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Abstract.

This paper introduces CycleFold, a new and conceptually simple approach
to instantiate folding-scheme-based recursive arguments over a cycle of elliptic
curves, for the purpose of realizing incrementally verifiable computation (IVC).
Existing approach to solve this problem originates from BCTV (CRYPTO’14)
who describe their approach for a SNARK-based recursive argument, and it was
adapted by Nova (CRYPTO’22) to a folding-scheme-based recursive argument.
A downside of this approach is that it represents a folding scheme verifier as
a circuit on both curves in the cycle. (e.g., with Nova, this requires ≈10,000
multiplication gates on both curves in the cycle).

CycleFold’s starting point is the observation that folding-scheme-based
recursive arguments can be efficiently instantiated without a cycle of elliptic
curves—except for a few scalar multiplications in their verifiers (2 in Nova, 1 in
HyperNova, and 3 in ProtoStar). Accordingly, CycleFold uses the second curve
in the cycle to merely represent a single scalar multiplication (≈1,000–1,500
multiplication gates). CycleFold then folds invocations of that tiny circuit on
the first curve in the cycle. This is nearly an order of magnitude improvement
over the prior state-of-the-art in terms of circuit sizes on the second curve.
CycleFold is particularly beneficial when instantiating folding-scheme-based
recursive arguments over “half pairing” cycles (e.g., BN254/Grumpkin) as
it keeps the circuit on the non-pairing-friendly curve minimal. The running
instance in a CycleFold-based recursive argument consists of an instance on
the first curve and a tiny instance on the second curve. Both instances can be
proven using a zkSNARK defined over the scalar field of the first curve.

On the conceptual front, with CycleFold, an IVC construction and nor its
security proof has to explicitly reason about the cycle of elliptic curves. Finally,
due to its simplicity, CycleFold-based recursive argument can be more easily
be adapted to support parallel proving with the so-called “binary tree” IVC.



1 Introduction

Incrementally verifiable computation (IVC) [Val08] is a powerful cryptographic
primitive that allows a prover to produce a proof of the correct execution of a
“long running” computation in an incremental fashion. For example, it enables
the following: The prover takes as input a proof πi proving the the first i steps of
its computation and then update it to produce a proof πi+1 proving the correct
execution of the first i+ 1 steps. Crucially, the prover’s work to update the proof
does not depend on the number of steps executed thus far, and the verifier’s work
to verify a proof does not grow with the number of steps executed thus far. IVC
has received recent, renewed interest as it enables a wide variety of applications
in decentralized settings including verifiable delay functions [BBF18,Wes19],
succinct blockchains [Lab20], rollups [WGH+18,LNS20,OWB20], verifiable state
machines [SAGL18], and proofs of machine executions (e.g., EVM, RISC-V).

Early realizations of IVC [Val08,BCTV14a] rely on recursive versions of succinct
non-interactive arguments of knowledge (SNARKs) [Kil92,Mic94,GW11,BCCT12].
At an incremental step i, the prover produces a SNARK proving that it has
correctly applied a step of the specified computation using the output of step i−1
and that the SNARK verifier represented as a circuit has accepted a SNARK from
step i− 1 [BCCT13,BCTV14a]. These works require representing the SNARK
verifier as a circuit. To reduce the size of the SNARK verifier when encoded as a
circuit, [BCTV14a] use a 2-cycle of elliptic curves: a 2-cycle of elliptic curves is
a pair of elliptic curves (E1, E2) such that the scalar field of E1 equals the base
field of E2 (i.e., the field over which points in E2 are defined over) and vice versa
(Section 1.1 provides details on how a 2-cycle of elliptic curves is used and how
they help with concrete efficiency).

A flurry of works [BGH19,BCMS20,BDFG21,BCL+21,KST22,KS22,KS23,BC23]
reduce reliance on SNARKs to construct IVC, culminating in the so-called folding
schemes [KST22], a primitive that is sufficient to construct IVC. A folding scheme
reduces the task of checking two NP instances with the same “structure” (e.g.,
circuit description) into the task of checking a single NP instance. Naturally, a
folding scheme is simpler and is generally far more efficient than a SNARK. Recent
IVC schemes based on folding schemes include Nova [KST22], HyperNova [KS23],
and ProtoStar [BC23]. Although these recent works replace SNARKs with folding
schemes, the blueprint of [BCTV14a] remains the only solution to instantiate them
efficiently on a cycle of elliptic curves. Indeed, an implementation of Nova [nov]
adapts BCTV’s approach [BCTV14a] to the context of folding-scheme-based
recursive arguments. This still requires representing the verifier of a folding
scheme as a circuit on both curves in the cycle.

1.1 Details of the prior state-of-the-art

We first recall the 2-cycle approach to instantiate SNARK-based recursive argu-
ments in [BCTV14a]. We then describe how Nova adapts this approach to the
context of folding-scheme-based recursive arguments.



The 2-cycle approach in [BCTV14a]. The starting point for [BCTV14a] is
a pairing-based SNARK (e.g., [PGHR13,BCTV14b]) instantiated over a pairing-
friendly elliptic curve E. The proof system can prove constraint systems defined
over E’s scalar field. Furthermore, verifying a proof requires a handful of pairing
operations, which are naturally represented as operations over E’s base field.

Let (Π1, Π2) denote two SNARK schemes (such as [PGHR13,BCTV14b]) defined
respectively over (E1, E2). In particular, Π1 can “natively” (i.e., without field
emulation) prove constraint systems (e.g., R1CS) defined over the scalar field
of E1 and Π2 can prove constraint systems defined over the scalar field of E2.1

Naturally, proofs produced by Π1 can be efficiently verified by a constraint system
supported by Π2 and vice versa. This is because the algorithm to verify proofs
produced by Π1 involves operations over E1’s base field, which, by design, equals
the scalar field of E2. (When the fields do not match, one would need to emulate
arithmetic of the desired field using another field, which entails significant costs
in terms of the number of gates necessary to perform basic operations such as
additions and multiplications over the desired field.) In other words, the constraint
system supported by Π2 can efficiently encode the SNARK verifier of Π1.

To realize IVC, at step i, in [BCTV14a], the prover proceeds as follows (for ease
of exposition, we ignore the base case of i = 0).

1. Using Π1, the prover produces a SNARK π
(1)
i that proves that it has

executed the step i of the desired computation and has successfully

verified a SNARK π
(2)
i−1 from step i− 1.

2. Using Π2, the prover produces a SNARK π
(2)
i that it knows a SNARK

π
(1)
i and has successfully verified it.

Note that π
(2)
i is the IVC proof at the end of step i. At step i + 1, the prover

starts with π
(2)
i and repeats the above procedure for the (i + 1)th step of the

computation. A key take-away is that this approach requires representing the
SNARK verifier as a circuit on both curves in the cycle.

Nova’s instantiation over a 2-cycle of elliptic curves. The Nova library [nov]
adapts [BCTV14a]’s blueprint to the context of folding schemes, and obtains a
concretely-efficient implementation of Nova [KST22]. Its approach is to essen-
tially replace “SNARK verifier” with a “non-interactive folding scheme verifier”.
Specifically, an NP instance defined over the scalar field of the first curve can be
efficiently folded using a circuit defined over the scalar field of the second curve
and vice versa. Different from [BCTV14a], Nova’s IVC proof is a set of instances
and witnesses defined over both curves in the cycle rather than a single SNARK.

1 [BCTV14a] uses cycles of elliptic curves where both curves are pairing-friendly as
they use pairing-based SNARKs to realize IVC. Unfortunately, such cycles of pairing-
friendly elliptic curves require field sizes to be much larger than ordinary elliptic
curves to achieve a “standard” 128 bits of security.



Nova additionally uses the public IO of circuits to track folded NP instances.
A recent work [NBS23] provides a rigorous and detailed description of Nova’s
instantiation on a 2-cycle of elliptic curves and proves its security. This work also
exposes a vulnerability in the original implementation (which is now fixed).

Overall, Nova’s approach, like in [BCTV14a], still requires representing a verifier
(which happens to be the the non-interactive folding scheme verifier) as a circuit
on both curves in the cycle of curves. For Nova [KST22], which provides the
most efficient folding scheme verifier in the literature, the circuit defined over
the second curve in the cycle is ≈10, 000 multiplication gates.

Remark 1. HyperNova [KS23] and ProtoStar [BC23] improve upon Nova, in
terms of the degree of constraints supported and the costs incurred for supporting
higher degree constraints. At the time this paper was written, there were no
public implementations of these schemes, with support for recursion. Based on
their reported efficiency, we expect their verifier circuit sizes to be at least as large
as Nova’s verifier circuit.2 Thus, if HyperNova or ProtoStar are implemented over
a 2-cycle of elliptic curves using the approach used in Nova’s implementation,
they would require about 10,000 multiplication gates on both curves in the cycle,
to encode their verifier circuits.

1.2 Our approach in a nutshell: CycleFold

CycleFold’s starting point is the observation that folding-scheme-based recursive
arguments (e.g., Nova, HyperNova, ProtoStar) can be efficiently instantiated
without a cycle of elliptic curves—except for a few elliptic scalar multiplication
operations (2 in Nova, 1 in HyperNova, 3 in ProtoStar) in their verifier circuits
that must be handled with “wrong” field arithmetic (or non-native arithmetic).
We further observe that this scalar multiplication operation can be verifiably
delegated to the second curve with the following approach. We first represent
the desired scalar multiplication operation as a circuit over the scalar field of
the second curve. Crucially, this avoids non-native arithmetic for computing the
scalar multiplication operation (as there is no need for field emulation). Then, by
employing Nova’s folding scheme verifier on the first curve, we fold that scalar
multiplication circuit satisfiability instance into a running instance.

Figure 1 depicts an overview of CycleFold’s approach.

Note that CycleFold can be viewed as employing a 2-cycle of elliptic curves at a dif-
ferent level of abstraction than [BCTV14a] or its adaptation in Nova [KST22,nov,NBS23].
Specifically, with CycleFold, the 2-cycle of elliptic curves is used at the level of a
folding scheme. In particular, the specific way the 2-cycle of elliptic curves is used
ensures that the folding scheme verifier can be efficiently represented as a circuit
with a single curve in the cycle. Accordingly, the resulting IVC scheme nor its

2 ProtoStar performs more scalar multiplications and field operations than Nova, and
HyperNova performs one fewer scalar multiplication than Nova but incurs higher
hash computations and field operations than Nova.
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Fig. 1. Two incremental steps in HyperNova’s recursive argument instantiated with
CycleFold. E1 represents the first curve in the elliptic curve cycle, and E2 represents
the second curve in the cycle. ui attests to the computation at step i and Ui attests
to all prior steps of the computation. UEC,i attests to all prior steps of the outsourced
elliptic curve operations. CEC is a circuit which computes the outsourced elliptic curve
operations on E2. ui and Ui are parsed to retrieve inputs for circuit CEC (represented
with a dotted line). uEC,i represents the correct execution of CEC. The main computation
on each step additionally runs the HyperNova folding scheme verifier (which folds
claims regarding the main computation) by taking as auxiliary advice the result of
the elliptic curve operation (read from uEC,i). The main computation additionally runs
the Nova folding scheme verifier which folds claims about the outsourced elliptic curve
operation. ui+1 represents the correctness of the latest step and (Ui,UEC,i) represents
the correctness of all prior steps and outsourced computations.

proof of security has to reason about the 2-cycle of elliptic curves. Indeed, when
we apply CycleFold to HyperNova, we apply it at the level of a folding scheme.

A preliminary design. CycleFold employs a 2-cycle of elliptic curves (E1, E2),
but it instantiates a folding-scheme-based recursive argument (e.g., HyperNova)
as if there is only a single elliptic curve E1 (e.g., on BN254). This means that the
folding-scheme verifier is represented as a circuit, say CV, on the scalar field of E1.
For the case of HyperNova [KS23], CV performs finite field and hash operations,
and a single scalar multiplication (more precisely, a scalar multiplication followed
by a point addition). The finite field and hashing operations in CV are over E1’s
scalar field so they are represented efficiently in E1’s scalar field. However, the
scalar multiplication and point addition operations require arithmetic over E1’s
base field. Naively, one can perform those operations with non-native arithmetic
inside CV. Unfortunately, this strategy will result in CV containing a million
multiplication gates or more.

We now discuss how CycleFold avoids the non-native arithmetic to compute a
scalar multiplication and a point addition—without using the 2-cycle approach
of [BCTV14a] or its adaptation in Nova [KST22,nov,NBS23].

A “co-processor” circuit over the scalar field of E2. CycleFold creates
a circuit CEC defined over the scalar field of the second curve in the cycle E2



(e.g., on Grumpkin). CEC performs the desired scalar multiplication and a point
addition operation. Furthermore, the public IO of CEC contains the inputs and
outputs of the scalar multiplication and point addition operation. Since CEC is
defined over the scalar field of E2, which is the base field of E1 since (E1, E2) is a
2-cycle of elliptic curves. As a result, CEC does not require non-native arithmetic
to compute the desired scalar multiplication and point addition. In particular,
the size CEC is concretely small (e.g., with ≈1,000–1,500 multiplication gates).

Closing the loop. Instead of performing a scalar multiplication and a point
addition with non-native arithmetic (which as noted above is untenable), the
verifier circuit CV takes as non-deterministic input, among other things, a circuit
satisfiability instance uEC (i.e., the public IO and a commitment to a purported
satisfying witness to an instance of CEC). In addition to performing the rest of
folding scheme verifier’s work, CV simply consumes the claimed output from the
public IO of uEC after checking that inputs to the scalar multiplication and point
addition match its desired inputs. CV then folds uEC into a running instance,
using Nova’s folding scheme.

Remark 2. HyperNova’s verifier circuit CV defined over E1’s scalar field performs
≈10,000 multiplication gates (to encode Nova’s verifier circuit on E1 to fold uEC),
in addition to performing the rest of operations HyperNova’s verifier circuit. We
believe that this trade-off is beneficial in the context of half-pairing cycles as
CycleFold effectively “moves” gates from the second curve in the cycle (which is
not pairing-friendly) to the first curve in the cycle (which is pairing-friendly).

Remark 3. For simplicity, we assume that the circuit satisfiability instance uEC
is encoded with R1CS and we use Nova’s folding scheme to fold uEC into a
running instance. One can customize the shape of CEC (since this circuit only
performs simple elliptic curve operations) to lower its size and still use Nova’s
folding scheme (recent work [Moh23] demonstrates that Nova’s folding scheme
generalizes to arbitrary degree-2 constraints). One may also use higher-degree
constraints, but this may entail higher costs than 10,000 multiplication gates on
E1 (see the above remark).

Summary. CycleFold’s approach to instantiate a folding-scheme based recursive
argument (e.g., HyperNova) results in a substantially smaller circuit on the
second curve in the cycle. Specifically, CEC defined over E2’s scalar field is ≈1,000–
1,500 gates (without any customization), which is nearly an order of magnitude
improvement over having a folding scheme verifier circuit on the second curve in
the cycle.

At the “end” or at any point during an incremental computation, the running
instance consists of a circuit defined over the scalar field of E1 as well as a tiny
relaxed R1CS instance (defined over the scalar field of E2) encoding a single
scalar multiplication operation. The prover can prove both instances using a
zkSNARK (e.g., Spartan) defined over the scalar field of E1.



Applying CycleFold to Nova and ProtoStar. The text above focuses on
HyperNova, but CycleFold is not limited to HyperNova and it can be used to
instantiate existing and new folding-scheme-based recursive arguments (e.g.,
Nova, ProtoStar). Unlike HyperNova, Nova’s verifier circuit performs two scalar
multiplications and ProtoStar’s verifier circuit performs 3 scalar multiplications.
When applying CycleFold, there are two options. First, uEC can perform all the
desired scalar multiplications (which increases the size of the circuit defined over
E2 by 3× in the case of ProtoStar), but it keeps the additional multiplication
gates required on E1 to be ≈10,000 (as we make a single invocation of Nova’s
folding scheme verifier). Second, uEC performs only a single scalar multiplication
(which keeps the circuit defined over E2 minimal), but, in the case of ProtoStar, it
requires 3 invocations of Nova’s folding scheme verifier (so an additional ≈30,000
multiplication gates on E1).

Comparison with Goblin Plonk [Wil23]. Goblin Plonk supports recursive
proof composition in Plonk-type proof systems. It is instantiated over a 2-cycle of
elliptic curves. Unlike BCTV14’s approach, the second curve in the cycle is used
to represent an “instruction machine” that can be invoked by the circuit on the
first curve and when invoked performs the requested operation and places the
results in a table (which is more like a read-write memory); the table can be read
by the circuit on the first curve. Compared to CycleFold, there are downsides
to this approach. First, the size of the table grows linearly with the number of
recursive steps. In other words, the size of the recursive proof and the time to
verify it grows with the number of recursive steps, which can be prohibitive for
“long running” computations. Because of this, Goblin Plonk’s approach does not
lead to an IVC scheme.3 Note that if one wishes to compress a Goblin Plonk proof
into a succinct proof, the prover must verify the correctness of the table entries,
which can be expensive. Second, Goblin Plonk relies on complex machinery (e.g.,
to handle tables). In contrast, CycleFold provides an IVC scheme as the statement
defined over the second curve in the cycle is limited to a single circuit encoding
a scalar multiplication and a point addition. Furthermore, CycleFold does not
require any table machinery to leverage the second curve in the cycle.

1.3 An organization of the rest of the paper

We provide the necessary preliminaries in Section 2 and Appendix A. In Section 3,
we describe CycleFold applied to HyperNova [KST22]. We formalize this as a new
folding scheme over a cycle of curves where the second curve performs delegated
scalar multiplication and point addition operations. We prove the security of this
modified scheme. We leave it to the future work to formalize CycleFold a compiler
from any folding scheme described over a single curve to a folding scheme that
uses a cycle to delegate certain operations. Finally, if we substitute this folding
scheme in HyperNova’s IVC (Construction 3, Section 6.1 in [KS23]), we obtain
an IVC scheme instantiated over 2-cycle of elliptic curves via CycleFold.

3 An IVC scheme requires the size of a recursive proof and the time to verify it to be
independent of the number of steps in a computation.



2 Preliminaries

We use λ to denote the security parameter and F to denote a finite field (e.g.,
the prime field Fp for a large prime p). We use negl(λ) to denote a negligible
function in λ. Throughout the paper, the depicted asymptotics depend on λ,
but we elide this for brevity. We use “PPT algorithms” to refer to probabilistic
polynomial time algorithms. For relations R1 and R2, we define the relation
R1 × R2 as ((u1, u2), (w1, w2)) ∈ R1 × R2 if and only if (u1, w1) ∈ R1 and
(u2, w2) ∈ R2. We write Fd[X1, . . . , Xn] to denote multivariate polynomials over
field F in the variables X1, . . . , Xn with degree bound d for each variable. We
omit the superscript if there is no degree bound.

Additional preliminaries are in Appendix A.

2.1 Incrementally Verifiable Computation

For a non-deterministic polynomial-time function F , an incrementally verifiable
computation (IVC) scheme enables a prover to efficiently update a proof Πi that
attests to the claim that zi = F (i)(z0) to a proof Πi+1 (of the same size as Πi)
that attests to the claim that zi+1 = F (i+1)(z0). Below, we formally define IVC.

Definition 1 (Incrementally verifiable computation (IVC)). An incre-
mentally verifiable computation (IVC) scheme is defined by PPT algorithms
(G,P,V) and deterministic K denoting the generator, the prover, the verifier,
and the encoder respectively, with the following interface

• G(1λ)→ pp: on input security parameter λ, samples public parameters pp.

• K(pp, F ) → (pk, vk): on input public parameters pp, and polynomial-time
function F , deterministically produces a prover key pk and a verifier key vk.

• P(pk, (i, z0, zi), ωi, Πi) → Πi+1: on input a prover key pk, a counter i, an
initial input z0, a claimed output after i iterations zi, a non-deterministic
advice ωi, and an IVC proof Πi attesting to zi, produces a new proof Πi+1

attesting to zi+1 = F (zi, ωi).

• V(vk, (i, z0, zi), Πi)→ {0, 1}: on input a verifier key vk, a counter i, an initial
input z0, a claimed output after i iterations zi, and an IVC proof Πi attesting
to zi, outputs 1 if Πi is accepting, and 0 otherwise.

An IVC scheme (G,K,P,V) satisfies the following requirements.

1. Perfect Completeness: For any PPT adversary A

Pr

V(vk, (i+ 1, z0, zi+1), Πi+1) = 1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
F, (i, z0, zi, Πi)← A(pp),
(pk, vk)← K(pp, F ),
zi+1 ← F (zi, ωi),
V(vk, i, z0, zi, Πi) = 1,
Πi+1 ← P(pk, (i, z0, zi), ωi, Πi)


where F is a polynomial-time computable function.



2. Knowledge Soundness: Consider constant n ∈ N. For all expected polynomial-
time adversaries P∗ there exists an expected polynomial-time extractor E such
that over all randomness r

Pr


zn = z where
zi+1 ← F (zi, ωi)
∀i ∈ {0, . . . , n− 1}

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(F, (z0, zi), Π)← P∗(pp, r),
(pk, vk)← K(pp, F ),
V(vk, (n, z0, z), Π) = 1,
(ω0, . . . , ωn−1)← E(pp, r)

 ≈ 1.

3. Succinctness: The size of an IVC proof Π is independent of the number of
iterations n.

2.2 Multi-folding schemes

A folding scheme [KST22] for a relation R is a protocol between a prover and
verifier in which the prover and the verifier reduce the task of checking two
instances in R with the same structure into the task of checking a single instance
in R. Kothapalli and Setty [KS23] introduce a generalization of folding schemes,
which they refer to as multi-folding schemes. A multi-folding scheme is defined
with respect to a pair of relations (R1,R2) and size parameters µ and ν. It is
an interactive protocol between a prover and a verifier in which the prover and
the verifier reduce the task of checking a collection of µ instances in R1 with
structure s1 and a collection of ν instances in R2 with structure s2 into the task
of checking a single instance in R1 with structure s1—as long as s1 and s2 satisfy
a predicate compat (e.g., compat might require that s1 = s2).

Below, we provide a formal definition of multi-folding schemes.

Definition 2 (Multi-folding schemes). Consider relations R1 and R2 over
public parameters, structure, instance, and witness tuples, a predicate compat
that structures for instances in R1 and R2 must satisfy, and size parameters
µ, ν ∈ N. A multi-folding scheme for (R1,R2, compat, µ, ν) consists of a PPT
generator algorithm G, a deterministic encoder algorithm K, and a pair of PPT
algorithms P and V denoting the prover and the verifier respectively, with the
following interface:

• G(1λ)→ pp: on input security parameter λ, samples public parameters pp.

• K(pp, (s1, s2))→ (pk, vk): on input pp, and structures s1 and s2 among the
instances to be folded, outputs a prover key pk and a verifier key vk.

• P(pk, (~u1, ~w1), (~u2, ~w2))→ (u,w): on input a vector of instances ~u1 in R1 of
size µ with structure s1 and a vector of instances ~u2 in R2 of size ν with
structure s2, and corresponding witness vectors ~w1 and ~w2 outputs a folded
instance-witness pair (u,w) in R1 with structure s1.

• V(vk, (~u1, ~u2))→ u: on input a vector of instances ~u1 and a vector of instances
~u2 outputs a new instance u.



Let 〈P,V〉 denote the interaction between P and V. We treat 〈P,V〉 as a func-
tion that takes as input ((pk, vk), (~u1, ~w1), (~u2, ~w2)) and runs the interaction on
prover input (pk, (~u1, ~w1), (~u2, ~w2)) and verifier input (vk, (~u1, ~u2)). At the end of
interaction 〈P,V〉 outputs (u,w) where u is the verifier’s output folded instance,
and w is the prover’s output folded witness.

Let R(n) be the relation such that (pp, s,~u, ~w) ∈ R(n) if and only if (pp, s,~ui, ~wi) ∈
R for all i ∈ [n]. A multi-folding scheme for (R1,R2, µ, ν) satisfies the following
requirements.

1. Perfect Completeness: For all PPT adversaries A, we have that

Pr

 (pp, s1, u,w) ∈ R1

∣∣∣∣∣∣∣∣∣∣∣∣

pp← G(1λ),
((s1, s2), (~u1, ~u2), ( ~w1, ~w2))← A(pp),
compat(s1, s2) = true,

(pp, s1, ~u1, ~w1) ∈ R(µ)
1 , (pp, s2, ~u2, ~w2) ∈ R(ν)

2 ,
(pk, vk)← K(pp, s1, s2),
(u,w)← 〈P,V〉((pk, vk), (~u1, ~u2), ( ~w1, ~w2))

 = 1.

2. Knowledge Soundness: For any expected polynomial-time adversaries A and
P∗ there is an expected polynomial-time extractor E such that over all ran-
domness r

Pr

 (pp, s1, ~u1, ~w1) ∈ R(µ)
1 ,

(pp, s2, ~u2, ~w2) ∈ R(ν)
2

∣∣∣∣∣∣∣∣
pp← G(1λ),
((s1, s2), (~u1, ~u2), st)← A(pp, r),
compat(s1, s2) = true,
( ~w1, ~w2)← E(pp, r)

 ≈

Pr

 (pp, s1, u, w) ∈ R1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
((s1, s2), (~u1, ~u2), st)← A(pp, r),
compat(s1, s2) = true,
(pk, vk)← K(pp, (s1, s2))),
(u,w)← 〈P∗,V〉((pk, vk), (~u1, ~u2), st)


3. Efficiency: The communication costs and V’s computation are lower in the

case where V participates in the multi-folding scheme and then checks a witness
sent by P for the folded instance than the case where V checks witnesses sent
by P for each of the original instances.

A multi-folding scheme is secure in the random oracle model if the above require-
ments hold when all parties are provided access to a random oracle.

Definition 3 (Non-interactive). A multi-folding scheme (G,K,P,V) is non-
interactive if the interaction between P and V consists of a single message from
P to V. This single message is denoted as P’s output and as V’s input.

Definition 4 (Public coin). A multi-folding scheme (G,K,P,V) is called public
coin if all the messages sent from V to P are sampled from a uniform distribution.



2.3 Committed Relaxed R1CS

R1CS is an NP-complete problem implicit in the work of Gennero, Gentry,
Parno, and Raykova [GGPR13]. For completeness we formally define R1CS in
Appendix A.7. Below, we recall its folding-friendly variant, committed relaxed
R1CS [KST22].

Definition 5 (Committed relaxed R1CS). Consider a finite field F and a
commitment scheme Commit over F. Let the public parameters consist of size
bounds m,n, ` ∈ N where m > `, and commitment parameters ppW and ppE
for vectors of size m and m− `− 1 respectively. The committed relaxed R1CS
structure consists of sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m)
non-zero entries in each matrix. A committed relaxed R1CS instance is a tuple
(E, u,W, x), where E and W are commitments, u ∈ F, and x ∈ F` are public inputs
and outputs. An instance (E, u,W, x) is satisfied by a witness (E, rE ,W, rW ) ∈
(Fm,F,Fm−`−1,F) if E = Commit(ppE , E, rE), W = Commit(ppW ,W, rW ), and
(A · Z) ◦ (B · Z) = u · (C · Z) + E, where Z = (W, x, u).

2.4 Customizable constraint systems (CCS)

Setty et al. [STW23] recently introduced customizable constraint systems (CCS),
a constraint system that simultaneously generalizes R1CS, Plonkish, and AIR
without overheads. We first recall its definition and then describe variants that
sections ahead will show are amenable to constructing multi-folding schemes. The
definitions below are characterized by a finite field F, but we leave this implicit.

Definition 6 (CCS [STW23]). We define the customizable constraint system
(CCS) relation RCCS as follows. Let the public parameter consists of size bounds
m,n,N, `, t, q, d ∈ N where n > `.

An RCCS structure s consists of:

• a sequence of matrices M1, . . . ,Mt ∈ Fm×n with at most N = Ω(max(m,n))
non-zero entries in total;

• a sequence of q multisets [S1, . . . , Sq], where an element in each multiset is
from the domain {1, . . . , t} and the cardinality of each multiset is at most d.

• a sequence of q constants [c1, . . . , cq], where each constant is from F.

An RCCS instance consists of public input x ∈ F`. An RCCS witness consists of
a vector w ∈ Fn−`−1. An RCCS structure-instance tuple (s, x) is satisfied by an
RCCS witness w if

q∑
i=1

ci ·©j∈Si
Mj · z = 0,

where z = (w, 1, x) ∈ Fn, Mj · z denotes matrix-vector multiplication, © denotes
the Hadamard product between vectors, and 0 is an m-sized vector with entries
equal to the the additive identity in F.



Committed CCS

Consider a CCS structure sCCS = (m,n,N, `, t, q, d, [M1, . . . ,Mt], [S1, . . . , St], [c1, . . . , ct]).

Let s = logm and s′ = log n. We interpret each Mi (for i ∈ [t]) as functions

with the following signature: {0, 1}s × {0, 1}s′ → F. For i ∈ [t], let M̃i denote

the MLE of Mi i.e., M̃i is the unique multilinear polynomial in logm + log n
variables such that ∀x ∈ {0, 1}s, y ∈ {0, 1}s′ , M̃i(x, y) = Mi(x, y). Similarly, for
a purported witness w ∈ Fn−`−1 let w̃ denote the unique MLE of w viewed as a
function. WLOG, below, we let |w| = `+ 1.

Definition 7 (Committed CCS). Let PC = (Gen,Commit,Open,Eval) denote
an additively-homomorphic polynomial commitment scheme for multilinear poly-
nomials over a finite field F.

We define the committed customizable constraint system (CCCS) relation RCCCS

as follows. Let the public parameter consists of size bounds m,n,N, `, t, q, d ∈ N
where n = 2 · (`+ 1) and pp← Gen(1λ, s′ − 1). Let s = logm and s′ = log n.

An RCCCS structure s consists of:

• a sequence of sparse multilinear polynomials in s+ s′ variables M̃1, . . . , M̃t

such that they evaluate to a non-zero value in at most N = Ω(m) locations
over the Boolean hypercube {0, 1}s × {0, 1}s′ ;

• a sequence of q multisets [S1, . . . , Sq], where an element in each multiset is
from the domain {1, . . . , t} and the cardinality of each multiset is at most d.

• a sequence of q constants [c1, . . . , cq], where each constant is from F.

An RCCCS instance is (C, x), where C is a commitment to a multilinear polynomial
in s′ − 1 variables and x ∈ F`. An RCCCS witness consists of a multilinear
polynomial w̃ in s′ − 1 variables. An RCCCS structure-instance tuple is satisfied
by an RCCCS witness if Commit(pp, w̃) = C and if ∀x ∈ {0, 1}s,

q∑
i=1

ci ·

Πj∈Si

 ∑
y∈{0,1}logm

M̃j(x, y) · z̃(y)

 = 0,

where z̃ is an s′-variate multilinear polynomial such that z̃(x) = ˜(w, 1, x)(x) for
all x ∈ {0, 1}s′ .

Linearized committed CCS

Definition 8 (Linearized committed CCS). Let PC = (Gen,Commit,Open,Eval)
denote an additively-homomorphic polynomial commitment scheme for multilinear
polynomials over a finite field F.

We define the linearized committed customizable constraint system (LCCS)
relation RLCCCS as follows. Let the public parameter consists of size bounds



m,n,N, `, t, q, d ∈ N where n = 2 · (`+1) and pp← Gen(1λ, s′−1). Let s = logm
and s′ = log n.

An RLCCCS structure s consists of:

• a sequence of sparse multilinear polynomials in s+ s′ variables M̃1, . . . , M̃t

such that they evaluate to a non-zero value in at most N = Ω(m) locations
over the Boolean hypercube {0, 1}s × {0, 1}s′ ;

• a sequence of q multisets [S1, . . . , Sq], where an element in each multiset is
from the domain {1, . . . , t} and the cardinality of each multiset is at most d.

• a sequence of q constants [c1, . . . , cq], where each constant is from F.

An RLCCCS instance is (C, u, x, r, v1, . . . , vt), where u ∈ F, x ∈ F`, r ∈ Fs, vi ∈ F
for all i ∈ [t], and C is a commitment to a multilinear polynomial in s′ − 1
variables. An RLCCCS witness is a multilinear polynomial w̃ in s′ − 1 variables.

An RLCCCS structure-instance tuple is satisfied by an RLCCCS witness if Commit(pp, w̃) =

C and if for all i ∈ [t], vi =
∑
y∈{0,1}s′ M̃i(r, y) · z̃(y), where z̃ is an s′-variate

multilinear polynomial such that z(x) = ˜(w, u, x)(x) for all x ∈ {0, 1}s′ .

3 A multi-folding scheme for CCS over a cycle of curves

This section describes a multi-folding scheme for CCS, instantiated over a cycle of
elliptic curves. Our construction and proof strategy build upon HyperNova [KS23].

Let (E1, E2) denote a 2-cycle of elliptic curves, where each curve in the cycle can
be used as cryptographic group (i.e. the discrete logarithm problem is hard). Let
Fp and Fq respectively denote the scalar field and the base field of E1. Naturally,
Fq and Fp respectively denote the scalar field and the base field of E2.

We provide a multi-folding scheme for R1 = RLCCCS ×RCRR1CS with structure
s1 and R2 = RCCCS with structure s2, when (s1, s2) satisfy the compat predicate
defined below. Here, RLCCCS and RCCCS are both defined over Fp (i.e., the scalar
field of E1) and RCRR1CS is defined over Fq (i.e., the scalar field of E2).

To keep the description of the multi-folding scheme simple, we describe and
prove the case of µ = ν = 1. However, both the construction and proofs easily
generalize to the case of arbitrary values of µ and ν. In particular, the generalized
version simply uses more powers of a random challenge when combining claims.

A high-level overview. Our goal is to instantiate a folding scheme (e.g.,
HyperNova’s folding scheme) on a cycle of elliptic curves.

Suppose that the prover and the verifier are given as input a tuple consisting of
a linearized committed CCS instance and a committed relaxed R1CS instance
(ULCCCS,UCRR1CS), and a committed CCS instance uCCCS. The prover additionally
takes as input witnesses (WLCCCS,WCRR1CS) and wCCCS.

HyperNova’s folding scheme verifier folds the committed CCS instance uCCCS into
the the linearized committed CCS instance ULCCCS to produce a new linearized



committed CCS instance U′LCCCS. Internally, this involves finite field and hash
operations. In addition, it involves one scalar multiplication and point addition.
In particular, provided commitment C1 in the linearized committed CCS instance
ULCCCS and commitment C2 in the committed CCS instance uCCCS, the HyperNova
verifier, picks a random challenge ρ, and computes

C ′ ← C1 + ρ · C2.

Unfortunately, this computation makes it inefficient to represent the HyperNova
verifier over the same curve that represents the computations that it verifies. To
address this, we modify the HyperNova verifier to take the resulting value C ′ as
non-deterministic advice. Of course, this advice must be verified.

To do so, the prover generates a relaxed R1CS instance that represents the random
linear combination during the HyperNova folding protocol. In more detail, let
sEC = (A,B,C) denote a committed relaxed R1CS structure defined over Fq. Its
public IO consists of (ρ, C1, C2, C

′), where ρ ∈ Fp, C1 ∈ E1, C2 ∈ E1, C
′ ∈ E1.

This constraint system enforces that C ′ = C1 + ρ · C2, where + is the elliptic
curve point addition and · is the elliptic curve scalar multiplication operation in
E1. Since Fq is the base field of E1, sEC computes the required point addition
and scalar multiplication operations “natively” with a concise set of constraints
(i.e., without the “wrong field” arithmetic).

We modify the HyperNova verifier to read the inputs and outputs of this relaxed
R1CS instance (rather than computing the random linear combination itself).
Instead of directly checking this instance, it is folded into a running relaxed
R1CS instance using the folding scheme underlying Nova [KST22]. Note that
this auxiliary computation is represented on the second curve in the cycle. Thus,
the Nova verifier can be natively represented over the first curve alongside the
rest of the HyperNova verifier.

Putting everything together, we achieve a folding scheme that takes a committed
CCS instance and folds it into a linearized CCS instance and a relaxed R1CS
instance to produce a new linearized CCS instance and a relaxed R1CS instance.

Construction 1 (A multi-folding scheme for CCS). We construct a multi-
folding scheme for (R1 = RLCCCS ×RCRR1CS,R2 = RCCCS, compat, µ = 1, ν = 1),
where compat is defined as follows.

compat(s1, s2)→ {true, false}

1. Parse s1 as (sLCCCS, sRR1CS)

2. Check that sLCCCS = s2 and sRR1CS = sEC

Let PC = (Gen,Commit,Open,Eval) denote an additively-homomorphic poly-
nomial commitment scheme for multilinear polynomials over Fp. Let VC =
(Gen,Commit,Open) denote an additively-homomorphic commitment scheme
with succinct commitments for vectors over Fq (§A.1).



We define the generator and the encoder as follows.

G(1λ)→ pp:

1. Sample size bounds m,n,N, `, t, q, d ∈ N with n = 2 · (`+ 1)

2. ppPC ← PC.Gen(1λ, log n− 1)

3. ppVC ← VC.Gen(1λ, |sEC|), where |sEC| is the maximum among the number of
constraints or the number of witness variables in sEC.

4. Output (m,n,N, `, t, q, d, |sEC|, ppPC, ppVC)

K(pp, (([M̃1, . . . , M̃t], [S1, . . . , Sq], [c1, . . . , cq])), (A,B,C))→ (pk, vk):

1. pk← (pp, (([M̃1, . . . , M̃t], [S1, . . . , Sq], [c1, . . . , cq])), (A,B,C))

2. vk← ⊥

3. Output (pk, vk)

The verifier V takes a tuple consisting of a linearized committed CCS instance
and a committed relaxed R1CS instance (ULCCCS,UCRR1CS), where ULCCCS =
(C1, u, x1, rx, v1, . . . , vt) and UCRR1CS = (E1, u1,W 1, x1), and a committed CCS
instance uCCCS = (C2, x2). The prover P, in addition to these instances, takes
witnesses to all instances, WLCCCS = w̃1, WCRR1CS = (E1,W1), and wCCCS = w̃2.

Let s = logm and s′ = log n. Let z̃1 = ˜(w1, u, x1) and z̃2 = ˜(w2, 1, x2).

The prover and the verifier proceed as follows.

1. V → P: V samples γ
$← Fp, β

$← Fsp, and sends them to P.

2. V: Sample r′x
$← Fsp.

3. V ↔ P : Run the sum-check protocol c← 〈P,V(r′x)〉(g, s, d+1,
∑
j∈[t] γ

j · vj),
where:

g(x) :=

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)

Lj(x) := ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1(y)


Q(x) := ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)





4. P → V: ((σ1, . . . , σt), (θ1, . . . , θt)), where for all i ∈ [t]:

σi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃1(y)

θi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃2(y)

5. V: Compute e1 ← ẽq(rx, r
′
x) and e2 ← ẽq(β, r′x), and abort if:

c 6=

∑
j∈[t]

γj · e1 · σj + γt+1 · e2 ·

 q∑
i=1

ci ·
∏
j∈Si

θj



6. V → P: V samples ρ
$← Fp and sends it to P.

7. P → V : P computes a committed relaxed R1CS instance uCRR1CS = (E2, u2,W 2, x2)
with structure sEC and witness wCRR1CS = (E2,W2) to compute the quantity
C1 + ρ · C2, such that the following hold: (1) u2 = 1, (2) E1 = 0, and (3)
x2 = (ρ, C1, C2, C

′) for some C ′ ∈ E1. P then sends uCRR1CS to V.

8. V: Abort if E2 6= 0 or u2 6= 1 or x2 6= (ρ, C1, C2, C
′) for some C ′ ∈ E1.

9. P → V : Send T = VC.Commit(ppVC, T ), where T = AZ1◦BZ2+AZ2◦BZ1−
u1 · CZ2 − u2 · CZ1, Z1 = (W1, x1, u1), and Z2 = (W2, x2, u2).

10. V → P: V samples ρ?
$← Fp and sends it to P.

11. V,P : Output the folded linearized committed CCS instance (C ′, u′, x′, r′x, v
′
1, . . . , v

′
t)

and the folded committed relaxed R1CS instance (E
?
, u?,W

?
, x?), where

∀i ∈ [t]:

u′ ← u + ρ · 1

x′ ← x1 + ρ · x2
v′i ← σi + ρ · θi
E
? ← E1 + ρ? · T

u? ← u1 + ρ? · 1

W
? ←W 1 + ρ? ·W 2

x? ← x1 + ρ? · x2

12. P: Output the folded witnesses WLCCCS = w̃′ ← w̃1 + ρ · w̃2 and WCRR1CS =
(E?,W ?), where E? ← E1 + ρ? · T and W ? ←W1 + ρ? ·W2.



Theorem 1 (A multi-folding scheme for CCS). Construction 1 is a public-
coin multi-folding scheme for (R1 = RLCCCS×RCRR1CS,R2 = RCCCS, compat, µ =
1, ν = 1). with perfect completeness and knowledge soundness.

Lemma 1 (Perfect Completeness). Construction 1 satisfies perfect com-
pleteness.

Proof. Consider public parameters pp = (m,n,N, `, t, q, d, |sEC|, ppPC, ppVC) ←
G(1λ) and let s = logm and s′ = log n. Let sEC = (A,B,C) denote a committed
relaxed R1CS structure defined over Fq, with public IO (ρ, C1, C2, C

′), where
ρ ∈ Fp, C1 ∈ E1, C2 ∈ E1, C

′ ∈ E1. This constraint system enforces that C ′ =
C1 + ρ ·C2, where + is the elliptic curve point addition and · is the elliptic curve
scalar multiplication operation in E1.

Consider arbitrary structures (s1, s2) ← A(pp) such that compat(s1, s2) = true.

Let s1 = ((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)), and let s2 = (A,B,C). Con-
sider prover and verifier keys (pk, vk)← K(pp, (s1, s2)). Suppose that the prover
and the verifier are provided with a linearized committed CCS instance and a
committed relaxed R1CS instance

((C1, u, x1, rx, v1, . . . , vt), (E1, u1,W 1, x1)),

and a committed CCS instance

(C2, x2).

Suppose that the prover additionally is provided with the corresponding satisfying
witnesses (w̃1, (E1,W1)) and w̃2.

Because the input linearized committed CCS instance-witness pair is satisfying,

we have, for z̃1 = ˜(w1, u, x1), that

vj =
∑

y∈{0,1}s′
M̃j(rx, y) · z̃1(y) By precondition.

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃1(y)

 By Lemma 3

=
∑

x∈{0,1}s
Lj(x) By construction.

Furthermore, because the input committed relaxed R1CS instance-witness pair
is also satisfying, we have for Z1 = (W1, u1, x1), AZ1 ◦BZ1 = u · CZ1 + E1.

Moreover, because the input committed CCS instance-witness pair is satisfying,

we have, for all x ∈ {0, 1}s and for z̃2(x) = ˜(w2, 1, x2)(x), that

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)





Because the RHS vanishes on all x ∈ {0, 1}s, we have, for β sampled by the
verifier, that

0 =
∑

x∈{0,1}s
ẽq(β, x) ·

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)

 By Lemma 3.

=
∑

x∈{0,1}s
Q(x) By construction.

Therefore, for γ sampled by the verifier, by linearity, we have that

∑
j∈[t]

γj · vj =
∑

x∈{0,1}s

∑
j∈[t]

γj · Lj(x)

+ γt+1 ·Q(x)


=

∑
x∈{0,1}s

g(x) By construction.

Therefore, by the perfect completeness of the sum-check protocol, we have for
e1 = ẽq(rx, r

′
x), e2 = ẽq(β, r′x) and

σi =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃1(y) and θi =

∑
y∈{0,1}s′

M̃i(r
′
x, y) · z̃2(y)

that

c = g(r′x)

=

∑
j∈[t]

γj · Lj(r′x)

+ γt+1 ·Q(r′x)


=

∑
j∈[t]

γj · e1 · σj

+ γt+1 · e2
∑
i∈[q]

ci ·
∏
j∈Si

θj

 .

This implies that the verifier will not abort on step 5.

By construction, the prover can construct uCRR1CS such that the verifier does not
abort on step 8. Furthermore, the prover can construct uCRR1CS such that wCRR1CS

is a satisfying witness under structure sEC. This implies that C ′ = C1 + ρ · C2,
where C ′ is parsed from x2, which is the public IO of uCRR1CS.

Now, consider the linearized CCS instance

(C2, 1, x2, r
′
x, θ1, . . . , θt).

By the precondition that the committed CCS instance (C2, x2) is satisfied by w̃2

and by the definition of θ1, . . . , θt we have that this linearized CCS instance is
satisfied by the witness w̃2.



Therefore, for random ρ sampled by the verifier, and for C ′ = C1 + ρ · C2,
u′ = u+ ρ · 1, x′ = x1 + ρ · x2, v′i = σi + ρ · θi, we have that the output linearized
CCS instance

(C ′, u′, x′, r′x, v
′
1, . . . , v

′
t)

is satisfied by the witness w̃′ = w̃1 + ρ · w̃2 by the linearity and the additive
homomorphism property of the commitment scheme.

Now, we argue that the the output committed relaxed R1CS instance (E
?
, u?,W

?
, x?)

is satisfying under the witness (E?,W ?), for relaxed R1CS structure sEC =
(A,B,C). We need to establish the following. Let Z? = (W ?, u?, x?).

AZ? ◦BZ? = u? · CZ? + E? (1)

W
?

= VC.Commit(ppVC,W
?) (2)

E
?

= VC.Commit(ppVC, E
?) (3)

The latter two requirements hold from the additive homomorphism of the com-
mitment scheme. We now focus on proving the first requirement. We are given
that the input committed relaxed R1CS instance (E1, u1,W 1, x1) is satisfying
under the witness (E1,W1) and structure sEC. This implies that

AZ1 ◦BZ2 = u1 · CZ1 + E1,

where Z1 = (W1, u1, x1). As noted above, the committed relaxed R1CS instance
sent by the prover (E2, u2,W 2, x2) is satisfying under the witness (E2,W2) and
structure sEC. This implies that

AZ2 ◦BZ2 = CZ2,

where Z2 = (W2, 1, x2). (This is because by construction u2 = 1 and E2 = 0.)

Now, consider the LHS of the desired equality.

AZ? ◦BZ? = A(Z1 + ρ? · Z2) ◦B(Z1 + ρ? · Z2)

= AZ1 ◦BZ1 + ρ? · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + (ρ?)2 · (AZ2 ◦BZ2)

= u1 · CZ1 + E1 + ρ? · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + (ρ?)2 · CZ2

Consider the RHS of the desired equality.

u? · CZ? + E? = (u1 + ρ?) · C(Z1 + ρ? · Z2) + E1 + ρ? · T
= (u1 + ρ?) · (CZ1 + ρ? · CZ2) + E1 + ρ? · (AZ1 ◦BZ2 +AZ2 ◦BZ1 − u1 · CZ2 − CZ1)

= u1 · CZ1 + ρ? · (AZ1 ◦BZ2 +AZ2 ◦BZ1) + (ρ?)2 · CZ2

This establishes the desired requirements.

Some of our probabilistic analysis below is adapted from the proof of forking
lemma for folding schemes [KST22], which itself builds on the proof of the forking
lemma for interactive arguments [BCC+16].



Lemma 2 (Knowledge Soundness). Construction 1 satisfies knowledge
soundness.

Proof. Consider an adversary A that adaptively picks the structure and in-
stances, and a malicious prover P∗ that succeeds with probability ε. Let pp←
G(1λ). Suppose on input pp and random tape r, the adversary A picks a struc-

ture (s1, s2) = (((M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)), (A,B,C)) such that
compat(s1, s2) = true, a pair of linearized committed CCS instance and a com-
mitted relaxed R1CS instance

ϕ1 = ((C1, u, x1, rx, v1, . . . , vt), (E1, u1,W 1, x1))

and a committed CCS instance

ϕ2 = (C2, x2),

and some auxiliary state st.

We construct an expected-polynomial time extractor E that succeeds with proba-
bility ε− negl(λ) in obtaining satisfying witnesses for the original instances as
follows. Below, let R1 = RLCCCS ×RCRR1CS and R2 = RCCCS.

E(pp, r):

1. Obtain the output tuple from A:

(s, ϕ1, ϕ2, st)← A(pp, r).

2. Compute (pk, vk)← K(pp, s).

3. Run the interaction

(ϕ(1,1), (w̃, (E,W ))(1,1))← 〈P∗,V〉((pk, vk), ϕ1, ϕ2, st)

once with the verifier’s final challenges ρ(1)
$← F and ρ?(1,1)

$← F.

4. Abort if (pp, s, ϕ(1,1), (w̃, (E,W ))(1,1)) 6∈ R1.

5. Rewind the interaction

(ϕ(1,2), (w̃, (E,W ))(1,2))← 〈P∗,V〉((pk, vk), ϕ1, ϕ2, st)

with a different verifier’s challenge ρ?(2,1)
$← F while maintaining the same

prior randomness. Repeat until (pp, s, ϕ(1,2), (w̃, (E,W ))(1,2)) ∈ R1.

6. Rewind the interaction

(ϕ(2,1), (w̃, (E,W ))(2,1))← 〈P∗,V〉((pk, vk), ϕ1, ϕ2, st)

with different verifier’s challenges ρ(2)
$← F and ρ?(2,1)

$← F while maintaining
the same prior randomness. Repeat until (pp, s, ϕ(2,1), (w̃, (E,W ))(2,1)) ∈ R1.



7. Rewind the interaction

(ϕ(2,2), (w̃, (E,W ))(2,2))← 〈P∗,V〉((pk, vk), ϕ1, ϕ2, st)

with a different verifier’s challenge ρ?(2,2)
$← F while maintaining the same

prior randomness. Repeat until (pp, s, ϕ(2,1), (w̃, (E,W ))(2,2)) ∈ R1.

8. Abort if ρ?(1,1) = ρ?(1,2), ρ(1) = ρ(2), or ρ?(2,1) = ρ?(2,2).

9. Interpolating points (ρ(1), w̃(1,1)) and (ρ(2), w̃(2,1)), retrieve the witness poly-
nomials w̃1 and w̃2 such that for i ∈ {1, 2}

w̃1 + ρ(i) · w̃2 = w̃(i,1). (4)

10. Interpolating points (ρ?(1,1), (E,W )(1,1)) and (ρ?(1,2), (E,W )(1,2)), retrieve
(E1,W1) and (T,W2) such that for j ∈ {1, 2}

E1 + ρ?(1,j) · T = E(1,j) (5)

W1 + ρ?(1,j) ·W2 = W (1,j) (6)

11. Output ((w̃1, (E1,W1)), w̃2).

We first demonstrate that the extractor E runs in expected polynomial time.
Observe that E runs the interaction once, and if it does not abort, keeps rerunning
the interaction until P∗ succeeds three additional times. Thus, the expected
number of times E runs the interaction is

1 + Pr[First call to 〈P∗,V〉 succeeds] · 3

Pr[〈P∗,V〉 succeeds]
= 1 + ε · 3

ε
= 4.

Therefore, we have that the extractor runs in expected polynomial-time.

We now analyze E ’s success probability. We must demonstrate that E succeeds
in producing (w̃1, (E1,W1)) and w̃2 such that

(pp, s, ϕ1, (w̃1, (E1,W1))) ∈ R1 and (pp, s1, ϕ2, w̃2) ∈ R2

with probability ε− negl(λ).

To do so, we first show that the extractor successfully produces some output (i.e.,
does not abort) in under |F| rewinding steps with probability ε− negl(λ). Note
that |F| is a worst case bound and we have already established that the extractor
runs in expected polynomial time. By the malicious prover’s success probability,
we have that the extractor does not abort in step (4) with probability ε. Given
that the extractor does not abort in step (4), by Markov’s inequality, we have
that the extractor rewinds more than |F| times with probability 4/|F|. Thus, the
probability that the extractor does not abort in step (4) and requires less than
|F| rewinds is ε · (1− 4/|F|).



Now, suppose that the extractor does not abort in step (4). Then, because

the extractor randomly samples ρ?(1,2), we have that ρ?(1,1) 6= ρ?(1,2) with
probability 1/|F|. Similarly, we have that, ρ(1) 6= ρ(2) with probability 1/|F| and

ρ?(2,1) = ρ?(2,2) with probability 1/|F|. Thus, we have that the probability the
extractor successfully produces some output in under |F| rewinding steps is

ε ·
(

1− 4

|F|

)
·
(

1− 3

|F|

)
= ε− negl(λ).

Next, if the extractor does not abort, we show that the extractor succeeds in
producing satisfying witnesses with probability 1−negl(λ). This brings the overall
extractor success probability to ε− negl(λ).

We first show that the in the transcripts retrieved, the output witnesses for
linearized committed CCS instances do not depend on the choice of ρ?. More
precisely, we show that, for i ∈ {1, 2}, w̃(i,1) = w̃(i,2).

For i ∈ {1, 2} and j ∈ {1, 2}, let

ϕ(i,j) = ((C(i,j), u(i,j), x(i,j), r(i,j)x , v
(i,j)
1 , . . . , v

(i,j)
t ), (E

(i,j)
, u?(i,j),W

(i,j)
, x?(i,j))).

By the verifier’s construction and because the transcripts share the same prefix
prior to the choice of ρ?, we have for i ∈ {1, 2} that

(C(i,1), u(i,1), x(i,1), r(i,1)x , v
(i,1)
1 , . . . , v

(i,1)
t ) = (C(i,2), u(i,2), x(i,2), r(i,2)x , v

(i,2)
1 , . . . , v

(i,2)
t ).

(7)

We are given that for i ∈ {1, 2} and j ∈ {1, 2}, w̃(i,j) is a satisfying witness and
hence a valid opening of the commitment C(i,j). By Equation 7, we have that for
i ∈ {1, 2}, C(i,1) = C(i,2). Therefore, by the binding property of the polynomial
commitment scheme, with probability 1− negl(λ), we have for i ∈ {1, 2} that

w̃(i,1) = w̃(i,2). (8)

Given this equality of commitments and the associated witnesses for the output
linearized committed CCS instances, we drop the second index when appropriate.

We now show that the retrieved polynomials and vectors ((w̃1, (E1,W1)), w̃2) are
valid openings to the corresponding commitments in the instance.

For j ∈ {1, 2}, because (E,W )(1,j) is a satisfying witness to the folded committed
relaxed R1CS instance, by construction,

Commit(ppVC,W1) + ρ?(1,j) · Commit(ppVC,W2)

= Commit(ppVC,W1 + ρ?(1,j) ·W2) By additive homomorphism.

= Commit(ppVC,W
(1,j)) By Equation (6).

= W
(1,j)

Witness W̃ (1,j) is a satisfying opening.

= W 1 + ρ?(1,j) ·W 2 By the verifier’s computation.



Interpolating, we have that

Commit(ppVC,W1) = W 1 (9)

Commit(ppVC,W2) = W 2 (10)

Similarly,

Commit(ppVC, E1) + ρ?(1,j) · Commit(ppVC, T )

= Commit(ppVC, E1 + ρ?(1,j) · T ) By additive homomorphism.

= Commit(ppVC, E
(1,j)) By Equation (5).

= E
(1,j)

Witness Ẽ(1,j) is a satisfying opening.

= E1 + ρ?(1,j) · T By the verifier’s computation.

Interpolating, we have that

Commit(ppVC, E1) = E1 (11)

For j ∈ {1, 2}, because (E,W )(1,j) is a satisfying witness to the committed re-

laxed R1CS instance (E
(1,j)

, u?(1,j),W
(1,j)

, x?(1,j)), we have the following, where

Z(1,j) = (W (1,j), u?(1,j), x?(1,j)).

AZ(1,j) ◦BZ(1,j) = u?(1,j) · CZ(1,j) + E(1,j)

By Equation (6), this implies that for j ∈ {1, 2}

A · (Z1 + ρ?(1,j) · Z2) ◦B · (Z1 + ρ?(1,j) · Z2)

= (u1 + ρ?(1,j)) · C · (Z1 + ρ?(1,j) · Z2) + (E1 + ρ?(1,j) · T ),

where Z1 = (W1, u1, x1), Z2 = (W2, 1, x2), and x2 is parsed from the transcripts
and is identical across the two executions with the same ρ.

Because the prover commits to W1, W2, and T before the verifier sends the
challenge ρ?(1,j), we have with probability 1− negl(λ) that

AZ1 ◦BZ1 = u1 · CZ1 + E1 (12)

AZ2 ◦BZ2 = CZ2. (13)

This implies that (E1,W1) and (~0,W2) meet the requirements of a satisfying
witness for committed relaxed R1CS instances with structure (A,B,C). In
particular, we have established that (E1,W1) is a satisfying witness to the
committed relaxed R1CS instance in ϕ1.

Furthermore, since the verifier checks that x2 = (ρ(1), C1, C2, C
′) for some C ′ ∈

E1, given that the we have have a witness satisfying Equation 13, this implies
that for j ∈ {1, 2}

C(1,j) = C1 + ρ(1) · C2 (14)



With a similar reasoning via the accepting transcripts with ρ(2) as the verifier’s
randomness, we can establish that for j ∈ {1, 2}:

C(2,j) = C1 + ρ(2) · C2 (15)

For i ∈ {1, 2} and j ∈ {1, 2}, because w̃(i,j) is a satisfying witness to the folded
linearized CCS instance, by construction,

Commit(ppPC, w̃1) + ρ(i) · Commit(ppPC, w̃2)

= Commit(ppPC, w̃1 + ρ(i) · w̃2) By additive homomorphism.

= Commit(ppPC, w̃
(i,j)) By Equations (4) and (8).

= C(i,j) Witness w̃(i,j) is a satisfying opening.

= C1 + ρ(i) · C2 By Equations 14 and 15

Interpolating, we have that

Commit(ppPC, w̃1) = C1 (16)

Commit(ppPC, w̃2) = C2. (17)

Next, we must argue that w̃1 and w̃2 satisfy the remainder of the instances ϕ1

and ϕ2 respectively under the structure s.

Indeed, consider (σ1, . . . , σt) and (θ1, . . . , θt) sent by the prover which by the
extractor’s construction are identical across all executions of the interaction. By
the verifier’s computation we have that for i ∈ {1, 2} and all j ∈ [t]

σj + ρ(i) · θj = v
(i)
j (18)

Now, because w̃(i) is a satisfying witness, for i ∈ {1, 2} we have for all j ∈ [t] that

v
(i)
j =

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃(i)(y),

where z̃(i) = ˜(w(i), u(i), x(i)).

However, by Equations (4) and (18), for i ∈ {1, 2} and j ∈ [t], this implies that

σj + ρ(i) · θj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1(y) + ρ(i) ·

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃2(y),

where z̃1 = ˜(w1, u, x1) and z̃2 = ˜(w2, 1, x2). Interpolating, we have that, for all
j ∈ [t]

σj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1(y)

θj =
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃2(y)



Thus, because that the verifier does not abort, we have that

c =

∑
j∈t

γj · e1 · σj

+

γt+1 · e2 ·
∑
i∈[q]

ci ·
∏
j∈Si

θj


=

∑
j∈t

γj · ẽq(rx, r′x) · σj

+

γt+1 · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

θj


=

∑
j∈t

γj · ẽq(rx, r′x) ·
∑

y∈{0,1}s′
M̃j(r

′
x, y) · z̃1(y)

+

γt+1 · ẽq(β, r′x) ·
∑
i∈[q]

ci ·
∏
j∈Si

∑
y∈{0,1}s′

M̃j(r
′
x, y) · z̃2(y)


=
∑
j∈[t]

γj · Lj(r′x) + γt+1 ·Q(r′x)

= g(r′x)

by the soundness of the sum-check protocol, this implies that with probability
1−O(d · s)/|F| = 1− negl(λ) over the choice of r′x,∑

j∈[t]

γj · vj + γt+1 · 0 =
∑

x∈{0,1}s
g(x)

=
∑

x∈{0,1}s

∑
j∈[t]

γj · Lj(x) + γt+1 ·Q(x)


=
∑
j∈[t]

γj ·

 ∑
x∈{0,1}s

Lj(x)

+ γt+1 ·
∑

x∈{0,1}s
Q(x)

By the Schwartz-Zippel lemma [Sch80], this implies that with probability 1 −
O(t)/|F| = 1− negl(λ) over the choice of γ, we have

vj =
∑

x∈{0,1}s
Lj(x)

for all j ∈ [t] and

0 =
∑

x∈{0,1}s
Q(x).



Now, for all j ∈ [t], we have

vj =
∑

x∈{0,1}s
Lj(x)

=
∑

x∈{0,1}s
ẽq(rx, x) ·

 ∑
y∈{0,1}s′

Mj(x, y) · z̃1(y)


=

∑
y∈{0,1}s′

Mj(rx, y) · z̃1(y)

This implies that w̃1 is a satisfying witness to the linearized committed CCS
instance in ϕ1.

Finally, we have that

0 =
∑

x∈{0,1}s
Q(x)

=
∑

x∈{0,1}s
ẽq(β, x) ·

 q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


=

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(β, y) · z̃2(y)


By the Schwartz-Zippel lemma, this implies that with probability 1− s/|F| =
1− negl(λ) over the choice of β, we have that for all x ∈ {0, 1}s

0 =

q∑
i=1

ci ·
∏
j∈Si

 ∑
y∈{0,1}s′

M̃j(x, y) · z̃2(y)


This implies that w̃2 is a satisfying witness to ϕ2.

Thus, if the extractor does not abort, it succeeds in producing satisfying witness
(w̃1, w̃2) with probability 1− negl(λ).

Assumption 1 (Non-Interactive Multi-Folding Scheme). There exists a
non-interactive multi-folding scheme for (RLCCCS ×RCRR1CS,RCCCS, 1, 1) in the
plain model.

Justification. By applying the Fiat-Shamir transformation in [KS23, Construc-
tion 1] to the multi-folding scheme in Construction 1, we obtain a non-interactive
multi-folding scheme for (RLCCCS ×RCRR1CS,RCCCS, 1, 1) in the random oracle
model. By instantiating the random oracle with an appropriate cryptographic
hash function, we heuristically obtain a non-interactive multi-folding scheme for
(RLCCCS ×RCRR1CS,RCCCS, 1, 1) in the plain model.
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A Additional preliminaries

A.1 A commitment scheme for vectors

We first recall the syntax for commitment schemes and then define the required
binding and hiding properties. Next, we define the required additively homomor-
phic and succinctness properties.

Definition 9 (Commitment Scheme). A commitment scheme for Fm is a
tuple of three protocols with the following syntax that satisfy the two properties
listed below:

• pp← Gen(1λ,m): produces public parameters pp.

• C ← Commit(pp, x, r): takes as input x ∈ Fm and r ∈ F; produces a public
commitment C.

• b← Open(pp, C, x, r): verifies the opening of commitment C to x ∈ Fm and
r ∈ F; outputs b ∈ {0, 1}.

(1) Binding. For any PPT adversary A, the following probability is negl(λ):

Pr

 b0 = b1 = 1,
x0 6= x1

∣∣∣∣∣∣∣∣
pp← Gen(1λ,m),
(C, x0 ∈ Fm, x1 ∈ Fm, r0 ∈ F, r1 ∈ F)← A(pp),
b0 ← Open(pp, C, x0, r0),
b1 ← Open(pp, C, x1, r1)


(2) Hiding. For all PPT adversaries A = (A0,A1), the following probability is

negl(λ): ∣∣∣∣∣∣∣∣
1

2
− Pr

 b = b̄

∣∣∣∣∣∣∣∣
(x0, x1, st)← A0(pp),

b
$← {0, 1}, r $← F,

C ← Commit(pp, xb, r),
b̄← A1(st, C)


∣∣∣∣∣∣∣∣

If hiding holds for all adversaries, then the commitment is statistically hiding.

Definition 10 (Additively Homomorphic). A commitment scheme for vec-
tors over Fm, (Gen,Commit,Open), is additively homomorphic if for all public
parameters pp produced from Gen(1λ,m), and for any x1, x2 ∈ Fm and for any
r1, r2 ∈ F, Commit(pp, x1, r1)+Commit(pp, x2, r2) = Commit(pp, x1+x2, r1+r2).

Definition 11 (Succinctness). A commitment scheme for vectors over Fm,
(Gen,Commit,Open), provides succinct commitments if for all public parameters
pp produced from Gen(1λ,m), and any x ∈ Fm and r ∈ F, |Commit(pp, x, r)| =
Oλ(polylog(|x|)).



A.2 Polynomials and low-degree extensions

We adapt this subsection from prior work [Set20]. We start by recalling several
facts about polynomials.

Definition 12 (Multilinear polynomial). A multivariate polynomial is called
a multilinear polynomial if the degree of the polynomial in each variable is at
most one.

Definition 13 (Low-degree polynomial). A multivariate polynomial g over
a finite field F is called low-degree polynomial if the degree of g in each variable
is exponentially smaller than |F|.

Low-degree extensions (LDEs). Suppose g : {0, 1}` → F is a function that
maps `-bit elements into an element of F. A polynomial extension of g is a
low-degree ell-variate polynomial g̃ such that g̃(x) = g(x) for all x ∈ {0, 1}`.

A multilinear polynomial extension (or simply, a multilinear extension, or MLE) is
a low-degree polynomial extension where the extension is a multilinear polynomial
(i.e., the degree of each variable in g̃ is at most one). Given a function Z : {0, 1}` →
F, the multilinear extension of Z is the unique multilinear polynomial Z̃ : F` → F.
It can be computed as follows.

Z̃(x1, . . . , x`) =
∑

e∈{0,1}`
Z(e) ·

∏̀
i=1

(xi · ei + (1− xi) · (1− ei))

=
∑

e∈{0,1}`
Z(e) · ẽq(x, e)

= 〈(Z(0), . . . , Z(2` − 1)), (ẽq(x, 0), . . . , ẽq(x, 2` − 1)〉

Note that ẽq(x, e) =
∏`
i=1(ei · xi + (1− ei) · (1− xi)), which is the MLE of the

following function:

eq(x, e) =

{
1 if x = e

0 otherwise

For any r ∈ F`, Z̃(r) can be computed in O(2`) operations in F [VSBW13,Tha13].

Dense representation for multilinear polynomials. Since the MLE of a
function is unique, it offers the following method to represent any multilinear
polynomial. Given a multilinear polynomial g : F` → F, it can be represented
uniquely by the list of tuples L such that for all i ∈ {0, 1}`, (to-field(i), g(i)) ∈ L
if and only if g(i) 6= 0, where to-field is the canonical injection from {0, 1}` to F.
We denote such a representation of g as DenseRepr(g).



Definition 14. A multilinear polynomial g in ` variables is a sparse multilinear
polynomial if |DenseRepr(g)| is sub-linear in O(2`). Otherwise, it is a dense
multilinear polynomial.

As an example, suppose g : F2s → F. Suppose |DenseRepr(g)| = O(2s), then g(·)
is a sparse multilinear polynomial because O(2s) is sublinear in O(22s).

Lemma 3 (Sums over evaluations). Consider size ` ∈ N. For multilinear
polynomial P ∈ F[X1, . . . , X`] we have that

P (X) =
∑

x∈{0,1}`
ẽq(X,x) · P (x).

Proof. Let Q(X) =
∑
x∈{0,1}` ẽq(X,x) · P (x) By the definition of ẽq, we have

that
P (x) = Q(x)

for all x ∈ {0, 1}`. However, because P ∈ F[X1, . . . , X`] is multilinear it is
completely determined by 2` evaluation points. The same is holds for Q. Because
P and Q agree on 2` points, they must be the same polynomial.

A.3 Schwartz-Zippel lemma

Lemma 4. let g : F` → F be an `-variate polynomial of total degree at most d.
Then, on any finite set S ⊆ F,

Pr
x←S`

[g(x) = 0] ≤ d/|S|

.

A.4 The sum-check protocol

Suppose there is an `-variate low-degree polynomial, g, where the degree of each
variable in g is at most d. Suppose that a verifier V is interested in checking a
claim of the following form by an untrusted prover P:

T =
∑

x1∈{0,1}

∑
x2∈{0,1}

. . .
∑

x`∈{0,1}

g(x1, x2, . . . , x`)

Of course, given g, V can deterministically evaluate the above sum and verify
whether the sum is T . But, this computation takes time exponential in `. Lund et
al. [LFKN90] describe the sum-check protocol that requires far less computation
on V’s behalf, but provides a probabilistic guarantee. In the protocol, V takes
as input randomness r ∈ F` and interacts with P over a sequence of ` rounds.
At the end of this interaction, V outputs a claim about the evaluation g(r). Let
〈P,V(r)〉 denote the interaction between the prover and verifier with verifier
randomness r. We treat 〈P,V(r)〉 as a function that takes prover and verifier
input (g, `, d, T ) and outputs the claimed evaluation to be checked.



For any `-variate polynomial g with degree at most d in each variable, the
sum-check protocol satisfies the following properties.

1. Completeness: If T =
∑
x∈{0,1}` g(x), then for all r ∈ F`,

Pr
r

[〈P,V(r)〉(g, `, d, T ) = g(r)] = 1.

2. Soundness: If T 6=
∑
x∈{0,1}` g(x), then for any P? and for all r ∈ F`,

Pr
r

[〈P?,V(r)〉(g, `, d, T ) = c ∧ g(r) = c] ≤ ` · d/|F|.

3. Succinctness: The communication cost is O(` · d) elements of F.

A.5 Arguments of knowledge and SNARKs

We adapt the definition provided in [KST22].

Definition 15. Consider a relation R over public parameters, structure, in-
stance, and witness tuples. A non-interactive argument of knowledge for R
consists of PPT algorithms (G,P,V) and deterministic K, denoting the generator,
the prover, the verifier and the encoder respectively with the following interface.

• G(1λ)→ pp: On input security parameter λ, samples public parameters pp.

• K(pp, s) → (pk, vk): On input structure s, representing common structure
among instances, outputs the prover key pk and verifier key vk.

• P(pk, u, w) → π: On input instance u and witness w, outputs a proof π
proving that (pp, s, u, w) ∈ R.

• V(vk, u, π)→ {0, 1}: On input the verifier key vk, instance u, and a proof π,
outputs 1 if the instance is accepting and 0 otherwise.

A non-interactive argument of knowledge satisfies the following properties.

1. Completeness: If for any PPT adversary A

Pr

V(vk, u, π) = 1

∣∣∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, (u,w))← A(pp),
(pp, s, u, w) ∈ R,
(pk, vk)← K(pp, s),
π ← P(pk, u, w)

 = 1.

2. Knowledge Soundness: if for all PPT adversaries A there exists a PPT
extractor E such that for all randomness r

Pr

V(vk, u, π) = 1,
(pp, s, u, w) 6∈ R

∣∣∣∣∣∣∣∣
pp← G(1λ),
(s, u, π)← A(pp; r),
(pk, vk)← K(pp, s),
w ← E(pp, r)

 = negl(λ).



A non-interactive argument of knowledge is succinct if the size of the proof π
and the time to verify it are at most polylogarithmic in the size of the statement
proven.

A.6 Polynomial commitment scheme

We adapt the following definition from [BFS20].

Definition 16. An extractable polynomial commitment scheme for multilinear
polynomials over finite field F is a tuple of four protocols PC = (Gen,Commit,Open,Eval):

• pp← Gen(1λ, `): takes as input ` (the number of variables in a multivariate
polynomial); produces public parameters pp.

• C ← Commit(pp, g): takes as input a `-variate multilinear polynomial g ∈
F[X1, . . . , X`]; produces a commitment C.

• b ← Open(pp, C, g): verifies the opening of commitment C to the `-variate
multilinear polynomial g ∈ F[X1, . . . , X`]; outputs b ∈ {0, 1}.

• b← Eval(pp, C, r, v, `, g) is a protocol between a PPT prover P and verifier
V. Both V and P hold a commitment C, the number of variables `, a scalar
v ∈ F, and r ∈ F`. P additionally knows an `-variate multilinear polynomial
g ∈ F[`]. P attempts to convince V that g(r) = v. At the end of the protocol,
V outputs b ∈ {0, 1}.

An extractable polynomial commitment scheme (Gen,Commit,Open,Eval) for
multilinear polynomials over a finite field F must satisfy the following conditions.

1. Completeness: For any `-variate multilinear polynomial g ∈ F[X1, . . . , X`],

Pr

[
Eval(pp, C, r, g(r), `, g) = 1

∣∣∣∣pp← Gen(1λ, `),
C ← Commit(pp, g)

]
≥ 1− negl(λ).

2. Binding: For any PPT adversary A, size parameter ` ≥ 1,

Pr

 b0 = b1 6= 0,
g0 6= g1

∣∣∣∣∣∣∣∣
pp← Gen(1λ, `),
(g0, g1) ∈ F1[X1, . . . , X`], C ← A(pp),
b0 ← Open(pp, C, g0),
b1 ← Open(pp, C, g1)

 ≤ negl(λ).

3. Knowledge soundness: Eval is a succinct argument of knowledge for the
following relation given pp← Gen(1λ, `).

REval(pp) =

 ((C, r, v), g)

∣∣∣∣∣∣
g ∈ F1[X1, . . . , X`],
g(r) = v,
Open(pp, C, g) = 1





Definition 17. A polynomial commitment scheme for multilinear polynomials
PC = (Gen,Commit,Open,Eval) is additively homomorphic if for all ` and pp←
Gen(1λ, `), and for any g1, g2 ∈ F1[X1, . . . , X`],

Commit(pp, g1) + Commit(pp, g2) = Commit(pp, g1 + g2).

A.7 Rank-1 constraint satisfiability (R1CS)

R1CS is an NP-complete problem implicit in the work of GGPR [GGPR13].
Below, we recall its definition.

Definition 18 (R1CS). Consider a finite field F. Let the public parameters
consist of size bounds m,n, ` ∈ N where m > `. The R1CS structure consists of
sparse matrices A,B,C ∈ Fm×m with at most n = Ω(m) non-zero entries in each
matrix. An instance x ∈ F` consists of public inputs and outputs and is satisfied
by a witness W ∈ Fm−`−1 if (A · Z) ◦ (B · Z) = C · Z, where Z = (W, x, 1).
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