
Decentralized Threshold Signatures for Blockchains
with Non-Interactive and Transparent Setup

Kwangsu Lee*

Abstract

Threshold signatures are digital signatures that support the multi-party signature generation such
that a number of parties initially share a signing key and more than a threshold number of parties gather
to generate a signature. In this paper, we propose a non-interactive decentralized threshold signature
(NIDTS) scheme that supports the non-interactive and transparent key setup based on BLS signatures.
Our NIDTS scheme has the following properties. 1) The key setup process is completely non-interactive
and does not require message exchange between parties since the transfer of the register keys of par-
ties is enough for a combiner to generate a compact verification key. 2) The register key of a party is
compact since the size is independent of the number of group parties. 3) The signing process of parties
is non-interactive. 4) The final threshold signature as well as partial signatures are succinct. We prove
the security of our NIDTS scheme under computational assumptions in the random oracle model. Fur-
thermore, we implement our NIDTS scheme in Rust and compare its performance with other scheme to
show that the key setup of our scheme is more efficient. For example, in the unweighted setting of 1000
parties, the key setup process of the NIDTS scheme takes 164 seconds, which is 5.9 times faster than the
key setup process of the multiverse threshold signature (MTS) scheme.

Keywords: Threshold signatures, BLS signatures, Non-interactive setup, Bilinear maps, Blockchain.

*Sejong University, Seoul, South Korea. Email: kwangsu@sejong.ac.kr.

1

1 Introduction

A threshold signature scheme is a special type of digital signatures in which a group of n parties shares
a secret signing key through a key setup process, and any subset of parties greater than t can generate a
valid signature for a message M through the signing process [16, 17]. A threshold signature scheme is
secure if a valid signature cannot be generated when less than t parties are involved. An ideal threshold
signature scheme is that the key setup process is efficient in terms of computation and communication, a
verification key is compact, the signing process that derives a threshold signature from partial signatures is
non-interactive, and the final threshold signature is succinct. Threshold signatures have been studied for a
long time [4,9,14,23–25,31], and they can be applied for user wallet protection, distributed random services,
and consensus protocols in decentralized blockchains [23, 37, 38]. And recently, due to the importance of
threshold cryptosystems, the standardization of threshold cryptosystems has begun [33].

The method of constructing a threshold signature scheme from a digital signature scheme consists of a
key setup process in which a group of parties share a secret signing key and a signing process in which partial
signatures that are generated by some parties are combined into a final threshold signature. The key setup
process is usually done by using a distributed key generation (DKG) protocol [26], which is a multi-party
protocol that distributes a secret signing key to the secret shares of all parties. However, it is difficult to use
this DKG protocol if the number of parties increases since the amount of computation and communication
of each party is quite large. Recently, a non-interactive DKG (NI-DKG) scheme that reduces the rounds of
the DKG protocol was proposed [28], but this scheme is still inefficient since individual parties are required
to generate zero-knowledge proofs and solve the discrete logarithm of small exponents. The signing process
of a threshold signature scheme can be non-interactive if it is based on BLS signatures [11]. The threshold
signature scheme from BLS signatures (TS-BLS) [9] is attractive since it supports non-interactive signing,
but it requires an interactive DKG protocol. The multi-signature scheme based on BLS signatures (MS-
BLS) [9] also can be used as threshold signatures if the final signature contains a set of signers and the
aggregation of public keys is done by a verifier, but the size of a verification key increases in proportion to
the number of parties.

Recently, multiverse threshold signature (MTS) and silent threshold signature (STS) schemes [2, 21],
that support the efficient key setup without exchanging messages between parties and the non-interactive
signing based on BLS signatures, have been proposed. In the MTS scheme [2], each party generates an
online message based on the public keys of all parties which are organized by a combiner and delivers it
to the combiner, and then the combiner creates the verification key of MTS. Thus, the key setup process
of the MTS scheme is two rounds since the set of parties should be determined in the first round, and it is
transparent because anyone who has online messages and all public keys can check the validity of this key
setup process. In the STS scheme [21], each party generates a hint if the number of all parties and the index
of the party are given, and the combiner creates the verification key of STS by using all hints of parties. The
hint of a party only can be generated when the number of all parties and the position of the party are known
which can be determined after the combiner fixes the group of parties. Although, the authors of STS offer
some ideas to get rid of it, it doesn’t completely solve the problem without communication and computation
overhead or errors due to collisions. Thus, the key setup process of the basic STS scheme can be regarded
as two rounds. Additionally, the STS scheme requires the trusted setup for structured reference strings.

As described above, both MTS and STS schemes remove message exchanges between individual parties,
but they cannot be non-interactive key setup since each party must wait for a combiner to determine the
dynamic group of parties before generating an online message or a hint of the party. Therefore, we ask the
following question:

2

Table 1: Comparison of unweighted threshold signatures based on BLS signatures

Scheme PK VK PS TS Sign Verify Key Setup

TS-BLS [9] G G Ĝ Ĝ E + H 2P + H DKG
MS-BLS [9] G mG Ĝ Ĝ+S E + H 2P + H NI, TP
ASM [10] G G Ĝ G+ Ĝ+S E + H 3P + (t +1)H 2R, TP
Groth [28] G G Ĝ Ĝ E + H 2P + H NI-DKG
MTS [2] G G+ Ĝ Ĝ 2G+ Ĝ E + H 4P + H 2R, TP
STS [21] G 2G+ Ĝ Ĝ 7G+2Ĝ+5Zp E + H 10P + H 2R, SRS

NIDTS G G+ Ĝ Ĝ G+2Ĝ E + H 4P + H NI, TP

Let m be the number of parties, t be a threshold, and S be a set of signers with m bits. We use abbreviations PK
for public key, VK for verification key, PS for partial signature, and TS for threshold signature. We use symbols
H for map-to-hash, E for exponentiation, and P for pairing. In the key setup, we use DKG for distributed key
generation, NI-DKG for non-interactive DKG, 2R for two-round setup, SRS for structured reference string, NI
for non-interactive (or one-round) setup, and TP for transparent setup.

“Can we design a threshold signature scheme with a compact verification key that supports
the completely non-interactive key setup for the dynamic group of parties without requiring
message exchanges between parties?”

In the completely non-interactive key setup of threshold signatures, except that individual parties generate
their own public keys, individual parties forward only one message to the combiner without waiting for
the combiner to determine the dynamic group of parties1, and then the combiner completes the key setup
process by generating a compact verification key.

1.1 Our Contributions

In this paper, we show that there is a positive answer to the above question. To this end, we first define a non-
interactive decentralized threshold signature (NIDTS) scheme that supports the non-interactive key setup. In
the NIDTS scheme, each party generates a secret key and a public key by running a key generation algorithm,
and registers the public key to a blockchain (on-chain). After that, each party generates a register key with
a public group identifier GID as an input to join a group associated with GID before a combiner determines
group parties, and transmits the register key to the combiner. The untrusted combiner collects the public
keys and register keys of group parties to establish a group and generates the combine key and verification
key of this group. Note that this key setup process is transparent since the combine key and verification key
are deterministically derived from public keys and register keys. In order to generate a threshold signature
for any message, individual parties create partial signatures with their secret keys and transmit them to
the combiner. The untrusted combiner generates a threshold signature by combining partial signatures of
sufficient number of parties, and anyone can verify this threshold signature by using the verification key
registered in the blockchain (on-chain).

1In existing threshold signatures with DKG protocols, the key setup assume that the set of parties and the threshold are fixed.
In this work, we require that threshold signatures should support the dynamic choice of the set of parties and the threshold for
blockchain applications.

3

Next, we propose an efficient NIDTS scheme with a compact verification key that supports the non-
interactive key setup, transparent setup, and non-interactive signing from bilinear groups, and prove its
security under complexity assumptions in the random oracle model. Basically, our NIDTS scheme is built
from the BLS signature scheme [11] to support the non-interactive signing. In addition, the key setup of
our scheme is similar to that of the MTS scheme [2] in that it matches the public keys of group parties
with points of a polynomial and additionally exposes some public points of the polynomial to enable the
threshold verification. However, in order to support the non-interactive key setup, we use a mechanism
that synchronizes a group element for all parties by using the map-to-hash function H0(GID) when a group
identifier GID is given as an input. Because of this synchronization device, individual parties can generate
register keys immediately without waiting for the combiner to determine all parties of a group, and it can
prevent some parties from maliciously setting exponent values of group elements. More details on our
NIDTS scheme are described in the next section. And we use the widely used virtualization technique to
support threshold signatures with weights for individual parties. The comparison of our NIDTS scheme
with other threshold signature schemes based on BLS signatures is given in Table 1.

Finally, we implement our NIDTS scheme in Rust and analyze the performance of our scheme. The key
setup process of the NIDTS scheme maps the public keys of individual parties to polynomial pointers, and
multiple public pointers of the polynomial must be generated for threshold functionality using polynomial
interpolation. If this is implemented in a simple way, it requires O(n3) scalar multiplications to calculate the
Lagrange coefficients required for polynomial interpolation where n is the degree of the polynomial, so the
running time of this algorithm increases rapidly when the number of group parties increases. To overcome
this problem, we apply a method that efficiently handles the calculation of Lagrange coefficients by using
the barycentric form of the Lagrange interpolation. We can confirm that our NIDTS scheme performed
better in most algorithms by comparing the performance with the MTS scheme. In particular, in the case
of the key setup process, the computation of individual parties is very efficient, and the computation of the
combiner is also more efficient than before.

1.2 Our Techniques

We construct our NIDTS scheme that supports the non-interactive key setup by modifying the MTS scheme
of Baird et al. [2]. The main idea of the MTS scheme is that the pubic keys of parties are mapped to
polynomial points to eliminate message exchange between parties and expose additional polynomial points
to support the threshold signing. First, the MTS scheme initially sets an (n− 1)-degree polynomial f (x)
by using the public keys of n parties. That is, when the public keys of individual parties are given as
gs1 , . . . ,gsn where si is the secret key of i-th party, the (n− 1)-degree polynomial f (x) is implicitly defined
such that f (i) = si for each i ∈ [n]. However, this method has a problem of requiring n polynomial points
instead of t points to reconstruct an element g f (0). The idea of the MTS scheme to overcome this problem is
to additionally reveal (n− t) polynomial points g f (−(n−t)), . . . ,g f (−1) as public parameters. In this case, if t
polynomial points obtained from signing parties and (n−t) public points are combined, then the polynomial
can be reconstructed since t +(n− t) = n pieces of polynomial points are obtained.

However, since the partial signature of the MTS scheme has a form of H1(M) f (si) but public pointers
have a form of g f (k), it is difficult to derive the final signature H1(M) f (0) by combining partial signatures and
public pointers. To overcome this problem, the MTS scheme modifies the signature verification equation
so that the verification can be done even when the final signature is derived by combining only partial
signatures. From the Lagrange interpolation method, we can obtain the following equation from the private

4

keys and public pointers of the parties.

f (0) =
(

f (−(n− t))L−(n−t)(0)+ . . .+ f (−1)L−1(0)
)
+
(

f (1)L1(0)+ . . .+ f (t)Lt(0)
)

= f pub(0)+ f par(0)

where {Li(0)} are the Lagrange coefficients, f pub(0) is for the public points part, and f par(0) is for the
partial signature part. By rearranging the equation e(g,H1(M) f (0)) = e(g,H1(M) f pub(0)) · e(g,H1(M) f par(0)),
the new verification equation can be derived as follows:

e(g f (0)/g f pub(0),H1(M)) = e(g,H1(M) f par(0))

when the combiner computes σ par = H1(M) f par(0) and σ pub = g f pub(0). That is, the verification key consists
of g f (0), and the threshold signature consists of H1(M) f par(0) derived by combining the partial signatures and
g f pub(0) obtained by linearly combining public points. To ensure that g f pub(0) is the linear combination of
public points, the MTS scheme requires an additional mechanism such that each party generates an online
message by selecting a random ki, and deliver it to the combiner. To guarantee that at least one party correctly
created this online message with a random ki, the combiner additionally computes gk f pub(0) by combining all
online messages of parties. Thus, the final signature is (H1(M) f par(0),g f pub(0),gk f pub(0)).

In order to overcome the problem that the key setup process of the MTS scheme is two rounds such that
the first round is the distribution of all public keys of group parties and the second round is the delivery of the
online messages of parties, we use a map-to-hash function H0(x) in our NIDTS scheme instead of combining
individual online messages. That is, we set H0(GID) = ĝk to fix a random k when a group identifier GID is
given since H0(x) is modeled as a random oracle. Note that GID can be known in advance even before group
parties are determined by a combiner. Thus, since all parties belonging to the same group can use the same
H0(GID) when GID is known, each party generates a public key gsi and additionally generates a register
key H0(GID)si to join a group associated with GID. After that, the combiner can perform the key setup
process by calculating public points g f (−(n−t)), . . . ,g f (−1),g f (0) and H0(GID) f (−(n−t)), . . . ,H0(GID) f (−1) by
collecting all public keys and register keys of parties in the group. The modified final signature of our
NIDTS scheme is (H1(M) f par(0),g f pub(0),H0(GID) f pub(0)).

The main advantage of this approach is that when a party generates a register key, the group identifier
GID is required, but the public keys of other parties are unnecessary. This makes the key setup process of the
NIDTS scheme to be non-interactive because it only requires the transfer of a register key to a combiner. In
addition, the online message of the MTS scheme consists of gki f (−(n−t)), . . . ,gki f (−1),gki , whereas the register
key of our NIDTS scheme consists of only H0(GID)si . Thus, this approach is very efficient when comparing
the amount of computation and communication performed by individual parties and the combiner in the key
setup process since the combiner should verify the online messages or register keys before it generates the
combine key and verification key. Furthermore, if GID is disclosed at the initial stage of the system and
each party publishes a public key with a register key at the same time, then the key setup process can be zero
round.

1.3 Related Work

Research on threshold signatures has been carried out for a long time as part of threshold cryptography
[9, 16, 17, 24, 25]. Recently interest in threshold signatures without a trusted center has increased rapidly
due to various attempts to apply threshold signatures to decentralized blockchains [23,38]. The main step of
threshold signatures is the distributed key generation (DKG) protocol in which shares of a signing key are

5

securely distributed among individual parties by performing a verifiable secret sharing protocol in parallel
[26]. However, it is very expensive to perform the DKG protocol when the number of parties increases due to
the computation and communication overhead of individual parties. Since then, research has been conducted
to improve the performance of the DKG protocol [29,39], and a DKG protocol in an asynchronous network
environment has also been proposed [30]. Recently, a non-interactive DKG protocol was proposed except
for the setting of a public key to reduce the rounds of the DKG protocol [28]. However, this protocol has
the disadvantage that the group of parties and a threshold must be fixed in advance.

Threshold signatures based on Schnorr signatures [36] and BLS signatures [11] are attracting a lot of
attention recently. The FROST scheme was proposed as an efficient discrete-logarithm based threshold sig-
nature scheme based on Schnorr signatures [31]. The FROST scheme uses the DKG protocol to setup the
secret share key of parties, and the signature generation consists of two rounds of a message independent
preprocessing process and a message dependent signing process, and the resulting signature is the same as
the original Schnorr signature. In the FROST scheme, if the preprocessing step can be done in advance, then
the scheme supports the non-interactive signing. Recently, some study were conducted to improve the per-
formance and security of the FROST scheme [4,14,35]. The TS-BLS scheme has been proposed as a pairing
based threshold signature based on BLS signatures [9]. The TS-BLS scheme also uses the DKG protocol for
the key setup of all parties, and generates a threshold signature non-interactively in which individual parties
generate partial signatures and a combiner compresses them as the final threshold signature. This scheme
has the greatest advantage since it supports non-interactive signing without preprocessing. Recently, some
studies have been conducted to analyze the security the TS-BLS scheme [1].

Multi-signatures can be seen as the special type of threshold signatures because all parties generate par-
tial signatures for the same message and these partial signatures are combined into a multi-signature [32].
A simple threshold signature scheme can be built from a multi-signature scheme based on BLS signatures
(MS-BLS) if a verifier checks the threshold of signing parties and aggregates the public keys of these par-
ties [9]. The advantage of this scheme is that the key setup is simple and non-interactive, but the size of a
verification key increases in proportion to the number of parties since all public keys of parties are required
for verification. An efficient accountable-subgroup multi-signature (ASM) scheme based on BLS signatures
was proposed [10], but the key setup process is two rounds and requires message exchanges between par-
ties. It is also possible to construct a threshold signature scheme from succinct non-interactive arguments
of knowledge (SNARK) [22, 27]. The basic idea is a combiner to produce a proof that it witnessed a suf-
ficient number of signatures generated by enough parties. This method has the advantage that weights and
general access structures can be easily applied. However, in general, the signing algorithm that uses effi-
cient SNARKs is rather slow if the number of parties increases and it requires the trusted setup to generate
structured reference strings.

2 Preliminaries

For any integer n > 0, let [n] be the set of integers {1, . . . ,n}. For any integer m < n, let [m : n] be the set of
integers {m,m+1, . . . ,n−1,n}. Let a⃗ = (a1, . . . ,an) and b⃗ = (b1, . . . ,bn) be vectors over Zn

p. We use a⃗[i] to
denote the ith element ai of a⃗. We use ⟨⃗a,⃗b⟩ to denote the inner product ∑

n
i=1 aibi of two vectors. We use

ga⃗ to denote the vector (ga1 , . . . ,gan). We use ⟨ga⃗ ,⃗b⟩ to denote the vector inner product over the exponents
as ∏

n
i=1(g

ai)bi = g∑
n
i=1 aibi . A function f (λ) is negligible if for all polynomial p(λ), f (λ) < 1/p(λ) for all

large enough security parameter λ .

6

2.1 Bilinear Groups

A bilinear group generatorBG takes as input a security parameter λ and outputs a bilinear group (p,G,Ĝ,GT ,
e,g, ĝ) where p is a random prime, G,Ĝ, and GT are three cyclic groups of prime order p, and g, ĝ are ran-
dom generators of G, Ĝ, respectively. The bilinear map e : G× Ĝ→GT has the following properties:

1. Bilinearity: ∀u ∈G,∀v̂ ∈ Ĝ and ∀a,b ∈ Zp, e(ua, v̂b) = e(u, v̂)ab.

2. Non-degeneracy: ∃g ∈G, ĝ ∈ Ĝ such that e(g, ĝ) has order p in GT .

We say that (p,G,Ĝ,GT ,e,g, ĝ) is a bilinear group with no efficiently computable isomorphisms if the
group operations in G,Ĝ, and GT as well as the bilinear map e are all efficiently computable, but there are
no efficiently computable isomorphisms between G and Ĝ.

2.2 Complexity Assumptions

In this section, we introduce complexity assumptions for the security proof of our NIDTS scheme.

Assumption 1 (Discrete Logarithm, DL [18]). Let G be a cyclic group of the prime order p and g be a
random generator of G. The experiment of DL assumption is defined as follows:

Experiment ExpDL
A (p,G,g)

α ← Z∗p; D←
(

p,G,g,gα
)
; x←A(D);

If gx = gα then return 1 else return 0.

The advantage of A is defined as AdvDL
A (λ) = Pr[ExpDL

A (p,G,g) = 1]. We say that DL assumption holds if
for every PPT adversary A the advantage AdvDL

A (λ) is negligible.

Assumption 2 (Computational co-Diffie-Hellman, co-CDH [11]). Let (p,G,Ĝ,GT ,e,g, ĝ) be a bilinear
group generated by BG(1λ). The experiment of co-CDH assumption is defined as follows:

Experiment Expco-CDH
A (p,G,Ĝ,GT ,e,g, ĝ)

α,β ← Z∗p; D←
(
(p,G,Ĝ,GT ,e,g, ĝ),gα , ĝα , ĝβ

)
; X ←A(D);

If X = ĝαβ then return 1 else return 0.

The advantage of A is defined as Advco-CDH
A (λ) = Pr[Expco-CDH

A (p,G,Ĝ,GT ,e,g, ĝ) = 1]. We say that
co-CDH assumption holds if for every PPT adversary A the advantage Advco-CDH

A (λ) is negligible.

Assumption 3 (n-Augmented Knowledge of Exponent Assumption, n-AugKEA). Let (p,G,Ĝ,GT ,e,g, ĝ)
be a bilinear group generated by BG(1λ). Let h1 = gb1 , . . . ,hn = gbn ∈G, ĥ1 = ĝb1 , . . . , ĥn = ĝbn ∈ Ĝ where
b1, . . . ,bn ∈ Zp. The experiment of n-AugKEA with an auxiliary input z is defined as follows:

Experiment Expn-AugKEA
A,Ext ((p,G,Ĝ,GT ,e,g, ĝ),h1, . . . ,hn, ĥ1, . . . , ĥn,z)

a← Z∗p; D←
(
(p,G,Ĝ,GT ,e,g, ĝ),h1, . . . ,hn, ĝa, ĥa

1, . . . , ĥ
a
n
)
;

(X ,Y)←A(D,z);(c1, . . . ,cn)← Ext(A,D,z);
If e(X , ĝa) = e(g,Y)∧X ̸= ∏

n
i=1 gbici then return 1 else return 0.

The advantage ofA related to Ext is defined as Advn-AugKEA
A (λ)= Pr[Expn-KEA

A,Ext ((p,G,Ĝ,GT ,e,g, ĝ),z)= 1].
We say that n-AugKEA holds if for every PPT adversary A there exists a PPT extractor Ext such that the
advantage Advn-AugKEA

A (λ) is negligible for all h1, . . . ,hn, ĥ1, . . . , ĥn and any auxiliary input z.

The n-AugKEA is a similar to the n-KEA [8] which is a natural generalization of the knowledge-of-
exponent assumption (KEA) [6, 15] except that it holds for all h1, . . . ,hn, ĥ1, . . . , ĥn.

7

2.3 BLS Signature

The BLS signature scheme is described as follows:

BLS.Setup(1λ): Let λ be the security parameter. Let (p,G,Ĝ,GT ,e,g, ĝ) be a bilinear group gener-
ated by BG(1λ). It chooses a hash function H1 : {0,1}∗ → Ĝ. It outputs public parameters PP =(
(p,G,Ĝ,GT ,e,g, ĝ),H1

)
.

BLS.GenKey(PP): It selects a random exponents s ∈ Zp. It outputs a secret key SK = s and a public key
PK = X = gs.

BLS.Sign(M,SK,PP): Let M ∈ {0,1}∗ and SK = s. It outputs a signature σ = H1(M)s.

BLS.Verify(σ ,M,PK,PP): Let PK = X . It checks that e(g,σ)
?
= e(X ,H1(M)). If the equation holds, then

it outputs 1. Otherwise, it outputs 0.

Theorem 2.1 ([11]). The BLS signature scheme is unforgeable in the random oracle model if the co-CDH
assumption holds.

2.4 NIZKPoK for DL

An NIZKPoK system of discrete logarithm problem consists of algorithms Setup, Prove, and Verify that
satisfy the following properties:

• Correctness. For all x ∈ Zp, we have that Pr[Verify(CRS,gx,π) = 1 : CRS← Setup(1λ),π ← Prove
(CRS,gx,x)] = 1.

• Zero-knowledge. There exists a simulator Sim such that for all gx, the output of Sim(gx) is indistin-
guishable from the output of Prove(CRS,gx,x).

• Simulation Extraction. For all PPT A and x ∈ Zp, there exists a simulator Sim and an extractor Ext
such that Pr[Verify(CRS,gx,π) = 1∧ (Ext(A,gx,π) ̸= x) : CRS← Setup(1λ),π←ASim(CRS,gx)]≤
negl(λ).

The Schnorr NIZKPoK system which is one instance of NIZKPoK for DL is described as follows:

SchPoK.Setup(1λ): Let λ be the security parameter. It generates a cyclic group G of prime order p of
bit size Θ(λ) with a random generator g of G. It chooses a hash function H : G3 → Zp. It outputs
CRS = (p,G,g,H).

SchPoK.Prove(CRS,gx,x): It selects a random exponent r ∈ Zp and computes R = gr. It derives h =
H(g,gx,R) and computes z = r+hx. It outputs π = (R,z).

SchPoK.Verify(CRS,gx,π): Let π = (R,z). It computes h = H(g,gx,R) and checks that gz ?
= R(gx)h. If the

equation holds, then it outputs 1. Otherwise, it outputs 0.

Theorem 2.2 ([34, 36]). The Schnorr NIZKPoK system is correct, zero-knowledge, and simulation ex-
tractable in the random oracle model if the DL assumption holds.

Remark 1. To efficiently extract the knowledge, we can use the NIZKPoK system of Fischlin [19] since it
is an online extractor.

8

3 Non-Interactive Decentralized Threshold Signatures

In this section, we define the concept of NIDTS and propose an efficient NIDTS scheme that supports the
non-interactive key setup.

3.1 Definition

To define the syntax of NIDTS, we first define a weighted group of parties in which each party has an
individual weight.

Definition 3.1 (Weighted Group). Let P = {P1,P2, . . .} be the set of all parties in a system. Let m,n, and t be
positive integers such that 2≤m≤ n and t ≤ n. Let w1, . . . ,wm be positive integers such that n = ∑

m
i=1 wi. A

group of weighted parties is specified by a group description GD = (GID,{(PKi,RKi,Pi,wi)}m
i=1,n, t) which

consists of a group identifier string GID ∈ {0,1}∗, a set of tuples {(PKi,RKi,Pi,wi)}m
i=1 which specifies

group parties in PG = {P1, . . . ,Pm} ⊆P where a party Pi with a weight wi is associated with a public key PKi

and a register key RKi, the total weight n of all parties, and a threshold t. We assume that parties in PG are
indexed by some canonical ordering. We say that any subset S⊆ PG is authorized if and only if ∑Pi∈S wi ≥ t.

We define the syntax of NIDTS by modifying the syntax of MTS [2]. In NIDTS, each party generates a
secret key SK and a public key PK by running the key generation algorithm and adds PK to a blockchain.
After that, the party generates a register key RK by running the register key generation algorithm with a
group identifer GID as input and send it to a combiner. The external untrusted combiner collects all public
keys and register keys of group parties with GID, and then runs the group setup algorithm to create a
combination key CK and a verification key V K of this group. At this time, the combiner can add V K in
the blockchain. If individual parties generate partial signatures {σi} for a message M by using their secret
keys, then the combiner collects a sufficient number of partial signatures and runs the combining algorithm
to derive a final threshold signature στ . The verification of στ can be done by running the verification
algorithm. The detailed syntax of NIDTS is defined as follows:

Definition 3.2 (Non-Interactive Decentralized Threshold Signature, NIDTS). A non-interactive decentral-
ized threshold signature (NIDTS) scheme for the set of parties P = {P1,P2, . . .} that supports decentralized,
non-interactive, and transparent key setup with non-interactive threshold signing consists of eight PPT al-
gorithms Setup, GenKey, GenRegKey, GroupSetup, Sign, VerifyPart, Combine, and Verify, which are
defined as follows:

Setup(1λ). The setup algorithm takes as input the security parameter λ in unary, and outputs public
parameters PP.

GenKey(PP). The key generation algorithm takes as input public parameters PP. It outputs a secret key
SK and a public key PK.

GenRegKey(GID,SK,PK,PP). The register key generation algorithm takes as input a group identifiers
GID in which a party will join, a secret key SK, a public key PK, and public parameters PP. It outputs
a register key RK.

GroupSetup(GD,PP). The group setup algorithm takes as input a group description GD and public pa-
rameters PP. It deterministically outputs a combine key CK and a verification key V K.

Sign(M,SK,PP). The signing algorithm takes as input a message M, a secret key SK, and public parame-
ters PP. It outputs a partial signature σ .

9

VerifyPart(σ ,M,PK,PP). The partial signature verification algorithm takes as input a partial signature σ ,
a message M, a public key PK, and public parameters PP. It outputs 1 if the partial signature is valid
and 0 otherwise.

Combine(SS,M,GD,CK,PP). The combining algorithm takes as input a set of partial signatures SS =
{σi}, a message M, a group description GD, a combine key CK, and public parameters PP. It outputs
a threshold signature στ .

Verify(στ ,M,V K,PP). The verification algorithm takes as input a threshold signature στ , a message M, a
verification key V K, and public parameters PP. It outputs 1 if the signature is valid and 0 otherwise.

Remark 2. If the group identifier GID of a group is known in advance, each party can generate a public
key PK and a register key RK simultaneously. Thus, if each party creates an extended public key EPK =
(PK,RK) that contains the public key and the register key, the key setup process of NIDTS can be zero
round.

Definition 3.3 (Correctness). The correctness of an NIDTS scheme is defined as the following experiment
ExpCO

A (1λ) between a challenger C and a PPT adversary A:

1. The challenger C obtains PP by running Setup(1λ) and gives PP to the adversary A. Let PH be the
set of honest parties, PC be the set of corrupted parties, and PH,M be the set of honest parties which
have signed a message M. C initializes PH ,PC, and PH,M as empty.

2. A can access oracles OGenKey, OGenRegKey, OCorrupt, and OSign, which are defined as fol-
lows:

• OGenKey(Pi): If Pi ̸∈ PH ∪PC, then it generates SKi,PKi by running GenKey(PP), updates
PH = PH ∪{Pi}, and responds PKi. Otherwise, it responds ⊥.

• OGenRegKey(Pi,GID): If Pi ∈PH , then it generates RKi by running GenRegKey(GID,SKi,PKi,
PP) and responds RKi. Otherwise, it responds ⊥.

• OCorrupt(Pi): It updates PC =PC∪{Pi}. If Pi ∈PH , then it updates PH =PH \{Pi}, and responds
SKi. Otherwise, it responds ⊥.

• OSign(Pi,M): If Pi ∈ PH , then it updates PH,M = PH,M ∪{Pi} and responds Sign(M,SKi,PP).
Otherwise, it responds ⊥.

3. A outputs a group description GD∗ = (GID,{(PKi,RKi,Pi,wi)}m
i=1,n, t), a message M∗, and partial

signatures SS∗ = {σ j}Pj∈S for a set of parties S. Let PG be the set of all parties in GD∗. Let SH ⊆ S be
the subset of honest partial signatures where all partial signatures {σ j}Pj∈SH are honestly generated
by calling OSign(Pj,M∗). C derives a combine key CK∗ and a verification key V K∗ by running
GroupSetup(GD∗,PP).

4. The output of this experiment is 1 if and only if at least one of the following three conditions is
satisfied:

1) All parties in the group description are corrupted, i.e., PG ⊆ PC.

2) The subset of honest partial signatures is not an authorized subset, i.e., ∑Pi∈SH wi < t.

3) The combined threshold signature is valid, i.e, Verify(σ∗τ ,M∗,V K∗,PP)= 1 where σ∗τ =Combine
(SS∗,M∗,GD∗,CK∗,PP).

10

The advantage of A is defined as AdvCO
A (λ) = Pr[ExpCO

A (1λ) = 1] where the probability is taken over all
the randomness of the experiment. An NIDTS scheme satisfies correctness if for all PPT adversaries the
advantage is 1 except with negligible probability.

We define the security model of NIDTS by following the security model of the MTS as follows:

Definition 3.4 (Unforgeability). The unforgeability of an NIDTS scheme is defined as the following exper-
iment ExpUF

A (1λ) between a challenger C and an adversary A:

1. The challenger C obtains PP by running Setup(1λ) and gives PP to the adversary A. Let PH be the
set of honest parties, PC be the set of corrupted parties, and PH,M be the set of honest parties which
have signed a message M. C initializes PH ,PC, and PH,M as empty.

2. A can access oracles OGenKey, OGenRegKey, OCorrupt, and OSign, which are defined as fol-
lows:

• OGenKey(Pi): If Pi ̸∈ PH ∪PC, then it generates SKi,PKi by running GenKey(PP), updates
PH = PH ∪{Pi}, and responds PKi. Otherwise, it responds ⊥.

• OGenRegKey(Pi,GID): If Pi ∈PH , then it generates RKi by running GenRegKey(GID,SKi,PKi,
PP) and responds RKi. Otherwise, it responds ⊥.

• OCorrupt(Pi): It updates PC =PC∪{Pi}. If Pi ∈PH , then it updates PH =PH \{Pi}, and responds
SKi. Otherwise, it responds ⊥.

• OSign(Pi,M): If Pi ∈ PH , then it updates PH,M = PH,M ∪{Pi} and responds Sign(M,SKi,PP).
Otherwise, it responds ⊥.

3. A outputs a group description GD∗ = (GID,{(PKi,RKi,Pi,wi)}m
i=1,n, t), a message M∗, and a thresh-

old signature σ∗τ . Let PG be the set of all parties in GD∗. C derives a combine key CK∗ and a
verification key V K∗ by running GroupSetup(GD∗,PP).

4. The output of this experiment is 1 if all of the following two conditions are satisfied:

1) The adversary has not acquired sufficient partial signatures, i.e., ∑Pi∈PG∩(PC∪PH,M∗)
wi < t.

2) The threshold signature is valid, i.e., Verify(σ∗τ ,M∗,V K∗,PP) = 1.

The advantage ofA is defined as AdvUF
A (λ) = Pr[ExpUF

A (1λ) = 1] where the probability is taken over all the
randomness of the game. An NIDTS scheme satisfies unforgeability if for all PPT adversaries the advantage
is negligible.

3.2 Construction in the Unweighted Setting

In this section, we propose an unweighted NIDTS scheme based on bilinear maps.

Definition 3.5 (Unweighted Group). Let P = {P1,P2, . . .} be the set of all parties in a system. Let n and
t be positive integers such that 2 ≤ n and t ≤ n. A group with unweighted parties is specified by a group
description GD = (GID,{(PKi,RKi,Pi)}m

i=1,n = m, t) which consists of a group identifier string GID ∈
{0,1}∗, a set of tuples {(PKi,RKi,Pi)}m

i=1 which specifies group parties PG = {P1, . . . ,Pm} ⊆ P where a
party Pi is associated with a public key PKi and a register key RKi, the total number m of all parties, and a
threshold t. We assume that parties in PG are indexed by some canonical ordering. We say that any subset
S⊆ PG is authorized if and only if |S| ≥ t.

11

NIDTS.Setup(1λ): It first obtains a bilinear group (p,G,Ĝ,GT ,e,g, ĝ) by running BG(1λ). It prepares
CRS of NIZKPoK for DL on the cyclic group G. It chooses two hash functions H0 : {0,1}∗→ Ĝ and
H1 : {0,1}∗→ Ĝ and outputs public parameters PP =

(
(p,G,Ĝ,GT ,e,g, ĝ),H0,H1,CRS

)
.

NIDTS.GenKey(PP): It selects a random exponent s ∈ Z∗p and computes X = gs. It outputs a secret key
SK = s and a public key PK = X .

NIDTS.GenRegKey(GID,SK,PK,PP): Let SK = s and PK = X . It computes Y = H0(GID)s and π =
NIZKPoK.Prove(CRS,X ,s). It outputs a register key RK =

(
GID,Y,π

)
.

NIDTS.GroupSetup(GD,PP): Let GD = (GID,{(PKi,RKi,Pi)}m
i=1,n = m, t).

1. For each pair (PKi = Xi,RKi = (GID′,Yi,πi)) ∈ GD, it checks that GID = GID′ and e(g,Yi)
?
=

e(Xi,H0(GID)) ∧ NIZKPoK.Verify(CRS,Xi,πi)
?
= 1. If one of these checks fail, it outputs ⊥.

2. It defines a polynomial f ∈ Zp[X] of degree n− 1 such that f (i) = si for each i ∈ [1 : n] where
dlogg(Xi) = si. That is, it defines f (x) = ∑i∈[n] f (i)Li(x) by using the Lagrange interpolation
where f (i) = si and Li(x) = ∏k∈[n],k ̸=i

x−k
i−k is the Lagrange basis.

3. For each k ∈ {−(n− t), . . . ,−2,−1}, it derives the Lagrange coefficients {Li(k)}i∈[n] and com-
putes components as

Vk = g f (k) = ∏
i∈[n]

XLi(k)
i , Wk = H0(GID) f (k) = ∏

i∈[n]
Y Li(k)

i .

Next, it derives the Lagrange coefficients {Li(0)}i∈[n] and computes a component as

V0 = g f (0) = ∏
i∈[n]

XLi(0)
i .

4. It outputs a combine key CK =
(
{Vk}k∈[−(n−t):−1],{Wk}k∈[−(n−t):−1]

)
and a verification key V K =(

V0,W = H0(GID)
)
.

NIDTS.Sign(M,SK,PP): Let M ∈ {0,1}∗ and SK = s. It outputs a partial signature σ = H1(M)s ∈ Ĝ.

NIDTS.VerifyPart(σ ,M,PK,PP): Let PK = X . It checks that e(g,σ)
?
= e(X ,H1(M)). If the equation

holds, it outputs 1. Otherwise, it outputs 0.

NIDTS.Combine(SS,M,GD,CK,PP): Let SS= {σi}, GD=(GID,{(PKi,RKi,Pi)}m
i=1,n=m, t), and CK =

({Vk},{Wk}). Let Pσ be the set of parties in SS and PG be the set of parties in GD.

1. It initializes Q = /0. For each Pi ∈ Pσ ∩PG, it adds Pi to Q if VerifyPart(σi,M,PKi,PP) = 1. If
|Q|< t, it outputs ⊥.

2. Let XQ be the set of t evaluation points corresponding to parties in Q since parties can be in-
dexed by some canonical ordering. It derives the Lagrange coefficients {Li(0)}i∈XQ∪[−(n−t):−1]
that satisfy f (0) = ∑i∈XQ∪[−(n−t):−1] f (i)Li(0). We simply write {Li(0)}i∈XQ as {Lpar

i } and

{Li(0)}i∈[−(n−t):−1] as {Lpub
i }.

3. Next, it builds signature components

S0 = ∏
i∈XQ

σ
Lpar

i
i , S1 = ∏

i∈[−(n−t):−1]
V Lpub

i
i , S2 = ∏

i∈[−(n−t):−1]
W Lpub

i
i .

12

4. It outputs a threshold signature στ = (S0,S1,S2) ∈ Ĝ×G× Ĝ.

NIDTS.Verify(στ ,M,V K,PP): Let στ = (S0,S1,S2) and V K = (V0,W). It checks that

e(g,S0)
?
= e(V0/S1,H1(M)) ∧ e(S1,W)

?
= e(g,S2).

If the equations hold, it outputs 1. Otherwise, it outputs 0.

3.3 Construction in the Weighted Setting

In this section, we propose a weighted NIDTS scheme based on bilinear maps. The method of modifying
our unweighted NIDTS scheme to support weights is a virtualization method in which individual parties
additionally have shared secrets corresponding to weights.

NIDTS.Setup(1λ): It first obtains a bilinear group (p,G,Ĝ,GT ,e,g, ĝ) by running BG(1λ). It prepares
CRS of NIZKPoK for DL on the cyclic group G. It chooses two hash functions H0 : {0,1}∗→ Ĝ and
H1 : {0,1}∗→ Ĝ, and outputs public parameters PP =

(
(p,G,Ĝ,GT ,e,g, ĝ),H0,H1,CRS,w

)
where

w is the weight bound.

NIDTS.GenKey(PP): It selects a random vector s⃗ = (s1, . . . ,sw) ∈ Zw
p and computes X⃗ = g⃗s. It outputs a

secret key SK = s⃗ and a public key PK = X⃗ .

NIDTS.GenRegKey(GID,SK,PK,PP): Let SK = s⃗ and PK = X⃗ . It computes Y⃗ =H0(GID)⃗s and π⃗ by run-
ning NIZKPoK.Prove(CRS, X⃗ [j], s⃗[j]) for each j ∈ [w]. It outputs a register key RK =

(
GID,Y⃗ , π⃗

)
.

NIDTS.GroupSetup(GD,PP): Let GD= (GID,{(PKi,RKi,Pi,wi)}m
i=1,n, t) where n=∑

m
i=1 wi and wi≤w.

1. For each pair (PKi = X⃗i,RKi = (GID′,Y⃗i, π⃗i)) ∈ GD, it checks GID ?
= GID′ and performs the

following checks:

(a) It checks that Y⃗i ∈ Ĝw and e(g, ⟨⃗Yi ,⃗r⟩)
?
= e(⟨X⃗i ,⃗r⟩,H0(GID)) by selecting a random vector

r⃗ ∈ Zw
p .

(b) It checks that NIZKPoK.Verify(CRS, X⃗i[j], π⃗i[j])
?
= 1 for each j ∈ [w].

If one of these checks fail, it outputs ⊥.

2. Let wi = ∑
i
k=1 wk be the added weights of ith party. We define ψ1 as a mapping from j ∈ [n] to

i ∈ [m] such that ψ1(j) = i for all j ∈ [wi−1 + 1 : wi−1 +wi]. We also define ψ2 as a mapping
from j ∈ [n] to i ∈ [wψ1(j)] such that ψ2(j) = j−wψ1(j)−1. That is, ψ1 returns the index of a
party and ψ2 returns the relative index of a public key element in a party 2.

3. It defines a polynomial f ∈ Zp[X] of degree n− 1 such that f (j) = s⃗ψ1(j)[ψ2(j)] for each j ∈
[1 : n] where s⃗ψ1(j)[ψ2(j)] = dlogg(X⃗ψ1(j)[ψ2(j)]). That is, it defines f (x) = ∑ j∈[n] f (j)L j(x) by
using the Lagrange interpolation where f (j) = s⃗ψ1(j)[ψ2(j)] and L j(x) = ∏k∈[n],k ̸= j

x−k
j−k is the

Lagrange basis.

2For instance, if GD = (GID,{(. . . ,P1,w1 = 3),(. . . ,P2,w2 = 1),(. . . ,P3,w3 = 2)},m = 3,n = 6, t = 4), then {ψ1(1) =
1,ψ1(2)= 1,ψ1(3)= 1,ψ1(4)= 2,ψ1(5)= 3,ψ1(6)= 3} and {ψ2(1)= 1,ψ2(2)= 2,ψ2(3)= 3,ψ2(4)= 1,ψ2(5)= 1,ψ2(6)= 2}.

13

4. For each k ∈ {−(n− t), . . . ,−2,−1}, it derives the Lagrange coefficients {L j(k)} j∈[n] and com-
putes components as

Vk = g f (k) = ∏
j∈[n]

X⃗ψ1(j)[ψ2(j)]L j(k), Wk = H0(GID) f (k) = ∏
j∈[n]

Y⃗ψ1(j)[ψ2(j)]L j(k).

Next, it derives the Lagrange coefficients {L j(0)} j∈[n] and computes a component as

V0 = g f (0) = ∏
j∈[n]

X⃗ψ1(j)[ψ2(j)]L j(0).

5. It outputs a combine key CK =
(
{Vk}k∈[−(n−t):−1],{Wk}k∈[−(n−t):−1]

)
and a verification key V K =(

V0,W = H0(GID)
)
.

NIDTS.Sign(M,SK,PP): Let M ∈ {0,1}∗ and SK = s⃗. It outputs a partial signature σ⃗ = H1(M)⃗s ∈ Ĝw.

NIDTS.VerifyPart(σ⃗ ,M,PK,PP): Let PK = X⃗ . It checks that σ⃗ ∈ Ĝw and e(g,⟨σ⃗ ,⃗r⟩) ?
= e(⟨X⃗ ,⃗r⟩,H1(M))

by selecting a random vector r⃗ ∈ Zw
p . If the equation holds, it outputs 1. Otherwise, it outputs 0.

NIDTS.Combine(SS,M,GD,CK,PP): Let SS = {σ⃗i}, GD = (GID,{(PKi,RKi,Pi,wi)}m
i=1,n, t) where n =

∑
m
i=1 wi, and CK = ({Vk},{Wk}). Let Pσ be the set of parties in SS and PG be the set of parties in GD.

1. It initializes Q = /0 and wQ = 0. For each Pi ∈ Pσ ∩PG, it adds (Pi,wi) to Q and updates wQ =
wQ +wi if VerifyPart(σ⃗i,M,PKi,PP) = 1. If wQ < t, it outputs ⊥.

2. Let XQ be the set of t evaluation points corresponding to weighted parties in Q since parties can
be indexed by some canonical ordering 3. It derives the Lagrange coefficients {Li(0)}i∈XQ∪[−(n−t):−1]
that satisfy f (0) = ∑i∈XQ∪[−(n−t):−1] f (i)Li(0). We simply write {Li(0)}i∈XQ as {Lpar

i } and

{Li(0)}i∈[−(n−t):−1] as {Lpub
i }.

3. Next, it builds signature components

S0 = ∏
i∈XQ

σ
Lpar

i
i , S1 = ∏

i∈[−(n−t):−1]
V Lpub

i
i , S2 = ∏

i∈[−(n−t):−1]
W Lpub

i
i .

4. It outputs a threshold signature στ = (S0,S1,S2) ∈ Ĝ×G× Ĝ.

NIDTS.Verify(στ ,M,V K,PP): Let στ = (S0,S1,S2) and V K = (V0,W). It checks that

e(g,S0)
?
= e(V0/S1,H1(M)) ∧ e(S1,W)

?
= e(g,S2).

If the equations hold, it outputs 1. Otherwise, it outputs 0.
3For instance, if GD = (GID,{(. . . ,P1,w1 = 3),(. . . ,P2,w2 = 1),(. . . ,P3,w3 = 2)},m = 3,n = 6, t = 4) and Q = {(P1,w1 =

3),(P3,w3 = 2)}, then XQ = {1,2,3}∪{5}.

14

3.4 Correctness

Theorem 3.1. The NIDTS scheme is correct if the NIZKPoK system is correct.

Proof. For the correctness of the NIDTS scheme, we should show that if the first two conditions of the cor-
rectness experiment are not satisfied, i.e., (PG ̸⊆ PC)∧(∑Pi∈SH wi ≥ t), then the third condition should be sat-
isfied with all but negligible probability, i.e., Verify(σ∗τ ,M∗,V K∗,PP) = 1 where σ∗τ = Combine(SS∗,M∗,
GD∗,CK∗,PP).

In the GroupSetup algorithm, we have that e(g,Y⃗i[j]) = e(X⃗i[j],H0(GID)) and NIZKPoK.Verify(CRS,
X⃗i[j], π⃗i[j]) = 1 for all i ∈ [m] and j ∈ [w] from the property of batch verification [5, 13] and the correctness
of NIZKPoK. Thus we have that the following equation for Vj and Wj in CK∗ holds

e(Vk,W) = e(∏
j∈[n]

X⃗ψ1(j)[ψ2(j)]L j(k),H0(GID)) = ∏
j∈[n]

e(X⃗ψ1(j)[ψ2(j)],H0(GID))L j(k)

= ∏
j∈[n]

e(g,Y⃗ψ1(j)[ψ2(j)])L j(k) = e(g, ∏
j∈[n]

Y⃗ψ1(j)[ψ2(j)]L j(k)) = e(g,Wk).

From the above equation, we have that the following second verification equation for S1 and S2 in σ∗τ holds

e(S1,W) = e(∏
i∈[−(n−t):−1]

V Lpub
i

i ,W) = ∏
i∈[−(n−t):−1]

e(Vi,W)Lpub
i

= ∏
i∈[−(n−t):−1]

e(g,Wi)
Lpub

i = e(g, ∏
i∈[−(n−t):−1]

W Lpub
i

i) = e(g,S2).

For any Pj ∈ SH , we have that σ⃗ j = H1(M∗)⃗s j and it passes VerifyPart since σ⃗ j is generated by the
oracle OSign(Pj,M∗) where s⃗ j is the secret key of Pj. We also claim that for any Pj ∈ Q \ SH , we have
σ⃗ j = H1(M∗)⃗s j and it passes VerifyPart since if σ⃗ j ̸= H1(M∗)⃗s j , then e(g,⟨σ⃗ j ,⃗r⟩) ̸= e(⟨X⃗ j ,⃗r⟩,H1(M∗))
except with negligible probability by the property of batch verification. Thus we have ∑Pi∈Q wi ≥ t since
∑Pi∈SH wi ≥ t and partial signatures in SH ∪ (Q \ SH) are valid. Since the degree of the polynomial f (x) is
at most n−1 and |XQ|= t, it can be correctly reconstructed by using the Lagrange interpolation at points in
XQ∪{−(n− t), . . . ,−1}. Thus, the following first verification equation for S0 and S1 in σ∗τ holds

e(V0/S1,H1(M∗)) = e(ĝ f (0)/ ∏
i∈[−(n−t):−1]

V Lpub
i

i ,H1(M∗))

= e(ĝ∑i∈XQ
f (i)Lpar

i +∑i∈[−(n−t):−1] f (i)Lpub
i /ĝ∑i∈[−(n−t):−1] f (i)Lpub

i ,H1(M∗))

= e(ĝ∑i∈XQ
f (i)Lpar

i ,H1(M∗)) = e(g,H1(M∗)
∑i∈XQ

f (i)Lpar
i)

= e(g, ∏
i∈XQ

H1(M∗) f (i)Lpar
i) = e(g, ∏

i∈XQ

σ
Lpar

i
i) = e(g,S0).

Therefore, we have Verify(σ∗τ ,M∗,V K∗,PP) = 1.

3.5 Extensions

In this section, we describe an interesting modification or extension of our NIDTS schemes.

Short Partial Signatures. The underlying BLS signature scheme has two variants: the short signature
scheme or the short public key scheme, depending on how the group elements of public keys and signatures

15

are located [11]. Our NIDTS scheme supports short public keys because public keys are located in G and
partial signatures are located in Ĝ. The signature scheme with short public keys is suitable for a blockchain
environment where the public keys of parties must be recorded on-chain. If short public keys are preferred
than short partial signatures in some environments, our NIDTS scheme can be modified to support short
partial signatures by locating public keys in Ĝ, register keys in G, and partial signatures in G. In this case,
the final threshold signature consists of three group elements in G2× Ĝ.

Group Specific Signatures. In our NIDTS scheme, the partial signature of a party has the form of H1(M)s.
Thus, if a party creates a partial signature on a message M, the party creates a partial signature that can be
applied to all groups to which the party belongs. That is, this partial signature is not related to one specific
group, but is related to all groups. If a party wants to generate only a partial signature for one specific group
to which the user belongs, the party can generate a partial signature in the form of H1(GID||M)s where GID
is a group identifier. In this case, if all other parties also generates partial signatures in the same way, a
threshold signature for this specific group can be derived by combining these partial signatures of parties.

Batch Verification for Partial Signatures. The combining algorithm first verifies whether the partial signa-
tures provided by signing parties are valid or not, and then combines these valid partial signatures to derive a
threshold signature. If we analyze the performance of this algorithm, we can notice that the partial signature
verification step takes up most of the algorithm running time rather than the partial signature combining
step. To improve the performance of this algorithm, we can perform batch verification to verify all partial
signatures at once [5, 13]. That is, the algorithm first collects a number of partial signatures to perform
batch verification, and if the batch verification fails, then it verifies each partial signature one by one. In this
case, if the partial signatures are mostly valid signatures, the partial signature verification can be reduced to
2 pairing operations and 2t multi-exponentiation operations, except for checking the membership of group
elements.

4 Security Analysis

In this section, we prove the security (unforgeability) of our NIDTS schemes under complexity assumptions.
For the proof, we basically follow the security proofs of the BLS scheme and the MTS scheme [2, 11].

The basic idea of the security proof is to construct a reduction algorithm that can extract the solution of the
co-CDH assumption from the forgery of an attacker. Initially, the challenge of the co-CDH assumption is
given as (g,gα , ĝα , ĝβ). Next the reduction algorithm embeds the value gα in the public key and the value
ĝα in the register key of some honest parties. In addition, the reduction algorithm embeds the value ĝβ in
the H1 hash query for some messages.

In this case, if the attacker requests a corrupt query for an honest party, then the reduction can answer
this query if gα is not embedded in the public key of the party. If the attacker requests a signature query for
a message M, then the reduction can answer this query for all cases except the case where gα is embedded
in the public key and ĝβ is embedded in H1(M). Finally, if the attacker submits a forged threshold signature
for the target message M∗, ĝβ is embedded in H1(M∗), and gα is embedded in the one of the secret keys of
group parties, then the reduction can derive the solution ĝαβ from the forged threshold signature.

The main part of the reduction proof is to show that the reduction can extract the co-CDH solution from
the forged threshold signature submitted by the attacker. In the BLS scheme, it is relatively easy to extract
the co-CDH solution since it is in the single user setting. In contrast, in the NIDTS scheme, it is not easy
to extract the co-CDH solution since the forged signature include not only the secret keys of honest parties
selected by reduction, but also the secret keys of corrupted parties selected by the attacker. The reduction

16

uses a proof-of-knowledge extractor to obtain the secret keys of the corrupted parties chosen by the attacker,
and a knowledge extractor of the exponent to ensure that the attacker creates a forged signature as a linear
combination of public components which are generated from the public keys of all parties. The detailed
security analysis is given in the following theorem.

Theorem 4.1. The NIDTS scheme is unforgeable in the random oracle model if the co-CDH and n-AugKEA
assumptions hold and the NIZKPoK system is zero-knowledge and simulation extractable.

Proof. We first define a sequence of hybrids Game0,Game1, . . . ,Game4 where Game0 is the original game
and Game4 is the final game that solves the co-CDH problem. For the proof of this theorem, we first
describe the simulator of the final game and later we explain how the simulator of the original game can be
modified to the final simulator through a sequence of hybrid games.

Suppose there exists an adversaryA that forges the above NIDTS scheme with non-negligible advantage
ε . Let SimNIZKPoK and ExtNIZKPoK be the simulator and extractor of the NIZKPoK system. Let Extn-AugKEA

be the knowledge extractor of the n-AugKEA. A simulator B in the final hybrid Game4 that breaks the co-
CDH assumption is given as input a challenge tuple D = ((p,G,Ĝ,GT ,e,g, ĝ),gα , ĝα , ĝβ). B that interacts
with A is described as follows:

Description of the Simulator: B prepares CRS of NIZKPoK for DL on the cyclic group Ĝ. It sets PP =
((p,G,Ĝ,GT ,e,g, ĝ),CRS,W) and gives PP to A.
A can access H0,H1 hash oracles, OGenKey, OGenRegKey, OCorrupt, and OSign oracles. Let qh be the
number of H1 hash queries and qk be the number of key generation queries. B simulates these oracles as
follows:

• H0(GID): If GID ∈ H0-List, then it retrieves (GID,u,k′) from H0-List and responses with u. Other-
wise, it selects a random k′ ∈ Zp and sets u = ĝk′ . It adds (GID,u,k′) to H0-List and responds with
u.

• H1(M): If M ∈ H1-List, then it retrieves (M,h,b,s′) from H1-List and responses with h. Otherwise,
it generates a random coin b ∈ {0,1} with Pr[b = 1] = 1/qh. It selects a random s′ ∈ Zp and sets
h = (ĝβ)bĝs′ . It adds (M,h,b,s′) to H1-List and responds with h.

• OGenKey(Pi): If Pi ∈ PH ∪PC, it responds with ⊥. It proceeds the following steps:

1. It generates a random coin c ∈ {0,1} with Pr[c = 1] = 1/(qk + 1) and selects a random vector
r⃗ ∈ Zw

p . If c = 1, it selects a random vector a⃗ ∈ Z∗Wp . Otherwise, it sets a⃗ = 0w. If c = 0, it sets
SK = r⃗. Otherwise, it sets SK as empty. It sets X⃗ = (gα)c⃗ag⃗r.

2. It updates PH = PH ∪ {Pi}. It also updates PE = PE ∪ {Pi} if c = 1. It sets PK = X⃗ , adds
(Pi,SK,PK,c, a⃗,⃗r) to Key-List, and responds with PK.

• OGenRegKey(Pi,GID): If Pi ∈ PH ∪PC, it responds with ⊥. It proceeds the following steps:

1. It retrieves (Pi,SK,PK,c, a⃗,⃗r) from Key-List. It also queries H0(GID) and retrieves (GID,u,k′)
from H0-List and sets Y⃗ = ((ĝα)c⃗aĝ⃗r)k′ .

2. If c = 0, then it generates π⃗ by running NIZKPoK.Prove(CRS, X⃗ [j],SK[j]) for each j ∈ [w].
Otherwise, it generates π⃗ by using the simulator SimNIZKPoK(X⃗ [j]) for each j ∈ [w].

3. It sets RK = (GID,Y⃗ , π⃗) and responds with RK.

17

• OCorrupt(Pi): It updates PC = PC ∪{Pi}. If Pi ∈ PH , it updates PH = PH \{Pi}. Otherwise (Pi ̸∈ PH),
it responds with ⊥. It proceeds the following steps:

1. It retrieves (Pi,SK,PK,c, a⃗,⃗r) from Key-List. If c = 0, it responds with SK. Otherwise, it
declares failure (Bad1 = 1) and aborts since it cannot handle this corrupt query.

• OSign(Pi,M): If Pi ̸∈ PH , it responds with⊥. It updates PH,M = PH,M∪{Pi}. It proceeds the following
steps:

1. It retrieves (M,h,b,s′) from H1-List and retrieves (Pi,SK,PK,c, a⃗,⃗r) from Key-List.

2. If c = 0, it obtains σ⃗ by running Sign(M,SK[j],PP) for each j and responds with σ⃗ .

3. If c = 1∧b = 0, it sets σ⃗ = ((ĝα)c⃗aĝ⃗r)s′ and responds with σ⃗ .

4. Otherwise (c = 1∧ b = 1), it declares failure (Bad2 = 1) and aborts since it cannot handle this
sign query.

A outputs a group description GD∗ = (GID,{(PKi,RKi,Pi,wi)}m
i=1,n, t), a message M∗, and a threshold

signature σ∗τ . Let PG be the set of parties Pi ∈ GD∗. B derives CK∗ = ({Vk},{Wk}) and V K∗ = (V0,W) by
running GroupSetup(GD∗,PP) where f (x) is the polynomial of this ad-hoc group, and then proceeds the
following steps:

1. If PE ∩PG = /0, then it declares failure (Bad3 = 1) and aborts since gα is not embedded in the target
group.

2. It retrieves (M∗,h,b,s′) from H1-List. If b = 0, then it declares failure (Bad4 = 1) and aborts since ĝβ

is not embedded in the target message. Otherwise, we have that H1(M∗) = (ĝβ)bĝs′ .

3. If ∑Pi∈PG∩(PC∪PH,M∗)
wi < t and Verify(σ∗τ ,M∗,V K∗,PP) = 1, then it proceeds as follows:

(a) For each Pi ∈PC∩PG, it extracts a secret key r⃗i of PKi by using the extractor ExtNIZKPoK(A, π⃗i[j],
X⃗i[j]) for each j where PKi = X⃗i and RKi = (GID,Y⃗i, π⃗i). If the extraction fails, then it declares
failure (Bad5 = 1) and aborts.

(b) It computes (v0,u0) and {(v j,u j)} j∈[−(n−t):−1] such that V0 = (gα)v0gu0 and Vj = (gα)v j gu j for
each j ∈ [−(n− t) : −1] by using {⃗ri}Pi∈PC∩PG from extracted secret keys, {(ci, a⃗i ,⃗ri)}Pi∈PH∩PG

from Key-List, and Lagrange coefficients {Li(k)}i∈[n] for all k ∈ [−(n− t) : 0].
This can be done as follows: Let L be the n× (n− t + 1) matrix that maps [f (1), . . . , f (n)] to
[f (−(n− t)), . . . , f (−1), f (0)] where the column of the matrix consists of (L1(k), . . . ,Ln(k)) for
k ∈ [−(n− t) : 0] where Li(k) is the Lagrange coefficient. Then we have (⃗v,v0) = s⃗a · L and
(⃗u,u0) = s⃗r ·L where s⃗a = (⃗aψ1(1)[ψ2(1)]cψ1(1), . . . , a⃗ψ1(n)[ψ2(n)]cψ1(n)), s⃗r = (⃗rψ1(1)[ψ2(1)], . . . ,
r⃗ψ1(n)[ψ2(n)]), v⃗=(v−(n−t), . . . ,v−1), and u⃗=(u−(n−t), . . . ,u−1) since f (j)=α a⃗ψ1(j)[ψ2(j)]cψ1(j)
+ r⃗ψ1(j)[ψ2(j)] for j ∈ [n] by setting a⃗ψ1(j) = 0 and cψ1(j) = 0 if Pψ1(j) ∈ PC ∩PG.

(c) It parses σ∗τ =(S0,S1,S2). It extracts coefficients {δi}i∈[−(n−t):−1] by using the extractor Extn-AugKEA

(A,CK∗) such that S1 = ∏i∈[−(n−t):−1]V
δi
i and S2 = ∏i∈[−(n−t):−1]W

δi
i . If the extraction fails,

then it declares failure (Bad6 = 1) and aborts. Next, it computes v1 = ⟨⃗v, δ⃗ ⟩= ∑i∈[−(n−t):−1] viδi

and u1 = ⟨⃗u, δ⃗ ⟩= ∑i∈[−(n−t):−1] uiδi such that S1 = (gα)v1gu1 .

18

(d) If v0− v1 = 0, then it declares failure (Bad7 = 1) and aborts. Otherwise, it outputs the co-CDH
solution as

ĝαβ =
(

S0 ·H1(M∗)−(u0−u1)
)1/(v0−v1)

· (ĝα)−s′ .

This completes the description of the simulator in the final game.

Analysis of the Hybrid Games. Let Forgei be the event that the adversary A outputs a valid forgery that
satisfies two conditions in a hybrid game Gamei.

Game0: This game is the original experiment in Definition 3.4 with H0,H1 hash oracles. A simulator B in
this game simply handles these hash oracle queries by selecting a random value and keeps this value in H0-
List and H1-List hash tables respectively. The adversary A in this experiment will produce a valid forgery
that satisfies two conditions with non-negligible probability. That is,

Pr[Forge0]≥ ε. (4.1)

Game1: In this game, we modify the register key generation oracle OGenRegKey of B to generate π of
some public keys by using the simulator SimNIZKPoK of the NIZKPoK system although it has the corre-
sponding secret keys. The modified OGenKey and OGenRegKey is described as follows:

• OGenKey(Pi): If Pi ∈ PH ∪PC, it responds with ⊥. It proceeds the following steps:

1. It generates a random coin c ∈ {0,1} with Pr[c = 1] = 1/(qk + 1) and selects a random vector
r⃗ ∈ Zw

p . It sets SK = r⃗. It sets X⃗ = g⃗r.

2. It updates PH = PH ∪{Pi}. It sets PK = X⃗ , adds (Pi,SK,PK,c,−,⃗r) to Key-List, and responds
with PK.

• OGenRegKey(Pi,GID): If Pi ̸∈ PH , it responds with ⊥. It proceeds the following steps:

1. It retrieves (Pi,SK,PK,c,−,⃗r) from Key-List. It queries H0(GID) and retrieves (GID,u,k′)
from H0-List and sets Y⃗ = (g⃗r)k′ .

2. If c = 0, then it generates π⃗ by running NIZKPoK.Prove(CRS, X⃗ [j],SK[j]) for each j. Other-
wise, it generates π⃗ by using the simulator SimNIZKPoK(X⃗ [j]) for each j.

3. It sets RK = (GID,Y⃗ , π⃗) and responds with RK.

Because of the zero-knowledge property of the NIZKPoK system, we have that

Pr[Forge1] = Pr[Forge0]. (4.2)

Game2: In this game, we modify the key generation oracle OGenKey to embed the challenge gα to some
public keys and the hash oracle H1 to embed the challenge ĝβ to some messages. The modified oracles
OGenKey and H1 are described in the above simulator. Because of this modification, the simulator B
declares failure by setting bad events and aborts at the following places:

1) It declares failure (Bad1 = 1) and aborts in OCorrupt if it cannot answer a secret key without the
knowledge of α .

2) It declares failure (Bad2 = 1) and aborts in OSign if it cannot answer a partial signature without the
knowledge of α and β .

19

3) After the output of A, it declares failure (Bad3 = 1) and aborts if gα is not embedded to some public
keys in the target group GD∗.

4) After the output of A, it declares failure (Bad4 = 1) and aborts if ĝβ is not embedded to the target
message M∗.

By using the conditional probability and the claims 4.2, 4.3, and 4.4, we have the following probability

Pr[∧4
i=1¬Badi∧Forge2] = Pr[¬Bad1∧¬Bad2] ·Pr[Forge2|¬Bad1∧¬Bad2]·

Pr[Forge2∧¬Bad3∧¬Bad4|¬Bad1∧¬Bad2∧Forge2]

≥ 1/(e4qh) ·Pr[Forge1] (4.3)

where e is the base of natural logarithms.

Claim 4.2. Pr[¬Bad1∧¬Bad2]≥ 1/e2.

Proof. By using the conditional probability and the fact that two events are independent since signing
queries are requested for non-corrupted parties, we obtain the following probability

Pr[¬Bad1∧¬Bad2] = Pr[¬Bad1] ·Pr[¬Bad2].

Let qc be the number of corrupt queries for honest parties and qs be the number of signing queries. Since
qc ≤ qk and qs ≤ qhqk, we can obtain the following lower bounds as

Pr[¬Bad1] = (1−1/(qk +1))qc ≥ (1−1/(qk +1))qk ≥ 1/e,

Pr[¬Bad2] = (1−1/(qh(qk +1)))qs ≥ (1−1/(qhqk +1))qhqk ≥ 1/e.

Thus, we have Pr[¬Bad1∧¬Bad2]≥ 1/e2.

Claim 4.3. Pr[Forge2|¬Bad1∧¬Bad2] = Pr[Forge1].

Proof. In the game Game2, the responds of hash queries, key generation queries, corrupt queries, and
signing queries are the same as the game Game1 since public keys, corrupted secret keys, and signatures
are all valid if two events Bad1 and Bad2 are not occurred. Thus, A will produce a valid forgery with
probability Pr[Forge1].

Claim 4.4. Pr[Forge2∧¬Bad3∧¬Bad4|¬Bad1∧¬Bad2∧Forge2]≥ 1/(e2qh).

Proof. By using the independence of bad events and the conditional probability, we can derive the following
probability

Pr[Forge2∧¬Bad3∧¬Bad4|¬Bad1∧¬Bad2∧Forge2]

= Pr[¬Bad3|¬Bad1∧¬Bad2∧Forge2] ·Pr[¬Bad4|¬Bad1∧¬Bad2∧Forge2]

= Pr[¬Bad3] ·Pr[¬Bad4|¬Bad2]

= Pr[¬Bad3] ·
Pr[¬Bad4]

Pr[¬Bad2]
·Pr[¬Bad2|¬Bad4]

≥ Pr[¬Bad3] ·Pr[¬Bad4] ·Pr[¬Bad2|¬Bad4].

20

Since PE ⊆ PH , |PH | ≤ qk, and t − 1 ≤ qk from the definition of unforgeability, we obtain the following
probability bounds

Pr[¬Bad3] = (1−1/(qk +1))|PE∩PG| ≥ (1−1/(qk +1))qk ≥ 1/e,

Pr[¬Bad4] = 1/qh,

Pr[¬Bad2|¬Bad4] = (1−1/(qk +1))t−1 ≥ (1−1/(qk +1))qk ≥ 1/e.

This completes the claim.

Game3: In this game, we modify the simulator to extracts all secret keys of corrupted parties in the target
group GD∗ by using the knowledge extractor of the NIZKPoK system, and to extract all Lagrange coeffi-
cients by using the knowledge extractor of the n-AugKEA. To invoke this knowledge assumption, we set
the group elements h1, . . . ,hn−t , ĥa

1, . . . , ĥ
a
n−t to public components g f (−1), . . . ,g f (−(n−t)), H0(GID) f (−1), . . . ,

H0(GID) f (−(n−t)) by programming H0(GID) = ĝa where GID ∈ GD∗ and set auxiliary input z as co-CDH
instance (gα , ĝα , ĝβ). Next, we fix all randomness of the simulator and treat A as a circuit that plays the
security game. The simulator can handle all queries of the adversary by using the auxiliary input which is
the co-CDH instance and extract the all coefficients by using the knowledge extractor since the n-AugKEA
holds for all h1, . . . ,hn, ĥ1, . . . , ĥn. Because of this modification, the simulator declares failure (Bad5 = 1)
and aborts if the extraction of these secret keys fails, and declares failure (Bad6 = 1) and aborts if the ex-
traction of these coefficients fails. Since the probability of the knowledge extractors fail is negligible, we
obtain the following equation

Pr[∧6
i=1¬Badi∧Forge3] = Pr[∧6

i=5¬Badi] ·Pr[∧4
i=1¬Badi∧Forge3|∧6

i=5¬Badi]

= (1−Pr[∨6
i=5Badi]) ·Pr[∧4

i=1¬Badi∧Forge2]

≥ Pr[∧4
i=1¬Badi∧Forge2]−Pr[Bad5∨Bad6]

≥ Pr[∧4
i=1¬Badi∧Forge2]−negl(λ). (4.4)

Game4: In this game, we modify the simulator to check that v0−v1 ̸= 0 after computing v0 and v1, and then
to solve the solution of the co-CDH assumption. Because of this modification, the simulator declares failure
(Bad7 = 1) and aborts if v0− v1 = 0. From the claims 4.5 and 4.6, we obtain the following equation

Advco-CDH = Pr[∧7
i=1¬Badi∧Forge4]

= Pr[¬Bad7] ·Pr[∧6
i=1¬Badi∧Forge4|¬Bad7]

≥ (1/(qk +1)−1/p) ·Pr[∧6
i=1¬Badi∧Forge3]. (4.5)

Claim 4.5. Pr[¬Bad7]≥ 1/(qk +1)−1/p.

Proof. Let δ⃗ = (δ−(n−t), . . . ,δ−1) be the vector of extracted coefficients from the adversary. To argue this
claim, we have that

v0− v1 =−(v1− v0) =−⟨(⃗v,v0), (⃗δ ,−1)⟩= −⃗sa ·L · (⃗δ ,−1)T .

Let δ⃗T = (⃗δ ,−1) ·LT . Since LT is full row rank and (⃗δ ,−1) ̸= 0n−t+1, δ⃗T contains less than n− t +1 zero
entries. Since the total weight of A is at most t− 1, there must exist some index i such that 1) δ⃗T [i] ̸= 0
by pigeonhole principle and 2) s⃗a[i] is randomly sampled with probability 1/(qk +1). Let s⃗∗a and δ⃗ ∗T be the

21

truncated vectors that only consists of these indexes. Then we have Pr[v1− v0 = 0] = Pr⃗sa [⟨⃗s∗a, δ⃗ ∗T ⟩ = 0] ≤
1/p. Thus, we have

Pr[v1− v0 = 0]≤ 1−1/(qk +1)+1/p.

This completes the claim.

Claim 4.6. Pr[∧7
i=1¬Badi∧Forge4] = Advco-CDH .

Proof. Since V0 = (gα)v0gu0 and S1 = (gα)v1gu1 , we have that S0 = H1(M∗)αv0+u0 ·H1(M∗)−(αv1+u1) =
H1(M∗)α(v0−v1)H1(M∗)(u0−u1). By the setting H1(M∗) = ĝβ ĝs′ and the condition v0− v1 ̸= 0, the final step
of the simulator can correctly derive the co-CDH solution as(

S0 ·H1(M∗)−(u0−u1)
)1/(v0−v1)

· (ĝα)−s′ = (ĝβ ĝs′)α · (ĝα)−s′ = ĝαβ .

This completes the claim.

Therefore, by combining the above equations (4.1), (4.2), (4.3), (4.4), and (4.5) of hybrid games, we
obtains the following equation

Advco-CDH ≥
(

1
qk +1

− 1
p

)(
1

e4qh
· ε−negl(λ)

)
≈ 1

e4qh(qk +1)
· ε (4.6)

where ε is the advantage of the adversary. This completes our proof.

5 Implementation and Performance Analysis

In this section, we implement our NIDTS scheme and compare the performance of our NIDTS scheme with
the MTS scheme.

We implement our NIDTS scheme by using Rust and release it on GitHub4. To do this, we implement
our NIDTS scheme by modifying the implementation of the MTS scheme. To measure the performance,
we use a laptop with Intel i7-1185G7 3.0GHz CPU and 16GB RAM specifications, and implement a single-
threaded version of the algorithm.

5.1 Implementation

Since our NIDTS scheme uses pairing groups, we choose the BLS12-381 curve as the base pairing-based
curve. The BLS12-381 curve which belongs to the BLS family of Barreto, Lynn, and Scott [3], is a pairing-
based elliptic curve with 128-bit security and was proposed by Sean Bowe [12]. In BLS12-381, although
the embedding degree is 12, the size of the G group is 48 bytes and the size of the Ĝ group is 96 bytes, and
an efficient map-to-hash algorithm exists. Because of these reasons, BLS12-381 is widely used in recent
blockchains. The benchmarks of basic operations in the BLS12-381 curve is given in Table 2.

In our NIDTS scheme, the GroupSetup algorithm is the most time consuming one. This algorithm con-
sists of a part that verifies the public keys and register keys of parties, a part that calculates the Lagrange
coefficients, and a part that derives the combining key and verification key by using the Lagrange inter-
polation method. If this algorithm is implemented in a simple way, the part of calculating the Lagrange

4Our NIDTS implementation is available at https://github.com/guspinlee/nidts

22

https://github.com/guspinlee/nidts

Table 2: Benchmarks of operations in bilinear groups

Curve G Ĝ MZp HG HĜ EG EĜ P

BLS12-381 381 bits 762 bits 0.0002 0.130 0.729 0.452 1.493 1.801

All benchmarks are measured in milliseconds. We use symbols MZp for multiplication in Zp, HG for map-to-
hash in G, EG for exponentiation in G, and P for pairing.

Table 3: Key and signature size analysis of MTS and NIDTS schemes

Scheme PK OM or RK CK VK PS TS

MTS [2] wG (n− t +w)G+wZp 2(n− t)G G+ Ĝ wĜ 2G+ Ĝ

NIDTS wG wG+wĜ+wZp (n− t)G+(n− t)Ĝ G+ Ĝ wĜ G+2Ĝ

Let n be the total number of weights, t be a threshold, and w be a weight bound. We use PK for public key, OM
for online message in MTS, RK for register key in NIDTS, CK for combine key, VK for verification key, PS for
partial signature, and TS for threshold signature.

coefficients takes up most of the algorithm computation as the number of parties increases. The reason is
that this algorithm requires (n− t)n number of Lagrange coefficients, and one Lagrange coefficient requires
n scalar multiplications, so it takes approximately O(n3) scalar multiplications to calculate all Lagrange
coefficients. This problem of computing Lagrange coefficients is the same problem that occurs not only in
our NIDTS scheme but also in the MTS scheme.

To overcome this problem, we show that it is possible to compute all Lagrange coefficients with O(n2)
scalar multiplications instead of O(n3) scalar multiplications by using the barycentric form of the Lagrange
basis polynomial [7]. We can derive the barycentric form of the Lagrange basis polynomial as follows:

Li(x) = ∏
k∈[n]\{i}

(x− k)
(i− k)

= ∏
k∈[n]

(x− k) · ∏
k∈[n]\{i}

(i− k)−1 · 1
(x− i)

= comp(x) ·barywi ·
1

(x− i)
.

In the above formula, the first part comp(x) is a common polynomial to every basis polynomial since it
depends on a variable x but is independent of an index i, the second part barywi is a constant that is inde-
pendent of x and only depends on i, and the last part 1/(x− i) is a value dependent on both x and i. Thus,
if an algorithm pre-computes all values {comp(x)}x∈[−(n−t):−1] and {barywi}i∈[n], then it can compute all
Lagrange coefficients with approximately (n− t) ∗ n+ n ∗ n+ n ∗ n = O(n2) scalar multiplications. We ap-
plied this efficient Lagrange coefficient computation to our NIDTS scheme as well as the MTS scheme for
fair comparison. For instance, when we set m = 500,w = 1, and t = 250, the UnivGeno f f algorithm of the
MTS scheme takes 983 seconds in the simple method, but it only takes 226 seconds in the modified method,
which is 4.3 times faster. In the same setting, the GroupSetup algorithm of our NIDTS scheme takes 765
seconds in the simple method, but it only takes 42 seconds in the modified method, which is approximately
18.2 times faster.

5.2 Size and Algorithm Analysis

We compare the size of the public key, combine key, verification key, partial signature, and threshold signa-
ture of the NIDTS and MTS schemes. The detailed comparison for these keys and signatures are shown in

23

Table 4: Algorithm analysis of MTS and NIDTS schemes

Scheme GenKey Key Setup Sign Combine Verify

MTS [2] wEG n2P + n2EG + wEĜ + HĜ nP + 1
2 n(w+2)EG + 4P + HĜ

2n2MZp
1
2 n(w+1)EĜ

NIDTS wEG 2nP + 1
2 n2EG + wEĜ + HĜ nP + 1

2 n(w+1)EG + 4P + HĜ
1
2 n2EĜ + 2n2MZp

1
2 n(w+2)EĜ

Let m be the number of parties, w be a weight bound, and n be the total weights such that n = mw. We set a
threshold t = n/2. We use symbols HG for map-to-hash in G, EG for exponentiation in G, MZp for multiplication
in Zp, and P for pairing.

Table 3. In both the MTS and NIDTS schemes, the public key, the verification key, and the partial signature
are consist of wG,G+ Ĝ, and wĜ, respectively, and are identical to both schemes. That is, in the case of
w = 1, the size of the public key is 48 bytes, the size of the verification key is 143 bytes, and the size of the
partial signature is 96 bytes. The combine key of the MTS scheme consists of 2(n− t)G elements, whereas
the combine key of the NIDTS scheme consists of (n− t)G elements and (n− t)Ĝ elements. For instance,
in the case of setting m = 1000,w = 1, and t = 500, the combine key of the MTS scheme is 47 kilobytes and
the combine key of the NIDTS scheme is 71 kilobytes. The threshold signature has a fixed length size for
both schemes, but the MTS scheme consists of 2G+ Ĝ which is 191 bytes, and the NIDTS scheme consists
of G+2Ĝ groups which is 239 bytes. Thus, the threshold signature size of our NIDTS scheme is 1.25 times
longer than that of the MTS scheme.

We analyze the inbound bandwidth of transmitted messages from the point of view of a combiner. In
the key setup process of the MTS scheme, at least t individual parties should generates and delivers online
messages to the combiner. Thus, it requires that approximately t(n− t +w)G+ twZp elements must be
delivered. In the key setup process of the NIDTS scheme, m parties generates and delivers register keys
to the combiner. Thus, it requires that approximately mwG+mwĜ+mwZp elements should be delivered.
For instance, in the case of setting m = 1000,w = 1, and t = 500, the bandwidth of the MTS scheme is
approximately 11.946 MB and the bandwidth of the NIDTS scheme is approximately 0.174 MB. Thus, the
bandwidth of the NIDTS scheme is about 68 times more efficient than that of the MTS scheme.

Next, we analyze the key generation, key setup, signing, combining, and verification algorithms of the
MTS and NIDTS schemes. Most of the algorithms of two schemes are almost similar in performance except
the key setup algorithm that generates the combine key and verification key. The asymptotic analysis of these
algorithms is given in Table 4. In two schemes, the key generation, signing, and verification algorithms have
a fixed amount of computation if the weight bound is fixed. In the combining algorithms of both schemes,
the most of the time is spent for verifying partial signatures generated by external parties, and there is a
slight difference in the amount of computation due to the different group elements are used in the combine
key.

We analyze the performance of the key setup algorithms of both schemes. In the case of the MTS
scheme, the key setup process consists of the UnivSetupon algorithm performed by the parties and the
UnivSetupo f f algorithm performed by the combiner. Since each party can perform this algorithm in parallel,
we consider the sum of the execution of one UnivSetupon algorithm and the execution of the UnivSetupo f f

algorithm as the amount of computation of the key setup process. Similarly, since the NIDTS scheme
consists of the GenRegKey algorithm performed by the parties and the GroupSetup algorithm performed

24

Table 5: Performance analysis of our NIDTS scheme

(m,w,n) GenKey GenRegKey GroupSetup Sign Combine Verify

(100,1,100) 0.0005 0.002 2.279 0.002 0.289 0.007
(200,1,200) 0.0005 0.002 8.834 0.002 0.548 0.007
(300,1,300) 0.0005 0.002 17.867 0.002 0.773 0.007
(100,5,500) 0.002 0.010 50.657 0.008 0.905 0.008
(200,5,1000) 0.002 0.011 164.704 0.007 1.645 0.007
(300,5,1500) 0.002 0.010 352.857 0.007 2.503 0.007
(100,10,1000) 0.005 0.019 161.081 0.015 1.106 0.010
(200,10,2000) 0.005 0.019 619.387 0.015 2.354 0.007
(300,10,3000) 0.005 0.019 1399.526 0.014 3.744 0.007

All benchmarks are measured in seconds. Let m be the number of parties, w be a weight bound, and n be the
total weights. We set a threshold t = n/2.

the combiner, we consider the sum of the GenRegKey execution and the GroupSetup execution as the key
setup process. As pointed out above, we can reduce the computation of Lagrange coefficients from O(n3)
multiplication to O(n2) multiplication by using the barycentric form. In this case, the MTS scheme needs
to perform approximately O(n2) pairings, O(n2) exponentiations, and O(n2) scalar multiplications. In the
NIDTS scheme, the key setup requires O(n) pairings, O(n2) exponentiations, and O(n2) scalar multiplica-
tions.

5.3 Performance Analysis

The detailed performance of our NIDTS algorithms according to the number of parties and the weight bound
is shown in Table 5. As analyzed above, the key generation, register key generation, and signing algorithms
increase execution time linearly as the weight bound increases, but it can be seen that they are very efficient
in an environment where the weight bound is small. The verification algorithm is very efficient regardless
of the number of parties and the weight bound. The group setup algorithm requires O(n2) exponentiations
where n = mw, so the execution time increases quickly as the number of parties increases and the weight
bound increases. However, the group setup algorithm is performed by a strong external server (or combiner),
and it is sufficient for the server to run this algorithm only once during the initial group setup. In addition,
parallelization can be used to further improve performance. The combining algorithm is also performed
by an external combiner, not by individual parties, and it can be seen that it is quite efficient even when n
increases, and additional improvement in performance is possible by using parallelization.

The performance comparison of our NIDTS algorithms and MTS algorithms is shown in Table 6. For
a fair comparison, we modify the implementation of the MTS scheme to verify all online messages and
externally given partial signatures, and to use fast Lagrange coefficients computation using the barycentric
form. For comparison, we set different values for the number of parties, m, and set the weight bound and
the threshold to w = 1 and t = n/2, respectively. As revealed in the algorithm analysis, the performance of
the key generation, signing, combining, and verification algorithms have little difference between the two
schemes, and it can be confirmed that they operate very efficiently.

The biggest difference between the two schemes is the key setup process. In the MTS scheme, the key

25

Table 6: Performance comparison of MTS and NIDTS schemes

Scheme Parties m 100 200 500 1000 2000

MTS [2] GenKey 0.0005 0.0005 0.0005 0.0005 0.0005
UnivGenon 0.618 2.484 15.532 66.139 255.704
UnivGeno f f 9.178 36.170 233.242 902.874 3887.207
Sign 0.002 0.002 0.002 0.002 0.002
Combine 0.259 0.502 1.248 2.512 5.186
Verify 0.008 0.008 0.009 0.008 0.008

NIDTS GenKey 0.0005 0.0005 0.0005 0.0005 0.0005
GenRegKey 0.002 0.002 0.002 0.002 0.002
GroupSetup 2.279 8.834 42.783 164.804 623.025
Sign 0.002 0.002 0.002 0.002 0.002
Combine 0.289 0.548 1.292 2.589 5.321
Verify 0.007 0.007 0.007 0.007 0.007

All benchmarks are measured in seconds. Let m be the number of parties. We set a weight bound w = 1 and
a threshold t = n/2.

setup process consists of the UnivGenon algorithm that is performed by an individual party to generate an
online message and the UnivGeno f f algorithm that is performed by the combiner to generate a combine
key and verification key for the universe. At this time, to ensure the security of the MTS scheme, at least t
parties must perform the UnivGenon algorithm and these online messages must be given to the UnivGeno f f

algorithm. However, if the number of parties is m = 1000, it is not easy for a single party to run this
algorithm because the execution time of the UnivGenon algorithm exceeds 66 seconds. To complete key
setup, individual parties must generate online messages and the combiner must run UnivGeno f f algorithm.
For instance, it takes at least 968 seconds for m = 1000 and it takes at least 4142 seconds for m = 2000.
Unlike this, the key setup process of the NIDTS scheme consists of the GenRegKey algorithm and the
GroupSetup algorithm. For instance, it takes about 164 seconds for m = 1000 and about 623 seconds for
m = 2000. Thus, comparing the two schemes, the key setup process of the NIDTS scheme is 5.9 times
faster for m = 1000 and 6.6 times faster for m = 2000 compared to the MTS scheme. In addition, the key
setup process of the NIDTS scheme supports the non-interactive setup since individual parties can directly
generate register keys before all parties who will participate in the group are known since the group identifier
string GID is enough to run the register key generation algorithm.

6 Conclusion

We proposed an NIDTS scheme that supports the non-interactive and transparent key setup. The key setup
process of our NIDTS scheme does not require message exchange between parties, only requires for each
party to transfer a register key without waiting for a combiner to fix group parties, and is transparent since
the generation of a verification key is deterministic. In addition, individual algorithms such as key genera-
tion, register key generation, and signing performed by individual parties are all very efficient because the
computation and communication of these algorithm is regardless of the total number of parties. The evalua-

26

tion results of our implementation show that the key setup of our NIDTS scheme is very efficient compared
to the MTS scheme.

One drawback of our NIDTS scheme supporting weights is that the size of public and register keys
increases according to the weights of a party. The cause of this drawback is that a virtualization method
that increases the secret shares corresponding to the weights is used. Thus, it is an interesting problem
to modify our NIDTS scheme to support weights more efficiently without using the virtualization method.
There are some interesting approaches to efficiently support weights [20,21], but it seems difficult to remove
interactions in the key setup process.

Acknowledgements

This work was supported by Institute of Information & communications Technology Planning & evaluation
(IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00518, Blockchain privacy preserving
techniques based on data encryption).

References

[1] Renas Bacho and Julian Loss. On the adaptive security of the threshold BLS signature scheme. In Heng
Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, pages 193–207. ACM, 2022.

[2] Leemon Baird, Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang, and
Yinuo Zhang. Threshold signatures in the multiverse. In IEEE Symposium on Security and Privacy,
SP 2023, pages 1454–1470. IEEE Computer Society, 2023.

[3] Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with prescribed
embedding degrees. In Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, editors, Security in
Communication Networks - SCN 2002, volume 2576 of Lecture Notes in Computer Science, pages
257–267. Springer, 2002.

[4] Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi Zhu.
Better than advertised security for non-interactive threshold signatures. In Yevgeniy Dodis and Thomas
Shrimpton, editors, Advances in Cryptology - CRYPTO 2022, volume 13510 of Lecture Notes in Com-
puter Science, pages 517–550. Springer, 2022.

[5] Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for modular exponentiation and
digital signatures. In Kaisa Nyberg, editor, Advances in Cryptology - EUROCRYPT ’98, volume 1403
of Lecture Notes in Computer Science, pages 236–250. Springer, 1998.

[6] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In Matthew K. Franklin, editor, Advances in Cryptology - CRYPTO 2004, vol-
ume 3152 of Lecture Notes in Computer Science, pages 273–289. Springer, 2004.

[7] Jean-Paul Berrut and Lloyd N. Trefethen. Barycentric Lagrange interpolation. SIAM Rev., 46(3):501–
517, 2004.

[8] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin, Aviad Rubinstein, and
Eran Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066, 2017.

27

[9] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-
Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, Public-Key Cryptography - PKC
2003, volume 2567 of Lecture Notes in Computer Science, pages 31–46. Springer, 2003.

[10] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains. In
Thomas Peyrin and Steven D. Galbraith, editors, Advances in Cryptology - ASIACRYPT 2018, volume
11273 of Lecture Notes in Computer Science, pages 435–464. Springer, 2018.

[11] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. J. Cryptol.,
17(4):297–319, 2004.

[12] Sean Bowe. BLS12-381: New zk-SNARK elliptic curve construction. https://electriccoin.
co/blog/new-snark-curve/, 2017. Accessed: 2023-07-11.

[13] Jan Camenisch, Susan Hohenberger, and Michael Østergaard Pedersen. Batch verification of short
signatures. J. Cryptology, 25(4):723–747, 2012.

[14] Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to prove Schnorr assuming Schnorr: Security
of multi- and threshold signatures. Cryptology ePrint Archive, Paper 2021/1375, 2021. https:
//eprint.iacr.org/2021/1375.

[15] Ivan Damgård. Towards practical public key systems secure against chosen ciphertext attacks. In Joan
Feigenbaum, editor, Advances in Cryptology - CRYPTO ’91, volume 576 of Lecture Notes in Computer
Science, pages 445–456. Springer, 1991.

[16] Yvo Desmedt. Society and group oriented cryptography: A new concept. In Carl Pomerance, editor,
Advances in Cryptology - CRYPTO ’87, volume 293 of Lecture Notes in Computer Science, pages
120–127. Springer, 1987.

[17] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor, Advances in Cryp-
tology - CRYPTO ’89, volume 435 of Lecture Notes in Computer Science, pages 307–315. Springer,
1989.

[18] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory,
22(6):644–654, 1976.

[19] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online extractors.
In Victor Shoup, editor, Advances in Cryptology - CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, pages 152–168. Springer, 2005.

[20] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang, and Yinuo Zhang.
Cryptography with weights: MPC, encryption and signatures. Cryptology ePrint Archive, Paper
2022/1632, 2022. https://eprint.iacr.org/2022/1632.

[21] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Rohit Sinha, Mingyuan Wang, and Yinuo Zhang.
hinTS: Threshold signatures with silent setup. Cryptology ePrint Archive, Paper 2023/567, 2023.
http://eprint.iacr.org/2023/567.

[22] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and
succinct NIZKs without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in

28

https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2022/1632
http://eprint.iacr.org/2023/567

Cryptology - EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 626–
645. Springer, 2013.

[23] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA sig-
natures and an application to Bitcoin wallet security. In Mark Manulis, Ahmad-Reza Sadeghi, and
Steve A. Schneider, editors, Applied Cryptography and Network Security - ACNS 2016, volume 9696
of Lecture Notes in Computer Science, pages 156–174. Springer, 2016.

[24] Rosario Gennaro, Shai Halevi, Hugo Krawczyk, and Tal Rabin. Threshold RSA for dynamic and ad-
hoc groups. In Nigel P. Smart, editor, Advances in Cryptology - EUROCRYPT 2008, volume 4965 of
Lecture Notes in Computer Science, pages 88–107. Springer, 2008.

[25] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Robust threshold DSS signatures.
In Ueli M. Maurer, editor, Advances in Cryptology - EUROCRYPT ’96, volume 1070 of Lecture Notes
in Computer Science, pages 354–371. Springer, 1996.

[26] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key generation
for discrete-log based cryptosystems. J. Cryptol., 20(1):51–83, 2007.

[27] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, Advances in Cryptology - EUROCRYPT 2016, volume 9666 of Lecture Notes
in Computer Science, pages 305–326. Springer, 2016.

[28] Jens Groth. Non-interactive distributed key generation and key resharing. Cryptology ePrint Archive,
Paper 2021/339, 2021. https://eprint.iacr.org/2021/339.

[29] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern, and Alin Tomescu.
Aggregatable distributed key generation. In Anne Canteaut and François-Xavier Standaert, editors,
Advances in Cryptology - EUROCRYPT 2021, volume 12696 of Lecture Notes in Computer Science,
pages 147–176. Springer, 2021.

[30] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous distributed key
generation for computationally-secure randomness, consensus, and threshold signatures. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM SIGSAC Conference on Computer and
Communications Security, CCS 2020, pages 1751–1767. ACM, 2020.

[31] Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold signatures. In
Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, Selected Areas in Cryptography
- SAC 2020, volume 12804 of Lecture Notes in Computer Science, pages 34–65. Springer, 2020.

[32] Silvio Micali, Kazuo Ohta, and Leonid Reyzin. Accountable-subgroup multisignatures: extended
abstract. In Michael K. Reiter and Pierangela Samarati, editors, ACM Conference on Computer and
Communications Security, CCS 2001, pages 245–254. ACM, 2001.

[33] NIST. Multi-party threshold cryptography. https://csrc.nist.gov/Projects/
threshold-cryptography, 2023. Accessed: 2023-07-11.

[34] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
J. Cryptology, 13(3):361–396, 2000.

29

https://eprint.iacr.org/2021/339
https://csrc.nist.gov/Projects/threshold-cryptography
https://csrc.nist.gov/Projects/threshold-cryptography

[35] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique Schröder. ROAST:
robust asynchronous Schnorr threshold signatures. In Heng Yin, Angelos Stavrou, Cas Cremers, and
Elaine Shi, editors, ACM SIGSAC Conference on Computer and Communications Security, CCS 2022,
pages 2551–2564. ACM, 2022.

[36] Claus-Peter Schnorr. Efficient signature generation by smart cards. J. Cryptol., 4(3):161–174, 1991.

[37] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus Gasser, Ismail Khoffi,
Michael J. Fischer, and Bryan Ford. Scalable bias-resistant distributed randomness. In IEEE Sympo-
sium on Security and Privacy, SP 2017, pages 444–460. IEEE Computer Society, 2017.

[38] The DFINITY Team. The internet computer for geeks. Cryptology ePrint Archive, Paper 2022/087,
2022. https://eprint.iacr.org/2022/087.

[39] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas, Guy Golan-Gueta, and
Srinivas Devadas. Towards scalable threshold cryptosystems. In IEEE Symposium on Security and
Privacy, SP 2020, pages 877–893. IEEE, 2020.

30

https://eprint.iacr.org/2022/087

	Introduction
	Our Contributions
	Our Techniques
	Related Work

	Preliminaries
	Bilinear Groups
	Complexity Assumptions
	BLS Signature
	NIZKPoK for DL

	Non-Interactive Decentralized Threshold Signatures
	Definition
	Construction in the Unweighted Setting
	Construction in the Weighted Setting
	Correctness
	Extensions

	Security Analysis
	Implementation and Performance Analysis
	Implementation
	Size and Algorithm Analysis
	Performance Analysis

	Conclusion

