j∈[N
`i
i]
〈hν

i (x
`i
i,j), z

`i,β
i,j 〉 for all i ∈ HS, ν ∈ [qk].

31

– If µ > `i and gνi (y
µ
i) = 0, we have δµ,νs,i =

∑
j∈[N

`i
i]
〈hν

i (x
µ
i,j), z

µ,β
i,j 〉 and

δµ,ν1,i =
∑

j∈[N
`i
i]

(〈hν
i (x

µ
i,j), z

µ,0
i,j 〉+ 〈h

ν
i (x

`i
i,j), z

`i,β
i,j 〉 − 〈h

ν
i (x

`i
i,j), z

`i,0
i,j 〉)

for all i ∈ HS, ν ∈ [qk]. We can prove δµ,νs,i = δµ,ν1,i as follows. Due to the admissibility of the
adversary, we have ∑

k∈HS

∑
j∈[N

`k
k]

〈hν
k(x

`k
k,j), z

`k,0
k,j 〉 =

∑
k∈HS

∑
j∈[N

`k
k]

〈hν
k(x

`k
k,j), z

`k,1
k,j 〉 (4.1)

∑
j∈[N

`i
i]

〈hν
i (x

µ
i,j), z

µ,0
i,j 〉+

∑
k∈HS\{i}

∑
j∈[N

`k
k]

〈hν
k(x

`k
k,j), z

`k,0
k,j 〉

=
∑

j∈[N
`i
i]

〈hν
i (x

µ
i,j), z

µ,1
i,j 〉+

∑
k∈HS\{i}

∑
j∈[N

`k
k]

〈hν
k(x

`k
k,j), z

`k,1
k,j 〉

(4.2)

We can readily obtain δµ,νs,i = δµ,ν1,i by subtracting Eq. (4.1) from Eq. (4.2) in the third case.
ut

Lemma 4.2. Hβ
1 = Hβ

2 .

Proof. From Eq. (4.1), the following distributions are identical:(r1, . . . , rn) : r1, . . . , rn−1 ← Zp, rn = −
∑

i∈[n−1]

ri

 and

(r1, . . . , rn) :

r′1, . . . , r
′
n−1 ← Zp, r

′
n = −

∑
i∈[n−1]

r′i

ri =

{
r′i +

∑
j∈[N

`i
i]

(〈hν
i (x

`i
i,j), z

`i,β
i,j 〉 − 〈hν

i (x
`i
i,j), z

`i,0
i,j 〉) (i ∈ HS)

r′i (i ∈ CS)


Hence Hβ

1 and Hβ
2 are identically distributed. ut

4.2 Security against Any Keys in AB-MIFE for AWS

In this section, we present how to convert an AB-MIFE scheme for AWS with security against legitimate
keys to one with security against any keys. In the conversion, we use a ciphertext-policy ABE (CP-
ABE) scheme for ABP and a (n-out-of-n) secret sharing scheme. A CP-ABE scheme for ABP with
wildcards is an ABE scheme (Definition 2.9) that supports predicate P : X × Y → {0, 1} where
X = FABP

n0,1 , Y = Zn0
p ∪ {?}, and for g ∈ X ,y ∈ Y, P is defined as

P(g,y) =

{
1 g(y) = 0

0 g(y) 6= 0

A CP-ABE scheme for ABP with wildcards is easily obtained from the CP-ABE scheme for ABP
in [LL20b] just by setting the master secret key as the secret key for the wildcard.

32

Setup(1λ, 1n): It runs wmPP, {wmEKi}i∈[n,wmMSK ← wmSetup(1λ) and abPKi, abMSKi ← abSetup(1λ) for
i ∈ [n]. It outputs PP, {EKi}i∈[n],MSK as follows:

PP = (wmPP, {abPKi}i∈[n]), EKi = (wmEKi, abMSKi), MSK = wmMSK

Enc(EKi, (yi, {xi,j , zi,j}j∈[Ni])): It outputs CTi = (wmCTi, abSKi) where

wmCTi ← wmEnc(wmEKi, (yi, {xi,j , zi,j}j∈[Ni])), abSKi ← abKeyGen(abMSKi,yi)

KeyGen(MSK, {gi, hi}i∈[n]): It outputs SK as follows:

wmSK← wmKeyGen(wmMSKi, {gi, hi}i∈[n]), (σ1, . . . , σn)← Share(wmSK, n)

abCTi ← abEnc(gi, σi) for i ∈ [n], SK = {abCTi}i∈[n]

Dec(CT1, . . . ,CTn,SK): It parse CTi,SK as (wmCTi, abSKi), {abCTi}i∈[n], respectively. If there exists i such
that gi(yi) 6= 0, it outputs ⊥. Otherwise, it outputs [d]T as follows:

σ′
i = abDec(abCTi, abSKi) for i ∈ [n], wmSK′ = Rec(σ′

1, . . . , σ
′
n)

[d]T = wmDec(wmCT1, . . . ,wmCTn,wmSK′)

Fig 5. Attribute-Based MIFE for AWS with Standard Security

Construction. Let wmFE = (wmSetup,wmEnc,wmKeyGen,wmDec) be an AB-MIFE scheme for
AWS with security against legitimate keys, ABE = (abSetup, abEnc, abKeyGen, abDec) be an CP-ABE
scheme for ABP, and (Share,Rec) be a secret sharing scheme. Then, an AB-MIFE scheme for AWS
can be constructed as in Figure 5.
Correctness and Security. Due to the correctness of ABE, σ′

1, . . . , σ
′
n are valid shares of wmSK for

{gi, hi}i∈[n]. Thus, thanks to the correctness of wmFE, we have d =
∑

i∈[n]

∑
j∈[Ni]

〈fi(xi,j), zi,j〉.
We argue security via the following theorem.

Theorem 4.2. If wmFE has security against legitimate keys, ABE is selectively secure, and the secret
sharing scheme is secure, then the proposed scheme satisfies security against any keys, i.e., selectively
partially-hiding security in Definition 4.1.

Proof. We prove the theorem via three hybrids Hβ
1 ,H

β
2 ,H

β
3 . We show that Hβ

s ≈c Hβ
1 = Hβ

2 ≈c Hβ
3 ,

where Hβ
s for β ∈ {0, 1} is the original security game. Let us call a secret key with which all the

combinations of challenge ciphertexts decrypt to ⊥ a illegitimate key. For each illegitimate key for
{gi, hi}i∈[n], there exists i′ ∈ HS such that gi′(y

`
i′) 6= 0 for all ` ∈ [qc,i′].

In Hβ
1 , we change the replies to the illegitimate-secret-key queries. Specifically, abCTi′ in SK is

generated as abCTi′ ← abEnc(gi′ , 0
m) instead of abCTi′ ← abEnc(gi′ , σi′), where m is the bit-length of

a share. We can easily observe that Hs ≈c H1 due to the security of the CP-ABE scheme for ABP.
In Hβ

2 , we change the replies to the illegitimate-secret-key queries. Specifically, σ1, . . . , σn is gener-
ated as σi ← {0, 1}m for i ∈ [n] instead of being generated by the sharing algorithm. H1 = H2 directly
follows from the security of the secret sharing scheme.

In Hβ
3 , we change the challenge ciphertexts. Instead of replying Enc(EKi, (yi, {xi,j , z

β
i,j}j∈[Ni])) to

ciphertext queries, the challenger replies Enc(EKi, (yi, {xi,j , z
0
i,j}j∈[Ni])) for all the queries. H2 ≈c H3

directly follows from the security of wmFE. Note that the advantage of the adversary is 0 in Hβ
3 since

it does not obtain the information of β. ut

5 Multi-Client FE for Attribute-Weighted Sums

We define multi-client functional encryption, which basically follows the definition in [ABG19]. The
essential difference from the definition in [ABG19] is that we add the definition of selective security.

33

Definition 5.1 (Multi-Client Functional Encryption). Let F be a function family such that,
for all f ∈ F , f : Xn → Z. Let L be a label space. An MCFE scheme for F and L consists of four
algorithms.
Setup(1λ, 1n): It takes a security parameter 1λ and a number 1n of slots, and outputs a public pa-

rameter PP, encryption keys {EKi}i∈[n], a master secret key MSK. The other algorithms implicitly
take PP.

Enc(EKi, xi, L): It takes EKi, an index i ∈ [n], xi ∈ X , and a label L and outputs a ciphertext CTi.
KeyGen(MSK, f): It takes MSK and f ∈ F , and outputs a secret key SK.
Dec(CT1, . . . ,CTn,SK): It takes CT1, . . . ,CTn and SK, and outputs a decryption value d ∈ Z or a

symbol ⊥.

Correctness. An MCFE scheme is correct if it satisfies the following condition. For all λ, n ∈
N, (x1, . . . , xn) ∈ Xn, f ∈ F , L ∈ L, we have

Pr

d = f(x1, . . . , xn) :

(PP, {EKi},MSK)← Setup(1λ, 1n)

CTi ← Enc(EKi, xi, L) for i ∈ [n]

SK← KeyGen(MSK, f)

d = Dec(CT1, . . . , ,CTn,SK)

 = 1.

Security. We consider the case where each xi ∈ X consists of a public part xi,pub and a private
part xi,priv, i.e., xi = (xi,pub, xi,priv). An MCFE scheme is xx-yy-partially-hiding (xx ∈ {sel, sta, adt},
yy ∈ {any, pos}) if for every stateful PPT adversary A, there exists a negligible function negl such
that for all λ, n ∈ N, the following holds

Pr

β = β′ :

β ← {0, 1}
(PP, {EKi},MSK)← Setup(1λ, 1n)

β′ ← AQCor(),QEncβ(),KeyGen(MSK,·)(PP)

 ≤ 1

2
+ negl(λ)

where QCor(i) outputs EKi, and QEncβ(i, x0
i , x

1
i , L) outputs Enc(EKi, x

β
i , L). Let qc,i,L be the numbers

of queries of the forms of QEncβ(i, ∗, ∗, L). Let HS be the set of parties on which the adversary has
not queried QCor at the end of the game, and CS = [n]\HS. Then, the admissible adversary’s queries
must satisfy the following conditions.

– For i ∈ CS, the queries QEncβ(i, x0
i , x

1
i , L) must satisfy x0

i = x1
i .

– For i ∈ HS, the queries QEncβ(i, x0
i , x

1
i , L) must satisfy x0

i,pub = x1
i,pub.

– f(x0
1, . . . , x

0
n) = f(x1

1, . . . , x
1
n) for all sequences (x0

1, . . . , x
0
n, x

1
1, . . . , x

1
n, f, L) that satisfy the two

conditions:
• For all i ∈ [n], [QEncβ(i, x0

i , x
1
i , L) is queried and i ∈ HS] or [x0

i = x1
i ∈ Xi and i ∈ CS].

• KeyGen(MSK, f) is queried.
– When xx = sta: the adversary cannot query QCor after querying QEnc or KeyGen even once.
– When xx = sel: the adversary must make all queries to QCor and QEnc in one shot. That is, first

it outputs (CS, {i, x0
i , x

1
i , L}) and obtains the response: ({EKi}i∈CS , {Enc(EKi, x

β
i , L)}). Only after

the one-shot query, the adversary can query KeyGen adaptively.
– When yy = pos: for each L ∈ L, either qc,i,L > 0 for all i ∈ HS or qc,i,L = 0 for all i ∈ HS11.

First, we formally define MCFE for AWS.
Definition 5.2 (MCFE for Attribute-Weighted Sums). MCFE for Attribute-Weighted Sums
(AWS) is a class of MCFE (Definition 5.1) that supports the following functionality. Let G = (p,G1,
G2, GT , g1, g2, e) be bilinear groups. Let X =

⋃
i∈N(Zn0

p ×Zn1
p)i be a message space. Let F = (FABP

n0,n1
)n

be a family of functions, where (f1, . . . , fn) ∈ F represents the function f ′ : Xn → GT defined as

f ′({x1,j , z1,j}j∈[N1], . . . , {xn,j , zn,j}j∈[Nn]) = [
∑
i∈[n]

∑
j∈[Ni]

〈fi(xi,j), zi,j〉]T .

11 We can covert a xx-pos-partially-hiding scheme to xx-any-partially-hiding scheme generically [ABG19].

34

5.1 Construction

Let aFE = (aSetup, aEnc, aKeyGen, aDec) be an FE scheme for AWSw/IP. Let PRFK : L → Zk
p be

a PRF with key space K. Let k be the parameter for the MDDHk assumption. Construction of our
MCFE scheme for AWS is given in Figure 6.

Setup(1λ, 1n): It runs aPPi, aMSKi ← aSetup(1λ) for i ∈ [n], chooses Ki,j ← K for i, j ∈ [n], i < j, and sets
Ki,j = Kj,i for j < i. It outputs

PP = {aPPi}i∈[n], EKi = (aMSKi, {Ki,j}j∈[n]\{i}) for i ∈ [n], MSK = {EKi}i∈[n].

Enc(EKi, L, xi = {xi,j , zi,j}j∈[Ni]): It computes vL,i =
∑

j∈[n]\{i}(−1)
j<iPRFKi,j (L) and outputs

CTi = aCTi ← aEnc(aMSKi, xi, [(vL,i, 0)]1).

KeyGen(MSK, {fi}i∈[n]): It samples s← Zk
p and outputs SK = {aSKi}i∈[n] where

aSKi ← aKeyGen(aMSKi, fi, [(s, 0)]2).

Dec(CT1, . . . ,CTn,SK): It parse CTi, SK as aCTi, {aSKi}i∈[n], respectively. It computes [di]T =
aDec(aCTi, aSKi) for i ∈ [n], and outputs [d]T =

∑
i∈[n][di]T .

Fig 6. Multi-Client FE for AWS

Correctness and Security. Due to the correctness of aFE, we have

di =
∑

j∈[Ni]

〈f(xi,j), zi,j〉+ 〈vL,i, s〉

Hence d =
∑

i∈[n]

∑
j∈[Ni]

〈f(xi,j), zi,j〉 since
∑

i∈[n]〈vL,i, s〉 = 0.
We argue security via the following theorem.

Theorem 5.1. If aFE is partially function-hiding, and the MDDHk assumption holds in G, then the
proposed MCFE scheme for AWS is sel-pos-partially-hiding as per Definition 5.1.

Proof. We prove the theorem via a series of hybrid games Hβ
` for ` ∈ {0} ∪ [qL] where qL = |{L |

qc,i,L > 0}| for i ∈ HS is the maximum number of labels queried by the adversary. We show that
Hβ

s ≈c Hβ
0 ≈c Hβ

1 ≈c · · · ≈c Hβ
qL , where Hβ

s for β ∈ {0, 1} is the original security game. Recall that in
Hβ

s the challenger replies aEnc(aMSKi, x
β
i , [pi]1) and {aKeyGen(aMSKi, fi, [qi]2)}i∈[n] for the queries

QEncβ(i, x0
i , x

1
i , L) and KeyGen(MSK, f), respectively, where

xβ
i = {xi,j , z

β
i,j}j∈[Ni], pi = (vL,i, 0), qi = (s, 0).

Let QL = {L1, . . . , LqL} be the labels that are queried by the adversary. Hβ
0 is the same as Hβ

s

except that the challenger randomly chooses vL,i ∈ Zk
p for i ∈ HS, L ∈ QL such that

∑
i∈HS vL,i +∑

i∈CS
∑

j∈[n]\{i}(−1)j<iPRFKi,j (L) = 0. The hybrid Hβ
` is the same as Hβ

0 except that for the queries
QEncβ(i, x0

i , x
1
i , L) such that L ∈ {L1, . . . , L`}, the challenger replies aEnc(aMSKi, x

0
i ,pi). Note that

the advantage of the adversary is 0 in Hβ
qL since it does not obtain the information of β. It is not

hard to see that Hβ
s ≈c Hβ

0 follows from the security of the PRF. Hence, the theorem holds from
Lemma 5.1. ut

35

Lemma 5.1. Let Hβ
0 = Hβ

s . For all ` ∈ [qL], we have Hβ
`−1 ≈c H

β
` .

Proof. To prove the lemma we introduce intermediate hybrids Hβ
`,1,H

β
`,2,H

β
`,3, which are defined as

follows:

Hβ
`,1: This hybrid is the same as Hβ

`−1 except that the challenger replies aEnc(aMSKi, x
0
i , [pi]1) and

{aKeyGen(aMSKi, fi, [qi]2)}i∈[n] for the queries QEncβ(i, x0
i , x

1
i , L`) and KeyGen(MSK, f), respec-

tively, where

pi = (0k, 1), qi = (s, 〈s,vL`,i〉+ fi(x
1,β
i,L`

)− fi(x
1,0
i,L`

)) for i ∈ HS.

where (xκ,β
i,L`

, xκ,0
i,L`

) is the pair of challenge messages in the κ-th query to QEnc of the form
(i, ∗, ∗, L`).

Hβ
`,2: This hybrid is the same as Hβ

`,1 except that in the replies for the queries QEncβ(i, x0
i , x

1
i , L`) and

KeyGen(MSK, f), pi and qi is defined as

vL`,i ← Zp for i ∈ HS s.t.
∑
i∈HS

vL`,i +
∑
i∈CS
〈s,vL`,i〉 = 0

pi = (0k, 1), qi = (s, vL`,i + fi(x
1,β
i,L`

)− fi(x
1,0
i,L`

)) for i ∈ HS.

Hβ
`,3: This hybrid is the same as Hβ

`,2 except that in the replies for the queries QEncβ(i, x0
i , x

1
i , L`) and

KeyGen(MSK, f), pi and qi is defined as

vL`,i ← Zp for i ∈ HS s.t.
∑
i∈HS

vL`,i +
∑
i∈CS
〈s,vL`,i〉 = 0

pi = (0k, 1), qi = (s, vL`,i +(((((((((
fi(x

1,β
i,L`

)− fi(x
1,0
i,L`

)) for i ∈ HS.

Thanks to Lemmata 5.2 to 5.5, Lemma 5.1 holds. ut

Lemma 5.2. Let Hβ
0 = Hβ

s . For all ` ∈ [qL], we have Hβ
`−1 ≈c H

β
`,1 if aFE is partially function-hiding.

Proof. Observe that for all aCTis that the adversary obtains as a reply to the query of the form
QEncβ(i, x0

i , x
1
i , L) and all aSKis that it obtains as a reply to the query of the form KeyGen(MSK, f =

{fi}i∈HS), the output of aDec(aCTi, aSKi) in Hβ
`−1 and that in Hβ

`,1 are equal for all i ∈ HS. Here, we
use the fact that for all i ∈ HS and κ ∈ [qc,i,L`

], we have

fi(x
1,β
i,L`

)− fi(x
1,0
i,L`

) = fi(x
κ,β
i,L`

)− fi(x
κ,0
i,L`

).

This is basically obtained by Eq. (5.1) − Eq. (5.2):∑
i∈HS

fi(x
1,β
i,L`

) =
∑
i∈HS

fi(x
1,0
i,L`

) (5.1)

fi′(x
κ,β
i′,L`

) +
∑

i∈HS\{i′}

fi(x
1,β
i,L`

) = fi′(x
κ,0
i′,L`

) +
∑

i∈HS\{i′}

fi(x
1,0
i,L`

) (5.2)

which follows from the query condition in Definition 5.1. Hence, thanks to the partially function-hiding
security of aFE, these hybrids are indistinguishable. ut

Lemma 5.3. For all ` ∈ [qL], we have Hβ
`,1 ≈c H

β
`,2 if the MDDHk holds in G.

Proof. We would like to prove that

{[sκ]2, {[〈sκ,vL`,i〉]2}i∈HS}κ∈[qk] ≈c {[sκ]2, {[vκL`,i
]2}i∈HS}κ∈[qk]

36

where qk is the number of queries to QKeyGen, sκ ← Zk
p, vL`,i ← Zk

p for i ∈ HS s.t.
∑

i∈HS vL`,i +∑
i∈CS

∑
j∈[n]\{i}(−1)j<iPRFKi,j (L) = 0, and vκL`,i

← Zp for i ∈ HS and κ ∈ [qk] s.t.
∑

i∈HS vL`,i +∑
i∈CS〈sκ,vL`,i〉 = 0. It is not hard to see that the following indistinguishability suffices to prove the

above indistinguishability:

([A]2, [Am1]2, . . . , [Amd]2) ≈c ([A]2, [r1]2, . . . , [rd]2)

where d > 1, n are any natural numbers, c is any vectors in Zk
p, A ← Zn×k

p , m1, . . . ,md ← Zk
p s.t.∑

i∈[d] mi = c, and r1, . . . , rd ← Zn
p s.t.

∑
i∈[d] ri = Ac. It is easy to see that they are distributed the

same if n ≤ k, so we consider the case n > k. The above relation can be rewritten as

([A]2, [Am1]2, . . . , [Amd−1]2, [Ac−
∑

i∈[d−1]

Ami]2)

≈c ([A]2, [r1]2, . . . , [rd−1]2, [Ac−
∑

i∈[d−1]

ri]2)

This is implied by the d− 1-fold MDDHk assumption, which assert that

[(A,Am1, . . . ,Amd−1)]2 ≈c [(A, r1, . . . , rd−1)]2.

ut

Lemma 5.4. For all ` ∈ [qL], we have Hβ
`,2 = Hβ

`,3

Proof. As we see above, Eq.(5.1) holds due to the query condition in Definition 5.1. Thus, {vL`,i}i∈[HS]

and {vL`,i + fi(x
1,β
i,L`

)− fi(x
1,0
i,L`

)}i∈[HS] are both randomly distributed in Zp such that the summation
of these is equal to −

∑
i∈CS〈s,vL`,i〉. ut

Lemma 5.5. For all ` ∈ [qL], we have Hβ
`,3 ≈c H

β
` if aFE is partially function-hiding and the MDDHk

holds in G.

Proof. This lemma can be proven in the same way as Hβ
`−1 ≈c H

β
`,2. ut

6 Dynamic Decentralized FE for Attribute Weighted Sums

In this section, we present a dynamic decentralized FE scheme for attribute weighted sums (DDFE for
AWS). In Appendix B, we show how it can be captured in the context of dynamic MPFE.

6.1 Definition

Definition 6.1 (Dynamic Decentralized Functional Encryption). Let ID,K,M be an ID
space, a key space, and a message space, respectively.M consists of a public partMpub and a private
partMpriv. Let f be a function such that f :

⋃
i∈N(ID×K)i×

⋃
i∈N(ID×M)i → Z. A DDFE scheme

for f consists of five algorithms.

Setup(1λ): It takes a security parameter 1λ and outputs a public parameter PP. The other algorithms
implicitly take PP.

LSetup(PP): It takes PP and outputs local public parameter PKi and a master secret key MSKi. The
following three algorithms implicitly take PKi.

Enc(MSKi,m): It takes MSKi and m ∈M, and outputs a ciphertext CTi.
KeyGen(MSKi, k): It takes MSKi and k ∈ K, and outputs a secret key SKi.
Dec({SKi}i∈UK

, {CTi}i∈UM
): It takes {SKi}i∈UK

, {CTi}i∈UM
and outputs a decryption value d ∈ Z or

a symbol ⊥ where UK ⊆ ID and UM ⊆ ID are any sets.

37

Correctness. A DDFE scheme for f is correct if it satisfies the following condition. For all λ ∈
N, UK ⊆ ID, UM ⊆ ID, {i, ki}i∈UK

∈
⋃

i∈N(ID × K)i, {i,mi}i∈UM
∈
⋃

i∈N(ID ×M)i, we have

Pr

d = f({i, ki}i∈UK
, {i,mi}i∈UM

) :

PP← Setup(1λ)

PKi,MSKi ← LSetup(PP)

CTi ← Enc(MSKi,mi)

SKi ← KeyGen(MSKi, ki)

d = Dec({SKi}i∈UK
, {CTi}i∈UM

)

 = 1.

Note that we can consider the case where UK and UM are multisets as in the original definition
in [CDSG+20]. However, we do not consider the case here since it induces ambiguity that can be also
found in [CDSG+20]12. We assume that N contains 0 here and (ID × K)0 = {i, ki}i∈∅ = ∅. That
is, UK and UM can be an empty set, which corresponds to the case where Dec does not take secret
keys/ciphertexts as input.
Security. We define the security of DDFE as follows. A DDFE scheme is xx-yy-partially hiding
(xx ∈ {sel, adt}, yy ∈ {sym, asym}) if for every stateful PPT adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N, the following holds

Pr

[
β ← AQHonestGen(),QCor(),QEncβ(),QKeyGen()(PP) :

β ← {0, 1}
PP← Setup(1λ)

]
≤ 1

2
+ negl(λ).

Each oracle works as follows. For i ∈ ID, QHonestGen(i) runs (PKi,MSKi)← LSetup(PP) and returns
PKi. For i such that QHonestGen(i) was queried, the adversary can make the following queries: QCor(i)
outputs MSKi, QEncβ(i,m0,m1) outputs Enc(MSKi,m

β), and QKeyGen(i, k) outputs KeyGen(MSKi, k).
Note that mβ consists of the private elements mβ

priv and the public elements mpub, respectively (we
always require that m0

pub = m1
pub = mpub as the public elements are not hidden in CT). Let S be the

set of parties on which QHonestGen(i) is queried, HS be the set of parties on which the adversary has
not queried QCor at the end of the game, and CS = S\CS. Then, the adversary’s queries must satisfy
the following conditions.

– There are no sequences ({i, ki}i∈UK
, {i,m0

i }i∈UM
), {i,m1

i }i∈UM
) that satisfy all the conditions:

• For all i ∈ UK , [QKeyGen(i, ki) is queried] or [i ∈ CS].
• For all i ∈ UM , [QEncβ(i,m0

i ,m
1
i) is queried] or [m0

i = m1
i ∈M and i ∈ CS].

• f({i, ki}i∈UK
, {i,m0

i }i∈UM
) 6= f({i, ki}i∈UK

, {i,m1
i }i∈UM

).
– When xx = sel: the adversary first generates a set S of honest users in one shot. After that it makes

the corruption, key generation, encryption queries in one shot to obtain {MSKi}, {KeyGen(MSKi, k)},
{Enc(EKi,m

β)}.
– When yy = sym: for i ∈ CS, the queries QEncβ(i,m0,m1) must satisfy m0 = m113.

We formally define DDFE for AWS as follows.

Definition 6.2 (DDFE for Attribute Weighted Sum). DDFE for AWS is a class of DDFE
(Definition 6.1) where ID ⊆ {0, 1}∗, K =

⋃
S⊆ID(FABP

n0,n1
)S × S14, M = X × 2ID × L, where X =⋃

i∈N(Zn0
p ×Zn1

p)i, and supports the following functionality: Let G = (p,G1, G2, GT , g1, g2, e) be bilinear
groups. The function f ′ is defined as follows: for ki = (f̄i,UK,i) ∈ K, where f̄i = {fj}j∈UK,i

and
12 Concretely, when UK is a multiset, and i′ ∈ UK has multiplicity 2, how to treat ki′ ∈ {ki}i∈UK is unclear.
13 The symmetric setting captures the case where MSKi can be used to not only encrypt/key generation but

also decryption/decoding of CTi/SKi.
14 An element in (FABP

n0,n1
)S × S is of the form ({fi}i∈S , S). We note that in more precise notation, (FABP

n0,n1
)S

contains elements of the form {i, fi}i∈S , which itself carries information about S, but we explicitly add ×S,
to keep the notation more intuitive.

38

mi = ({xi,j , zi,j}j∈[Ni],UM,i, Li) ∈ M (here {zi,j}j∈[Ni] is the private part and {xi,j}j∈[Ni],UM,i, Li

are the public parts of mi),

f ′({i, ki}i∈U ′
K
, {i,mi}i∈U ′

M
) = {

[
∑

i∈U ′
K

∑
j∈[Ni]

〈fi(xi,j), zi,j〉]T the condition below is satisfied
⊥ otherwise

1. U ′
K = U ′

M and ∀ i ∈ U ′
K , UK,i = UM,i = U ′

K .
2. ∀i,i′∈U ′

K
, f̄i = f̄i′ and Li = Li′ .

For a building block of DDFE for AWS, we use a class of DDFE called all-or-nothing encryption.
Chotard et al. showed that sel-sym-IND-secure AoNE can be generically constructed from identity-
based encryption [CDSG+20].

Definition 6.3 (All-or-nothing encryption (AoNE)). AoNE is a class of DDFE (Definition 6.1)
where ID = {0, 1}∗, Mpriv = {0, 1}L for some L ∈ N, Mpub = 2ID × L, K = ∅, Z = {0, 1}∗. The
function f is defined as, for U ′

K ∈ 2ID and {mi = (xi,UM,i, LM,i)}i∈U ′
M

,

f({i}i∈U ′
K
, {i,mi}i∈U ′

M
) =

{
{xi}i∈U ′

M
the condition below is satisfied

⊥ otherwise

– ∀i ∈ U ′
M ,U ′

M = UM,i.
– ∃LM ∈ L,∀i ∈ U ′

M , LM,i = LM .

This means that KeyGen is unnecessary, and Dec works without taking secret keys as input in AoNE
(recall that U ′

K can be an empty set).

6.2 Construction

Let aFE = (aSetup, aEnc, aKeyGen, aDec) be an FE scheme for AWSw/IP with the length of the random
tape for aSetup being `a, AoNE = (anGSetup, anLSetup, anEnc, anDec) be an all-or-nothing encryption
scheme15, NIKE = (nSetup, nKeyGen, nSharedKey) be a non-interactive key exchange scheme, {PRFK

1 } :
2ID×L → Zk

p, {PRFK
2 } : 2ID → {0, 1}`s be families of pseudorandom functions, with key space K1,K2,

respectively and ID denotes an identity space and H : {0, 1}∗ → Gk
2 is a hash function modeled as a

random oracle. Our construction of DDFE for AWS is given in Figure 7
Correctness and Security. Firstly, we observe that if UK = UM = U , Li = LM for all i ∈ U , where
LM is any label in L2 and {fj}j∈UK,i

is same in all the ciphertexts input to the decryption algorithm,
then

– we have from the correctness of AoNE, ãSKi = aSKi and ãCTi = aCTi.
– vector s computed by every user i ∈ U is same.

Then from the correctness of NIKE, Ki,j,1 = Kj,i,1 and hence,
∑

i∈U vi = 0. Hence, from the correctness
of aFE, ∏

i∈U
aDec(ãSKi, ãCTi) =

∏
i∈U

aDec(aSKi, aCTi) =
∏
i∈U

[
∑

j∈[Ni]

〈fi(xi,j), zi,j〉+ 〈s,vi〉]T

= [
∑
i∈U

∑
j∈[Ni]

〈fi(xi,j), zi,j〉+
∑
i∈U
〈s,vi〉]T = [

∑
i∈U

∑
j∈[Ni]

〈fi(xi,j), zi.j〉]T .

We argue security via the following theorem.
15 We use AoNE to encrypt messages from two different spaces. So, either we can use two AoNE schemes with

appropriate message spaces or can use padding to make the message spaces same. For simplicity, we present
our construction with same AoNE scheme.

39

GSetup(1λ): On input the security parameter 1λ, the setup algorithm outputs PP as follows.

anPP← anGSetup(1λ), nPP← nSetup(1λ), PP = (anPP, nPP).

LSetup(PP): On input PP, user i ∈ ID generates (PKi,MSKi) via the setup algorithm as follows.

(nPKi, nSKi)← nKeyGen(nPP), (anPKi, anMSKi)← anLSetup(anPP), Ki,2 ← K2

PKi = (nPKi, anPKi), MSKi = (nSKi, anMSKi,Ki,2).

Enc(MSKi,m): The encryption algorithm takes as input the public parameters PP, the master secret key MSKi,
and an input m = ({xi,j , zi,j}j∈NiUM,i, Li) such that i ∈ UM,i and outputs CTi as follows.

rti = PRF
Ki,2

2 (UM,i), aMSKi = aSetup(1λ; rti), Ki,j,1 ← nSharedKey(nSKi, nPKj)

vi =
∑

j∈UK,i
i 6=j

(−1)j<iPRF
Ki,j,1

1 (UM,i, Li), x̂i = ({xi,j , zi,j}j∈Ni , [vi, 0]1),

aCTi ← aEnc(aMSKi, x̂i) (6.1)
anCTi ← anEnc(anMSKi, (aCTi,UM,i, Li)), CTi = (anCTi,UM,i, Li). (6.2)

KeyGen(MSKi, k): The key generation algorithm takes the master secret key MSKi, and an input k =
({fj}j∈UK,i ,UK,i) such that i ∈ UK,i and outputs SKi as follows.

rti = PRF
Ki,2

2 (UK,i), aMSKi = aSetup(1λ; rti)

[s]2 = H({fi}i∈UK,i ,UK,i), f̂i = (fi, [(s, 0)]2), aSKi ← aKeyGen(aMSKi, f̂i) (6.3)
anCTi ← anEnc(anMSKi, (aSKi,UK,i, {fj}j∈UK,i)), SKi = (anCTi,UK,i, {fj}j∈UK,i). (6.4)

Dec({SKi}i∈UK , {CTi}i∈UM): The decryption algorithm takes as input the public parameters PP, secret keys
{SKi}i∈UK , ciphertexts {CTi}i∈UM such that U = UK = UM and outputs d as follows. Parse SKi =
(anCTi,UK,i, {fj}j∈UK,i) and CTi = (anCT′

i,UM,i, Li). Compute

{ãSKi}i∈U = anDec({anCTi}i∈U), {ãCTi}i∈U = anDec({anCT′
i}i∈U),

[d]T =
∏
i∈U

aDec(ãSKi, ãCTi).

Fig 7. Dynamic Decentralized FE for AWS

Theorem 6.1. If {PRFK
1 }, {PRF

K
2 } are families of pseudorandom functions, NIKE is IND-secure, AoNE

is sel-sym-IND-secure, the MDDHk assumption holds in G, and aFE is function-hiding, then our AWS-
DDFE scheme is sel-sym-partially-hiding in the random oracle model as per Definition 6.1.

Proof. Let S be the set of parties generated by QHonestGen queries. Let HS ⊆ S be the set of
uncorrupted parties and CS = S\HS. We prove the theorem via a series of hybrids, which are defined
as follows.

Hβ
s : This is the original game. In particular, in response to QEncβ(i, x0

i , x
1
i ,UM , LM) and QKeyGen(i, {fj}j∈UK

,UK),
where xb

i = {xi,j , z
b
i,j}j∈[Ni] for b ∈ {0, 1}, the challenger sets

x̂i = (xβ
i , [vi, 0]1), f̂i = (fi, [s, 0]2),

(in eqs. (6.1) and (6.3), respectively). Vectors vi and s are computed as desribed in the construc-
tion.

Hβ
1 : In this hybrid, the challenger samples rti randomly instead of computing using PRF2. Indistin-

guishability between Hβ
s and Hβ

1 follows from the security of PRF2.

40

Hβ
2 : We say an encryption query on (i, x0

i , x
1
i ,UM , LM) is incomplete, if there exists i′ ∈ UM such that

i′ ∈ HS and no encryption query of the form (i′, ?, ?,UM , LM) is made. In this hybrid, in response
to all the incomplete encryption queries, anCTi is computed as anEnc.(0,UM , LM) (eq. (6.2)). The
indistinguishability between Hβ

1 and Hβ
2 follows from the security of AoNE.

Hβ
3 : We say a key query on (i, f̄ = {fj}j∈UK

,UK) is incomplete if there exist i′ ∈ UK such that i′ ∈ HS
and there is no key query of the form (i′, f̄ ,UK). In this hybrid, for all the incomplete key queries
anCTi encrypts 0 (eq. (6.4)). The indistinguishability between Hβ

2 and Hβ
3 follows from the security

of AoNE.
Hβ

f : In this hybrid, for all the complete encryption queries of the form (i, x0
i , x

1
i ,UM , LM) with i ∈ HS,

the challenger sets x̂i = (x0
i , [vi, 0]1). We note that the adversary has zero advantage in this hybrid

because its view is independent of β (recall that for i ∈ CS, x0
i = x1

i .). We show that Hβ
f is

indistinguishable from Hβ
3 in Lemma 6.1

Lemma 6.1. If {PRFK
1 } is a family of pseudorandom functions, NIKE is IND-secure, the MDDHk

assumption holds in G, and aFE is partially function-hiding, then Hβ
3 ≈ Hβ

f in the random oracle
model.

Proof. To prove the lemma, we consider the following sub hybrids between Hβ
3 and Hβ

f . Let qu be the
total number of ID sets with complete encryption queries. Let {U1, . . . ,Uqu} be some fixed ordering on
the ID sets from complete encryption queries and let q′u be the upper bound on qu. Then define sub
hybrid Ĥβ

j as follows

Ĥβ
j : (for j ∈ {0}∪ [q′u]). This hybrid is same as Hβ

3 except that for every complete encryption query of
the form (i, x0

i , x
1
i ,UM , LM) such that i ∈ HS, the challenger sets

x̂i =

{
(x0

i , [vi, 0]1) if UM ∈ {U1, . . . ,Uj}
(xβ

i , [vi, 0]1) if UM ∈ {Uj+1, . . . ,Uqu},

where Uj = {⊥} for j > qu. We observe that Ĥβ
0 = Hβ

3 and Ĥβ
q′u

= Hβ
f . So, now we need to show

that for all j ∈ [q′u], Ĥ
β
j−1 ≈ Ĥβ

j .

To show this, we let {L1
Uj
, . . . , Lv

Uj
} be the set of labels used in complete encryption queries of the

form (?, ?, ?,Uj , ?). Let v ≤ qL. Then define the following sub hybrids:

Ĥβ
j−1,0: Same as Ĥβ

j−1.
Ĥβ

j−1,κ: (for κ ∈ [qL]). Same as Ĥβ
j−1 except that for every complete encryption query of the form

(i, x0
i , x

1
i ,Uj , L), for i ∈ HS,

x̂i =

{
(x0

i , [vi, 0]1) if L ∈ {L1
Uj
, . . . , Lκ

Uj
}

(xβ
i , [vi, 0]1) if L ∈ {Lκ+1

Uj
, . . . , Lv

Uj
}

We observe that Ĥβ
j−1,qL

= Ĥβ
j . So now, we need to show that Ĥβ

j−1,κ−1 ≈ Ĥβ
j−1,κ, for all κ ∈ [qL]. For

this, we further define following sub hybrids between Ĥβ
j−1,κ−1 and Ĥβ

j−1,κ:
Let UHS

j = Uj ∩HS = {u1, . . . , uw} and w′ be an upper bound on w. Define

H̄β
η : (for η ∈ [w′]). Same as Ĥβ

j−1,κ−1, except that for each complete encryption query QEncβ(ui, x
0
ui
, x1

ui
,Uj , Lκ

Uj
)

and complete key query QKeyGen(ui, {fj}j∈Uj
,Uj), x̂ui

and f̂ui
, respectively, are set as follows:

x̂ui
=


(x0

ui
, [vui , 0]1) if i ≤ η

(xβ
ui
, [vui

, 0]1) if η < i < w

(xβ
ui
, [vui

, 1]1) if i = w

41

f̂ui =

{
(fui , [s, 0]2) if i < w

(fui , [s,
∑

l∈[η] ∆
β
ul,Lκ

Uj

]2) if i = w

Here, ∆β
ul,Lκ

Uj

= ful
(x1,β

ul
)− ful

(x1,0
ul

), where 1 in the superscript indicates the first QEncβ query of
the form (ul, ?, ?,Uj , Lκ

Uj
). We have, from the admissibility conditions,

– Let qc,ul,Uj ,Lκ
Uj

be the number of encryption queries of the form (ul, ?, ?,Uj , Lκ
Uj
), then ful

(xτ,β
ul

)−

ful
(xτ,0

ul
) = ∆β

ul,Lκ
Uj

for all τ ∈ [qc,ul,Uj ,Lκ
Uj
], where τ denotes the sequence number of the query

of this form (see proof of Lemma 5.2).
–

∑
ul∈(HS∩Uj)

∆β
ul,Lκ

Uj

= 0.

Now we argue the indistinguishability of the sub hybrids. Firstly, we observe the following:

1. Ĥβ
j−1,κ−1 ≈ H̄β

0 : The only difference between the two hybrids is that for encryption query of the
form QEncβ(uw, x

0
uw

, x1
uw

,Uj , Lκ
Uj
), x̂uw

= (xβ
uw

, [vuw
, 0]1) in the former and x̂uw

= (xβ
uw

, [vuw
, 1]1)

in the latter hybrid. Note that f̂uw for any key queries of the form (uw, {fj}j∈[Uj],Uj) is of the
form (fuw

, [s, 0]2) (notice the last bit being 0) in both the hybrids. Hence, the two hybrids are
indistinguishable due to partially function-hiding security of aFE.

2. Similarly, H̄β
w′ ≈ Ĥβ

j−1,κ from aFE security.

So, all that is left is to show that H̄β
η−1 ≈ H̄β

η . For this, we first note that the two hybrids differ only
in the values of x̂uη and f̂uw as follows:

In H̄β
η−1 :

x̂ui =

{
(xβ

ui
, [vui

, 0]1) if i = η

(xβ
ui
, [vui

, 1]1) if i = w
, f̂ui =

{
(fui

, [s, 0]2) if i = η

(fui , [s,
∑

l∈[η−1] ∆
β
ul,Lκ

Uj

]2) if i = w

In H̄β
η :

x̂ui =

{
(x0

ui
, [vui

, 0]1) if i = η

(xβ
ui
, [vui

, 1]1) if i = w
, f̂ui =

{
(fui

, [s, 0]2) if i = η

(fui , [s,
∑

l∈[η] ∆
β
ul,Lκ

Uj

]2) if i = w

To show indistinguishability, we consider sub hybrids with the following sequence of changes in x̂ui

and f̂ui
for ui ∈ UHS

j .

H̄β
η−1,1: For every complete QEncβ query, sample Kuη,uw,1(= Kuw,uη,1) randomly instead of computing

from nSharedKey16. Indistinguishability from H̄β
η−1 follows from the security of NIKE.

H̄β
η−1,2: For any complete encryption query of the form (ui, ?, ?,Uj , Lκ

Uj
), the computation of vuη

and

vuw
use random value in place of PRF

Kuη,uw,1(Uj ,L
κ
Uj

)

1 . Thus, vectors vuη
and vuw

changes from

vuη
=

∑
i∈Uj ,i6=uη

(−1)i<uηPRF
Kuη,i,1(Uj ,L

κ
Uj

)
, to

vuη
=

∑
i∈Uj ,i/∈{uη,uw}

(−1)i<uηPRF
Kuη,i,1(Uj ,L

κ
Uj

)
+tuη,uw

vuw
=

∑
i∈Uj ,i6=uw

(−1)i<wPRF
Kuw,i,1(U`,L

κ
Uj

)
, to

vuw
=

∑
i∈Uj ,i/∈{uη,uw}

(−1)i<uwPRF
Kuw,i,1(U`,L

κ
Uj

)−tuη,uw

16 this change will happen for all the ID sets, since Kuη,uw,1 does not depend on the ID set or the label.

42

where tuη,uw
is chosen randomly. Indistinguishability from the previous sub hybrid follows from

the security of PRF1.
H̄β

η−1,3: Change x̂uη
, x̂uw

, f̂uη
and f̂uw

as:

x̂ui
=

{
(xβ

ui
, [vui

+tuη,uw
, 1]1) if i = η

(xβ
ui
, [vui

−tuη,uw
, 1]1) if i = w

f̂ui
=

(fui
, [s,−〈s, tuη,uw

〉]2) if i = η

(fui
, [s,

∑
l∈[η−1] ∆

β
ul,Lκ

Uj

+〈s, tuη,uw
〉]2) if i = w

The indistinguishability follows from the partially function-hiding property of aFE.
H̄β

η−1,4: Replace 〈s, tuη,uw
〉 with random tuη,uw

.

x̂ui
=

{
(xβ

ui
, [vui + tuη,uw , 1]1) if i = η

(xβ
ui
, [vui

− tuη,uw
, 1]1) if i = w

f̂ui
=

(fui
, [s,−tuη,uw

]2) if i = η

(fui
, [s,

∑
l∈[η−1] ∆

β
ul,Lκ

Uj

+ tuη,uw
]2) if i = w

Indistinguishability between H̄β
η−1,3 and H̄β

η−1,4 follows from the MDDHk assumption. In more
detail, let f̄1, . . . , f̄qk be the functions for which the adversary issues complete key queries of
the form (?, ?,Uj) queries and let s1, . . . , sqk be the corresponding s vectors (recall that these are
computed from the hash function modeled as a random oracle). Then, to argue indistinguishability
between the two hybrids, we need to show

{sτ , 〈sτ , tuη,uw〉}τ∈[qk] ≈ {t
τ
uη,uw

}τ∈[qk],

which follows directly from the MDDHk assumption.
H̄β

η−1,5: Implicitly set tuη,uw = t′uη,uw
+∆uη,Lκ

Uj
. That is,

x̂ui
=

{
(xβ

ui
, [vui + tuη,uw , 1]1) if i = η

(xβ
ui
, [vui − tuη,uw , 1]1) if i = w

f̂ui
=

(fui , [s,−t′uη,uw
−∆uη,Lκ

Uj
]2) if i = η

(fuw
, [s,

∑
l∈[η] ∆

β
ul,Lκ

Uj

+ t′uη,uw
]2) if i = w

H̄β
η−1,6: Change x̂uη and f̂η as

x̂ui
=

{
(x0

ui
, [vui

+ tuη,uw
, 1]1) if i = η

(xβ
ui
, [vui − tuη,uw , 1]1) if i = w

f̂ui
=

(fui , [s,−t′uη,uw
]2) if i = η

(fui
, [s,

∑
l∈[η] ∆

β
ul,Lκ

Uj

+ t′uη,uw
]2) if i = w

Indistinguishability follows from the partially function hiding property of aFE.

Now, undo the changes in previous steps to get H̄β
η .

43

References
ABDP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional en-

cryption schemes for inner products. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS,
pages 733–751. Springer, Heidelberg, March / April 2015.

ABG19. Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to multi-client
inner-product functional encryption. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part III, volume 11923 of LNCS, pages 552–582. Springer, Heidelberg, December
2019.

ABV+12. Shweta Agrawal, Xavier Boyen, Vinod Vaikuntanathan, Panagiotis Voulgaris, and Hoeteck Wee.
Functional encryption for threshold functions (or fuzzy ibe) from lattices. In Marc Fischlin, Jo-
hannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of LNCS, pages 280–297.
Springer, Heidelberg, May 2012.

ACF+18. Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input func-
tional encryption for inner products: Function-hiding realizations and constructions without pair-
ings. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991
of LNCS, pages 597–627. Springer, Heidelberg, August 2018.

ACF+20. Shweta Agrawal, Michael Clear, Ophir Frieder, Sanjam Garg, Adam O’Neill, and Justin Thaler.
Ad hoc multi-input functional encryption. In Thomas Vidick, editor, ITCS 2020, volume 151,
pages 40:1–40:41. LIPIcs, January 2020.

ACGU20. Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product functional en-
cryption with fine-grained access control. In Shiho Moriai and Huaxiong Wang, editors, ASI-
ACRYPT 2020, Part III, volume 12493 of LNCS, pages 467–497. Springer, Heidelberg, December
2020.

AFV11. Shweta Agrawal, David Mandell Freeman, and Vinod Vaikuntanathan. Functional encryption for
inner product predicates from learning with errors. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 21–40. Springer, Heidelberg, December 2011.

AGRW17. Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product
functional encryption from pairings. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 601–626. Springer, Heidelberg, April / May
2017.

AGT21. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional encryption. In Kobbi
Nissim and Brent Waters, editors, TCC 2021, Part II, volume 13043 of LNCS, pages 224–255.
Springer, Heidelberg, November 2021.

AGT22. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption:
Stronger security, broader functionality. In TCC, 2022.

AGW20. Michel Abdalla, Junqing Gong, and Hoeteck Wee. Functional encryption for attribute-weighted
sums from k-Lin. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I,
volume 12170 of LNCS, pages 685–716. Springer, Heidelberg, August 2020.

AYY22. Shweta Agrawal, Anshu Yadav, and Shota Yamada. Multi-input attribute based encryption and
predicate encryption. In CRYPTO, 2022.

BGG+14. Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev, Vinod
Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In Phong Q. Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 533–556. Springer, Heidelberg, May 2014.

BSW07. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryption.
In 2007 IEEE Symposium on Security and Privacy, pages 321–334. IEEE Computer Society Press,
May 2007.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, March
2011.

CDG+18a. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval.
Decentralized multi-client functional encryption for inner product. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 703–732. Springer,
Heidelberg, December 2018.

CDG+18b. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval.
Multi-client functional encryption with repetition for inner product. Cryptology ePrint Archive,
Report 2018/1021, 2018. https://eprint.iacr.org/2018/1021.

44

https://eprint.iacr.org/2018/1021

CDSG+20. Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval.
Dynamic decentralized functional encryption. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages 747–775. Springer, Heidelberg,
August 2020.

Cha07. Melissa Chase. Multi-authority attribute based encryption. In Salil P. Vadhan, editor, TCC 2007,
volume 4392 of LNCS, pages 515–534. Springer, Heidelberg, February 2007.

CSW21. Michele Ciampi, Luisa Siniscalchi, and Hendrik Waldner. Multi-client functional encryption for
separable functions. In Juan Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages
724–753. Springer, Heidelberg, May 2021.

DOT18. Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (unbounded) multi-input inner
product functional encryption from the k-Linear assumption. In Michel Abdalla and Ricardo
Dahab, editors, PKC 2018, Part II, volume 10770 of LNCS, pages 245–277. Springer, Heidelberg,
March 2018.

DP21. Pratish Datta and Tapas Pal. (Compact) adaptively secure FE for attribute-weighted sums from
k-lin. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093
of LNCS, pages 434–467. Springer, Heidelberg, December 2021.

EHK+17. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Luis Villar. An algebraic
framework for Diffie-Hellman assumptions. Journal of Cryptology, 30(1):242–288, January 2017.

FFMV23. Danilo Francati, Daniele Friolo, Giulio Malavolta, and Daniele Venturi. Multi-key and multi-input
predicate encryption from learning with errors. In Eurocrypt, 2023.

GGG+14a. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu,
Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602.
Springer, Heidelberg, May 2014.

GGG+14b. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu,
Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Eurocrypt,
2014.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press, October / November
2006. Available as Cryptology ePrint Archive Report 2006/309.

GVW12. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded
collusions via multi-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer, Heidelberg, August 2012.

GVW13. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for cir-
cuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
545–554. ACM Press, June 2013.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits
from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 503–523. Springer, Heidelberg, August 2015.

IW14. Yuval Ishai and Hoeteck Wee. Partial garbling schemes and their applications. In Javier Esparza,
Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, ICALP 2014, Part I, volume
8572 of LNCS, pages 650–662. Springer, Heidelberg, July 2014.

KDK11. Klaus Kursawe, George Danezis, and Markulf Kohlweiss. Privacy-friendly aggregation for the
smart-grid. In Simone Fischer-Hübner and Nicholas Hopper, editors, PETS 2011, volume 6794 of
LNCS, pages 175–191. Springer, Heidelberg, July 2011.

KSW08. Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,
polynomial equations, and inner products. In Nigel P. Smart, editor, EUROCRYPT 2008, volume
4965 of LNCS, pages 146–162. Springer, Heidelberg, April 2008.

LL20a. Huijia Lin and Ji Luo. Compact adaptively secure ABE from k-Lin: Beyond NC1 and towards NL.
In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III, volume 12107 of LNCS,
pages 247–277. Springer, Heidelberg, May 2020.

LL20b. Huijia Lin and Ji Luo. Succinct and adaptively secure ABE for ABP from k-lin. In Shiho Moriai
and Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 437–466.
Springer, Heidelberg, December 2020.

NPP22. Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client functional encryption with
fine-grained access control. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022,
volume 13791, pages 95–125. Springer, 2022.

45

SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

Tom19. Junichi Tomida. Tightly secure inner product functional encryption: Multi-input and function-
hiding constructions. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019,
Part III, volume 11923 of LNCS, pages 459–488. Springer, Heidelberg, December 2019.

Wat12. Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 218–235. Springer, Heidelberg,
August 2012.

Wee17a. Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In Yael Kalai
and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 206–233. Springer,
Heidelberg, November 2017.

Wee17b. Hoeteck Wee. Attribute-Hiding Predicate Encryption in Bilinear Groups, Revisited. In TCC,
2017.

46

Work Parties
EK
Cor.

Label
(Pub, Pri)

CT
Key Functionality

Function classes of
f, g, h

AB-FE [ACGU20] 1 X N/A (x, z) (f, c) f(x) · 〈z, c〉 f ∈ MSPs
FE for AWS [AGW20] 1 X N/A ({xj}j , {zj}j) f

∑
j∈[N]

f(xj)
>zj f ∈ ABPs

MIFE [AGT22] n X × (⊥, zi) c 〈c, z⊗ z〉 N/A
MIFE [AGT22] n × X (⊥, zi) c 〈c, z⊗ z〉 N/A

AB-MIFE [ACGU20] n X × (⊥, zi) {yi, ci}i∈S f({yi}i∈S) ·
∑
i∈S

〈zi, ci〉
f({yi}) =

∧
i∈S gi(yi)

fixed gi ∈ MSPs

AB-MIFE, §4,4.2 n X × ((yi, {xi,j}j), {zi,j}j) {gi, hi}i∈[n] f(y) ·
∑

i∈[n]

∑
j∈[Ni]

hi(xi,j)
>zi,j

f(y) =
∧

i(gi(yi) = 0)

gi, hi ∈ ABPs
MCFE [CDG+18b,ABG19] n X X (⊥, zi) c 〈c, z〉 N/A

AB-MCFE [NPP22] n X OT (xi, zi) {gi, ci} f({xi}) · 〈c, z〉
f({xi}) =

∧
i gi(xi)

gi ∈ LSS
MCFE, §5 n X X ({xi,j}j , {zi,j}j) {fi}i∈[n]

∑
i∈[n]

∑
j∈[Ni]

fi(xi,j)
>zi,j fi ∈ ABPs

DDFE, [CDSG+20,AGT21] Unbdd n X X (⊥, zi) c 〈c, z〉 N/A
DDFE, §6 Unbdd n X X ({xi,j}j , {zi,j}j) {fi}i∈S

∑
i∈S

∑
j∈[Ni]

fi(xi,j)
>zi,j fi ∈ ABPs

Table 3. Prior state of the art and our results. We do not consider function hiding here. Above, we denote
y = (y1, . . . ,yn), z = (z1, . . . , zn) or z = (zi)i∈S . S ⊆ [n] is some subset of authorized users for a given key.
EK Cor. refers to whether an adversary is allowed to obtain encryption keys in the security game. Label refers
to the capability of labeling functionality that restricts decryption such that it is allowed only when all labels
are equal. OT in label means that each label can be used only one time per input. MSPs/ABPs/LSS stand
for monotone span programs/arithmetic branching programs/linear secret sharing. MCFE in a stronger (resp.
weaker) notion corresponds to MIFE that satisfies EK Cor. and Label (resp. One-time label).

A Detailed Comparison with Prior Work

We summarize prior works in Table 3.

B Multi-Party Functional Encryption

In this paper, we use many classes of functional encryption (FE) such as attribute-based encryp-
tion, secret-key functional encryption, multi-input encryption, etc. To capture various notions of FE,
Agrawal, Goyal, and Tomida proposed a notion called multi-party functional encryption (MPFE)
[AGT21]. The following definition is verbatim from [AGT21].

Definition B.1 (Multi-Party Functional Encryption). Let nx be the number of ciphertext
inputs and ny be the number of key inputs. Let X = Xpub×Xpriv be the space of ciphertext inputs and
Y = Ypub×Ypriv be the space of key inputs. We define two aggregation functions as Aggx : Xnx → X ∗,
and Aggy : Yny → Y∗.

An MPFE scheme is defined as a tuple of 4 algorithms/protocols (Setup,KeyGen,Enc,Dec). To
suitably capture existing primitives, we define our Setup algorithm/protocol to run in three modes,
described next.
Setup modes. The Setup algorithm/protocol can be run in different modes: central, local, or inter-
active. For mode ∈ {central, local, interactive}, consider the following.

central: Here the Setup algorithm is run by one trusted third party which outputs the master secret
keys and encryption keys for all users in the system.

local: Here it is run independently by different parties without any interaction, and each party outputs
its own encryption key and/or master secret key.

interactive: Here it is an interactive protocol run by a set of users, at the end of which, each user has
its encryption key and/or master secret key. We note that these keys may be correlated across
multiple users.

47

A multi-party functional encryption (MPFE) consists of the following:

Setup
(
1λ, nx, ny,Aggx,Aggy

)
: This algorithm/protocol can be executed in any one of the three modes

described above.Given input the security parameter, number of ciphertext inputs nx, number of
key inputs ny and two aggregation functions Aggx, Aggy as defined above, this algorithm outputs
a set of encryption keys {EKi}i≤nx

, master secret keys {MSKi}i≤ny
and public key PK.

Enc (PK,EK, i, x = (xpub, xpriv)): Given input the public key PK, an encryption key EK, user index
i ∈ [nx], an input x = (xpub, xpriv), this algorithm outputs a ciphertext CTx.

KeyGen (PK,MSK, j, y = (ypub, ypriv)): Given input the public key PK, a master secret key MSK, user
index j ∈ [ny] and a function input y = (ypub, ypriv), this algorithm outputs a secret key SKy.

Dec
(
PK, {SKj}j≤ny

, {CTi}i≤nx

)
: Given input the public key PK, a set of secret keys {SKj}j≤ny

and
a set of ciphertexts {CTi}i≤nx

, this algorithm outputs a value z or ⊥.

We remark that in the local setup mode, it will be helpful to separate the setup algorithm into a global
setup, denoted by Gsetup along with a local setup, denoted by Lsetup, where the former is used only
to generate common parameters of the system, such as group descriptions and such.
Correctness. We say that an MPFE scheme is correct if, ∀(nx, ny) ∈ N2, ciphertext inputs xi ∈ X
for i ∈ [nx], key inputs yj ∈ Y for j ∈ [ny], message and function aggregation circuits Aggx and Aggy,
it holds that:

Pr

z = z′ :

(PK, {EKi}, {MSKj})← Setup(1λ, nx, ny,Aggx,Aggy)
CTi ← Enc(PK,EKi, i, xi) ∀i ∈ [nx]
SKj ← KeyGen(PK,MSKj , j, yj) ∀j ∈ [ny]
z ← Dec

(
PK, {SKj}j≤ny , {CTi}i≤nx

)
z′ = U

(
Aggx({xi}),Aggy({yj})

)

 = 1.

Recall that U is the universal circuit with appropriate input and output size.
Indistinguishability based security. Next, we define security of MPFE. The security definition is
modelled in a similar fashion to MIFE security [GGG+14a, §2.2] while taking into account corruption
queries.

For any choice of parameters λ, nx, ny, aggregation functions Aggx,Aggy, and master keys K =

(PK, {EKi}i∈[nx], {MSKj}j∈[ny])← Setup(1λ, nx, ny,Aggx,Aggy), we define the following list of oracles:
QCorK(·), upon a call to this oracle for any i ∈ [nx] or j ∈ [ny], the adversary gets the corresponding

encryption key EKi or master secret key MSKj . In the case of a local setup, the adversary could instead
also supply the oracle with adversarially generated keys for the corresponding user; whereas in case of
an interactive setup, the adversary could simulate the behavior of the queried user index in the setup
protocol. (Let Sx ⊆ [nx] and Sy ⊆ [ny] denote the set of user indices for which the corresponding
encryption and master keys have been corrupted.)

QEncK,β(·, ·), upon a call to this oracle for an honest user index i ∈ [nx], message inputs (x`,0
i , x`,1

i)

(where x`,b
i =

(
x`,b
i,pub, x

`,b
i,priv

)
for b ∈ {0, 1}), the challenger first checks whether the user i was already

corrupted or not. That is, if i ∈ Sx, then it sends nothing, otherwise it samples a ciphertext for input
x`,β
i using key EKi and sends it to the adversary.

QKeyK,β(·, ·), upon a call to this oracle for an honest user index j ∈ [ny], function inputs (yk,0j , yk,1j)

(where yk,bj =
(
yk,bj,pub, y

k,b
j,priv

)
for b ∈ {0, 1}), the challenger first checks whether the user j was already

corrupted or not. That is, if j ∈ Sy, then it sends nothing, otherwise it samples a decryption key for
function input yk,βj using key MSKj and sends it to the adversary. (Here β is the challenge bit chosen
at the start of the experiment.)

We let Qx and Qy be the number of encryption and key generation queries (respectively) that
had non-empty responses. Let Qx = {(i, (x`,0, x`,1))}`∈[Qx] be the set of ciphertext queries and Qy =

{(j, (yk,0j , yk,1j))}k∈[Qy] be the set of key queries.
We say that an adversary A is admissible if:

48

1. For each of the encryption and key challenges, the public components of the two challenges are
equal, namely x`,0

pub = x`,1
pub for all ` ∈ [Qx], and yk,0pub = yk,1pub for all k ∈ [Qy].

2. For each of the encryption and key challenges, the private components of the two challenges are also
equal, namely x`,0

priv = x`,1
priv for all ` ∈ [Qx] whenever (i, (x`,0, x`,1)) ∈ Qx and i ∈ Sx, and yk,0priv = yk,1priv

for all k ∈ [Qy] whenever (j, (y`,0, y`,1)) ∈ Qy and j ∈ Sy. That is, the private components must
be the same as well if the user index i or j, that the query was made for, was corrupted during the
execution.17

3. There do not exist two sequences (−→x 0,−→y 0) and (−→x 1,−→y 1) such that:

U
(
Aggx({x0

i }),Aggy({y0j })
)
6= U

(
Aggx({x1

i }),Aggy({y1j })
)

and i) for every i ∈ [nx], either xb
i was queried or EKi was corrupted, and ii) for every j ∈ [ny],

either ybj was queried or MSKj was corrupted, and iii) at least one of inputs = xb
i ,= ybj were queried

and indices i, j were not corrupted. (Note that if i ∈ [nx] or j ∈ [ny] were queried to the QCor
oracle, the adversary can generate partial keys or ciphertexts for any value of its choice.)

An MPFE scheme (Setup,KeyGen,Enc,Dec) is said to be IND secure if for any admissible PPT
adversary A, all length parameters nx, ny ∈ N, and aggregation functions Aggx,Aggy, there exists a
negligible function negl(λ)(·) such that for all λ ∈ N, the following holds

Pr

b′ = β :

K← Setup(1λ, nx, ny,Aggx,Aggy),

K = (PK, {EKi}i, {MSKj}j),
β ← {0, 1},

β′ ← AQCorK(·),QKeyK,β(·),QEncK,β(·)(1λ,PK)

 ≤ 1

2
+ negl(λ).

Remark B.1 (Weaker notions of security). We say the scheme is selective IND secure if the adversary
outputs the challenge message and function pairs at the very beginning of the game, before it makes
any queries or receives the PK. One may also consider the semi-honest setting, where the QCor oracle
is not provided, or the case of static corruptions where the adversary provides all its corruptions once
and for all at the start of the game.

B.1 Dynamic Multi-Party Functional Encryption

In this section, we define the dynamic notion of multi-party functional encryption (MPFE). We consider
the fully dynamic setting where the number of key/ciphertext inputs is unspecified during setup time,
and the aggregation functions are also specified only during key generation and encryption times. In
the dynamic setting, an interactive or centalized setup is not meaningful since the number of parties is
itself not known during setup time, hence we restrict ourselves to the local setup mode for simplicity.

Definition B.2 (Dynamic Multi-Party Functional Encryption). Let X = Xpub × Xpriv be the
space of ciphertext inputs and Y = Ypub × Ypriv be the space of key inputs. Also, let PK be the space
to which each local public key belongs. A dynamic multi-party functional encryption scheme (MPFE)
with local setup is defined as a tuple of 5 algorithms/protocols (Gsetup, Lsetup,KeyGen,Enc,Dec) with
the following syntax:

Gsetup(1λ): On input the security parameter, the global setup algorithm samples a globally shared set
of public parameters PP.

Lsetup(PP): Given input the public parameters, the local setup algorithm outputs a tuple consisting
of local public key PK, an encryption key EK, and a master secret key MSK. (Here the local public
key is just regarded as a public identifier for the user, and not given as explicit input to other
algorithms since it could always be added to the encryption and/or master secret key.)

17 This condition is an option. When we would like to claim that EKi/MSKi does not help to decode CTi/SKi,
item 2 should be removed.

49

Enc (EK, i, x = (xpub, xpriv) ,Aggx): Given input an encryption key EK, user index i ∈ [nx], an input
x = (xpub, xpriv), and an aggregation function Aggx : (PK × X)nx → X ∗ (for some nx ∈ N), this
algorithm outputs a ciphertext CTi.

KeyGen
(
MSK, j, y = (ypub, ypriv) ,Aggy

)
: Given input a master secret key MSK, user index j ∈ [ny]

Dec ((SKj)j , (CTi)i): Given input a sequence of secret keys (SKj)j and a sequence of ciphertexts (CTi)i,
this algorithm outputs a value z or ⊥.

Correctness. We say that an MPFE scheme is correct if, ∀(N,nx, ny) ∈ N3, ciphertext inputs xi ∈ X
for i ∈ [nx], key inputs yj ∈ Y for j ∈ [ny], message and function aggregation circuits Aggx and Aggy,
and indexing functions indexx : [nx]→ [N], indexy : [ny]→ [N] it holds that:

Pr

z = z′ :

PP← Gsetup(1λ)
(PK`,EK`,MSK`)← Lsetup(PP) ∀` ∈ [N]
CTi ← Enc(EKindexx(i), i, xi,Aggx) ∀i ∈ [nx]
SKj ← KeyGen(MSKindexy(j), j, yj ,Aggy) ∀j ∈ [ny]

z ← Dec
(
(SKj)j≤ny , (CTi)i≤nx

)
z′ = U

(
Aggx

(
(PKindexx(i), xi)i

)
,Aggy

(
(PKindexy(j), yj)j

))

 = 1.

Recall that U is the universal circuit with appropriate input and output size.
Indistinguishability based security. Here we extend the security experiment for multi-party func-
tional encryption that we provided in Definition B.1 to the dynamic user setting in the local setup
mode. Since we are working in the dynamic setting, we need to define the following oracles

HonestGen(), upon a call to this oracle, the challenger samples a fresh tuple of local public key,
encryption key, and master key (PK,EK,MSK), and stores them in a list setup. It sends PK to the
adversary. (Note that if the scheme is a public key scheme, then the challenger sends the encryption
key EK to the adversary.)

QCor(·, ·), upon a call to this oracle for an honest user local public key PK and key type type ∈=
enc,master, the challenger first checks whether the list setup contains a key pair associated with PK.
If there is such a key pair (PK,EK,MSK), then it sends either the EK or MSK depending on the type
queried. Otherwise, it sends nothing.18

QEncβ(·, ·, ·, ·), upon a call to this oracle for an honest user local public key PK, inputs (x`,0
j , x`,1

j)

(where x`,b
j =

(
x`,b
j,pub, x

`,b
j,priv

)
for b ∈ {0, 1}), index j, aggregation function Agg`x,j , the challenger

first checks whether the list setup contains a key pair associated with PK. If there is such a key pair
(PK,EK,MSK), then it samples a ciphertext for input x`,β

j using key EK and sends it to the adversary.
Otherwise, it sends nothing. (Here β is the challenge bit chosen at the start of the experiment.)

QKeyβ(·, ·, ·, ·), upon a call to this oracle for an honest user local public key PK, function inputs
(yk,0j , yk,1j) (where yk,bj =

(
yk,bj,pub, y

k,b
j,priv

)
for b ∈ {0, 1}), index j, aggregation function Aggky,j , the

challenger first checks whether the list setup contains a key pair associated with PK. If there is such a
key pair (PK,EK,MSK), then it samples a decryption key for function input yk,βj using key MSK and
sends it to the adversary. Otherwise, it sends nothing. (Here β is the challenge bit chosen at the start
of the experiment.)

We let Qx and Qy be the number of encryption and key generation queries (respectively) that had
non-empty responses. Let Qx = {(PK`, (x`,0

j , x`,1
j), j,Agg`x,j)}`∈[Qx] be the set of ciphertext challenge

queries and Qy = {(PKk, (yk,0j , yk,1j), j,Aggky,j)}k∈[Qy] be the set of key challenge queries.

We say that an adversary A is admissible if:
18 As we point out in the static setting, in case EKi is completely contained in some MSKi (or vice versa), then

making a master secret corruption query for i will also imply that encryption key for i has been corrupted
too (and vice versa).

50

1. For each of the encryption and key challenges, the public components of the two challenges are
equal, namely x`,0

j,pub = x`,1
j,pub for all ` ∈ [Qx], and yk,0j,pub = yk,1j,pub for all k ∈ [Qy].

2. For each of the encryption and key challenges, the private components of the two challenges are also
equal, namely x`,0

j,priv = x`,1
j,priv for all ` ∈ [Qx], and yk,0j,priv = yk,1j,priv for all k ∈ [Qy] if the encryption

key EK` or the master secret key MSKk, that the query was made for, was corrupted during the
execution (respectively).

3. There do not exist two sequences ((
−→
PKx,

−→x 0), (
−→
PKy,

−→y 0)) 6= ((
−→
PKx,

−→x 1), (
−→
PKy,

−→y 1)) and aggrega-
tion functions Aggx,Aggy such that:

U
(
Aggx

(
(PKx,i, x

0
i)i

)
,Aggy

(
(PKy,j , y

0
j)j

))
6=

U
(
Aggx

(
(PKx,i, x

1
i)i

)
,Aggy

(
(PKy,j , y

1
j)j

))
and i) xb

i was queried for aggregation function Aggx, index i and public key PKx,i, and ii) ybj was
queried for aggregation function Aggy, index j and public key PKy,j , and iii) at least one of inputs
= xb

i ,= ybj were queried and public key PKx,i,PKy,j was not corrupted. Note that if some xb
i or ybj

was not queried by the adversary, then it can generate partial keys or ciphertexts for any value of
its choice by performing a fresh key generation since this is a fully dynamic system, however that
samples a fresh public as well.

An MPFE scheme (Gsetup, Lsetup,KeyGen,Enc,Dec) is said to be IND secure if for any admissible
PPT adversary A, there exists a negligible function negl(λ)(·) such that for all λ ∈ N, the following
holds

Pr
[
AHonestGen(), QCor(), QKeyβ(), QEncβ()(1λ) = β : β ← {0, 1}

]
≤ 1

2
+ negl(λ).

Remark B.2 (Potential variations). The above multi-party function encryption system that we define
allows the users to dynamically join the system in the permissionless model, where each incoming user
only needs to know the public parameters and not interact with any authority. A slightly weaker setting
could be a permissioned model in which users can still dynamically join the system but they need to
contact the global authority (which sampled the public parameters) either for some identification tokens
or its encryption and master secret key pair in order to prevent totally unrestricted computation which
happens in the permissionless model.

Also, we want to point out that in our current framework we let the users select the aggregation
functions during individual functional key and ciphertext generation to allow for more flexibility. This
could be relaxed even further by letting the aggregation functions be either be described in a uniform
computation model, or using an ensemble of non-uniform functions. Also, one could instead restrict
the flexibility in aggregation by asking each user to choose their aggregation functions at setup time.
Such flexibilities will be important in capturing the notion of DDFE described in Definition 6.1.

B.2 Capturing our primitives in the MPFE framework

They also proposed a dynamic variant of MPFE, which is presented in Appendix B.1. In this paper,
we use following variants of FE subsumed by MPFE or dynamic MPFE. Formal definitions of these
are found in Section 2.4 or respective sections.
Attribute-Based Encryption. Attribute-based encryption (ABE) for predicate P : X ×Y → {0, 1}
is captured by MPFE as follows: (nx, ny) = (1, 1), x = (xpub, xpriv) = (x′,M), y = (ypub, ypriv) = (y′,⊥).
Aggx(x) = x, and Aggy(y) outputs f such that U(x, f) = M if P(x′, y′) = 1 and U(x, f) = ⊥ otherwise.
Secret-Key Functional Encryption. Secret-key functional encryption (SK-FE) for function class
F is captured by MPFE as follows: (nx, ny) = (1, 1), x = (xpub, xpriv) = (x1, x2), y = (ypub, ypriv) =
(f1, f2) = f ∈ F . Aggx(x) = x, and Aggy(y) outputs f such that U(x, f) = f(x).
Multi-Input Functional Encryption. Multi-input functional encryption (MIFE) for function
class F is captured by MPFE as follows: (nx, ny) = (n, 1), xi = (xi,pub, xi,priv) = (xi,1, xi,2), y =

51

(ypub, ypriv) = (f1, f2) = f ∈ F . Aggx(x1, . . . , xn) = (x1, . . . , xn), and Aggy(y) outputs f such that
U((x1, . . . , xn), f) = f(x1, . . . , xn).
Multi-Client Functional Encryption. Multi-client functional encryption (MCFE) for function
class F is captured by MPFE as follows: (nx, ny) = (n, 1), xi = (xi,pub, xi,priv) = ((xi,1, Li), xi,2),
y = (ypub, ypriv) = (f1, f2) = f ∈ F . Aggx(x1, . . . , xn) = (x1, . . . , xn), and Aggy(y) outputs f such that
U((x1, . . . , xn), f) = f((x1,1, x1,2), . . . , (xn,1, xn,2)) if and only if L1 = · · · = Ln.
Dynamic Decentralized Functional Encryption. Dynamic decentralized functional encryption
(DDFE) for function F is captured by dynamic MPFE (Appendix B.1) as follows: xi = (xi,pub, xi,priv) =
(mi,1,mi,2) = mi, yi = (yi,pub, yi,priv) = (ki,1, ki,2) = ki. Aggx is an identity function, and Aggy({PKi, ki}i∈UK

)
outputs f such that U({PKi,mi}i∈UM

, f) = F ({PKi,mi}i∈UM
, {PKi, ki}i∈UK

). Note that we assume
that aggregate functions here can be described in non-uniform computation model such as Turing
machines as in Remark B.2.
Attribute-Based FE for Attribute-Weighted Sums with Inner Product We can capture
Attribute-Based FE for AWS with Inner Product in the context of MPFE as follows. Let G = (p,G1,
G2, GT , g1, g2, e) be bilinear groups. The setup algorithm is run in the central mode, and nx = ny = 1.
A message is defined as x = (xpub, xpriv) = ((y, {xj}j∈[N]), ({zj}j∈[N], [p]1)) where y,xj , zj ,p are all
vectors in Zp while a function is defined as y = (ypub, ypriv) = ((g, h), [q]2) where g, h are ABPs, and
q is a vector in Zp. Aggx is an identity function, and Aggy outputs a function fg,h,[q]2 that outputs
[
∑

j∈[N]〈h(xi), zi〉+ 〈p,q〉]T if and only if g(y) = 0 on input x = ((y, {xj}j∈[N]), ({zj}j∈[N], [p]1)).
Attribute-Based MIFE for Attribute-Weighted Sums We can capture Attribute-Based MIFE
for AWS in the context of MPFE as follows. Let G = (p,G1, G2, GT , g1, g2, e) be bilinear groups. The
setup algorithm is run in the central mode, and nx = n, ny = 1 for some n ∈ N. A message is defined
as x = (xpub, xpriv) = ((y, {xj}j∈[N]), {zj}j∈[N]) where y,xj , zj are all vectors in Zp while a function
is defined as y = (ypub, ypriv) = ({gi, hi}i∈[n],⊥) where gi, hi are ABPs. Aggx is an identity function,
and Aggy outputs a function f{gi,hi}i∈[n]

that outputs [
∑

i∈[n]

∑
j∈[Ni]

〈hi(xi,j), zi,j〉]T if and only if
gi(yi) = 0 for all i ∈ [n] on input {xi}i∈[n] = {(yi, {xi,j}j∈[Ni]), {zi,j}j∈[Ni]}i∈[n].
Dynamic Decentralized Functional Encryption for AWS We can capture DDFE for AWS
in the context of dynamic MPFE as follows. Let G = (p,G1, G2, GT , g1, g2, e) be bilinear groups.
The setup algorithm is run in the local mode, since it works in a dynamic manner. A message is
defined as x = (xpub, xpriv) = (({xj}j∈[N],UM , LM), {zj}j∈[N]) where xj , zj are vectors in Zp, UM is
a set of IDs, and LM is a label while a function is defined as y = (ypub, ypriv) = (({fi}i∈UK

,UK),⊥)
where f is an ABP. Aggx checks if the public inputs (UM , LM) match for all parties and that all
the ciphertexts are provided for the set UM . If so, it outputs ({xi,j , zi,j}i∈UM ,j∈[Ni],UM). Aggy checks
({fi}i∈UK

,UK) match for all parties and that all the ciphertexts are provided for the set UK . If so, it
outputs a function f ′

y that outputs [
∑

i∈UK

∑
j∈[Ni]

〈fi(xi,j), zi,j〉]T if and only if UM = UK on input
(UM , {xi,j , zi,j}i∈UM ,j∈[Ni]).

52

	Attribute-Based Multi-Input FE (and more) for Attribute-Weighted Sums
	Introduction
	Our Results
	New Applications
	Technical Overview

	Preliminaries
	Computation Models
	Computation Models
	Basic Cryptographic Notions
	Variants of Functional Encryption

	Attribute-Based FE for Attribute-Weighted Sums with Inner Product
	Construction

	Attribute-Based MIFE for Attribute-Weighted Sums
	Construction
	Security against Any Keys in AB-MIFE for AWS

	Multi-Client FE for Attribute-Weighted Sums
	Construction

	Dynamic Decentralized FE for Attribute Weighted Sums
	Definition
	Construction

	References
	Detailed Comparison with Prior Work
	Multi-Party Functional Encryption
	Dynamic Multi-Party Functional Encryption
	Capturing our primitives in the MPFE framework

