
X-Cipher: Achieving Data Resiliency in Homomorphic
Ciphertexts

Adam Caulfield, Nabiha Raza, Peizhao Hu
Rochester Institute of Technology

Abstract
Homomorphic encryption (HE) allows for computations on en-

crypted data without requiring decryption. HE is commonly applied
to outsource computation on private data. Due to the additional
risks caused by data outsourcing, the ability to recover from losses
is essential, but doing so on data encrypted under an HE scheme
introduces additional challenges for recovery and usability. This
work introduces X-Cipher, which aims to make HE data resilient by
ensuring it is private and fault-tolerant simultaneously at all stages
during data-outsourcing. X-Cipher allows for data recovery with-
out decryption, and maintains its ability to recover and keep data
private when a cluster server has been compromised. X-Cipher al-
lows for reduced ciphertext storage overhead by introducing novel
encoding and leveraging previously introduced ciphertext packing.
X-Cipher’s capabilities were evaluated on synthetic dataset, and
compared to prior work to demonstrate X-Cipher enables additional
security capabilities while enabling privacy-preserving outsourced
computations.

1 Introduction
Outsourcing data or computations to the Cloud has become an

ever growing trend for the private sector, corporations, govern-
ments, and non-profits. In 2020, corporations spent 32% of their
IT budget on Cloud services [17]. Despite this, privacy concerns
have limited many applications which handle sensitive data from
making use of Cloud resources, such as applications which handle
health and financial data. To support outsourced computations over
sensitive data while preserving its privacy, Homomorphic Encryp-
tion (HE) has commonly been leveraged. Data encrypted under an
HE can undergo computations without decryption.

In addition to privacy concerns when outsourcing data, there
is also a concern of data corruption and loss. To address fault-
tolerance, data replication was widely exercised in distributed data
storage systems [13], but the cost of maintaining exact replicas or
data chunks dramatically increases. Commonly used systems, such
as Google Colossus [9], Windows Azure Storage [16], adapt erasure
codes to reduce the storage overhead. These systems typically ap-
ply the erasure codes over user supplied data, which previously is
assumed to be plaintext data. When outsourcing homomorphically
encrypted ciphertexts, the erasure codes are produced at the cipher-
text level. This introduces two new problems. First, HE ciphertexts
are malleable by design [5] and thus codewords generated through
conventional methods will need to be updated after any computa-
tion – even if the underlying plaintext data is unchanged. Secondly,
the overhead induced by erasure codes is proportional to the size
of the input data. Due to the ciphertext expansion in probabilistic
HE schemes, applying erasure codes over these ciphertexts will
significantly increase the size of the generated codewords and thus
increases both the storage and operational overhead.

To combat this problem, one approach is to make use of Encrypt-
with-Redundancy (EwR) [3], which combines an encryption scheme
with erasure codes. There are a few recent works following the
EwR paradigm. Shen et. al. [27] proposed a protocol based on (𝑡, 𝑛)
homomorphic secret-sharing to address homomorphic data recov-
ery. An erasure code and integrity tags are distributed among 𝑛
storage servers. Recovery and integrity checking can take place by
retrieving 𝑡 < 𝑛 shares and performing a recombination. A draw-
back to this approach is that data cannot be recombined without 𝑡
participants being online, and it requires additional steps of recom-
bination in order to verify the data. Tsoutsos and Maniatakos [29]
proposed methods to generate codewords that are homomorphic:
the codewords are updated when homomorphic computations oc-
cur. These codewords are used for detecting and correcting errors
at the hardware-level. This approach is designed in a way that
requires each ciphertext to be individually encrypted, incurring
high computation and space complexity. Furthermore, these recent
works are designed based on partial homomorphic encryption for
efficiency, but this choice limits the scheme to use in the applica-
tions in which the ciphertext does not require complex arithmetic
operations.

To address these challenges, we propose X-Cipher: a framework
to simultaneously make data private and recoverable in a way that
reduces overhead and enables complex homomorphic operations.
X-Cipher leverages an erasure-code called X-Code [19] to generate
codewords which can be subsequently used to recover from data
losses. Furthermore, X-Cipher employs encoding and packing tech-
niques to significantly reduce the space overheads and speedup
the homomorphic computations. Because of this, codewords are
stored along with the data to efficiently validate the data authentic-
ity while incurring minimal to no additional overhead. X-Cipher
introduces algorithms to verify the state of the data and enables
recovery capability without revealing the data. To our knowledge,
no previous works have leveraged erasure codes along with HE
in the same manner as X-Cipher in order to provide these secu-
rity guarantees together, while minimizing storage overhead, and
maintaining both fault-tolerance and privacy guarantees through-
out some homomorphic operations. The main contributions are
summarized by the following:
• The use of an erasure code to generate codewords, encrypted
alongside plaintext data in order to efficiently recover homo-
morphically encrypted data without requiring decryption.
• A design and encoding algorithm which leverages ciphertext
packing to enable efficiency in terms of time, space, and
recovery volume.
• Example application specific and primitive building block
algorithms which minimizes or removes the need for code-
words regeneration after consecutive homomorphic opera-
tions.



Table 1: Common notations
Notation Description

𝒰 , ℰ User and Cloud Evaluator
𝑎, 𝒂, 𝐴, 𝐴𝑖 , 𝒂𝒊 Element, vector, matrix, submatrix, 𝑖-th column

𝑐𝑖 ∈ 𝒄 The 𝑖-th ciphertext in a collection 𝒄
(pk, sk) Public and secret keys for HE
[·] HE encrypted data; or as 𝑐 interchangeably
𝜚 Plaintext slot count
𝜎 Codewords of erasure codes
𝑛 Dimension of each X-Code block; prime, 𝑛 × 𝑛
𝑚 Multiples of X-Code blocks
𝜔 Slope in X-Code, where 𝜔 = ±1
𝜃 Number of ciphertext rotation
𝚵 A vector acting as mask; 𝚵 ∈ {0, 1}ℓ

Figure 1: System Model.

The rest of the paper is organized as follows. Section 2 discusses
the system and threat models. Section 3 overviews background
techniques. Section 4 discussed related works. Section 5 details the
proposed solutions. Section 6 analyzes the security and complex-
ity of the proposed solutions. Section 7 presents experiments and
empirical study using synthetic datasets. Section 8 concludes the
paper.

2 System and Threat Models
2.1 System Model

In this paper, we assume a data and computation outsourcing
setup, as illustrated in Fig. 1. More specifically, a user 𝒰 wants to
delegate a private dataset 𝐷 to a cloud evaluator ℰ for outsourced
computations, such as document analysis, machine learning. Mod-
ern distributed filesystems, from GFS [13] to Colossus [9], typ-
ically allow users to divide the dataset into multiple partitions,
𝐷 = {𝒅1, .., 𝒅ℓ } and store these data partitions into a set of available
chunk servers assigned by the master, as shown in Fig. 1. Concerned
over privacy, the user may want to homomorphically encrypt these
data partitions: given a public key pk, 𝑐 𝑗 = 𝐸𝑛𝑐 (pk, 𝑑 𝑗 );𝑑 𝑗 ∈ 𝒅𝒊 (or
𝑐𝑖 = 𝐸𝑛𝑐 (pk, 𝒅𝒊) using ciphertext packing technique discussed in
Sec. 3.1), before sending them to the cloud evaluator. To ensure
high efficiency, clients interact with the master for metadata op-
erations, but all data-bearing communication goes directly to the
chunk servers [13].

Once data is uploaded to the distributed file system, cloud data
processing frameworks, such as Spark [31], allocate computing
tasks to worker nodes that are close to chunk servers where task-
specific input data is stored according to some data locality policies.
During the execution of the computing tasks, these data partitions

are modeled as a resilient distributed dataset (RDD) [30] in Spark
for efficient parallel data processing over a cluster. In this cloud
setting, fault-tolerance is addressed by data replication on multi-
ple chunk servers, dramatically increasing the storage overhead.
Colossus adopts Reed-Solomon codes [25] to reduce the cost of data
replication.

Under this system model, disk or system failures render user
supplied ciphertexts unavailable. These failures can be from power
outages, system malfunctions, or attacks. Data replication is a con-
ventional method to address fault-tolerance but dramatically in-
creases the storage overhead [20]. We address this problem with
erasure codes. Different from existing systems, such as Colossus,
which adopts Reed-Solomon codes, we propose the use of a different
erasure code that has lower computational complexity. Using the
generated codewords 𝜎 from the erasure codes and the remaining
data on other chunk servers, we can recover the lost data partitions.

Leveraging the capability of homomorphic encryption, the cloud
evaluator will perform the requested computations while data stays
encrypted. We propose new methods to ensure the fault-tolerance
and integrity checking of the homomorphically encrypted cipher-
text. In addition, we design example homomorphic algorithms to
demonstrate how computing tasks can be securely evaluated while
maintaining the recoverability.

2.2 Threat Model
For this work we assume a semi-honest cloud evaluator. The

evaluator follows the protocol specification and can only learn
about the data by observation during any stage of the computational
process (as input, intermediate results, outputs). In addition, these
ciphertexts might be subjected to corruption or complete loss due to
adversarial behaviors that the cloud evaluator cannot detect, such
as causing system failures.

In addition, we envision a scenario in which a malicious adver-
sary 𝒜𝑑𝑣 has the capability of fully compromising a chunk server,
as illustrated in Fig. 1. However, although we assume𝒜𝑑𝑣 can com-
promise a chunk server 𝑐𝑠𝑖 , 𝒜𝑑𝑣 does not have access to the secret
key sk. Because of this,𝒜𝑑𝑣 modifies the ciphertext(s) stored on 𝑐𝑠𝑖
in order to either corrupt the subsequent computation or attempt
to leak the data.

3 Preliminaries
3.1 Homomorphic Encryption

Our proposed solutions are designed on the BGV HE scheme [7],
which bases its security on the Ring-LWE (Learning-with-Error)
problem [21]. Detailed discussions on the BGV scheme and the
security of Ring-LWE problem are out of the scope of this pa-
per. We refer interested readers to our recent survey paper [2] for
these topics. Briefly speaking, the BGV HE scheme defines a tuple
of probabilistic-polynomial-time (PPT) algorithms (Setup, KeyGen,
EvalKeyGen, Enc, Dec, Add, Mult, Relinearize):

• BGV.Setup(1𝜆, 1𝐿) −→ 𝑝𝑝: Given the security parameter 𝜆
and maximum multiplicative depth 𝐿, choose a cyclotomic
polynomial Φ(𝑥) = 𝑥𝑑 + 1 with 𝑑 being a power of 2. Define
𝑅 = Z[𝑥]/(Φ(𝑥)) as a polynomial ring of degree 𝑑 with inte-
ger coefficients. Generate the error and key distributions 𝜒
and𝜓 over 𝑅 respectively. Choose the ciphertext modulus 𝑞



and the plaintext modulus 𝑡 , and define two additional poly-
nomial rings 𝑅𝑡 = Z𝑡 [𝑥]/(Φ(𝑥)) and 𝑅𝑞 = Z𝑞 [𝑥]/(Φ(𝑥)) for
plaintext and ciphertext respectively. Finally, output public
parameter 𝑝𝑝 = (𝑑, 𝑞, 𝑡, 𝜒,𝜓 ). All following algorithms are
assumed to implicitly take 𝑝𝑝 as an input.
• BGV.KeyGen() −→ (pk, sk): Sample element 𝑠 ← 𝜓 and noise
𝑒 ← 𝜒 , which are typically Gaussian distributions for small
key and noise. Uniformly sample 𝑎 ← 𝑅𝑞 . Given these
elements, set the secret key as sk = 𝑠 and public key as
pk = (𝑏, 𝑎) ∈ 𝑅2𝑞 with 𝑏 = −𝑎𝑠 + 𝑡𝑒 (mod 𝑞) according to the
Ring-LWE assumption [21].
• BGV.EvalKeyGen(𝑠) −→ ek: Given the secret key 𝑠 , generate
an evaluation key ek by sampling 𝜁 many elements such that
ã← 𝑅

𝜁
𝑞 , ẽ← 𝜒𝜁 and setting b̃ = ã · 𝑠 + ẽ + 𝒈 + 𝑠2 (mod 𝑞).

Output ek = (b̃, ã). We define a gadget toolkit [2] needed for
key-switching.
- Gadget vector: 𝒈 = (𝑔0, . . . , 𝑔𝜁−1) ∈ 𝑅𝜁 for some integer
𝜁 ≥ 1.

- Decomp(𝑥): Given an element 𝑥 ∈ 𝑅𝑞 , decompose it into
a short vector 𝒖 = (𝑢0, . . . , 𝑢𝜁−1) ∈ 𝑅𝜁 such that ⟨𝒖,𝒈⟩ = 𝑥
(mod 𝑞).

• BGV.Enc(pk,𝑚) −→ 𝑐: Given a plaintext message𝑚 ∈ 𝑅𝑡 , a
public key pk = (𝑏, 𝑎), uniformly sample a random 𝑟 ← 𝜓

and errors 𝑒0, 𝑒1 ← 𝜒 , and encrypt the message 𝑚 as 𝑐 =

(𝑐0, 𝑐1) ∈ 𝑅2𝑞 where 𝑐0 = 𝑟𝑏 +𝑚 + 𝑡𝑒0 and 𝑐1 = 𝑟𝑎 + 𝑡𝑒1. Note,
𝑐0, 𝑐1 indicate two ciphertext components, different from the
meaning in the rest of this paper.
• BGV.Dec(sk, 𝑐) −→ 𝑚: Given a ciphertext 𝑐 = (𝑐0, 𝑐1) ∈ 𝑅2𝑞
and the secret key 𝑠𝑘 = 𝑠 , set 𝑠 = (1, 𝑠) ∈ 𝑅2𝑞 and decrypt by
computing𝑚 = (⟨𝑐, 𝑠⟩ (mod 𝑞)) (mod 𝑡).
• BGV.Add(𝑐, 𝑐 ′) −→ 𝑐𝑎𝑑𝑑 : Adding two ciphertexts 𝑐 = (𝑐0, 𝑐1),
𝑐 ′ = (𝑐 ′0, 𝑐

′
1) results in 𝑐𝑎𝑑𝑑 = (𝑐0 + 𝑐 ′0, 𝑐1 + 𝑐

′
1) ∈ 𝑅

2
𝑞 .

• BGV.Mult(𝑐, 𝑐 ′) −→ 𝑐𝑚𝑢𝑙𝑡 : Given two ciphertexts 𝑐, 𝑐 ′ ∈ 𝑅2𝑞 ,
their homomorphic multiplication yields an extended cipher-
text 𝑐𝑚𝑢𝑙𝑡 = (𝑐0, 𝑐1, 𝑐2) that is encrypted under the element
𝑠2.
• BGV.Relinearize(ek, 𝑐𝑚𝑢𝑙𝑡 ) −→ 𝑐𝑚𝑢𝑙𝑡 : Given the evaluation
key ek = (b̃,ã) and a long ciphertext 𝑐𝑚𝑢𝑙𝑡 = (𝑐0, 𝑐1, 𝑐2), per-
form the following relinearization step to change ciphertext
from an encryption of 𝑠2 to 𝑠:
– Apply gadget decomposition g(𝑐2)−1 = (𝑢0, ..., 𝑢𝜁−1)
– Output the relinearized ciphertext as 𝑐𝑚𝑢𝑙𝑡 = (𝑐0, 𝑐1) +∑

𝑖 𝑢𝑖 · (b̃[𝑖], ã[𝑖]) ∈ 𝑅2𝑞

Given the capability to homomorphically evaluate addition and
multiplication, any function built on these two arithmetic primitives
can be evaluated homomorphically. For instance, given two integers
𝑥,𝑦 represented in {0, 1}, many logic gates can be translated into
the arithmetic forms: AND(𝑥,𝑦) = 𝑥𝑦, OR(𝑥,𝑦) = 𝑥 + 𝑦 − 𝑥𝑦,
XOR(𝑥,𝑦) = 𝑥 +𝑦−2𝑥𝑦, andNOT(𝑥) = 1−𝑥 . These logic gates can
be homomorphically evaluated if 𝑥,𝑦 ∈ Z2. As an example, we can
evaluate XOR using homomorphic addition, as XOR(𝑥,𝑦) = 𝑥 + 𝑦.

In general, homomorphically encrypted ciphertexts are large due
to the use of complex lattice elements; e.g., the uniformly sampled
𝑎 ← 𝑅𝑞 in the KeyGen() algorithm. Due to this significant ciphertext

expansion, HE has been considered impractical for many applica-
tions. To address this problem,the ciphertext packing technique [6]
was introduced. This allows for the encoding multiple plaintext
messages into one polynomial and encrypt a plaintext polynomial
into a single ciphertext. Compared to individually encrypting each
plaintext message for the same amount of plaintext values, cipher-
text packing reduces the number of required ciphertexts and speeds
up the homomorphic computations because operations are per-
formed on plaintext values simultaneously in a element-wise and
SIMD (Single-Instruction-Multiple-Data) manner [28].Wemake use
of ciphertext packing in this work for computational and storage
efficiency.

Given a vector of plaintext values𝑀 = {𝑚0, ..,𝑚𝑘−1};𝑘 ≤ 𝑑 and
a polynomial ring 𝑅𝑡 of degree 𝑑 , ciphertext packing encodes all
plaintext values into a single polynomial that is expanded from
Φ(𝑥) to its roots [28] using the Chinese Remainder Theorem (CRT).
This method assumes Φ(𝑥) of degree 𝑑 can be factorized into ex-
actly 𝑟 polynomials of degree 𝑘 ; such that, Φ(𝑥) B ∏𝑟

𝑖=1 Φ𝑖 (𝑥).
Because Φ(𝑥) and Φ𝑖 (𝑥) are isomorphic, operations performed on
them achieve the same effect [28]. Given this property, we can
encode each plaintext message𝑚𝑖 ∈ 𝑀 into an arbitrary polyno-
mial 𝑓 (𝑥) (mod Φ𝑖 (𝑥)). The total number of plaintext messages
we can fit into these polynomials is referred to as the plaintext slot
count 𝜚 . Therefore, ciphertext packing means that we can encrypt
a plaintext vector of length 𝜚 into a single ciphertext.

The CRT-based ciphertext packing technique allows a set of
useful homomorphic operations on ciphertexts, such as element-
wise addition/multiplication, shifting, and rotation. Element-wise
addition andmultiplication are somewhat straightforward, but shift-
ing and rotation are not due to changing the order of data in the
plaintext vector. Rotation and shifting is possible by modifying
the polynomial [12]. Each slot in a packed ciphertext holds a poly-
nomial 𝑓 (𝑥) (mod Φ𝑖 (𝑥)). Rotation and shifting can take place
by modifying 𝑥 with 𝑥𝛼 for some exponent 𝛼 . A new polynomial
𝑓 (𝛼) (𝑥) = 𝑓 (𝑥𝛼 ) (mod Φ𝑖 (𝑥)) will have all the same coefficients
as 𝑓 (𝑥) but at different slot locations; this technique is called auto-
morphism.

Another useful trick we will use in our proposed solutions is
masking. The idea is similar to bit-masking. Given a plaintext vector
as a mask 𝚵 = {0, 1}𝑘 , we can set one or more positions to one,
leaving others default to zero, to select values within a packed
ciphertext. After constructing the mask 𝚵, performing an element-
wise multiplication with the mask 𝚵 and the ciphertext can extract
the desired values.

3.2 Erasure Codes
Erasure codes are used to achieve fault tolerance ability in sys-

tems [23]. As an alternate solution to data replication, erasure codes
require less storage overhead. The codewords generated from an
erasure code are less than the original data symbols in size and can
be used with partial data to regenerate any lost data. Reed-Solomon
codes [25] is a widely used code for detecting and correcting era-
sures in data storage [27]. The Reed-Solomon codes use Galois Field
𝐺𝐹 (2𝑤) multiplication and maintain a Vandermonde matrix. For
homomorphically encrypted data which expands beyond the size
of unencrypted plaintext, this solution would increase the com-
putational overhead drastically. Erasure codes based on RAID-6



D
at

a
Co

de
w

or
ds

Slope ⍵=-1Slope ⍵=+1
D+1

0D+1
1D

+1
2D

+1
3D

+1
4 D-1

0 D-1
1 D-1

2 D-1
3 D-1

4

0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

4,0 4,1 4,2 4,3 4,4

0,0 0,1 0,2 0,3 0,4

1,0 1,1 1,2 1,3 1,4

2,0 2,1 2,2 2,3 2,4

3,0 3,1 3,2 3,3 3,4

4,0 4,1 4,2 4,3 4,4

Figure 2: An example of X-Code setup (𝑛 = 5).

algorithms [24] provide dual-parity and require only the XOR op-
erations. This style of code can be computationally efficient and
easily implemented homomorphically. As demonstrated in Sec. 3.1,
XOR for binary integers is simply addition which is an efficient
homomorphic operation.

Our work is based on X-Code [19] which can recover up to
two full columns erasures in an 𝑛 × 𝑛 structure where 𝑛 is a prime.
Figure 2 shows an example of X-Code setup with 𝑛=5. As illustrated,
data symbols 𝑑𝑖, 𝑗 are organized into the first 𝑛 − 2 rows of the
structure, and codewords 𝑝𝑖, 𝑗 make up the final two rows; where 𝑖
is row, 𝑗 is column. In X-Code, both data symbols and codewords
are in Z2. Codewords in the last two rows are generated by XOR-
ing (or homomorphically adding) data symbols along the diagonal
that connects them, as illustrated in Fig. 2. These diagonals have
slopes ±1 and cross each other when overlayed, hence the name
X-Code. For diagonals with slope=+1, each codeword 𝑝𝑛−2, 𝑗 in the
(𝑛 − 2)-th row is computed by 𝑝𝑛−2, 𝑗 =

∑𝑛−3
𝑘=0 𝑑𝑘,( 𝑗−𝑘−2%𝑛) . For

the example in Fig. 2, we calculate the first codeword in the first
row as 𝑝3,0 = 𝑑2,1 ⊕ 𝑑1,2 ⊕ 𝑑0,3. Likewise, each codeword along the
diagonals with slope=−1, 𝑝𝑛−1, 𝑗 in the (𝑛 − 1)-th row is computed
by 𝑝𝑛−1, 𝑗 =

∑𝑛−3
𝑘=0 𝑑𝑘,( 𝑗+𝑘+2%𝑛) . In X-Code, each data symbol is

cross-checked by exactly two codewords, hence it can recover up
to two full column losses.

4 Related Work
Protecting confidentiality is essential towards data resiliency

and is typically achieved using cryptography primitives, such as
encryption. However, encryption alone does not address all the
needs for data resiliency. For instance, adversaries can corrupt the
ciphertexts causing decryption errors or simply delete them. This
section reviews the most related works that propose solutions to
tackle the other aspects of data resiliency. More specifically, we
focus on fault-tolerance and data integrity.

Loss of data can disrupt service availability. Whole (or partial)
data replication was deployed in earlier distributed file systems,
such as HDFS, GFS [13]. However, replication substantially in-
creases the storage overheads, which translates to higher oper-
ational cost for service providers. Modern distributed file systems,
such as Google Colossus [9], Windows Azure Storage [16], use era-
sure codes such as Reed-Solomon to reduce the storage overheads.
This might work well for data in the clear. Applying erasure codes
directly over ciphertext will increase both the size of the generated
codewords if ciphertext is larger than its plaintext and increase the
computation time needed for generating the codewords.

There are recent works that followed EwR design to protect
data confidentiality while achieving fault-tolerance and integrity.

One of the closely related works is by Lin and Tzeng [20], who
proposed a framework to support secure data storage, forwarding,
and retrieval on the Cloud. Given a message𝑚, their framework
splits𝑚 into 𝜅 blocks such that𝑚 = {𝑚1,𝑚2, ..,𝑚𝜅 } and encrypts
these 𝜅 blocks individually into ciphertexts 𝑐𝑖 = E(𝑚𝑖 ) using a
bilinear map with a prime order 𝑝 . For two cyclic multiplicative
groups G1, G2 and a generator 𝑔 ∈ G1, there is a bilinear map
𝜀 : G1 × G1 −→ G2. For any 𝑥,𝑦 ∈ Z∗𝑝 , the following multiplica-
tive homomorphism property holds: 𝜀 (𝑔𝑥 , 𝑔𝑦) = 𝜀 (𝑔,𝑔)𝑥𝑦 . Users
will upload these 𝜅 ciphertexts to the matching number of storage
servers. Once completed, the server will sample a generator matrix
𝐺 = [𝑔𝑖, 𝑗 ] for 1 ≤ 𝑖 ≤ 𝜅, 1 ≤ 𝑗 ≤ 𝑛 and compute codewords as
𝜎 𝑗 = 𝑐

𝑔1, 𝑗
1 , 𝑐

𝑔2, 𝑗
2 , .., 𝑐

𝑔𝜅,𝑗
𝜅 for 1 ≤ 𝑗 ≤ 𝑛. In this way, they distribute

the codewords to 𝑛 servers; this is also called decentralized erasure
codes [10] in the literature. Note that ciphertexts are store on 𝜅 < 𝑛

servers but the codewords are spared across all 𝑛 servers. The re-
covery process is similar to Reed-Solomon, which requires finding
a multiplicative inverse of a 𝜅 × 𝜅 submatrix 𝐾 of 𝐺 . They also
proposed the use of (𝑡, 𝑛)-Shamir-secret-sharing [26] to protect the
secret key and modified their encryption to a threshold version. As
discussed, data is broken into 𝜅 blocks before individually encryp-
tion and stored on 𝜅 storage servers. Retrieving this data requires a
distributed decryption and reconstruction protocol. Each of the 𝜅
blocks is individually encrypted, which mean there will be a large
number of ciphertexts. Also, this framework was designed as a
Cloud storage solution; how these encrypted and encoded data can
be used in various applications is unknown. Complex multi-party
computation (MPC) protocols may be needed to support the limited
homomorphic multiplication; this is due to the chosen algebraic
setting.

Building on [20], Shen et al. [27] extended the scheme to support
data integrity checking. Based on the same algebraic setting, the
authors proposed a tag generation algorithm that produces tags
for each of the 𝜅 blocks of ciphertexts. These tags can be used for
recovery due to loss of data and for checking data integrity. More
importantly, these tags are homomorphic in the data forwarding
and recovery processes. Although this extension achieves fault-
tolerance and integrity simultaneously, it inherits all the drawbacks
we discussed earlier. In addition, the generated tags are multiplica-
tively homomorphic to the data forwarding and recovery, but it
is not fully homomorphic in computations due to the multiplica-
tive bilinear map foundation. This means we need to update these
tags after homomorphic computations. This process is expensive
because it requires reshuffling of many shares of the ciphertext
blocks.

For integrity, Tsoutsos et al. [29] proposed a protocol, which
extends the Paillier HE scheme [22], to ensure correctness of ho-
momorphic ciphertexts after computations. The authors used a
Mersenne prime 𝑝 = 2𝑑 − 1 for some integer 𝑑 to compute the
codewords from the ciphertexts to perform efficient residue-based
checks. Given a ciphertext 𝑐 , the corresponding codeword is gener-
ated as 𝜎𝑐 = 𝑐 (mod 𝑝). The Mersenne prime is multiplied with the
other two primes to generate the modulo 𝑛 in the Paillier scheme.
The idea for having 𝑝 is that we canmake it public for codeword gen-
eration and verification and we can mix it within the modulo 𝑛 so
that the generated codeword is associated with the ciphertexts. This



Figure 3: System overview.

is because of the following theorem: (𝑥 (mod 𝑛)) (mod 𝑝) = 𝑥

(mod 𝑝), if 𝑝 dividing 𝑛 and 𝑥 is a non-negative integer. Another
important advantage of this protocol is that the codeword is ad-
ditively homomorphic through computations. More specifically,
given two cipertexts 𝑎, 𝑏 we compute 𝑐 = 𝑎 · 𝑏 (mod 𝑛2) and 𝑐
(mod 𝑝) = 𝜎𝑎 · 𝜎𝑏 (mod 𝑝).

Note that homomorphic multiplication of two ciphertexts in
Paillier maps to the addition of two plaintexts. This protocol was
designed based on Paillier for efficient evaluation of homomorphic
computations, but it inherits limitation of only supporting addi-
tively homomorphic computations. This protocol also only support
individually encrypted ciphertexts; hence the codewords are gen-
erated for each of these ciphertexts. Our proposed protocol differs
fundamentally from the use of Ring-LWE HE schemes (see Sec. 3)
which support ciphertext packing to significantly reduce the code-
word overheads. Of course, our ciphertexts support both additively
and multiplicatively homomorphic computations.

5 X-Cipher Design
We propose X-Cipher to simultaneously support confidentiality

and fault-tolerance of homomorphically encrypted data that is
partitioned and stored on a distributed system. An overview of the
X-Cipher features and system are demonstrated in Figure 3.

At the base of our X-Cipher design is X-Code, as introduced
in Sec. 3.2. The original X-Code scheme [19] was designed for
storing bits and thus the codewords were calculated with simple
XOR-ing. Our design can inherit this setting (arithmetic modulo
prime 2), and we generalize the scheme to support integer arith-
metic modulo a prime 𝑝 . This change from Z2 to Z𝑝 allows our
X-Cipher to store more information per data cell and allows for a
more general solution that can apply to a variety of applications.
Quite simply, we propose the use of addition and subtraction to
replace XOR-ing when calculating the codewords and recovering
from loss, respectively. These arithmetic operations map to ho-
momorphic addition and subtraction over ciphertexts for efficient
evaluation and allow codeword generation and data recovery to stay
the same. For all codewords along the slope𝜔 = +1 as example, they
can still be computed by 𝑝𝑛−2, 𝑗 =

∑𝑛−3
𝑘=0 𝑑𝑘,( 𝑗−𝑘−2 (mod 𝑛)) . Recov-

ering any lost data in the general setting is achieved by subtraction.
For instance, recovering 𝑑𝑟,𝑐 connected to 𝑝𝑛−2, 𝑗 is completed by
𝑑𝑟,𝑐 = 𝑝𝑛−2, 𝑗 −

∑𝑛−2
𝑘=0,𝑘≠𝑟 𝑑𝑘,( 𝑗−𝑘−2 (mod 𝑛)) .

Another important characteristic to be maintained is the maxi-
mum distance separable (MDS) property of X-Code. Xu et al. [19]
presents an extensive proof of how the original X-Code achieves the
MDS property. The MDS property is dependent upon the dimension

Slope = -1Slope = +1

m
 x

 n

... ...

D
at

a
Ta

g

Slope = -1Slope = +1

...

c0 c1 cn
...

m
 x

 n

n

...

n-2
2

n

m
 x

 n

n n

... ...

n-2
2

n n

n-2
2

...

...

...

(a) Extended structure.

208 211 210
203
194

205
194

209
197

192 193 193
189
191

188
182

191
184

...

...

...

...

... ... ...

1. original image
2. focused region
3. encoded structure

1

3
2

(b) Encoding example.

Figure 4: Extended structure and its encoding example.

of the array 𝑛 being a prime number, and is independent of the data
within the array. Because of this, the integer space changing from
Z2 to Z𝑝 does not affect the MDS property. Interested readers can
refer to [19] for the detailed proof.

Once we instantiate the X-Cipher structure with the appropriate
parameters, we construct the first 𝑛−2 rows with plaintext data and
generate codewords in the last 2 rows. We then partition the 𝑛 × 𝑛
structure into columns 𝒅𝒊 ; 𝑖 = (0, .., 𝑛 − 1), encrypt each column
into a ciphertext 𝑐𝑖 = 𝐸𝑛𝑐 (𝑝𝑘, 𝒅𝒊) using the packing techniques
described in Sec. 3.1. Then, each packed and encrypted column 𝑐𝑖
is distributed to chunk servers so that each chunk server 𝑐𝑠𝑖 stores
ciphertext 𝑐𝑖 , as illustrated in Fig. 1.

Packing 𝑛 elements along the column into one ciphertext im-
proves space efficiency and allows element-wise operations to be
carried out in a SIMD manner. However, there are two important
observations regarding the spatial efficiency. First, the ratio of code-
words to data is 2

𝑛−2 which decreases as 𝑛 increases. Because the
X-Code structure is a square, increasing the value of 𝑛 increases
both the data rows (packed ciphertext slots) and also increases
the number of columns (ciphertexts). As a consequence, represent-
ing the data in an unmodified X-Code structure will require more
ciphertexts and thus more servers to store the distributed cipher-
texts as the total data increases. This can cause a problem because
more data pieces distributed over a network not only increases the
storage cost but also incurs high data movement overheads when
recovery and integrity checking occurs. Secondly, if 𝑛 is small,
additional chunk servers, and extra ciphertexts, are no longer to
support the X-Code structure; however, as a consequence, only 𝑛 of
the plaintext slots within the packed ciphertext are utilized. Ideally,
the number of plaintext slots should be maximized for efficiency,
and in this scenario it is likely that the number of plaintext slots
will be significantly underutilized since for a properly selected set
of security parameters there are thousands of these slots.



Table 2: Details of each phase.
User, 𝒰 Cloud Evaluator, ℰ

Setup 1) Starts cryptosystem with security parameters 𝜆 = (𝜚, 𝑡) 1) Receives 𝒄 from 𝒰 , stores 𝑐𝑖 on cluster server 𝑐𝑠𝑖 (Fig. 1)
2) Generates keys through (pk, sk, ek) ← KeyGen(𝜆)
3) Chooses a prime 𝑛 and determine multiples𝑚 =

𝜚
𝑛

4) Encode matrix 𝐷 to columns 𝒅𝒊
5) Compute codewords 𝜎 and update 𝒅𝒊
6) Encrypts columns 𝑐𝑖 =Enc(pk, 𝒅𝒊); 𝑐𝑖 ∈ 𝒄
7) Sends 𝒄 to ℰ for storage and computation

Computation 1) Calls for homomorphic operations 1) Executes homomorphic operations
2) Regenerates codewords if necessary

Verification 1) Calls for set of ciphertexts 𝒄 from ℰ 1) Collects & reassembles ciphertexts 𝒄 from cluster servers
2) Decrypts ciphertexts 𝒅𝒊 = Dec(sk, 𝒄 𝒊) 2) Sends 𝒄 back to user 𝒰
3) Decodes X-Cipher to get data and codewords (𝐷, 𝜎 ′)
4) Generate expected codewords 𝜎 for 𝐷
5) If 𝜎 ≠ 𝜎 ′, call for recovery.

Recovery 1) Sends ℰ lost column index(es) 𝑖𝑑𝑥 , when verification fails 1) Receives index(es) 𝑖𝑑𝑥 from 𝒰
2) Waits for acknowledgement from ℰ 2) Collects partial set of ciphertexts 𝒄 from servers

3) Performs OneColumnRecovery or TwoColumnRecovery
4) Notifies 𝒰 of success

Teardown 1) Waits for set of ciphertexts 𝒄 from ℰ 1) Collects & reassembles ciphertexts 𝒄 from cluster servers
2) Decrypts ciphertexts 𝒅𝒊 = Dec(sk, 𝒄 𝒊) 2) Sends 𝒄 back to user 𝒰
3) Decodes X-Cipher structure back to original form

Inspired by these observations, we build X-Cipher’s internal
structure as one larger vertical rectangle structure abstracted as
𝑚 copies of the 𝑛 × 𝑛 X-Code structures stacking on top of each
other, as illustrated in Fig. 4a. Each of these 𝑛×𝑛 X-Code structures
can store different data and codewords. This design allows us to
reduce the codewords-to-data ratio and to increase the utilization
of the plaintext slots in the packed ciphertext without increasing
the number of chunk servers. In X-Cipher, the value of 𝑛 is a fixed
value and depends on the number of chunk servers to be used for
storing the packed ciphertext 𝑐𝑖 . The value of𝑚 is determined by
the total number of plaintext slots dividing 𝑛.

Table 2 details each phase between a Cloud evaluator ℰ and a
user 𝒰 . We refer readers to Table 1 for common notations used in
this paper.

5.1 Setup Phase
To initiate X-Cipher, we begin with selecting some security pa-

rameter (𝜆) which instantiates the BGV HE scheme, as discussed
in Sec. 3.1. These parameters should be selected according to the
characteristics of the application datasets. In Sec. 5.2, we provide
two examples showing how to map application datasets into the
X-Cipher structure and to support homomorphic computations.
Three of these parameters are of particular importance. Firstly, the
plaintext modulus 𝑡 should be greater than the maximum individual
value in the given datasets. Next, the modulus chain should be large
enough to support the intended number of homomorphic multipli-
cations. With other parameters, we can calculate the plaintext slot
count 𝜚 , which determines the total number of plaintext integers
which can be packed into a single ciphertext. Finally, we generate
necessary keys for encryption, decryption, and evaluation.

Then, users determine the value of 𝑛, which determines the total
columns of the X-Cipher structure and the number of ciphertexts

generated from a given dataset. As previously described, 𝑛 also rep-
resents the number of chunk servers that are required to store these
ciphertexts. The selection of 𝑛 should adhere to several constraints
based upon the X-Code requirements, cryptographic parameters,
and dataset size. First, X-Code requires that 𝑛 is both a prime num-
ber and 𝑛 > 3. Next, the slot count 𝜚 and 𝑛 determine the number
of copies𝑚 of the 𝑛 × 𝑛 X-Code structures that are required; that is
𝑚 =

𝜚
𝑛 . Given a matrix 𝐷 , we split it into a set of column vectors

𝒅𝒊 for distributed storage and parallel tasks. Note that 𝒅𝒊 includes
the generated codewords from applying erasure coding. Hence,
the user must select the smallest 𝑛 such that | |𝒅𝒊 | | ≥ 𝑚 · 𝑛. The
dimensions of X-Cipher are (𝑚 × 𝑛, 𝑛), as illustrated in Fig. 4a.

Once we have configured the X-Cipher structure, 𝒰 encodes
the data into the structure. For multidimensional data, the data
is flatten by applying a dimension reduction technique which is
most suitable for the intended computations. Figure 5 illustrates
four different dimension reduction techniques (also referred to as
space-filling curves [11]). For example, data representing a two-
dimensional matrix is typically flattened by traversing the matrix
in either a row-major or column-major manner. Location data is
commonly encoded by Z-order or Hilbert curves [1]. Users can
use any dimension reduction technique to convert their data into
vectors. After reducing the dimension of the input data into a set of
one-dimensional vectors, X-Cipher treats the data as a stream and
the data is encoded into the X-Cipher structure in a column-major
fashion. This encoding allows the partitioned data to be packed
and encrypted into the corresponding ciphertexts and computed
independently and simultaneously. Data is filled into every 𝑛 − 2
rows within each of the 𝑛 × 𝑛 X-Code blocks, skipping the last two
rows of each block since they are reserved for codewords computed
based on the filled data.



2
31
4

3
21
432

41

3
0
2

1

1st order 2nd order

H
ilb

er
t

1st order 2nd order

Z-
or

de
r

C
ol

um
n 

M
aj

or
R

ow
 M

aj
or

1st order 2nd order

1st order 2nd order

2D space 3D space 2D space 3D space

1st order 1st order

1st order 1st order

2
31
4

3
21
4 32

41

3
0
2

1

1st order 2nd order

H
ilb

er
t

1st order 2nd order

Z-
or

de
r

C
ol

um
n 

M
aj

or
R

ow
 M

aj
or

1st order 2nd order

1st order 2nd order

32
41

3
0
2

1

1st order 2nd order
H

ilb
er

t

1st order 2nd order

Z-
or

de
r

2D space 3D space

1st order

1st order

2
31
4

3
21
4

C
ol

um
n 

M
aj

or
R

ow
 M

aj
or

1st order 2nd order

1st order 2nd order

2D space 3D space

1st order

1st order

Figure 5: Dimension reduction techniques.

For one-dimensional inputs such as vectors, we can encode the
entire vector continuously in a column-major fashion, overflowing
to the subsequent column when all plaintext slots are filled. This
encoding aims to store data in fewer ciphertexts hence we can
avoid moving around the distributed ciphertexts. Alternatively, We
can divide the vector into 𝑛 sub-vectors and fill each of them into
the corresponding ciphertext. This encoding encourages parallel
processing and is preferred for large vectors. For two or more
dimensions, we first perform dimension reduction using one of
the discussed techniques. We encode the resulting one-dimension
output as aforementioned. Fig. 4b illustrates an example of encoding
an image into the proposed X-Cipher structure. For this example,
we perform a column-major dimension reduction to transform the
focused region into the illustrated X-Cipher structure.

Finally, the 𝑛 columns of partitioned data vectors are encrypted
as 𝑐𝑖 = 𝐸𝑛𝑐 (pk, 𝒅𝒊), and the ciphertexts are uploaded to the Cloud
evaluator ℰ . Then, ℰ stores the ciphertexts among its 𝑛 chunk
servers and is ready to perform homomorphic computations. We
distribute the resulting ciphertexts based on decentralized erasure
codes [10], which enhances fault-tolerance, load-balancing, and
accessibility. During the computation, verification, and recovery
phases, we reassemble the X-Cipher structure by collecting these
distributed ciphertexts from the respective chunk servers. In the
rest of the discussions, we assume a reassembled X-Cipher structure
for simplicity.

5.2 Computation Phase
The X-Cipher data structure provides fault-tolerance and re-

coverability for a wide set of applications that make use of basic
linear algebra operations. Here, we present some of the commonly
used operations over one or two datasets as building blocks and
demonstrate their usefulness in two example applications.

Over One Dataset. Performing arithmetic operations over one
dataset, such as a single matrix or an array of integers, is common in
many applications. The total sum of all elements in the structure can
be computed by naively adding all elements sequentially. For this
and other operations, there are more efficient ways. As discussed
in Sec. 3.2 and illustrated in Fig. 2, we observe that each codeword
contains the sum of all data elements along its respective slope
line; as illustrated for calculating 𝑝3,0 in Sec. 3.2. As a result, the
overal sum in the structure can be computed efficiently by adding
all codewords for one of the slope line configurations followed by
summing the resulting codewords from each X-Code block. We
present this idea in Alg. 1, which is efficient for using component-
wise homomorphic addition over the packed ciphertexts. It achieves
𝑂 (𝑙𝑜𝑔2𝑚) complexity by adding values across multiple X-Code

Algorithm 1: Summation with 𝑂 (𝑙𝑜𝑔2𝑚) complexity.
Input :Encrypted columns, 𝒄 B {𝑐0, ...𝑐𝑛−1}
Output :Sum of all data elements, 𝑐𝑠𝑢𝑚
𝑚𝑎𝑠𝑘 = {0, 1}𝑚×𝑛 ;𝑚𝑎𝑠𝑘𝑖 = 1; 𝑖 < 𝑛;𝑚𝑎𝑠𝑘𝑖 = 0; 𝑖 ≥ 𝑛
𝑐𝑠𝑢𝑚 =

∑𝑛
𝑖=0 𝑐𝑖 ; ⊲ Component-wise addition of encrypted

columns.
if 𝑚%2 ≠ 0 then

𝑚 − −
end
for 𝛼 = 2𝑗 ;𝛼 <=𝑚/2; 𝑗 = {0, .., 𝑙𝑜𝑔2 (𝑚) − 1} do

𝑐 ′𝑠𝑢𝑚 =shift(𝑐𝑠𝑢𝑚,−𝛼 · 𝑛) ⊲ Move by block, padding by
0.
𝑐𝑠𝑢𝑚+ = 𝑐 ′𝑠𝑢𝑚

end
if 𝑚%2 ≠ 0 then

𝑐 ′𝑠𝑢𝑚 =shift(𝑐𝑠𝑢𝑚,−(𝑚 + 1) · 𝑛)
𝑐𝑠𝑢𝑚+ = 𝑐 ′𝑠𝑢𝑚 ⊲ Add the last element.

end
𝑐𝑠𝑢𝑚 = 𝑐𝑠𝑢𝑚 .multByConst(𝑚𝑎𝑠𝑘) ⊲ Mask out unwanted
data.

blocks simultaneously. To implement this algorithm, we make use
of the shift and multByConst functions that are supported in
HElib library [14]. The final result 𝑐𝑠𝑢𝑚 is a ciphertext that encrypts
a vector containing the sum in both the (𝑛 − 2)𝑡ℎ and (𝑛 − 1)𝑡ℎ
slots.

The result is made recoverable by redistributing the resulting
ciphertext 𝑐𝑠𝑢𝑚 . The codewords are additively homomorphic, so a
total sum avoids the need for regenerating the codewords. In the
final result, it is observed that the first 𝑛 − 2 rows contain partial
sums of the dataset which add up to the total sum. In other words,
the first 𝑛 − 2 rows add up to the codewords in the final two rows.
In order to construct a recoverable structure, each slope must have
elements in the first𝑛−2 rowswhich add to the codeword. Therefore
by simply creating 𝑛 duplicates of 𝑐𝑠𝑢𝑚 , this characteristic is met
and a valid X-Cipher structure is created.

Over Two Datasets. Component-wise operations over vectors
or matrices can be supported by simply operating on the corre-
sponding ciphertexts. In addition, dot-product is supported with
these basic component-wise operations. Given two vectors encoded
and encrypted into their corresponding ciphertexts 𝑐𝐴 and 𝑐𝐵 , we
can calculate dot-product as 𝑐𝑝𝑟𝑜𝑑

𝑖
= 𝑐𝐴

𝑖
× 𝑐𝐵

𝑖
for 𝑖 = (0, .., 𝑛 − 1).

Then, we calculate the sum over all 𝑐𝑝𝑟𝑜𝑑
𝑖

using Alg. 1.
A good example to demonstrate operations over vectors is the

private set intersection (PSI) problem. Given two sets 𝒙 ∈ R𝜄 ,𝒚 ∈ R𝜁
which have lengths 𝜄 and 𝜁 respectively and typically 𝜄 >> 𝜁 , we
perform PSI to determine and reveal only the common elements
in these two sets, 𝒙

⋂
𝒚, for all set elements 𝑥 𝑗 ∈ 𝒙 and 𝑦𝑖 ∈ 𝒚.

We explain this protocol between a sender 𝒰𝒮 who owns 𝒙 and a
receiver 𝒰ℛ who owns𝒚. By using X-Cipher, the users can generate
a PSI result which is encrypted, packed, and fault-tolerant.

A fast PSI protocol using HE [8] defines a basic protocol in which
𝒰ℛ sends [𝑦𝑖 ] = 𝐸𝑛𝑐 (𝑝𝑘,𝑦𝑖 ) to 𝒰𝒮 and 𝒰𝒮 computes and returns
𝑐𝑖 = 𝑟𝑖 ·

∏
𝑗 ( [𝑥 𝑗 ] − [𝑦𝑖 ]), expecting an encryption of zero when



there exists 𝑥 𝑗 = 𝑦𝑖 for any 𝑗 or a random value masked by the
uniformly sampled random number 𝑟𝑖 . Since we have to perform
homomorphic subtraction for all 𝑥 𝑗 with 𝑦𝑖 , we can pack these
values into one or more of the X-Cipher ciphertexts. Once packed,
these operations are performed simultaneously in a SIMD-manner.

We can further optimize the PSI as proposed in [8]. Expanding
the basic PSI definition results in the following: 𝑐𝑖 = 𝑟𝑖 ·

∏
𝑗 ( [𝑥 𝑗 ] −

[𝑦𝑖 ]) = 𝑟𝑖 · (𝑥1 − 𝑦𝑖 ) · ... · (𝑥𝜄 − 𝑦𝑖 ) = 𝑟𝑖𝑦𝜄𝑖 + 𝑟𝑎𝜄−1𝑦
𝜄−1
𝑖
+ ... + 𝑟𝑎0 for

some combinations of 𝑥 𝑗 storing in 𝑎𝑖 . This shows the PSI is the
sum of elements which are the product of 1) the 𝒰ℛ’s data raised
to some degree (𝑦𝜄

𝑖
, 𝑦𝜄−1

𝑖
, ..., 1) and 2) coefficients (𝑟𝑖 , 𝑟𝑖𝑎𝜄−1, ..., 𝑎0)

which depend only on the 𝒰𝒮 ’s data. Assembling these elements
into two vectors 𝒚′

𝒊 = {𝑦𝜄
𝑖
, 𝑦𝜄−1

𝑖
, ..., 1} and 𝒂 = {𝑟𝑖 , 𝑟𝑖𝑎𝜄−1, ..., 𝑎0},

the PSI can be evaluated by simply computing dot-product: 𝒚′
𝒊 ·

𝒂. When encoding and packing data into the X-Cipher, we can
realize the optimized PSI protocol efficiently using the dot-product
algorithm discussed earlier. Of course, data packed into our X-
Cipher is recoverable.

Additionally, matrix addition and multiplication are building
blocks of many cloud-computing tasks for which X-Cipher may be
desirable. By enabling matrix addition and multiplication on data
in the structure, X-Cipher allows for data to remain encrypted and
recoverable. A matrix can be encoded into the X-Cipher structure in
many ways, as discussed in Sec. 5.1. For addition and multiplication,
it may bemost useful to traverse thematrix using a row-major curve
to fill a single column. By using this encoding and fine-tuning the
parameters 𝑛,𝑚, it can be ensured that a single ciphertext contains
entire matrices, which can be most efficient for distributed tasks.

Once a matrix is encoded, matrix addition is completed through
component-wise addition. As described in Sec. 3.1, operations on
packed ciphertexts act in a component-wise manner; thus matrix
addition is completed by simply executing a homomorphic addition
of two ciphertexts which encode the matrices. For instance, given
matrices 𝐴, 𝐵 are encoded and encrypted into ciphertexts 𝑐𝐴, 𝑐𝐵
respectively, the matrix addition 𝐴 + 𝐵 is completed by 𝑐𝐴 ⊕ 𝑐𝐵 .

Matrix multiplication on the other hand is not component-wise,
and thus homomorphic multiplication of the ciphertexts encod-
ing matrices cannot be directly used. Jiang et al. [18] proposed
four different matrix permutations that lower the complexity of
homomorphic matrix multiplication to just a depth of one. Given
a matrix 𝐴 and its data element at the 𝑖-th row and 𝑗-th column
indicated as 𝑎𝑖, 𝑗 ∈ 𝐴, the four permutations are diagonal column
rotation 𝑆 (𝐴)𝑖, 𝑗 = 𝑎𝑖,𝑖+𝑗 , diagonal row rotation 𝑇 (𝐴)𝑖, 𝑗 = 𝑎𝑖+𝑗, 𝑗 ,
column rotation by 𝑘 spaces 𝜙𝑘 (𝐴)𝑖, 𝑗 = 𝑎𝑖, 𝑗+𝑘 , and row rotation
by 𝑘 spaces 𝛾𝑘 (𝐴)𝑖, 𝑗 = 𝑎𝑖+𝑘,𝑗 . Given two square matrices 𝐴, 𝐵 ∈
Z𝑑×𝑑 , the matrix product can be expressed by the following sum:∑𝑑−1
𝑘=0 𝜙

𝑘 (𝑆 (𝐴)) · (𝛾𝑘𝑇 (𝐵)). In their design transformations occur
on the ciphertext in order to reduce the number of ciphertexts.
Because our design assumes multiple ciphertexts to compose the
X-Cipher structure, we have the advantage to pre-computed the
transformations on the plaintext and can store each transformed
version required in the structure. Because of this approach, matrix
multiplication is simply a matter of fetching the 2 · 𝑑 transformed
matrices from the extended structure, and only performing homo-
morphic multiplication and addition as described in the previously
expressed equation.

5.3 Verification Phase
At the end of the setup phase, the user can call for verification of

the data’s integrity at any point before, during, or after the compu-
tation. A call to verify and execute an integrity check first involves
pulling each ciphertext (𝑐𝑖 ) from the chunk servers (𝑐𝑠𝑖 ) and re-
turning the ciphertexts to the user. Upon receiving the ciphertexts,
the user runs the local verification algorithm. This algorithm first
locally decrypts the data and separates the current codewords 𝜎 ′
from the user data. Then, the user regenerates the expected code-
words 𝜎 given the set of plaintext data. After this, a simple check
occurs by comparing the two sets of codewords. If they are equal,
no recovery is required. If there is any mismatch, the location of
the mismatch is used to identify the corrupted chunk server and
recovery phase is executed.

5.4 Recovery Phase
Using the data and codewords in conjunction, recovery in X-

Cipher can be performed in a similar way as X-Code. Once data is
packed into a column and encrypted as a ciphertext, the underlying
column structure is preserved in the ciphertext. Hence, homomor-
phic operations on ciphertexts will have the effect of component-
wise operations, and they can be executed to complete the recovery.
As illustrated in Fig. 2, recovering lost data requires computation
on data along the same slope line. Since homomorphic ciphertexts
operate on their underlying vectors using component-wise oper-
ations, transformation is required before the recovery operations
to align data associated with the same codewords within each of
the 𝑛 ciphertexts: data that is aligned diagonally in the plaintext
structure must be aligned horizontally in ciphertext (or in the same
plaintext slot) in order to complete recovery correctly. The required
alignment can be achieved by performing homomorphic rotation
on ciphertexts.

Associated data and codewords are illustrated in Fig. 6 (a)(b) with
the same colored diagonal line. In this Figure, the last two rows are
for codewords; each subfigure corresponds to one of the two slopes
((a) 𝜔 = +1, (b) 𝜔 = −1). The effect of rotation is demonstrated in
both in Fig. 6(a)(b). This rotation is implemented by leveraging the
available function rotate in the HElib library [14]. This function
takes the ciphertext and right-rotation amount (𝜃 < 0 means a left
rotation) as input parameters. Since we abstract the ciphertexts
as vertical columns X-Cipher, 𝜃 > 0 corresponds to a downward
rotation and 𝜃 < 0 corresponds to an upward rotation.

The function rotate moves data within the ciphertext along its
plaintext slots. One left rotation moves the first data element to
the last slot. Hence, directly applying rotate to ciphertexts will
be incorrect: the X-Code block boundaries will be violated and the
X-Cipher structure will no longer contain𝑚 stacked 𝑛 × 𝑛 X-Code
blocks.

To address this problem, we propose RotCols to rotate columns
for data recovery. Algorithm 2 show steps of this function. The idea
is based on extraction by masking and swapping, and the effect
on one column is demonstrated in Fig. 6 (c). Given a ciphertext
𝑐𝑖 that has 𝜌 plaintext slots in which 𝑚 × 𝑛 is the dimension of
the X-Cipher structure and 𝑛 is the size of each X-Code block,
the algorithm extracts the values to be rotated (highlighted with
solid color) by applying a mask 𝚵𝑡𝑜𝑝 and the rest of the values
by another mask 𝚵𝑏𝑜𝑡𝑡𝑜𝑚 , and then rotate them into position by



Algorithm 2: Column rotation, RotCols(𝒄 , 𝜔).
Input :𝒄 B {𝑐0, ...𝑐𝑛 }, 𝜔 B {+1,−1}
Output :𝒄 B {𝑐𝜔0 , ...𝑐

𝜔
𝑛 }

for 𝑖 ∈ [0, 𝑛) do
if 𝜔 = +1 then

𝜃𝑢𝑝 = 𝑛 − 1 − 𝑖 ⊲ Calculate rotation count;
else if 𝜔 = −1 then

𝜃𝑢𝑝 = 𝑖

𝜃𝑑𝑜𝑤𝑛 = 𝑛 − 𝜃𝑢𝑝 ⊲ Calculate rotation count for the other half;
𝚵𝑡𝑜𝑝 = {0, 1}𝑚×𝑛 , 𝚵𝑡𝑜𝑝 [𝑖 ] = 1; 𝑖 (mod 𝑛) < 𝜃𝑢𝑝 ,
𝚵𝑏𝑜𝑡𝑡𝑜𝑚 = {0, 1}𝑚×𝑛 , 𝚵𝑏𝑜𝑡𝑡𝑜𝑚 [𝑖 ] = 1; 𝑖 (mod 𝑛) ≥ 𝜃𝑢𝑝 ,
𝑐𝜔
𝑏𝑜𝑡𝑡𝑜𝑚

= rotate(𝑐𝑖 · 𝚵𝑏𝑜𝑡𝑡𝑜𝑚,−1 · 𝜃𝑢𝑝 )
𝑐𝜔𝑡𝑜𝑝 = rotate(𝑐𝑖 · 𝚵𝑡𝑜𝑝 , 𝜃𝑑𝑜𝑤𝑛)
𝑐𝑖 = 𝑐𝜔𝑡𝑜𝑝 + 𝑐𝜔𝑏𝑜𝑡𝑡𝑜𝑚 ⊲ Reassemble the ciphertext;

end

Figure 6: Column rotation aligns sloped (colored) lines.

calculating 𝑐𝜔𝑡𝑜𝑝 =rotate(𝑐𝑖 · 𝚵𝑡𝑜𝑝 ,−1 · 𝜃𝑢𝑝 ) where 𝜃𝑢𝑝 = 1 and
𝑐𝜔
𝑏𝑜𝑡𝑡𝑜𝑚

=rotate(𝑐𝑖 · 𝚵𝑏𝑜𝑡𝑡𝑜𝑚, 𝜃𝑑𝑜𝑤𝑛) where 𝜃𝑑𝑜𝑤𝑛 = 𝑛 − 1. Both
𝚵𝑡𝑜𝑝 and 𝚵𝑏𝑜𝑡𝑡𝑜𝑚 are plaintext vectors which have the dimension
𝜌 and have values set to 1 at the appropriate indexes. Finally, the
two ciphertexts are combined 𝑐𝑖 = 𝑐𝜔𝑡𝑜𝑝 + 𝑐𝜔𝑏𝑜𝑡𝑡𝑜𝑚 to produce the
column which is rotated.

X-Cipher inherits the two-column erasure property from X-Code.
Hence, X-Cipher can recover up to two columns (ciphertexts) loss.
For illustration, Alg. 3 shows steps to recover from losing one of
the 𝑛 columns (ciphertexts). To recover a lost column, we first per-
form the column rotation algorithm (Alg. 2) to transform the input
according to two slope configurations, as shown in Fig. 6. Once
rotation is done, we perform the recovery computations on the
two resulting structures. Note that the shaded cells within each
ciphertext contain codewords calculated by the other slope line
configuration. They are not in use when performing computations
for a specific slope line configuration. For example, when slope
𝜔 = +1 the shaded cells, which refer to the 𝜔 = −1 configura-
tion codewords, are ignored since they are unused by the 𝜔 = +1
configuration.

To elaborate the recovery process, we assume the first column
(ciphertext) 𝑐0 is lost, as illustrated by Fig. 7 (Step 1). We perform
column rotation for slope 𝜔 = +1 resulting in Step 2, then we
recover 𝑛 − 1 cells. In a basic understanding of the algorithm, this is
done in one direction first. However in our implementation, Step 2
occurs on two versions of the data, one for each rotation direction.
The general rule for recovery is that a lost codeword is recovered
by adding the remaining data, whereas a lost data is recovered
by subtracting the remaining data from the codeword. Therefore,
we can restore this cell value by using the codeword minus the

Algorithm 3: One-Column Recovery.
Input :Lost column index 𝑖𝑑𝑥 , remaining columns 𝒄 = {𝑐𝑖 }𝑛−1

for 𝑖 ∈ [0, 𝑛) s.t. 𝑖 ≠ 𝑖𝑑𝑥

Output :Recovered Column 𝑐𝑖𝑑𝑥
for 𝑖 ∈ [0, 𝑛), 𝑖 ≠ 𝑖𝑑𝑥 do

for 𝑗 ∈ [0,𝑚 × 𝑛) do
𝒖 [ 𝑗 ] ← 1 if 𝑐𝑖𝑑 [ 𝑗 ] is 𝜎 OR if 𝑐𝑖𝑑,𝑗 is data & 𝑐𝑖,𝑗 is 𝜎𝜔=+1
𝒖 [ 𝑗 ] ← 0 if 𝑐𝑖,𝑗 is 𝜎𝜔=−1
𝒖 [ 𝑗 ] ← −1 if 𝑐𝑖𝑑,𝑗 is data & 𝑐𝑖,𝑗 is 𝜎𝜔=+1

end
𝑐𝑖𝑑 += 𝒖 · 𝑐𝑖

end
RotCols(𝒄, 𝜔 = 1, 𝑑 = 1) RotCols(𝒄, 𝜔 = −1, 𝑑 = −1)
RotCols(𝑐𝑖𝑑 , 𝜔 = 1, 𝑑 = 1) RotCols(𝑐𝑖𝑑 , 𝜔 = −1)
for 𝑖 ∈ [0, 𝑛), 𝑖 ≠ 𝑖𝑑 do

for 𝑗 ∈ [0,𝑚 × 𝑛) do
𝒖 [ 𝑗 ] ← 1 if 𝑐𝑖𝑑,𝑗 is 𝜎𝜔=−1
𝒖 [ 𝑗 ] ← 0 if else

end
𝑐𝑖𝑑 += 𝒖 · 𝑐𝑖

end

Figure 7: Illustration of one column recovery.

remaining data. This can be made efficient by constructing a mask
𝑢 for each column and homomorphically accumulate the masked
columns. The location of the codewords and data in each column
are known, so it is simple to assign the correct sign in the bit
mask based on what is in the row of the next column: 1 to add, −1
to subtract, or 0 to ignore. Because operations are performed in
component-wise manner, all rows can be updated at once with an
addition, as shown in (Step 3).

To recover the remaining cell 𝑐0,𝑛−1, we perform column rotation
for slope 𝜔 = −1 and get a transformed structure as shown in Fig. 6
(b) and Fig. 7 (Step 4). We observe that the codeword has been
moved to the 𝑛 − 2 slot in 𝑐−10 . According to the recovery rule,
this cell is a codeword and its value is calculated as the sum of
all horizontal data cells within the transformed structure. We also
have to apply the masking where 𝒖 [𝑛 − 2] = 1. To help with this
reassembling process, we create a coordinate map to keep track of
the transformations applied by the different slope configurations.
After computing the final sum in Step 5, the lost row has been
successfully recovered.

Note that we illustrate the recovery algorithm using one of the
𝑚 X-Code blocks. Since the X-Cipher structure is organized as𝑚
X-Code blocks stacking on top of each other and homomorphic
operations are applied in a component-wise manner, the recovery
algorithm acts on all𝑚 X-Code blocks.



Figure 8: Illustration of two-column recovery.

Two-column recovery is executed in a similar manner to the one-
column recovery. Due to space limitation, we omit the algorithm
in this paper, but an illustration of one iteration of the two-column
recovery algorithm is shown in Fig. 8. In this illustration, columns 𝑐0
and 𝑐𝑛−1 have been lost. The first five steps are identically similar to
the single-column recovery algorithm. As a result, the two-column
recovery is implemented as multiple iterations while masking the
expected rows. As long as the column numbers are known, in this
case (0, 𝑛 − 1), the order of recovery is known. This is because the
recovery sequence is agnostic to the data itself. Thus the order of
masks are determined at run-time and based on the ids of the lost
columns and the iteration of the recovery process.

6 Evaluation
6.1 Space Complexity

One of the main advantages of X-Cipher is its capability to sig-
nificantly lower the overheads incurred when using erasure codes
for fault-tolerance. When using X-Cipher, user data is encoded into
a (𝑚 × 𝑛, 𝑛) structure and each of the 𝑛 columns is packed into a
ciphertext 𝑐𝑖 that has 𝜚 ≥ 𝑚 × 𝑛 plaintext slots determining by
the security parameter selection. As discussed in Sec. 5.1, this is to
abstract the𝑚 multiples of the X-Code 𝑛×𝑛 block stacked vertically,
so that each ciphertext is a column of the extended structure. Since
each X-Code block can contain 𝑛 × (𝑛 − 2) plaintext data and 2𝑛
codewords, as described in Sec. 3.2, a single X-Cipher structure
can store𝑚 × 𝑛 × (𝑛 − 2) plaintext integers from the user as input.
Using the ciphertext packing technique, we compress the entire
𝑚×𝑛 data and codewords within a column into a ciphertext. Table 3
provides statistics to demonstrate the space efficiency of X-Cipher.
For a given plaintext slot count 𝜚 = 64, we vary the dimension of
each X-Code block 𝑛 = {5, 7, 11, 13} and the multiples of X-Code
blocks𝑚 = {12, 9, 5, 4} to evaluate the space complexity, with or
without using X-Cipher. We can see that the X-Cipher ciphertext
can store the provided plaintext data, together with the computed
codewords, without incurring a significant overhead. It is almost
the same as the plaintext data size, but it is significantly smaller
than individually encrypting the provided plaintext data. Finally,
our design is based decentralized erasure codes [10]. Storing ci-
phertexts on independent chunk servers enhances fault-tolerance,
load-balancing, and accessibility.

6.2 Computational Complexity
We analyze the computational complexity based on the num-

ber of consecutive homomorphic multiplications in the X-Cipher
functions; this is also called the multiplicative depth. After every
homomorphic multiplication, we need to perform the costly noise

Table 3: Space complexity for X-Cipher structure

Parameters
Plaintext slots (𝜚 ) 64
Dimension (𝑛) 5 7 11 13

Multiples (𝑚 =
𝜚

𝑛
) 12 9 5 4

Total data cells (𝑚𝑛 × (𝑛 − 2)) 180 315 495 572
Size (KB)

Plaintext 0.72 1.26 1.98 2.28
Ciphertext (X-Cipher) 0.93 1.30 2.05 2.42
Ciphertext (without) 55.8 82.1 112.5 125.7

reduction and relinearization, as described in Sec. 3.1. Hence, it is
wise to minimize the multiplicative depth in our algorithm designs.
The verification does not require any homomorphic multiplications
and therefore has a depth of 0. The depth of RotCols is determined
by: 𝑛 to rotate one column, times 𝑛 columns, times 2 rotations per
recovery - 2 × 𝑛 × 𝑛 = 2𝑛2. One-column recovery adds one addi-
tional rotation for the 𝜔 = +1 and 𝜔 = −1 states of the recovered
structure to update each other as described in Sec. 5.4. This results
in a total depth of 2𝑛2 + 1. Similarly, two-column recovery has the
same limitation to a factor of 𝑛, resulting in a total depth of 2𝑛2 +𝑛.
However, because of the approach to use two separate states of the
structure during recovery, the depth for both recovery algorithms is
one factor of 𝑛 lower than what they would be in an approach with-
out the separate structure. Note, we recommend setting the value
of 𝑛 to 5, which means we will generate 5 ciphertexts stored on 5
separate servers. Also, we can pre-compute the column rotation to
speedup the recovery process online.

6.3 Security Analysis
In order to evaluate the security of X-Cipher, we consider the

adversary’s (𝒜𝑑𝑣) motivations and capabilities, then justify how
X-Cipher features counter actions taken by 𝒜𝑑𝑣 to achieve their
goals. Since 𝒜𝑑𝑣 can compromise a chunk server, they may be
motivated to attempt to either leak the data/keys or corrupt the
data in order to compromise the homomorphic computations.

Firstly, the𝒜𝑑𝑣 may steal the ciphertexts in an effort to leak the
secret data which they encrypt. However, the 𝒜𝑑𝑣 will not be able
to do so due to the secret key (sk) never being transmitted by the
user. With access to only the public key (pk) and evaluation key
(ek), 𝒜𝑑𝑣 can only correctly encrypt plaintext data and compute
on encrypted data. As an alternative, 𝒜𝑑𝑣 may try to continuously
sample the encryption function or perform operations until they
output an equal ciphertext. However, this will not be effective
since the BGV scheme is a probabilistic encryption algorithm that
introduces additional error to produce the ciphertext. As a result,
ciphertexts encrypting the same plaintext data are not equal. Thus,
𝒜𝑑𝑣 last remaining method to leak the data is to brute force the
skvalue, which is computationally infeasible [7].

Secondly, given that 𝒜𝑑𝑣 can learn of the X-Cipher structure
(values of 𝑛 and𝑚) by inspecting the algorithms they must execute
during the computational phase, the adversary may try to learn of
the underlying data by exposing or tampering with the codewords.
However, since the codewords are encrypted alongside the data,
they are protected in the same way.

Since the 𝒜𝑑𝑣 will be unable to leak any of the private data
or codewords, they may try to tamper with the data in order to



Verify Rotate
Columns

One Col.
Recovery

Summation0

1

2

3

Se
co

nd
s

n=5, m=12 n=7, m=9 n=11, m=5 n=13, m=4

Refresh
Codewords

Dot Product Two Column
Recovery

0

5

10

15

20

Se
co

nd
s

Figure 9: Running time of primitive functions.

prevent homomorphic computations from being correct. Given𝒜𝑑𝑣
can corrupt one cluster server, they can tamper with one column
per X-Cipher structure. However no matter the manner in which
𝒜𝑑𝑣 tampers with each column, it will always be detected by the
user. For instance, if the 𝒜𝑑𝑣 tampers with only the codewords,
this will with a strong likelihood be detected during the integrity
check. This is because𝒜𝑑𝑣 cannot modify the data used to compute
the codewords which are accessible on their cluster server. This
scenario is also the case for manipulating only the data or both the
data and the codewords.

Finally, an 𝒜𝑑𝑣 may try to cause a total system failure in order
to prevent the user from receiving any of their previously allocated
private data. However, because of the homomorphic recovery algo-
rithm in X-Cipher, the user can leverage the remaining untrusted
cluster servers to recover the lost column, and continue execution
after allocating the recovered column to a new server.

7 Experimental Results
We prototype the proposed X-Cipher structure using the HElib

library [15], which implements the BGVHE scheme [7] (see Sec. 3.1).
Based on this prototype, we conduct experiments multiple times
on a CloudLab machine that has Intel(R) Xeon(R) CPU E5-2660 v3
@ 2.60GHz.

For parameter selection of the BGV scheme, we set the security
parameter 𝜆 to 128 bits, which corresponds to a 3072-bit asymmetric
key [4]. We choose the plaintext modulus 𝑡 = 131 as a value large
enough for our experiments. The rest of the BGV scheme param-
eters are set to the defaults [15]. The multiplicative depth 𝐿 of is
configured according to what is required by the evaluated circuits
in our protocol, for which we derived according to the complexity
analysis discussed in Sec. 6.2.

7.1 Primitive Functions
Figure 9 shows the run-time for X-Cipher core primitive func-

tions with 𝜚 = 64, 𝑛 = (5, 7, 11, 13), and𝑚 = (12, 9, 5, 4). Results
demonstrate efficient execution of many of the primitives. For in-
stance, all primitive functions whose times are in the top graph
in Fig. 9 execute with tolerable run times for homomorphic oper-
ations. Functions such as codewords refreshing, dot product, and
two-column recovery are the slower functions, and their running

Table 4: Application Computation Running Time Statistics

PSI (s) Matrix Operations (ms)
𝜄 𝜁 = 𝜄/8 𝜁 = 𝜄/4 𝜁 = 𝜄/2 Dim + ×
25 28.1 54.4 109 3 24.05 278.5
50 54.5 109 225 4 52.25 364.6
75 81.3 162 332 5 50.50 450.8
100 111 224 444 6 54.20 541.5

times grow as the dimension 𝑛 grows. These functions rely most
heavily on the ciphertext rotations and multiplications. This cur-
rent run-time minimizes data duplication and does not implement
parallel execution. We believe this is the trade-off that must be
considered on implementation since performance improvements
could be observed by duplicating data in order to leverage parallel
computing.

7.2 Real-world applications
To evaluate X-Cipher’s effectiveness on real-world applications,

we evaluate the running time of two applications: matrix operations
and private set intersection (PSI).

Basic matrix operations were tested for square matrices with
the dimensions varying from (3 − 6). Table 4 demonstrates the
running time required for both matrix operations. This time does
not include the time required for code-word regeneration, which is
required only after matrix multiplication. These results demonstrate
an efficiency and a limitation in-line with typical HE applications:
addition can be implemented efficiently whereas multiplication
causes the bottleneck.

In addition to evaluating basic matrix arithmetic operations,
empirical study was conducted by executing the PSI of synthetic
datasets encoded into an X-Cipher structure. Datasets of varying
sizes were used to test PSI. The encoding is subject to the slot count
(𝜌), size of the Receiver’s set (𝜁 ), and the size of the Sender’s set (𝜄).
Execution times of the PSI are shown in Table 4 . The times reported
represent the time for the sender and receiver to preprocess their
data, encode into the X-Cipher structure, and homomorphically
compute the PSI, and return and decrypt the result.

Given a constant slot count for experiments 𝜌 = 64, the Sender’s
set was tested at values 𝜄 = (25, 50, 75, 100) and the values 𝜁 =

(𝜄/8, 𝜄/4, 𝜄/2) were tested. The results demonstrate the execution
time increasing linearly as either the receiver or sender set increase.
This demonstrates that with additional parallelization, the execu-
tion time can be decreased further.

7.3 Comparison to Related Works
Table 5 shows a comparison to the related works by Tsout-

sos et al. [29] and Shen et al. [27] who also proposed solutions
for recovering and verifying homomorphic ciphertexts. Our work
has a number of advantages over these existing works. Firstly, when
considering the plaintext to ciphertext ratio (number of integers
which can be put inside a ciphertext), our work utilizes ciphertext
packing (as mentioned in Sec. 3.1) to store many plaintext values
into a single ciphertext. This not only leads to lower space com-
plexity in comparison with individually encrypting one plaintext
value into a ciphertext. Similarly, the computational complexity
is reduced because operations applied on the packed ciphertexts



Table 5: Comparison to related works
Shen [27] Tsoutsos [29] This Work

Data per cipher 1 1 𝜚

HE Paradigm Partial Partial Fully
Interaction Full No Partial

Ciphertext storage Distributed Local Distributed
Codeword

homomorphic Multiplicative Additive Additive

are carried out on all underlying plaintext simultaneously. Sec-
ondly, previous works were based on partial HE, supporting either
addition or multiplication but not both. Our work is based on some-
what or fully HE, which means both addition and multiplication
are supported when designing functions to operate on data en-
coded into the X-Cipher structure. Thirdly, like Shen et al. [27],
ciphertexts are distributed but each ciphertext in our work contains
a list of plaintext values. If we encode input data using column-
major, many applications can operate on the plaintext values on
a column-by-column (or ciphertext-by-ciphertext) basis without
interaction between chunk server. Fourthly, the codewords in our
work are partially homomorphic through addition since only ad-
dition is required for recovery and verification. Because they are
not fully homomorphic, the codewords can be regenerated after
multiplication operations.

8 Conclusion
Our approach demonstrates a method to simultaneously achieve

data privacy, and fault-tolerance. We introduce the X-Cipher design
which makes ciphertexts recoverable and verifiable in all phases
of its use. We introduce a novel approach of encrypting encoded-
plaintext alongside codewords for efficient and additively homomor-
phic recovery capabilities. By evaluating X-Cipher’s storage cost,
it is determined that through the use of encoding and ciphertext
packing, X-Cipher reduces storage overhead. After empirical study
shows, it is evident that the timing results show that the primitive
functions for verification are efficient. Experiments are conducted
which show that useful operations, such as matrix operations and
PSI, are possible while maintaining the ability to recover and verify
the data. We also demonstrate that even given a cluster server is
fully compromised, the data will never be leaked and will always be
recoverable with X-Cipher. In future work, we aim to expand upon
X-Cipher capabilities by enabling more building block operations
and improving the efficiency of primitive operations that rely on
multiplication and rotation functions.

References
[1] Asma Aloufi, Peizhao Hu, Hang Liu, Sherman S.M. Chow, and Kim-Kwang Ray-

mond Choo. Universal location referencing and homomorphic evaluation of
geospatial query. Computers Security, 102:102137, 2021.

[2] Asma Aloufi, Peizhao Hu, Yongsoo Song, and Kristin Lauter. Computing blind-
folded on data homomorphically encrypted under multiple keys: An extended
survey, 2020.

[3] Jee Hea An and Mihir Bellare. Does encryption with redundancy provide au-
thenticity? In Birgit Pfitzmann, editor, Advances in Cryptology — EUROCRYPT
2001, pages 512–528, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

[4] Michael Backes, Pascal Berrang, Matthias Bieg, Roland Eils, Carl Herrmann,
Mathias Humbert, and Irina Lehmann. Identifying personal DNA methylation
profiles by genotype inference. In IEEE Symposium on Security and Privacy, pages
957–976, 2017.

[5] Dan Boneh, Gil Segev, and Brent Waters. Targeted malleability: Homomorphic
encryption for restricted computations. Cryptology ePrint Archive, Report
2011/311, 2011. https://eprint.iacr.org/2011/311.

[6] Zvika Brakerski, Craig Gentry, and Shai Halevi. Packed ciphertexts in lwe-based
homomorphic encryption. In International Workshop on Public Key Cryptography,

pages 1–13. Springer, 2013.
[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homo-

morphic encryption without bootstrapping. In Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pages 309–325. ACM, 2012.

[8] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from
homomorphic encryption. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 1243–1255, 2017.

[9] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh
Rao, Lindsay Rolig, Dale Woodford, Yasushi Saito, Christopher Taylor, Michal
Szymaniak, and Ruth Wang. Spanner: Google’s globally-distributed database. In
OSDI, 2012.

[10] A.G. Dimakis, V. Prabhakaran, and K. Ramchandran. Decentralized erasure codes
for distributed networked storage. IEEE Transactions on Information Theory,
52(6):2809–2816, 2006.

[11] Volker Gaede and Oliver Günther. Multidimensional access methods. ACM
Comput. Surv., 30(2):170–231, June 1998.

[12] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption
with polylog overhead. Cryptology ePrint Archive, Report 2011/566, 2011. https:
//eprint.iacr.org/2011/566.

[13] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
In Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages
20–43, Bolton Landing, NY, 2003.

[14] Shai Halevi and Victor Shoup. Algorithms in helib. In Juan A. Garay and Rosario
Gennaro, editors, Advances in Cryptology – CRYPTO 2014, pages 554–571, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[15] Shai Halevi and Victor Shoup. Algorithms in helib. In Annual Cryptology
Conference, pages 554–571. Springer, 2014.

[16] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in windows azure storage.
In 2012 USENIX Annual Technical Conference (USENIX ATC 12), pages 15–26,
Boston, MA, June 2012. USENIX Association.

[17] IDG. Idg’s 2020 cloud computing study. https://www.idg.com/tools-for-
marketers/2020-cloud-computing-study/, 2020. Accessed: 2021-05-04.

[18] Xiaoqian Jiang, Miran Kim, Kristin Lauter, and Yongsoo Song. Secure outsourced
matrix computation and application to neural networks. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Security, pages
1209–1222, 2018.

[19] Lihao Xu and J. Bruck. X-code: Mds array codes with optimal encoding. IEEE
Transactions on Information Theory, 45(1):272–276, 1999.

[20] Hsiao-Ying Lin and Wen-Guey Tzeng. A secure erasure code-based cloud storage
system with secure data forwarding. IEEE Transactions on Parallel and Distributed
Systems, 23(6):995–1003, 2012.

[21] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 1–23. Springer, 2010.

[22] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99, pages
223–238, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

[23] J. Plank. Erasure codes for storage systems: A brief primer. login Usenix Mag., 38,
2013.

[24] James S. Plank. The raid-6 liber8tion code. The International Journal of High
Performance Computing Applications, 23(3):242–251, 2009.

[25] I. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of
The Society for Industrial and Applied Mathematics, 8:300–304, 1960.

[26] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[27] Shiuan-Tzuo Shen, Hsiao-Ying Lin, and Wen-Guey Tzeng. An effective integrity
check scheme for secure erasure code-based storage systems. IEEE Transactions
on reliability, 64(3):840–851, 2015.

[28] Nigel P Smart and Frederik Vercauteren. Fully homomorphic simd operations.
Designs, codes and cryptography, 71(1):57–81, 2014.

[29] Nektarios Georgios Tsoutsos and Michail Maniatakos. Efficient detection for ma-
licious and random errors in additive encrypted computation. IEEE Transactions
on Computers, 67(1):16–31, 2017.

[30] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauly, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
In 9th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 12), pages 15–28, 2012.

[31] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache
spark: A unified engine for big data processing. Communications of the ACM,
59:56–65, 2016.

https://eprint.iacr.org/2011/311
https://eprint.iacr.org/2011/566
https://eprint.iacr.org/2011/566
https://www.idg.com/tools-for-marketers/2020-cloud-computing-study/
https://www.idg.com/tools-for-marketers/2020-cloud-computing-study/

	Abstract
	1 Introduction
	2 System and Threat Models
	2.1 System Model
	2.2 Threat Model

	3 Preliminaries
	3.1 Homomorphic Encryption
	3.2 Erasure Codes

	4 Related Work
	5 X-Cipher Design
	5.1 Setup Phase
	5.2 Computation Phase
	5.3 Verification Phase
	5.4 Recovery Phase

	6 Evaluation
	6.1 Space Complexity
	6.2 Computational Complexity
	6.3 Security Analysis

	7 Experimental Results
	7.1 Primitive Functions
	7.2 Real-world applications
	7.3 Comparison to Related Works

	8 Conclusion
	References

