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Summary 
The paper extends Shannon's classical theory of ciphers. Here 

ciphers are modeled by Latin rectangles and their resistance to 

brute force attack is assessed through the valence of cryptograms. 

The valence of a cryptogram is defined as the number of all 

meaningful messages produced by decrypting the cryptogram with 

all possible keys. In this paper, the mean cryptogram valence of an 

arbitrary modern cipher with K keys, N outputs and N inputs, of 

which M inputs are messages, is derived. Furthermore, the lower 

bound on the valence of the cryptograms of entire ciphers is 

derived in this paper. The obtained parameters allow to assess the 

resistance of cryptograms, resp. ciphers against brute force attack. 

The model is general, illustrative and uses a simpler mathematical 

apparatus than existing theory. Therefore, it can also be used as an 

introduction to the theory of resistance of ciphers to brute force 

attack. 
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1. Introduction 

People communicate with each other using messages, 

which are sequences of symbols in which are encoded 

information. The symbols used can be expressed in terms of 

numbers, and so each message can be represented as a 

unique number m. Encryption cryptosystems or ciphers are 

used to hide the contents of messages (see Fig. 1). On the 

sender's side, an encryption function E is used to assign a 

seemingly random number c to the input number m. This 

pseudo-random number is called a cryptogram. The func-

tion E is randomly selected from K of possible encryption 

functions using a parameter called the encryption key e. We 

will therefore formally write the encryption as c = E(m, e). 

 

Fig. 1: Encryption cryptosystem 

The sender sends the cryptogram c over the transmission 

channel to the counter-party. The recipient uses a secret 

parameter, called the decryption key d, to select from all K 

possible decryption functions this function D that is the 

inverse of the encryption function E used. Thus, the output 

of the decryption function will be the original message m. 

Formally, we express this in the notation m = D(c, d). 

A possible attacker can intercept on the cryptogram c in the 

transmission channel. However, since he does not know the 

secret decryption key d, he cannot invert the cryptogram 

into the form of the message m. However, he can attempt to 

break the cryptogram, i.e., to discover the transmitted 

message without knowing the key. A universal method of 

breaking a cipher is the so-called brute force attack, during 

which the attacker decrypts the cryptogram with all possible 

keys while analyzing the meaningfulness of the obtained 

results. In this way, he may discover that the cryptogram c 

could have been created by encrypting any message from a 

total of v different messages. The larger the value of v, the 

greater the attacker's uncertainty about which of the v 

possible messages was actually sent. However, if the 

number of possible messages v = 1, then the attacker has 

detected the transmitted message m quite unambiguously 

and so-called has broken the cryptogram c. 

To make brute force attacks more difficult, the number K of 

keys is chosen sufficiently large, with specific key values 

chosen randomly according to a uniform distribution. This 

is because if certain values were more likely than others, the 

attacker would try such keys first in his attack.  

The resistance of ciphers to brute force attack is addressed 

by the secrecy theory. This theory describes the conditions 

under which a cipher is breakable and unbreakable. In this 

context, it should be clarified that mentioned theory only 

makes sense for so-called symmetric ciphers, which are 

cryptosystems whose both keys are secret. The counterpart 

of symmetric ciphers are so-called asymmetric ciphers, 

where the encryption key e is publicly known and only the 

decryption key d is secret. In this case, the indeed 

transmitted message can be determined unambiguously 

from all v possible messages. It is just the message whose 

encryption with the publicly known key e produces the 

original cryptogram c. 

2. Current state 

Ciphers are the subject of a science called cryptology. Its 

origin can be dated back to the 8th century, when the Arab 
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scholar Al-Kindi published the first method of breaking 

cryptograms ([1], p. 17). Since then, experts have long won-

dered whether there is any such thing as a cipher that cannot 

be broken. In fact, practical experience showed that any new 

cipher was broken eventually. For example, the amateur 

cryptologist and writer E. A. Poe wrote a short story in 1843, 

The Gold Bug, in which he describes the breaking of a 

cryptogram. And through the mouth of the protagonist, he 

utters the phrase “... it may well be doubted whether human 

ingenuity can construct an enigma of the kind which human 

ingenuity may not, by proper application, resolve” ([2], p. 

63-64). 

The proof of the existence of an unbreakable cipher was 

given by the American mathematician C. E. Shannon in his 

paper [3] in 1949. He called the mentioned type of ciphers 

"perfect secrecy systems". For a cipher to be unbreakable, 

it must satisfy conditions P1 to P3 ([4], p. 68): 

• (P1): N = C = K, where N is the number of possible mes-

sages, C is the number of possible cryptograms, and K is 

the number of possible keys (and hence also the number 

of encryption functions). 

• (P2): The key to encrypt each message is chosen 

randomly according to a uniform distribution. 
• (P3): For each message m and each cryptogram c, there 

is exactly one encryption key that encrypts m into c. 

In relation to condition (P1), it should be noted that in the 

common cryptographic literature, contrary to common 

perception, the term "message" also refers to a sequence of 

symbols that has no meaning in the language. Sequences 

that have meaning in a given language are distinguished in 

cryptography by the term "meaningful message" [5]. 

The best known variant of an unbreakable cipher is the 

Vernam cipher with a one-time key (so-called Vernam’s 

one-time pad, e.g., [6], p. 249). A major drawback of this 

type of cipher is that a key of the same number of symbols 

as the message is required to encrypt the message, and this 

key must be completely random and cannot be reused. 

In common practice, ciphers with shorter keys than required 

by perfect secrecy cryptosystems are used. To describe 

them, Mr. Shannon defined a so-called random cipher, for 

which the following applies:  

• (P4): Messages are sequences of length L symbols from 

an alphabet consisting of B elements. 

• (P5): The total number of messages N = BL, whereby for 

the number M of meaningful messages, M ≤ N. 
• (P6): The decryption of each cryptogram c is modeled by 

randomly selecting a message m according to a uniform 

distribution from all N possible messages. 

For a random cipher, the total number of all messages can 

be expressed as: 

𝑁 =  𝐵𝐿 =  2𝑅∙𝐿 , (1) 

where  

𝑅 = log2 𝐵 [bit/symbol] (2) 

is the entropy of one alphabet symbol. This quantity tells us 

that at most R bits of information can be represented by one 

alphabet symbol. For the number of meaningful messages, 

the relation is used: 

𝑀 =  2𝑟∙𝐿 , (3) 

where r is the entropy of one symbol of the given language. 

For example, for the English language it holds ([4], p. 77) 

that: 

1.0 ≤ 𝑟 ≤ 1.5 [bit/symbol] . (4) 

Closely related to the entropy of the language and the 

entropy of the alphabet is the redundancy D of the language 

for which: 

𝐷 = 𝑅 − 𝑟 [bit/symbol]. (5) 

The quantity D expresses how many bits of information the 

language symbol carries less than it theoretically could. 

This theoretical limit is the value of R. For example, for an 

English language with B = 26 alphabet symbols, R = log2 26 

= 4.7 [bit/symbol]. For a language entropy of r = 1.25 

[bit/symbol], the redundancy of the English language is then 

D = (4.7−1.25) = 3.45 [bit/symbol]. This means that the 

information capacity of the symbols in English is used to 

approximately 25 percent because (1−D) = 1−3.45/4.7 = 

1−0.73 ≈ 0.25. The higher redundancy of the language 

translates in practice to the fact that messages must be 

longer to encode the same amount of information. On the 

other hand, such messages are more robust to transmission 

errors. 

Returning to the work [3], for a random cipher it is here 

given an estimate of the length L0 of the cryptogram in 

which an attacker can break the cryptogram by brute force. 

The length  

𝐿0 =  
log2 𝐾

𝐷
 [symbol] (6) 

is called the "unicity distance". In this context, Mr. Shannon 

defined so-called "ideal secrecy systems", which are ciphers 

that an attacker cannot break even if the length L of the 

cryptograms is unlimited. When attacking a cryptogram c 

of this cipher, an attacker finds that more than one 

meaningful message may be encrypted in a given 

cryptogram. The most well-known variant of ciphers with 

ideal secrecy are ciphers that use an artificial language with 

zero redundancy. By relation (6), we see that indeed for 

redundancy D → 0, the limit L0 approaches infinity. 

In addition to ciphers with perfect and ideal secrecy, Mr. 

Shannon also introduced so-called "practical secrecy 

systems". All other ciphers fall into this category, i.e. 

ciphers that are theoretically breakable by brute force. This 

type of cipher is the most widely used, and its security 

against brute force attack lies in the fact that the number of 

possible keys K is sufficiently large. 
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The last major result of secrecy theory is a relation for the 

mean number nk of so-called "spurious keys" ([5], [7]): 

𝑛𝑘  ≥  2𝐻(𝐾)−𝐷∙𝐿 − 1, (7) 

where H(K) is the key entropy, D is the language 

redundancy and L is the length of the cryptogram. For the 

commonly used method of choosing keys according to a 

uniform distribution, H(K) = log2 K. The quantity nk is the 

mean number of keys that, when decrypted, assign a 

meaningful message to the cryptogram that is different from 

the one actually transmitted. The larger this value is, the 

more possible solutions the attacker will get in a brute force 

attack and his uncertainty about the transmitted message 

will be larger. He gains certainty at nk = 0, where the value 

of L takes on the meaning of L0 from relation (6). 

3. Basic terms 

In the following, we will assume that messages and 

cryptograms are numbers expressed in the same numerical 

system and have the same length. Regarding message 

lengths, it should be noted that in some cases the message 

must be extended with overhead digits before encryption. In 

such cases, the original message including this overhead 

will be considered as the message. If we use a number 

system with B digits and the length of both messages and 

cryptograms is L digits, then there are a total of N = BL 

numbers from the value x = 0 to (N−1). For practical 

reasons, however, we will not distinguish these numbers 

according to the value of x, but according to their order on 

the numerical axis, i.e., according to the value of s = (x + 1) 

∈ A = {1, 2, 3, ..., N}. For the inputs i and outputs o of the 

encryption functions, i, o ∈ A and so there are in total N 

possible inputs and outputs, respectively. We will call the 

variable N the number of inputs/outputs. It should be noted 

here that in this paper we will consider only meaningful 

inputs i as messages. We will call inputs i that do not make 

sense in the language and context used meaningless inputs. 

We will also assume that the set M of all possible messages 

consists of a total of M messages, with 1 ≤ M ≤ N.  

The set of encryption respectively decryption functions 

consists of a total of K functions, which are given by the 

encryption respectively decryption key. Within this set, we 

will distinguish each function by an ordinal number k ∈ {1, 

2, 3,..., K}. A particular encryption function assigns to each 

input i ∈ A a unique output o ∈ A. Therefore, we can 

represent it as a permutation, i.e., as an ordered N-tuple that 

contains each number from the set A just once. We will 

write the encryption permutation given by the k-th key as Pk 

= (p1 p2 ... pN), where ps ∈ A is the s-th member of the 

permutation. We can then express the encryption as o = E(i, 

k) = pi. For example, for k = 2, let us have the permutation 

P2 = (3 2 5 4 1). Then for i = 3, p3 = 5 and hence E(3, 2) = 

5. The corresponding decryption function is given by the 

inverse permutation Pk
−1 and then i = D(o, k) = po

−1. For our 

example, P2
−1 = (5 2 1 4 3) and hence D(5, 2) = 3. 

For encryption functions, the variable i is the argument and 

the variable o is their value. For decryption functions, the 

opposite is true. However, since the encryption and 

decryption functions form a single unit in terms of purpose, 

we will refer to the variable i (i.e., the input of the 

encryption function) as the input throughout the 

cryptosystem, i.e., even for the decryption function, where 

it acts as the function value. Similarly, we will call the 

variable o (i.e., the output of the encryption function) the 

output o in the case of decryption also, where it plays the 

role of an argument. 

Since the number of all possible encryption or decryption 

functions is equal to the number of all permutations, i.e. the 

value N!, the number of all possible keys is also equal to 

this value. However, by (P1) we know that K = N is 

sufficient for an unbreakable cipher, so we will assume that 

1 ≤ K ≤ N for the number of keys. 

If we write the individual encryption permutations in the 

form of columns and arrange these columns in ascending 

order by key number, we obtain the encryption table E. 

With its help, for each input i and key k, we can find the 

encryption output o = E(i, k), where i is the row number, k 

is the column number, and the quantity o is the content of 

the table cell in the i-th row and k-th column. Similarly, 

from the inverse permutations, we can construct a 

decryption table D. Using it, for each output o and key k, we 

can find the input i = D(o, k), where o is the row number, k 

is the column number, and i is the content of the table cell 

in the o-th row and k-th column. 

To illustrate the concepts introduced above, consider a 

simple example where the set of inputs and outputs A = {1, 

2, 3, 4, 5}, the set of messages M = {4, 5} and the encryption 

functions are P1 = (2 5 3 1 4), P2 = (3 2 5 4 1) and P3 = (5 1 

2 4 3). From the above specification, it follows that the 

number of inputs/outputs N = 5, the number of messages M 

= 2 and the number of keys K = 3. The inverse decryption 

functions are obtained by inverting the encryption 

permutations. It is then true that P1
−1 = (4 1 3 5 2), P2

−1 = (5 

2 1 4 3) and P3
−1 = (2 3 5 4 1). The encryption and 

decryption table of our demonstration cryptosystem is 

shown in Fig. 2. 

From the encryption table (shown on the left) we can easily 

determine that, for example, for input i = 1 and key number 

k = 3, the output o = E(i, k) = E(1, 3) = 5. The figure on the 

right shows the corresponding decryption table D. Using it, 

we can easily find out what the input was in the above 

encryption. We know that the output o = 5 and the key has 

the number k = 3. Then the output of the decryption, i.e., the 

input during encryption i = D(o, k) = D(5, 3) = 1, which is 

indeed the original message. 
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Fig. 2: Example of an encryption and decryption table 

4. Model 

From the point of view of the resistance of ciphers to brute 

force attack, we are mainly interested in the decryption table 

D. In our example in Figure 2, we see that if an attacker 

intercepts, say, a cryptogram c = o = 1 in the channel, he 

can determine from the corresponding (i.e., first) row of the 

decryption table D what the possible inputs of the cipher 

were. For keys k = 1, resp. 2, resp. 3 these inputs could be i 

= 4, resp. 5, resp. 2. He can exclude the input i = 2, since it 

is a meaningless input. Thus, the attacker concludes that 

either message m = 4 or message m = 5 is encrypted in 

cryptogram c = 1. In our cryptosystem, these are all possible 

messages, so the attacker has gained nothing by his attack. 

He already knew that one of all possible messages was 

being transmitted when he eavesdropped on the cryptogram. 

However, if the attacker intercepted the cryptogram c = 3, 

then by analogy he would find that the message m = 5 is 

encrypted in it. This conclusion of his is quite unambiguous, 

since the other possible inputs (i.e., i = 1 and 3) are not 

messages. 

The above example shows that the decryption table should 

be constructed in such a way that as many different 

messages as possible can be found in each of its rows. Let 

us now look at this requirement more generally. Let us call 

the number of distinct messages in each row of the 

decryption table the valence of the corresponding output. 

Formally, we will define the valence vo of the o-th output as 

the number of distinct messages obtained by decrypting that 

output with all possible keys. The minimum possible value 

of valence vo = 0. In this case, for all keys, a given output is 

an image of only meaningless inputs, so such an output 

cannot appear in the transmission channel. We will 

therefore call it an absurd output. Another outputs are, for 

at least one key, the image of some message, i.e. their 

valence is at least 1. We will call such outputs cryptograms. 

In terms of the maximum possible value of the valence of 

any output, this value obviously cannot be larger than the 

total number of M messages, and also cannot be larger than 

the total number of K columns of the decryption table. Thus, 

we can write that: 

0 ≤  𝑣0  ≤  min{𝑀, 𝐾}. (8) 

In our example, v1 = 2, v2 = 0, v3 = 1, v4 = 2 (there are three 

messages in line 4, but one is there twice) and v5 = 0. Thus 

the output o = 2 and 5 is an absurd output (i.e., it will never 

be transmitted in the transmission channel) and the other 

outputs are cryptograms. Cryptogram c = 3 has a valence 

equal to one and thus by brute force attack the message 

transmitted in it is uniquely detectable. On the other hand, 

cryptograms c = 1 and 4 are so-called unbreakable, since 

any of the M possible messages may be encrypted in them. 

In cryptography, a pessimistic viewpoint is used to assess 

security, so we will evaluate the security of the entire cipher 

according to the worst case, i.e., according to the 

cryptogram that has the smallest valence of all. We will call 

that parameter the minimum valence V of the cipher. For a 

range of values of this quantity, the following is of course 

true: 

 1 ≤ 𝑉 ≤  min{𝑀, 𝐾}.  (9) 

Our illustrative cipher has a minimum valence V = min{2, 

1, 2} = 1. In this context, note that in addition to the 

decryption table, the valence V also depends on the message 

set. For the same decryption table, when we change the 

message set to M = {1, 3}, then the outputs o = 1 and 4 are 

absurd, and the valence of the other outputs implies that V 

= min{2, 2, 2} = 2, which is a higher value compared to the 

original example. Thus, it can be concluded that the 

resistance to brute force attack depends not only on the 

cipher itself but also on the message language. 

To maximize the value V, the decryption table should be 

constructed in such a way that each row of the table contains 

as many different messages as possible. To do this, it is 

advisable, among other things, that the messages in the rows 

of the table are not repeated. This leads to the requirement 

that the rows of the decryption table be so-called K-

permutations, which are ordered K-tuples of elements from 

all N possible elements, where each element can occur at 

most once in a given K-tuple. If we recall that the columns 

of the table are permutations, the decryption table should 

take the form of a so-called Latin rectangle N×K, where K 

≤ N. For a Latin rectangle, it is true that in each row and in 

each column any element ps ∈ A occurs at most once (e.g., 

[8], p. 385). We will call a cipher with N inputs and outputs, 

M messages and K keys, whose decryption table consists of 

a Latin rectangle, a Latin cipher with parameters (N, M, K).  

The fact whether modern ciphers can be described by a 

Latin rectangle is not completely obvious from the point of 

view of K-permutations, so we discuss it now. Stream 

ciphers are purposefully constructed so that changing the 

key changes the encryption sequence of the pseudorandom 

generator. Therefore, the same message with a different key 

will be encrypted into a different cryptogram each time, so 

stream ciphers belong in the category of Latin ciphers. In 

the case of modern block ciphers, the message block is first 

merged with the key by a suitable mathematical operation f 
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(usually XOR). For example, in the AES cipher, this is the 

initial operation AddRoundKey (e.g., [9], p. 15). Other 

subsequent operations are constructed such that for a given 

key, each possible message block is assigned a unique block 

of the cryptogram. However, as a consequence of the merge 

operation f, the uniqueness of the assignment holds even in 

the situation where the message block is the same and the 

key changes. It then follows that modern block ciphers also 

belong to the category of Latin ciphers. 

Because of the significant size of the decryption tables of 

modern ciphers and also because of the random occurrence 

of messages in the input set, the valence V of these ciphers 

cannot be determined accurately at present. Here we exploit 

the fact that in the case of the Latin cipher, the rows of the 

decryption table are K-permutations of N elements (i.e., 

inputs), of which M elements have this property of being 

messages. In fact, if we look at the decryption table not in 

terms of the numerical values of the inputs, but in terms of 

whether or not a given input is a message, then we conclude 

that the rows of the table become independent of each other 

and that the occurrence of messages in the rows of the table 

follows a hypergeometric distribution. 

The first observation follows from the fact that messages 

occur randomly in column permutations. And since the 

column permutations of the cipher are different and 

independent of each other, then the resulting occurrence of 

messages in the rows is random and independent of the 

occurrence of messages in the other rows.  

The second observation, the fact that the occurrence of 

messages in rows follows a hypergeometric distribution, 

follows from the very definition of the type of distribution 

mentioned. Namely, a hypergeometric distribution de-

scribes the process of selecting K elements randomly from 

a set of N elements without returning, where M elements out 

of all N elements have a certain property that the remaining 

(N−M) elements do not have (e.g., [10], p. 60). In our case, 

the N elements are the possible inputs from which K inputs 

are randomly selected for each row of the decryption table 

and M is the number of messages. The distinguishing 

property of the elements here is whether or not a given input 

is a message. For the probability P(X = v) of a 

hypergeometric distribution, the following holds: 

𝑃(𝑋 = 𝑣) =
(𝑀

𝑣
) ∙ (𝑁−𝑀

𝐾−𝑣
)

(𝑁
𝐾

)
 , (10) 

where the variable v is the number of messages in a row of 

the decryption table (i.e. the valence of the corresponding 

output), M is the total number of messages, K is the number 

of keys, and N is the number of inputs/outputs. The values 

of the variable v that have a non-zero probability of 

occurrence are in the interval: 

max{0, 𝑀 + 𝐾 − 𝑁} ≤ 𝑣 ≤  min{𝑀, 𝐾}. (11) 

The two boundaries of the mentioned interval are plotted in 

Figure 3 and Figure 4, respectively, for the example of 

ciphers with the number of inputs/outputs N = 50. Figure 3 

shows the lower bound Q = max{0, M+K−N} and Figure 4 

shows the upper bound U = min{M, K}. The two bounds 

take the form of parts of two divergent planes. 

 
Fig. 3: Lower bound Q of the valence of outputs for ciphers with N = 50 

 
Fig. 4: Upper bound U of valence of outputs for ciphers with N = 50 

We refer to Figure 5 to illustrate the hypergeometric 

distribution. In the upper part of the figure we see the 

distribution for N = 10, K = M = N/2 = 5, for which the 

valence v is in the range 0 to 5. The bottom of the figure 

then shows the distribution for N = 100, K = M = N/2 = 50, 

where the valence v of the outputs is in the range 0 to 50. 

Note that for large values of N, the probability of many 

valence values is close to zero. For example, for the lower 

graph, for the probabilities of the two extreme values of 

valence v, P(v = 0) = P(v = 50) = 9,9⋅10−30. On the other 

hand, for the mean valence value E = 25, it holds that P(v = 

25) = 0.158. Thus, cryptograms with valence close to the 

mean value occur in large-scale cryptosystems with 

probabilities that are orders of magnitude higher than the 

probabilities of occurrence of other outputs. 
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Fig. 5: Examples of hypergeometric distributions 

At the end of the characterization of the hypergeometric 

distribution, we will state the relation for the mean value E 

of the random variable X according to this distribution: 

𝐸 =  
𝑀 ∙ 𝐾

𝑁
 . (12) 

We can physically interpret the mean value E of the valence 

of outputs as the Latin cipher assigns to each message m a 

total of K different outputs out of a total of N outputs. Then, 

on average, each of the N outputs is assigned a total of E = 

M⋅K/N messages. An example of the dependence of the 

mean value E of the valence of outputs on the number of 

keys K and the number of messages M for ciphers with N = 

50 inputs/outputs is shown in three-dimensional form in Fig. 

6.  

 

Fig. 6: Dependence of the mean value E for ciphers with N = 50 

Then in Fig. 7, for the same cipher, we have the dependence 

of the lower bound Q, the upper bound U and the mean 

value E for the situation where M = K to compare. 

 

Fig. 7: Lower bound Q, upper bound U and mean E of the valence of 
outputs for ciphers with N = 50 

We again use a pessimistic approach to assess the security 

of a cipher against a brute force attack, calling the corre-

sponding parameter the lower bound W of the valence of 

ciphers. In relation (11), the pessimistic view is represented 

by the left inequality corresponding to the quantity Q.  Zero 

valence only holds for absurd outputs and so the lower 

bound W for the valence of cryptograms will be: 

𝑊 =  max{1, 𝑀 + 𝐾 − 𝑁}. (13) 

We will now modify this relationship into a function: 

𝑊 =  {
 1,                    if (𝑀 + 𝐾) ≤ (𝑁 + 1),

 𝑀 + 𝐾 − 𝑁,  if (𝑀 + 𝐾) > (𝑁 + 1),
 (14) 

recalling that 1 ≤ M ≤ N and 1 ≤ K ≤ N. 

The probability P(X = W) is always non-zero and so in the 

decryption tables of some ciphers there must be rows that 

correspond to cryptograms with valence W. And since this 

is a non-zero lower bound, the value of W will also be the 

valence V of the corresponding cipher. Ciphers with 

decryption tables that do not have such rows will naturally 

have a higher valence V. However, from a pessimistic point 

of view, any Latin cipher with N inputs/outputs, M 

messages, and K keys is guaranteed to have at worst a 

valence V = W according to relation (14). 

5. Discussion 

The lower bound W of the valence of ciphers is the main 

contribution of this paper, so we now discuss it in more 

detail. In Figure 8, we have a three-dimensional repre-

sentation of the values of W as a function of the number of 

keys K and the number of messages M for ciphers with N = 

50 inputs/outputs. From the above graph it can be seen that 

the points of the lower bound W of the valence lie in two 

planes. The horizontal plane includes ciphers with W = 1. 

These are all cryptosystems for which (M+K) ≤ (N+1) 

according to (14). For other ciphers, it holds that (M+K) > 

(N+1). In this case, the values of W lie in the skew plane 

given by the equation W = (M+K−N). 
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Fig. 8: Lower bound W of the valence of ciphers with N = 50 as a 
function of the number of keys K and the number of messages M 

Fig. 9 shows a similar graph for N = 10. This graph is clearer 

and we therefore discuss the results on it. The square points 

represent ciphers for which the number of keys is equal to 

the number of inputs/outputs, i.e., K = N = 10. For these 

ciphers, we can use function (14) to derive that W = M, i.e., 

an attacker can use the brute force method to determine that 

any one of all M possible messages may be encrypted in any 

given cryptogram. These are thus unbreakable ciphers, 

which Mr. Shannon called perfect secrecy systems. 

Condition N = K is inconsistent with condition (P1), where 

N = C = K. However, this inconsistency is only apparent, 

since the equality N = C in existing secrecy theory expresses 

the requirement that the number of inputs and the number 

of outputs of the encryption function be equal. For Latin 

ciphers, this equality is given by their definition and the 

requirement N = K is therefore sufficient. The equality N = 

K implies that the length of the keys must be equal to the 

length of the inputs/outputs. In addition, the keys must be 

random and unique for each message, so these ciphers, 

while completely immune to brute force attack, are very 

rarely used. 

For ciphers represented by circular points, 2 ≤ W ≤ (M−1). 

Using the brute force method, an attacker finds that in a 

given cryptogram, any of the W possible messages may be 

encrypted. He does not know which of them was actually 

transmitted, but on the other hand he knows safely that it 

was not transmitted some of the remaining (M−W) 

messages. These partially unbreakable ciphers have been 

named by Mr. Shannon as systems of ideal secrecy. We can 

see from the figure that they require either the use of a large 

number of keys or the removal of the greatest possible 

amount of redundancy from the language used. 

Alternatively, the two can be combined. 

The extremum of the method based on maximizing the 

number of keys is represented by the points on the strong 

dashed line, where K = N−1 = 9. The function (14) then 

implies that the valence of these ciphers is W = M−1. 

Unfortunately, a high number of keys is the same problem 

that perfect secrecy systems have.  

The extremes of the redundancy elimination based method 

are represented by points on a strong continuous line. By 

removing all redundancy, every possible input becomes a 

message, i.e., M = N = 10. Then, according to (14), the 

valence W = K.  Unfortunately, the redundancy elimination 

method is not yet significantly applicable, as there are 

currently no sufficiently powerful and fast compression 

algorithms available for natural languages. 

 

Fig. 9: Lower bound W of the valence of ciphers with N = 10 

The oval points represent ciphers for which W = 1. This type 

of cipher is thus theoretically breakable, and therefore Mr. 

Shannon called them practical secrecy systems. They are 

the most widespread, and their security lies in a sufficiently 

large number of keys. So large that in the time T of the 

cipher's resistance, i.e., the time for which the messages are 

supposed to remain secret, not all the keys can be tested. 

Currently, it is generally recommended that K ≥ 2128 (e.g., 

[11], pp. 59 and 53). 

 

We now show that the model presented above allows us to 

derive all the relevant results of existing secrecy theory. We 

start with relation (7) for the mean value of the false keys 

nk. The value of nk plus the correct key, i.e., (nk+1), is 

effectively the mean number of keys that assign a 

meaningful message to the output. By definition, this value 

should correspond to the mean value of the valence E 

according to relation (12). From the derivation below, 

where we have used the substitutions in (1), (3) and (5), it 

is clear that this is indeed the case. 

𝑛𝑘 + 1 ≥ 2𝐻(𝐾)−𝐷∙𝐿 =
2𝐻(𝐾)

2𝐷∙𝐿
=

𝐾

2(𝑅−𝑟)∙𝐿
= 

=
𝐾 ∙ 2𝑟∙𝐿

2𝑅∙𝐿
=

𝐾 ∙ 𝑀

𝑁
= 𝐸 . 

(15) 

Similarly, it can be shown that by using the mean valence 

value, relation (6) can be derived to determine the unicity 
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distance L0. The proof is given in the appendix at the end of 

the paper. The condition that is used here is that to 

unambiguously decipher a cryptogram, its valence must be 

v = 1. If we relate this condition to the mean valence value, 

we obtain the relation (6) just mentioned.  

In this context, we can additionally define a pessimistic 

unicity distance L0 using a lower bound on the minimum 

valence of ciphers. As we already know, a brute force attack 

will lead to an unambiguous result for cryptograms whose 

valence v = 1. Thus, by the lower bound in (14), it must hold: 

𝑀 + 𝐾 = 𝑁 + 1, (16) 

and after inserting relations (1) and (3) we obtain the 

equation: 

2𝑟∙𝐿0 + 𝐾 =  2𝑅∙𝐿0 + 1. (17) 

The value of L0, which is the solution to the above equation, 

tells us that for Latin ciphers (N, M, K) there are 

cryptograms from length L0 onwards that are already 

breakable. For example, for a simple substitution cipher 

where K = 26! and for an English text with R = log2 26 = 

4.7 [bit/symbol] and r = 1.5 [bit/symbol], the solution to 

Equation (17) is L0 ≈ 19 symbols. According to relation (6), 

the analogous value comes out to 26 symbols. However, 

there is no contradiction here. The value according to (17) 

tells us that in some ciphers (N, M, K) there exist 

cryptograms that are breakable from a length of 19 symbols. 

And the value according to (6) tells us that cryptograms are, 

on average, breakable from a length of 26 symbols. So the 

first value is pessimistic and the second is average. 

If we want to find the mean valence of the cryptograms 

instead of the mean valence of the outputs, we have to 

exclude the absurd outputs from relation (12). Since it is 

clear that there are N⋅P(X=0) absurd outputs in N outputs, 

the total number of cryptograms (i.e., outputs with valence 

v > 0) is then equal to C = N⋅[1−P(X=0)]. Using this relation, 

we can then define the sought-after mean valence of the 

cryptograms Z: 

𝑍 =  
𝑀 ∙ 𝐾

𝐶
=  

𝑀 ∙ 𝐾

𝑁 ∙ [1 − 𝑃(𝑋 = 0)]
 . (18) 

Returning to the lower bound W of the valence of ciphers, 

it has already been mentioned that for larger values of N the 

probabilities of cryptograms with extreme valence values 

are often close to zero. For example, in Figure 10 we have 

a logarithmic plot of the probability pW, which is the 

probability of occurrence of cryptograms with valence W, 

for ciphers with N = 100 and K = 50 versus the number of 

messages M. We see here that for a magnitude M close to 

N/2 the mentioned probability is very small. In particular, 

for example, for M = 51, pW ≈ 5,1⋅10−28. 

It is clear from the figure that for larger values of N the 

lower bound on W is quite pessimistic. Then, a parameter 

that we call the statistical estimate S of the lower bound of 

the valence of ciphers can be useful. The aforementioned 

parameter is based on the fact that the lower bound of the 

valence is increased by the valence of cryptograms whose 

overall probability of occurrence is negligible for a given 

scenario. Let us introduce the quantity pS, which is the 

probability of occurrence of cryptograms with valence less 

than S, i.e., with valence in the range of values W to (S−1). 

 
Fig. 10: Dependence of the probability pW of occurrence of cryptograms 
with valence W on the number of messages M for ciphers with N = 100 

and K = 50 

Let us now have a set of n ciphers in total, each containing 

N outputs. In such a set, there are n⋅N outputs, of which 

there will be on average pS⋅n⋅N such cryptograms whose 

valence v is in the range of W to (S−1). Let us stipulate that 

the number of these cryptograms should be at most 1 on 

average, i.e., in the set of all n ciphers, there will be on 

average at most one such cryptogram whose valence is in 

the range of W to (S−1). Formally, then: 

𝑝𝑆 ∙ 𝑛 ∙ 𝑁 ≤ 1 . (19) 

Then, on average, there will be at most one cipher in our set 

with valence V in the range W to (S−1), and the remaining 

(n−1) ciphers will have minimum valence V ≥ S. We call 

this valence the statistical estimate S of the lower bound on 

the valence of ciphers with estimation error δ = 1/n. In 

practice, we find the quantity S by finding the largest such 

integer S ∈ (W, U for the specified parameters N and δ such 

that the probability pS from equation (20) below satisfies 

condition (19). If no such value exists, then S = W. 

𝑝𝑆 =  ∑ 𝑃(𝑋 = 𝑣).

𝑆−1

𝑣=𝑊

 (20) 

We compare the dependence of the statistical estimate S of 

the lower bound of the valence and the dependence of the 

lower bound W of the valence of the ciphers in Figure 11. 

Both dependencies hold for ciphers with N = 100 inputs, 

resp. outputs, where the number of messages is the same as 

the number of keys, i.e., M = K. For comparison, the 
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dependence of the upper bound U and the mean value Z of 

the valence of the cryptograms in the mentioned ciphers is 

also shown. The dependence of the quantity S confirms the 

fact that the probability of cryptograms with small valences 

is very low for those arguments M and K that are close to 

the value N/2 = 50. For example, for M = K = 50, the value 

of W = 1, but the value of S = 11. This can be explained by 

the fact that the overall probability of occurrence of 

cryptograms with valence from 1 to 10 in our case is equal 

to pS = 1,1⋅10−9. It follows from δ = 1/n = 10−6 that n = 106 

and so, after substituting in pS⋅n⋅N = 1,1⋅10−9⋅106⋅100 = 0,11, 

we see that inequality (18) is satisfied. We can interpret the 

value of S = 11 to mean that if we randomly select 106 Latin 

ciphers with parameters N = 100, M = 50, and K = 50, then 

on average for (106−1) of these ciphers the minimum 

valence V will be at least 11. And on average, only one 

cipher will have a minimum valence that is less than 11. 

 

Fig. 11: Dependence of the statistical estimate S of the lower bound of the 

valence of the ciphers with estimation error δ = 10−6. The dependence 

applies to ciphers with N = 100, whereby M = K 

6. Conclusion 

Overall, it can be stated that the paper extends the existing 

Shannon’s theory of secrecy systems. The extension 

consists in replacing the random cipher by a more adequate 

Latin cipher and in introducing the notion of valence of a 

cryptogram. In the paper, a Latin cipher (M, K, N) is a cipher 

with K keys, N outputs and N inputs, of which M inputs 

make sense in a given language and context, i.e. there are M 

messages. The defining feature of a Latin cipher is the 

property that each of its inputs, when encrypted with all 

possible K keys, takes the form of K mutually distinct 

outputs. Inversely, each output, when decrypted with all 

possible K keys, takes the form of K mutually distinct inputs. 

In this paper, it is shown that all modern ciphers are Latin 

ciphers and so the number of messages v produced by 

decrypting their arbitrary output with all possible keys can 

be modeled by a hypergeometric distribution according to 

relation (10). Decrypting a cryptogram with all possible 

keys is called a brute force attack and the quantity v is called 

the valence of the output. If v = 1, the attacker detects the 

transmitted message from the intercepted cryptogram 

uniquely (so-called a breakable cryptogram). If v = M, then 

the cryptogram is unbreakable because any of the M 

possible messages could have been transmitted in it. And if 

1 < v < M, then any of the v possible messages could have 

been transmitted in the cryptogram and the attacker does not 

know which one. On the other hand, the attacker knows that 

none of the remaining (M−v) messages were transmitted. 

We have called such cryptograms partially unbreakable. 

The mean value E of the valence of the outputs, which is 

given by relation (12), provides an approximate assessment 

of the resistance of cryptograms to brute force attack. If E = 

M, then every cryptogram of the cipher is unbreakable, and 

if E ≤ 1, then on average every randomly chosen cryptogram 

is breakable. A higher cipher security guarantee is provided 

by the lower bound W on the valence of ciphers according 

to relation (14). This quantity tells us that every cryptogram 

of an arbitrary cipher (M, K, N) has valence v ≥ W. Using 

the quantity W, we can thus classify not only individual 

cryptograms but entire ciphers into breakable, partially 

unbreakable, and unbreakable. 

It is further shown in the paper that the proposed model 

allows to derive all previously known insights of the theory 

of secrecy systems, which are perfect or ideal or practical 

secrecy systems, unicity distance and number of spurious 

keys. The model is thus also suitable for pedagogical 

purposes, as an introduction to the theory of secrecy 

systems.  
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Appendix 

The aim of the appendix is to prove that condition: 

𝐸 =  
𝑀 ∙ 𝐾

𝑁
= 1 (A1) 

leads to equation (6): 

𝐿0 =  
log2 𝐾

𝐷
 . (A2) 

First, in relation (12) for the mean value E, we make 

substitutions according to (1) and (3). We obtain: 

𝐸 =  
𝑀 ∙ 𝐾

𝑁
=  

2𝑟∙𝐿 ∙ 𝐾

2𝑅∙𝐿
 . (A3) 

After adjusting and inserting (5) we have: 

𝐸 =  
𝐾

2(𝑅−𝑟)∙𝐿
=  

𝐾

2𝐷∙𝐿
 . (A4) 

For the unicity distance L0, (A1) must hold, so: 

𝐸 =  
𝐾

2𝐷∙𝐿0
= 1 . (A5) 

After logarithmizing and modifying the above equation, we 

finally obtain equation (A2), which should have been 

proved. 
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