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Abstract—Classic BFT consensus protocols guarantee safety
and liveness for all clients if fewer than one-third of replicas are
faulty. However, in applications such as high-value payments,
some clients may want to prioritize safety over liveness. Flexible
consensus allows each client to opt for a higher safety resilience,
albeit at the expense of reduced liveness resilience. We present
the first construction that allows optimal safety–liveness tradeoff
for every client simultaneously. This construction is modular
and is realized as an add-on applied on top of an existing con-
sensus protocol. The add-on consists of an additional round of
voting and permanent locking done by the replicas, to sidestep
a sub-optimal quorum-intersection-based constraint present in
previous solutions. We adapt our construction to the existing
Ethereum protocol to derive optimal flexible confirmation rules
that clients can adopt unilaterally without requiring system-
wide changes. This is possible because existing Ethereum pro-
tocol features can double as the extra voting and locking. We
demonstrate an implementation using Ethereum’s consensus
API.

1. Introduction

1.1. Flexible Consensus

A state-machine replication (SMR) consensus protocol
has two groups of participants: clients and replicas. Continu-
ously, clients input transactions to the replicas. The replicas
partake in a distributed algorithm to develop a common
ordering among the transactions, and report back to the
clients. At any time, each client outputs a log which is the
ordered sequence of transactions it deems confirmed so far.
Two desiderata for consensus protocols are: safety, meaning
that logs are consistent across clients and across time; and
liveness, meaning that transactions submitted to all replicas
eventually appear in all clients’ logs. Byzantine-fault toler-
ant (BFT) consensus protocols guarantee these properties if
the fraction f of adversary replicas out of all n replicas is
not too large, where adversary replicas may deviate from the
protocol in any arbitrary and coordinated fashion, and non-
adversary honest replicas follow the protocol as specified.1
Based on terminology of [1], [2], [3], [4], [5], a protocol’s
safety resilience tS is defined as the maximum fraction
of adversary replicas the protocol can tolerate while still
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Figure 1. Pareto front ( , , ) and region ( , , ) of liveness-
/safety-resilience pairs (tLk , t

S
k) that each client k can choose from, for three

flexible consensus protocols under partial synchrony. Recall the classic
impossibility result 2tLk+tSk ≤ 1 ( ) [6], [13]. (a) PBFT-style protocols [6],
[8], [9], [10], [11] use a system-wide replica quorum q. For any fixed q (=
4
5

here), these protocols have no flexibility ( ) to support liveness-preserving
clients and safety-favoring clients simultaneously; all clients operate at (1−
q, 2q− 1). (b) FBFT [14] and SFT-DiemBFT [15] additionally use client-
side confirmation quorums qk ∈ [q, 1] to allow for some flexibility ( )
between the liveness-preserving client at (1−q, 2q−1) for qk = q and the
most safety-favoring client at (0, q) for qk = 1. (c) Our OFlex protocols
with only client-side confirmation quorums qk ∈ [ 2

3
, 1] provide optimal

flexibility ( vs. ) between the liveness-preserving client at ( 1
3
, 1
3
) for

qk = 2
3

and the most safety-favoring client at (0, 1) for qk = 1.

guaranteeing safety. Similarly, the liveness resilience tL is
the maximum fraction of adversary replicas the protocol
can tolerate while guaranteeing liveness. Classical PBFT-
style protocols [6], [7], [8], [9], [10], [11] provide balanced
safety and liveness resiliences tL = tS = 1

3 [6], which is
the highest that both the resiliences can simultaneously be
in the partially-synchronous setting [12] of interest here.

However, users (i.e., clients) of a system may not desire
equal resilience to safety and liveness faults [1], [2], [3], [4],
[5]. In fact, different clients may prefer different (liveness-
/safety-)resilience pairs altogether [14], [15]! For instance,
for a distributed ledger such as a cryptocurrency, clients
who perform high-value transfers may prefer a higher safety
resilience,2 even at the expense of lower liveness resilience,
because business lost during a system downtime may cause
less harm than a double spend. In the same vein, by defini-

2. For example, in Ethereum as of 06/2023, a single organization (Lido)
controls more than one-third of replicas, causing concerns about a possible
coordinated failure, e.g., from technical malfunction or social engineering,
exceeding Ethereum’s one-third resilience [16], [17], [18], [19].
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tion, liveness only breaks if transaction inclusion is denied
forever [20]. Thus, liveness can be ‘restored’ relatively
easily, e.g., through exogenous reconfiguration and removal
of adversary replicas. In contrast, safety already breaks if
inconsistency occurs ever. These considerations suggest that
guaranteeing consensus in the high-safety regime, where
tS ≥ tL, is of particular interest to some safety-favoring
clients. At the same time, other liveness-preserving clients
may want to retain tL = 1

3 , even at the expense of not
increasing tS beyond 1

3 .3
This motivates flexible consensus [14] (also called

strengthened fault tolerance [15]), where each client k
chooses a resilience pair (tLk , t

S
k) with tSk ≥ tLk , and the

consensus properties are guaranteed for all clients who have
chosen adequate resiliences. That is, for all clients k, k′

if the adversary fraction f ≤ tSk and f ≤ tSk′ , their logs
are guaranteed to be consistent across time (safety); and
transactions submitted to all replicas eventually appear in
the log of every client k with f ≤ tLk (liveness).

1.2. Quest for Optimal Flexible Consensus

Given the flexible consensus problem, it is natural to ask:
What is the ‘maximum’ flexibility a protocol can provide?
The classic impossibility result 2tLk + tSk ≤ 1 [12], [13]
shows that we cannot hope to do better than for each client
to achieve a resilience pair (tLk , t

S
k) on the straight line

between (0, 1) and ( 13 ,
1
3 ), shown in Fig. 1 ( ). But is there

a protocol which allows clients to achieve all such pairs
simultaneously, or are there some further limits to flexibility?

In typical PBFT-style protocols, all clients have the same
pair of resiliences tLk = tSk = 1

3 . In that sense, these protocols
are a degenerate case of flexible consensus where the set
of resilience pairs (tLk , t

S
k) that clients can simultaneously

‘choose’ from is the singleton {( 13 ,
1
3 )}. In these protocols,

one could vary the quorum size q used in the protocol such
that for any given quorum q, all clients achieve a single
resilience pair (tL, tS) that is different from ( 13 ,

1
3 ). Fig. 1(a)

shows one such achievable pair. However, these protocols
still have no flexibility to support liveness-preserving and
safety-favoring clients simultaneously.

To add some flexibility, for any fixed system-wide
replica quorum q, FBFT [14] and SFT-DiemBFT [15]
(Fig. 1(b)) allow every client k to opt for higher tSk by using
a higher client-specific confirmation quorum qk ∈ [q, 1]
when confirming its output log. This construction results
in tSk = qk + q − 1 and tLk = 1 − qk, allowing the trade-
off exemplified in Fig. 1(b), between (0, q) for the most
safety-favoring client with qk = 1, and (1 − q, 2q − 1) for
the liveness-preserving client with qk = q. By tuning the
replica quorum q, it is possible to run different instances
of the protocol which support different regions of resilience
pairs, but no single instance can simultaneously support a
maximally safety-favoring client at (0, 1) and a liveness-
preserving client at ( 13 ,

1
3 ).

3. In contrast, the regime tL > tS is subsequently disregarded because
its ‘live but inconsistent’ logs are of questionable utility [1], [15].

TABLE 1. REALIZATION OF KEY MECHANISMS IN DIFFERENT
PROTOCOLS OF THE OFLEX FAMILY (SEC. 1.3):

ADDITION OF LOGIC VS. RE-USE OF EXISTING LOGIC.

Replica logic (system-wide) Client logic (local)

Construction Post-vote Perma-lock Confirmation rule

Generic (add-on
to any protocol)

add post-votes
external to the
base protocol

add constraint
on post-votes

new (quorum qk frac-
tion of post-votes)

Chained PBFT-
style (e.g.,
OFlex-Streamlet)

existing votes
(‘chaining’)

add constraint
on votes

new (quorum qk frac-
tion of votes)

OFlex conf. rules
for Ethereum

existing votes
(‘chaining’)

existing
performance
optimization

new (quorum qk frac-
tion of votes)

1.3. Contribution: OFlex Family of Resilience-
Optimal Flexible Consensus Protocols

We present the OFlex family of flexible consensus proto-
cols, the first resilience-optimal flexible consensus protocols.
Each protocol in this family can support all clients on
the straight line between (0, 1) and ( 13 ,

1
3 ) simultaneously

(Fig. 1(c)). Each protocol in this family is obtained by
applying a modification to an existing consensus protocol,
and our constructions are applicable to a broad class of
existing protocols.

Our comstructions extend the approach from FBFT and
SFT-DiemBFT [14], [15] to decouple the consensus protocol
Π into two phases: an interactive replica logic Π that
depends only on a system-wide quorum 2

3 (unaware of
clients’ choices of resilience pairs), and a confirmation rule
C run locally by clients that additionally depends on client-
specific quorums qk ≥ 2

3 . The key new idea in OFlex is to
augment the replica logic with an additional round of voting
(called post-voting) and permanent locking (perma-locking).
Replicas hold on to their perma-lock permanently and never
perma-lock or post-vote anything inconsistent with their
perma-lock, regardless of how powerful the adversary is.
In contrast to FBFT, where safety is limited by a quorum-
intersection-based constraint between a large client quorum
and a small replica quorum (tSk ≤ qk + q − 1), OFlex due
to the perma-lock and post-vote only needs a constraint
between two large client quorums (tSk ≤ 2qk − 1). This
enhances the safety resilience of OFlex. Even though the
perma-lock appears to restrict a replica’s post-votes, OFlex
in fact preserves FBFT’s liveness resilience of tLk = 1− qk.
This is because for all resilience pairs of interest (Fig. 1(c)),
the liveness resilience tLk ≤ 1

3 , and when the adversary
fraction is smaller than this, all replicas’ perma-locks are
consistent with each other, so honest replicas continue vot-
ing in a manner that ensures liveness.

We present three OFlex protocol constructions, that dif-
fer in how they implement perma-locking and post-voting
(see Tab. 1 for a summary):
• The generic OFlex construction (Sec. 3, Fig. 2) adds

both perma-locking and post-voting as separate replica-
side logic that acts on the output log of any ( 13 ,

1
3 )-
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Figure 2. Block diagram of our generic OFlex construction (Sec. 3).
Starting from an unmodified consensus protocol with replica logic Π and
confirmation rule C with resiliences tL = tS = 1

3
, the construction

applies a round of permanently locking (perma-locking) and voting (post-
voting) by replicas (ΠO) on the log output by (Π, C), the unmodified
protocol, followed by client-specific confirmation quorums qk on the post-
vote messages for confirmation (CO).
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Figure 3. Average latency to confirm Ethereum mainnet blocks between
slots 5,970,000 and 6,970,000 (i.e., most recent 1,000,000 slots as of
this writing, corresponding to March 10, 2023 to July 27, 2023) by Casper
finality [9] (the confirmation rule as per Ethereum’s specifications) and by
OFlex confirmation rules (Sec. 5) with different safety levels. See Sec. 5.3
for details of the setup. OFlex incurs approx. 4.25min (21 slots) increase
in latency over Casper finality, even at the same safety resilience tSk = 1

3
,

due to post-voting. However, beyond that, OFlex achieves extremely high
safety resilience while incurring only a modest increase in latency. Each
client can operate on any point along the blue line to match its desired
trade-off between safety and latency.

resilient consensus protocol for partial synchrony to make
it optimally flexible in a closed-box manner. This is a
modular addition to the replica logic.

• To modify textbook PBFT-style protocols for OFlex
(Sec. 4), post-voting requires no replica-side changes,
because existing votes can be ‘reused’ as post-votes
(cf. ‘chaining’ [9], [10], [11]). Only perma-locking needs
to be added by means of an additional constraint for
replicas while voting. We demonstrate the application of
OFlex to Streamlet [11] to obtain OFlex-Streamlet in
Sec. 4, and the technique readily carries over to other
PBFT-style protocols. This non-modular modification of
the replica logic preserves the amount of communication
of the original PBFT-style protocol.

• Many implementations of PBFT-style protocols employ
a performance optimization that de-facto already imple-
ments the perma-locking mechanism. For OFlex variants
of such protocols, no replica-side changes are needed.
An example is Ethereum (which is based on Casper [9],
a PBFT-style protocol), for which we derive optimally
flexible confirmation rules (Sec. 5) that clients can adopt
without requiring any system-wide changes. We dem-

onstrate an implementation using Ethereum’s consensus
API, and study the practical safety vs. confirmation la-
tency trade-offs, as summarized in Fig. 3.
Our OFlex protocols also have other practically relevant

qualities such as stronger consistency guarantees between
clients with different safety resiliences, accountable safety,
and the possibility of preserving safety even after external
repair (‘social consensus’). We discuss these in Sec. 7.

1.4. Methods

1.4.1. Generic OFlex Construction (Sec. 3). Our generic
OFlex construction best highlights the key ideas that are
used in all three of our constructions. The generic con-
struction has two stages (Fig. 2). First, any off-the-shelf
( 13 ,

1
3 )-resilient consensus protocol is invoked in a closed-

box manner to sequence incoming transactions into a log.
In the second stage, whenever the log output by the first
stage changes, lock permanently (perma-lock) on the new
log (only if the new log extends the earlier perma-lock).
They then cast a post-vote vote for the latest perma-locked
log. Finally, clients use local quorums qk ≥ 2

3 among the
second stage’s post-vote votes to decide which log entries
can be confirmed.

Unlike in FBFT, the client-local confirmation rules are
not applied to votes preexistent in PBFT-style protocols, but
rather to votes from an additional round of post-votes which
respect the perma-lock (Fig. 2). This is crucial to achieve
the optimal quorum-interesection constraint tSk = 2qk − 1
because an honest replica will never post-vote two incon-
sistent logs, no matter what the first stage outputs.

This generic construction applies to any ( 13 ,
1
3 )-resilient

consensus protocol such as [8], [21], [22], [23], [24], [25],
including DAG-based protocols [26], [27], [28], [29]. While
it also applies to chained PBFT-style protocols, we also
provide a specific construction for them.

1.4.2. OFlex PBFT-Style Protocols (Sec. 4). With the
insight that optimal flexibility can be achieved with an extra
round of perma-lock and post-vote, we revisit PBFT-style
protocols and modify them for optimal flexibility.

To this end, recall that PBFT proceeds in views, where in
each view a batch of new transactions is proposed, and after
meeting quorum in multiple voting phases, the proposal is
confirmed. Some recent PBFT-style protocols [9], [10], [11]
‘pipeline’/‘chain’ these phases into a ‘chained’ protocol,
where in each round a proposal and voting takes place.
Then, votes simultaneously serve for different voting phases
with respect to different proposals [10, Sec. 5]. It is easy to
see that the additional round of voting (post-votes) required
for OFlex is easily integrated into such chained PBFT-
style protocols using subsequent votes. Besides the system-
wide replica quorum q = 2/3, clients impose client-local
confirmation quorums qk for the additional voting round.

On the other hand, a mechanism like perma-lock is
not readily found in the textbook version of PBFT-style
protocols. But the generic OFlex construction suggests the
following modification which turns out to be sufficient: in
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the place where the original PBFT-style protocol would have
confirmed a block (using a system-wide confirmation rule),
replicas perma-lock the respective block (and never vote for
anything inconsistent with their perma-lock).

1.4.3. OFlex Confirmation Rules for Ethereum (Sec. 5).
While a mechanism like perma-lock is not commonly found
in the pseudo-code of popular PBFT-style protocols, it is,
however, already present in many implementations of PBFT-
style protocols in the form of an unrelated performance
optimization. For instance, Ethereum replicas (called ‘val-
idators’) will forever lock on a block they view as ‘finalized’
according to the rules of Casper [9], [30]. They will then
refuse to consider any conflicting block going forward, even
if the conflicting block has also received enough votes to be-
come finalized (such conflicting finalizations can only occur
if more than 1/3 of replicas are adversary). This ‘pruning’ of
the block tree improves validators’ computational efficiency.

Since Ethereum has already implemented an equiva-
lent of perma-locking, and post-voting is easily accommo-
dated in a PBFT-style protocol like Casper, as discussed
above, applying the OFlex construction to Ethereum requires
no system-wide changes to the replica logic. Client-side
changes to the confirmation logic suffice.

1.5. Outline

After recapitulating the model and problem formula-
tion in Sec. 2, we describe and prove secure the generic
OFlex construction in Sec. 3. We show in Sec. 4 how to
use OFlex’s key insight to modify PBFT-style protocols
to provide optimal flexibility. In Sec. 5, we apply OFlex
to obtain optimal-resilience flexible-consensus confirmation-
rules for Ethereum, and report on an implementation thereof.
We conclude with a comparison to related work in Sec. 6,
and a discussion of extensions of OFlex in Sec. 7.

2. Model and Problem Formulation

SMR consensus is run by n replicas and a group of
clients. Out of these, f replicas are adversary4 (‘Byzantine
faults’; assumed to be chosen at the start of the execution
before global randomness is drawn), and the remaining
replicas are honest and follow the specified replica logic Π
to receive transactions from the environment, interact with
other replicas, and send updates to clients. At all times τ ,
clients (indexed by k) use a confirmation rule, which only
involves local computation on the updates received from
replicas, to confirm and output a log LOGτ

k of transactions.
In classical consensus, there is one confirmation rule C. In
flexible consensus, each client k may use a different confir-
mation rule Ck. The replica protocol and the confirmation
rule(s) together are called the consensus protocol Π.

Communication among replicas and from replicas to
clients is authenticated using digital signatures. We assume

4. To state results with precision, we henceforth denominate f, q, tL, tS

in number of replicas (instead of fractions f, q, tL, tS as in Sec. 1).

the eventual-synchrony variant of the partially-synchronous
network model [6], i.e., there is an adversarially chosen
global stabilization time (GST), unknown to the protocol,
before and after which the network is asynchronous and
synchronous, respectively. During asynchrony, the adversary
can delay messages arbitrarily. During synchrony, the adver-
sary can delay messages up to a delay bound ∆, known to
the replicas and clients. Protocols may instruct replicas to
gossip received messages, so that after GST every message
received by any honest replica by τ is received by all honest
replicas by τ +∆.
Notation: Let LOG ⪯ LOG′ denote that LOG is a prefix
of or identical to LOG′. Two logs are consistent iff LOG ⪯
LOG′ or LOG′ ⪯ LOG.

We now formally define the flexible consensus problem.

Definition 1. Protocol Π = (Π, {Ck}) provides flexible
consensus with resilience pairs

{
(tLk , t

S
k)
}

iff:
• Liveness: For every tx input to all honest replicas, even-

tually, for all clients k with f ≤ tLk , tx ∈ LOGk.
• Safety: For all clients k, k′ with f ≤ min{tSk, tSk′}, for

all times τ, τ ′, LOGτ
k and LOGτ ′

k′ are consistent.

We use three special cases of the above definition. We
refer to the case where for all k, tLk = tL, tSk = tS, as
(tL, tS)-consensus. We call the further specialized case tL =
n/3 − 1, tS = n/3 classical consensus. The third case is
the following:

Definition 2. A flexible consensus protocol provides opti-
mal flexible consensus if it supports any set

{
(tLk , t

S
k)
}

of
resilience pairs with for all k, 2tLk + tSk < n and tLk ≤ tSk.

3. Generic OFlex Construction

We describe how to construct an optimal high-safety
flexible consensus protocol from any classical consensus
protocol in a generic closed-box manner. The key ingredient
is new replica logic we add, which we call an optimal-
flexibility (OFlex) gadget: an additional round of voting
(called ‘post-vote’ to distinguish from votes in the clas-
sical protocol) in which replicas follow a permanent lock
(‘perma-lock’) constraint.

3.1. Construction

A high-level block diagram of this construction is shown
in Fig. 2. We start with any protocol Π = (Π, C) that
provides (n/3 − 1, n/3)-consensus. We call Π the base
protocol. Replicas running the replica protocol Π addition-
ally run the OFlex gadget protocol ΠO (which implements
‘perma-lock and post-vote’). Clients obtain their flexible
logs by running new confirmation rules CO

k on messages
received as part of ΠO from replicas. The entire construction,
encompassing Π, ΠO, and the family of confirmation rules
{Ck}, is denoted Π∗(Π).

Pseudocode of ΠO and CO
k is given in Alg. 1. The

replicas’ role in ΠO is illustrated in Fig. 4. Each replica
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Algorithm 1 Optimal-flexibility (OFlex) gadget ΠO

1: ▷ Replica-side logic ΠO

2: on INIT()
3: C.INIT() ▷ Replica runs base protocol confirmation rule
4: permalock← [ ] ▷ Initialize perma-lock to the empty log
5: forever
6: LOG← C.GETLOG()
7: if permalock ≺ LOG ▷ LOG (strictly) extends perma-lock
8: permalock← LOG ▷ Perma-lock
9: Broadcast ⟨postvote, LOG⟩ to all clients ▷ Post-vote LOG

10: ▷ Client-side confirmation rule CO for resilience pair (tLk , t
S
k)

11: on INIT(qk) where qk shall satisfy (n+ tSk)/2 < qk ≤ n− tLk
12: Set local quorum size qk
13: postvotes← ∅ ▷ Set of received post-votes
14: on receiving ⟨postvote, LOG⟩ from replica i
15: postvotes← postvotes ∪ {(LOG, i)} ▷ Record post-vote
16: on GETLOG()
17: ▷ Confirm LOG∗ if qk replicas post-voted LOG∗ or an extension
18: LOG∗ ← argmaxLOG |LOG| subject to postvotes contains at

least qk pairs (LOGi, i) for distinct i with some LOGi ⪰ LOG
19: return LOG∗

tx

tx′ tx′′

tx′′′

2 ⟨postvote, ⟩

3 ⟨postvote, ⟩

1 1

Π ΠO

Π∗(Π)

Figure 4. Illustration of a replica’s role in OFlex gadget ΠO (Alg. 1),
which can augment any classical consensus protocol Π to make an optimal
flexible consensus protocol Π∗(Π). * Protocol rules: 1 Honest replicas
perma-lock the log they obtain from Π iff it extends their previous perma-
lock, 2 post-vote the log that they perma-lock, and 3 never post-vote
any log that does not extend their perma-locked log. * Safety intuition: A
client k with qk = n confirms a log only when it sees n post-votes for
the log. Due to steps 1 to 3 , no conflicting log can receive n post-votes
and be confirmed by another client k′ with qk′ = n, unless all replicas
are adversary, implying tSk = tS

k′ = n− 1.

uses the confirmation rule of the base protocol C to obtain
a confirmed log at each time step. Each replica maintains
a perma-locked log. Whenever the replica sees an update
to the output log of the base protocol according to the
confirmation rule C, the replica checks if the new log
strictly extends its perma-locked log (Alg. 1 l. 7). Only
if so, the replica updates its perma-lock to the new log
(Fig. 4 1 ), and broadcasts a ‘post-vote’ message for the
new log (Fig. 4 2 3 ).

The client’s confirmation rule CO
k is parameterized by

a client-specific confirmation quorum qk, chosen as (n +
tSk)/2 < qk ≤ n − tLk to satisfy the client’s resilience pair
(tLk , t

S
k). The client confirms a log LOG if at least qk replicas

post-vote LOG or a log that extends LOG (Alg. 1 l. 18).

3.2. Security Analysis

We will prove that Π∗(Π), i.e., our OFlex gadget
applied to any classical consensus protocol Π, provides

optimal high-safety flexible consensus. To build intuition,
consider the simple example of a client who chooses a
confirmation quorum qk = n. Safety of Π∗(Π) depends
purely on the OFlex gadget, and does not rely on safety
or liveness of the base protocol. When an honest replica
post-votes a log (Fig. 4 2 ), it signals to clients that it has
perma-locked that log (Fig. 4 1 ); hence, it has never post-
voted and will never post-vote an inconsistent log (Fig. 4 3 ).
Thus, when the client confirms a log which all qk = n
replicas post-vote, then no client k′ with qk′ = n will
ever confirm an inconsistent log, unless all replicas are
adversary, thus achieving tSk = tSk′ = n − 1. Liveness of
Π∗(Π), on the other hand, depends on both liveness and
safety of the base protocol Π, and liveness of the OFlex
gadget. However, we require tSk ≥ tLk and we know that it
is impossible to achieve both resiliences ≥ n/3. Therefore,
clients can only expect tLk < n/3, and the base protocol
is guaranteed to be live and safe in this regime. Then, all
honest replicas obtain live logs from Π, and also eventually
post-vote them because they never see inconsistent logs
confirmed by Π. Therefore, if all replicas are honest, the
client in our example eventually sees qk = n post-votes
for logs that were obtained by honest replicas from Π, and
as a result this client also confirms the live output log of
Π, thus achieving tLk = 0. Simultaneously, another client
that chooses a confirmation quorum qk′ = 2n/3+1 obtains
resilience guarantees tSk′ = n/3, tLk′ = n/3−1 (the classical
parameters). Thus, our OFlex gadget simultaneously sup-
ports clients with resiliences (0, n− 1) and (n/3− 1, n/3)
(see Fig. 1(c)), while earlier FBFT and SFT-DiemBFT could
not support both simultaneously (Fig. 1(b)).

Theorem 1. If Π = (Π, C) provides (n/3 − 1, n/3)-
consensus, then the construction Π∗(Π) = (ΠO ◦ C ◦
Π, {CO

k }), where the OFlex gadget is applied to Π, provides
optimal high-safety flexible consensus.

Proof. We show that all clients with f ≤ tSk and confirma-
tion quorums qk > (n + tSk)/2 have safety, and all clients
with f ≤ tLk ≤ tSk and qk ≤ n− tLk have liveness. Therefore,
by changing the quorum size qk, clients can achieve any
pair of resiliences that satisfies (n + tSk)/2 < n − tLk , i.e.,
2tLk + tSk < n, and tLk ≤ tSk.

Safety: Suppose, for contradiction, that for two clients
k, l, f ≤ min{tSk, tSk′}, and they confirm inconsistent logs
LOGτ

k and LOGτ ′

k′ . Consider any honest replica that post-
voted LOGτ

k or an extension thereof (cf. Fig. 4 2 ). (The
quorum intersection argument below shows that such a
replica exists.) Then this replica can never post-vote a log
LOG′ that is inconsistent with LOGτ

k (cf. Fig. 4 3 ). It does
not do so after it post-voted LOGτ

k because it has already
perma-locked LOGτ

k or an extension thereof (cf. Fig. 4 1 ). It
could not have done so before it post-voted LOGτ

k because
then it must have perma-locked LOG′ and hence would not
have post-voted LOGτ

k.
For confirmation by client k, at least qk replicas post-

voted LOGτ
k or an extension thereof. Similarly, at least qk′

replicas post-voted LOGτ ′

k′ or an extension thereof. There-
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fore, at least qk+qk′−n replicas post-voted two inconsistent
logs. Due to the preceding argument, these must all be
adversary replicas, so f ≥ qk + qk′ − n. Due to the choice
of quorums qk > (n+ tSk)/2 and qk′ > (n+ tSk′)/2, safety
violation between clients k, l requires f ≥ (tSk + tSk′)/2 + 1
adversary replicas. This is a contradiction to the assumption
that f ≤ min{tSk, tSk′}.

Liveness: Suppose that f ≤ tLk . Note that since tLk ≤
tSk, the feasibility condition 2tLk + tSk < n also implies that
tLk < n/3. Therefore, f < n/3, which means that Π is
safe and live. Due to the safety of Π, the log obtained by
a replica is always consistent with the logs it obtained in
the past, and hence consistent with the replica’s perma-lock.
Therefore, whenever a replica updates its log from Π, it will
either post-vote the new log, or has already post-voted that
log or an extension thereof. Thus, an honest replica post-
votes every log that it obtains from Π. Furthermore, since
Π is live, transactions eventually appear in every honest
replica’s log of Π. Since f ≤ tLk , client k eventually sees
enough post-votes to confirm every log output by Π, since
post-votes from all honest replicas are enough to satisfy the
quorum qk ≤ n− tLk .

This construction comes with a communication overhead
of one additional round of voting (post-votes) per confirmed
batch of transactions. However, in ‘chained’ PBFT-style pro-
tocols such as Casper [9], HotStuff [10], or Streamlet [11],
we can re-use existing successive rounds of votes in the base
protocol to also serve as post-votes, and this eliminates the
communication overhead. We describe this modification for
Streamlet in Sec. 4, and for Ethereum’s implementation of
Casper in Sec. 5.

4. OFlex PBFT-Style Protocols

In this section, we use Streamlet [11] as an example
to show how the extra round of perma-locking and post-
voting for OFlex can be realized in PBFT-style protocols.
Specifically, we show how existing votes can be reused to
double as post-votes (so no extra votes are added), and how
perma-locking is implemented as an additional constraint
in the protocol’s voting rule. The construction carries over
rather straightforwardly to other PBFT-style protocols like
Hotstuff [10], Casper [9], Tendermint [8].

We first recap Streamlet [11] (Sec. 4.1), then describe
the modifications required for OFlex (Sec. 4.2). We call
the resulting protocol OFlex-Streamlet. We prove optimal
flexibility of OFlex-Streamlet in Sec. 4.3. To contrast OFlex
and FBFT in Sec. 4.4, we compare OFlex-Streamlet with an
adaptation of FBFT [14] to Streamlet (‘FBFT-Streamlet’).

4.1. Recap of PBFT-Style Consensus: Streamlet

Streamlet [11] (Alg. 3) proceeds in epochs of duration
2∆, where ∆ is the bound on message delays after GST.
There are two message types: blocks and votes. Every
message is signed by the replica that creates it. A block
consists of a hash pointer to its parent block (transitively
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D
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F

2n
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+1
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K
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Figure 5. Illustration of OFlex-Streamlet (cf. Fig. 4). Each represents a
vote, and the number of votes for each block is indicated. * Protocol rules:
1 If a replica sees a block B that would have been confirmed according to
Streamlet’s original confirmation rule C (i.e., adjacent blocks A,B,C from
consecutive epochs in notarized chain), then the replica perma-locks B if
B extends its current perma-lock. 2 From a replica’s vote for D, clients
can infer that the replica, if honest, must be perma-locked on B. 3 This,
in turn, means the replica, if honest, will never vote for blocks inconsistent
with B. * Safety intuition: A client k with high quorum qk = n confirms
B when it sees qk votes on D. Due to steps 1 to 3 , no block K conflicting
with B can receive n votes and get confirmed by another client k′ with
qk′ = n, unless all replicas are adversary, implying tSk = tS

k′ = n− 1.

forming a chain back to a commonly known genesis block),
an epoch number, and transaction payload. A vote consists
of a hash pointer to a block. Based on the relation of a
block and its parent, ‘ancestor’, ‘descendant’, and ‘child’
are defined in the canonical way. Two blocks are adjacent
if one is the other’s parent. A block is notarized in the
view of a replica/client when it has seen votes for that
block from a quorum of at least q = 2n/3 + 1 replicas.
A chain is notarized if every block in the chain is notarized.
Throughout, replicas echo every message they receive.

The replica logic Π consists of two steps: 1) Propose:
Each epoch has a leader replica elected using public ran-
domness. At the start of the epoch, the leader broadcasts
a new block containing unconfirmed transactions and the
current epoch; the parent of the new block is the tip of any
one of the longest notarized chains in the leader’s view.
2) Vote: During the epoch, each replica broadcasts a vote
for the first block received from the epoch’s leader, if the
block’s parent is the tip of any one of the longest notarized
chains in the replica’s view.

Confirmation rule C: If a client sees, in a notarized chain,
three adjacent blocks A,B,C from consecutive epochs, then
it confirms B, i.e., sets its log to the sequence of transactions
as ordered in the chain from the genesis block to B.

4.2. OFlex-Streamlet Protocol

We modify Streamlet (Alg. 3) to OFlex-Streamlet
(Alg. 2). Changes are highlighted green in Alg. 2.

To implement perma-locking, we extend the replica logic
with a permalock, initialized to the genesis block. Whenever
a replica sees a block B extending its permalock such that
a client would have confirmed B using Streamlet’s original
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Algorithm 2 OFlex-Streamlet protocol Π′ (changes relative
to Alg. 3 are highlighted green)

1: ▷ (permalock ≺ B) ≜ chain of permalock is a prefix of chain of B

2: ▷ Replica-side logic Π′

3: on INIT()
4: B,V ← {B0}, {} ▷ Background task: receive blocks and votes

into B and V , respectively, subject to canonical validation (Alg. 3)
5: permalock← B0 ▷ Initialize perma-lock to genesis block B0

6: for each epoch e = 1, 2, 3, ...
7: ▷ Propose (done by epoch leader at the start of the epoch)
8: B′ ← tip of any one longest notarized chain in (B,V)
9: h← Hash(B′)

10: txs← transactions not present in chain of B′

11: Sign and broadcast block (h, e, txs)

12: ▷ Vote (done by all replicas once during the epoch)
13: B ← first block from epoch e in B signed by epoch leader
14: B′ ← parent block of B in B
15: if B′ is tip of any longest notarized chain in (B,V)
16: if permalock ≺ B′

17: h← Hash(B)
18: Sign and broadcast vote h

19: ▷ Perma-lock (done by all replicas throughout the epoch)
20: if (B,V) contains a notarized chain with three adjacent blocks

A,B,C from consecutive epochs, and permalock ≺ B
21: permalock← B

22: ▷ Client-side confirmation rule C′ for resilience pair (tLk , t
S
k)

23: on INIT(qk) where qk shall satisfy (n+ tSk)/2 < qk ≤ n− tLk
24: Set local quorum size qk
25: B,V ← {B0}, {} ▷ Background task: receive blocks and votes

into B and V , respectively, subject to canonical validation (Alg. 3)

26: ▷ Confirmation
27: if (B,V) contains a notarized chain with three adjacent blocks

A,B,C from consecutive epochs, and (B,V) contains a block D
such that C ≺ D and D has received qk votes

28: Choose A,B,C as such blocks with maximum height
29: LOG ← sequence of transactions as ordered in chain of B

confirmation rule C, then the replica updates its permalock
to B (Fig. 5 1 , Alg. 2 l. 19). A replica’s voting is constrained
to blocks that are consistent with the permalock (Fig. 5 2 3 ).

In OFlex-Streamlet’s confirmation rule C′(qk), clients
require qk votes for a block D which is a descendant
of the three blocks A,B,C required by Streamlet’s rule
C (l. 26). These qk votes serve as post-votes (Fig. 5 2 ),
and allow clients to reason that honest replicas voting for
D are perma-locked on B (Fig. 5 1 ) and will not vote
for anything conflicting with B (Fig. 5 3 ). This reprises
the safety argument of OFlex in Sec. 3, and is key to
OFlex-Streamlet’s safety argument and improved resilience
compared to FBFT and SFT-DiemBFT.

Note that we did not have to modify Streamlet’s propos-
ing rule, which is in line with the generic OFlex construc-
tion.

4.3. Security Analysis

To build intuition, in Fig. 5, we show an example of how
OFlex-Streamlet provides safety with tSk = n− 1 for clients
that confirm according to the rule C′(qk = n). Such a client
confirms the block B after seeing the blocks A,B,C,D

with the required votes. When the client sees a replica vote
on the block D (Fig. 5 2 ), it knows that this replica, if
honest, must have seen the blocks A,B,C notarized (honest
replicas only vote for blocks whose parent chain they have
seen notarized), and therefore must have perma-locked the
block B (Fig. 5 1 ), and will thus never vote for a block that
is inconsistent with B (Fig. 5 3 ). Thus, if a client sees all n
replicas vote for block D, then it knows that unless all these
replicas are adversary, a block inconsistent with B cannot
obtain votes from all replicas. Thus, clients that confirm
blocks with qk = n remain safe even when f = n − 1
replicas are adversary.

To intuit liveness, recall that the requirement tSk ≥ tLk im-
plies tLk < n/3. Thus, clients can expect liveness only when
f < n/3. Tracing Streamlet’s safety analysis in this regime
shows that every replica’s permalock is a prefix of every
longest notarized chain in its view at all times. As a result,
when f < n/3, the permalock constraint in OFlex-Streamlet
is inactive (cf. l. 15), and OFlex-Streamlet ‘behaves like’
Streamlet. Therefore, for a client with qk ≤ n − tLk , if
f ≤ tLk < n/3, after sufficiently many successive honest
leaders, the client eventually sees blocks with qk votes, in
particular, blocks that satisfy the confirmation rule.

Theorem 2. OFlex-Streamlet provides optimal flexible con-
sensus.

Proof. We prove safety and liveness in Lems. 1 and 2,
respectively, for clients who choose their confirmation quo-
rums appropriately. For any client k choosing resilience pair
(tLk , t

S
k) such that 2tLk + tSk < n and tLk ≤ tSk, there exists

a confirmation quorum qk that satisfies the requirements of
Lems. 1 and 2, i.e., (n + tSk)/2 < qk ≤ n − tLk . Thus, by
changing the confirmation quorum qk, clients can achieve
any (tLk , t

S
k) that satisfies 2tLk + tSk < n and tLk ≤ tSk.

Lemma 1 (Safety). For all clients k, k′ such that qk >
(n+ tSk)/2 and qk′ > (n+ tSk′)/2, if f ≤ min{tSk, tSk′}, then
for all times τ , τ ′, LOGτ

k and LOGτ ′

k′ are consistent.

Proof. Suppose, for contradiction, that there exist two
clients k, k′ and two time instants τ, τ ′ such that LOGτ

k

and LOGτ ′

k′ are not consistent. Then, there must exist two
notarized chains that satisfy the respective confirmation rules
of the clients. So in the first chain, there are four blocks
A,B,C,D from epochs e−x−2, e−x−1, e−x, e for some
x ≥ 1, where A,B,C are adjacent, and D is a descendant
of C and has received qk votes in client k’s view. In the
second chain, there are four blocks H, I, J,K from epochs
e′ − y − 2, e′ − y − 1, e′ − y, e′ for some y ≥ 1, where
H, I, J are adjacent, and K is a descendant of J and has
received qk′ votes in client k′’s view. Furthermore, B and
I are inconsistent. See Fig. 5 for illustration.

Without loss of generality, we may assume that e′ ≥ e.
Honest replicas only vote for a block if they have seen its
parent chain notarized. Therefore, an honest replica who
voted for the block D in epoch e (cf. Fig. 5 2 ) must
have seen blocks A,B,C notarized. Furthermore, an honest
replica only votes for the block D if it is also a descendant
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of the replica’s perma-lock. Therefore, either the block B
is a descendant of the replica’s perma-lock, or the replica
must have already perma-locked B. In either case, the
replica will have perma-locked the block B by the end of
epoch e (cf. Fig. 5 1 ). An honest replica that votes for the
block D in epoch e does not vote for any other block in
epoch e. Furthermore, it does not vote for any block that is
inconsistent with block B in epochs > e, due to its perma-
lock on B (cf. Fig. 5 3 ). Since K is a descendant of I ,
but I and B are inconsistent, we conclude that no honest
replica votes for both blocks D and K.

Since blocks D and K have received at least qk and qk′

votes respectively, at least qk + qk′ − n replicas must have
voted for both blocks. Due to the preceding argument, these
must all be adversary replicas, so f ≥ qk+qk′−n. Due to the
choice of quorums qk > (n+ tSk)/2 and qk′ > (n+ tSk′)/2,
safety violation between clients k, k′ requires f ≥ (tSk +
tSk′)/2 + 1 adversary replicas. This is a contradiction to the
assumption that f ≤ min{tSk, tSk′}.

The key new step towards proving liveness of OFlex-
Streamlet is proving that when f < n/3 (recall that we
only require liveness for clients with f ≤ tLk < n/3), the
additional constraint on voting of OFlex-Streamlet is never
active (Lem. 4). This follows from a safety property of
Streamlet (which also holds in OFlex-Streamlet) that once a
block is confirmed according to Streamlet (or perma-locked
according to OFlex-Streamlet), no block inconsistent with
it ever gets notarized (Lem. 3). Thus, under the regime of
interest for liveness (f < n/3), the voting rule of OFlex-
Streamlet behaves exactly like that of Streamlet, and the rest
of the proof for liveness follows using techniques from [11],
except that OFlex-Streamlet requires one additional epoch
to confirm blocks compared to Streamlet (Lem. 5). Liveness
(Lem. 2) follows immediately. Proofs of Lems. 3 and 5 are
given in App. A as they mostly follow steps from [11].

Lemma 2 (Liveness). For every tx input to all honest
replicas, eventually, for all clients k such that qk ≤ n− tLk
(quorum choice), 2tLk + tSk < n, tLk ≤ tSk (optimal flexible
resiliences), and f ≤ tLk , tx ∈ LOGk.

The following lemmas build up to the proof of Lem. 2.

Lemma 3 (cf. [11, Lem. 2]). If f < n/3, then if some honest
replica sees three adjacent blocks A,B,C with consecutive
epoch numbers on a notarized blockchain, then there cannot
be a block F ̸= B at the same height as B that is also
notarized in an honest replica’s view.

Proof is given in App. A.

Lemma 4. If f < n/3, then if a block B’s parent’s chain
is one of the longest notarized chains in a replica’s view,
then B is also a descendant of that replica’s perma-lock.

Proof. Suppose that in epoch e, a block B is proposed
whose parent chain is one of the longest notarized chains
seen by an honest replica at epoch e. Let B′ be this honest
replica’s perma-lock as of epoch e. If B′ is the genesis block,
then B must be its descendant. Otherwise, at the end of
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Figure 6. An execution showing that in FBFT-Streamlet with q = 2n
3

+1

clients with qk = n are not safe if f = 2n
3

+ 1. Blocks A,B,C receive
n votes each, which leads a client k with ‘heavy quorum’ qk = n to
confirm the block B. Since the adversary controls 2n

3
+ 1 replicas, it can

notarize (with ‘light quorum’ q = 2n
3

+ 1) inconsistent blocks E,F,G.
Subsequently, leaders propose blocks H, I, J and all honest replicas vote
for these blocks, which is in accordance with the protocol rules. Including
the adversary’s votes, these blocks meet a ‘heavy quorum’ qk′ = n needed
for another client k′ to confirm, leading to a safety violation.

some epoch e′ < e, this replica saw three adjacent blocks
A′, B′, C ′ with consecutive epoch numbers on a notarized
blockchain. For a contradiction, suppose that B is not a
descendant of B′. Since the replica saw block C ′ notarized
at epoch e′, it must be that B is at a greater height than
B′. Then there must be a block on the parent chain of B at
the same height as B′ that is also notarized. Due to Lem. 3,
this is a contradiction.

Lemma 5 (cf. [11, Thm. 4]). After GST, suppose that there
are 6 consecutive epochs e, e + 1, ..., e + 5 with honest
leaders. Then by the beginning of epoch e+6, every client k
such that f ≤ tLk < n/3 and qk ≤ n−tLk will have confirmed
a new block which it had not confirmed at the beginning
of epoch e. Moreover, this new block was proposed by an
honest leader.

Proof is given in App. A.

Proof of Lem. 2. The conditions 2tLk + tSk < n and tLk ≤ tSk
imply tLk < 1/3. Then, Lem. 5 directly implies liveness. The
conditions required in Lem. 5 occur eventually, i.e., after

GST and after
(

n
n−f

)6

epochs in expectation. Due to the
honest replicas’ propose rule, the new block by an honest
leader (referred to in Lem. 5) includes any tx input to all
honest replicas, that were not already in its parent chain.
This block and its parent chain are confirmed by all clients
k for which qk ≤ n− tLk .

4.4. Comparison with FBFT

We briefly describe a straightforward and truthful adap-
tation5 of FBFT [14] to Streamlet (which we call FBFT-

5. While the FBFT protocol of [14] is inspired by HotStuff, the similarity
between Streamlet and HotStuff [10], [15], [31] enables this adaptation.
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Streamlet) to facilitate a clear comparison of FBFT’s and
OFlex’s paradigms. FBFT-Streamlet is identical to Stream-
let, except for its confirmation rule: “When client k sees
three adjacent blocks A,B,C from consecutive epochs in
a notarized chain, each with qk votes, then it confirms
B.” Note that this is Streamlet’s original confirmation rule,
except with qk instead of q votes for each block.

First, for liveness, observe that with qk ≥ q, both FBFT-
Streamlet and OFlex-Streamlet require f ≤ tLk ≤ n−qk. For
safety, however, FBFT-Streamlet requires f ≤ tSk < qk+q−
n, while OFlex-Streamlet only requires f ≤ tSk < 2qk − n.
This enables OFlex-Streamlet’s optimal flexibility.

To understand where FBFT-Streamlet’s sub-optimal
bound on tSk comes from, consider how FBFT-Streamlet’s
safety breaks in the example of q = 2n

3 + 1, clients with
qk = n, and f just exceeding the clients’ safety resilience
in FBFT-Streamlet, i.e., f = qk+q−n = 2n

3 +1 (illustrated
in Fig. 6): Suppose blocks A,B,C received votes from all
replicas, leading a client k with qk = n to confirm block B.
Other clients may not hear of these blocks and votes for a
while (before GST). Since the adversary controls 2n

3 + 1
replicas, it can, by its own efforts, notarize inconsistent
blocks E,F,G. In the next slot, the leader proposes block
H with parent G. This indeed follows the protocol rules
because G is ‘the tip of one of the longest notarized chains’.
When H is proposed, all honest replicas will vote for H
because H is the only block proposed by the leader and its
parent G is the tip of one of the longest notarized chains
(cf. Sec. 4.1). The adversary replicas also vote for H which
results in n votes for H in total. Similarly, leaders propose
blocks I, J and they too gather n votes each. Ultimately, the
block I satisfies the confirmation rule for qk′ = n in another
client k′ (who has not heard of B). This is a safety violation
between k and k′ because B and I are inconsistent.

Key issue at hand: the adversary was able to by-pass
the heavy quorum qk on A,B,C with a light quorum q
on E,F,G, and honest replicas subsequently helped the
adversary achieve a conflicting heavy quorum qk′ on H, I, J .

To rule this out, FBFT-Streamlet imposes f ≤ tSk < qk+
q− n, which (by a standard quorum intersection argument)
ensures that no block F can reach quorum q on the same
height as B when A,B,C reach quorum qk (red dashed
in Fig. 6). Thus, no by-passing, and no conflicting heavy
quorum. But the constraint turns out to be sub-optimal.

Instead, OFlex-Streamlet addresses the key issue with
perma-locking and post-voting, leaving the adversary the
power to reach light quorum q on a block F conflicting with
B, but preventing honest replicas from contributing to the
conflicting heavy quorum qk′ that would be necessary for a
conflicting confirmation. See Fig. 5 for OFlex-Streamlet in
a situation similar to Fig. 6, where, however, honest replicas
do not vote for blocks H, I, J . First, when honest replicas
see blocks A,B,C notarized (q = 2n

3 +1 votes are enough
for this), they perma-lock the block B (Fig. 5 1 ). But, we
also require the client to know that honest replicas have
perma-locked B, so that the client can safely confirm B,
knowing honest replicas will not contribute votes in favor
of a conflicting block (Fig. 5 3 ). This is why in OFlex-

Streamlet, the confirmation rule requires the client to see an
additional block D with n votes (Fig. 5 2 ), from which the
client infers that all honest replicas must have perma-locked
block B. Thus, it would require n adversary replicas to
confirm an inconsistent block such as I . In OFlex-Streamlet,
only 2n

3 +1 votes are required for the blocks A,B,C and qk
votes are required only for block D (Fig. 5), which suffice
for the client to infer replicas’ perma-locks.

5. OFlex Confirmation Rules for Ethereum

Ethereum is a proof-of-stake blockchain built [30] on
Casper [9], a PBFT-style consensus protocol very simi-
lar [32] to Streamlet. Ethereum allows participants to lock up
32 ETH tokens to participate as replicas (called ‘validators’
in Ethereum) in Casper.

In the generic OFlex construction, we added extra
perma-locking and post-voting to the replica logic and de-
signed a new confirmation rule. In OFlex-Streamlet, we
reused Streamlet’s votes as post-votes, and only required
modifying the replica voting rule to introduce the perma-
lock constraint, and designing a new confirmation rule.
Due to Casper’s similarity with Streamlet, we could do
the same for Casper. However, we observe that Ethereum’s
implementation of Casper de-facto already has the required
perma-lock and voting constraint.6 As a result, to provide
optimal flexible consensus on top of Ethereum as-is today,
we do not require any modifications to the validators, but
only new client-local confirmation rules.

We describe how Ethereum’s implementation provides
the perma-lock and voting constraint and state our flexible
OFlex confirmation rules in Sec. 5.1. We describe our im-
plementation of the confirmation rule in Sec. 5.2 and show
experimental results in Sec. 5.3.

5.1. Confirmation Rules

Due to Casper’s similarity [32] to Streamlet, OFlex con-
firmation rules for Casper closely follow OFlex-Streamlet.

We first briefly describe the features already imple-
mented by Ethereum validators which enable designing
client-side OFlex confirmation rules without having to
change the validator logic. A detailed description of Casper
and of the Ethereum protocol can be found in [9], [30], [33].
1) Validators maintain a ‘finalized checkpoint’, which is

a block that satisfies the ‘default confirmation rule’
called ‘finality’ of Casper (cf. C in Fig. 2). The finalized
checkpoint is safe up to n/3 adversary validators, i.e.,

6. In Ethereum’s implementation, validators effectively perma-lock
blocks they consider irreversible, to ‘prune’ the block tree maintained and
traversed as part of the consensus algorithm. This improves computational
efficiency. Furthermore, the perma-lock is not present in the textbook
version of Casper [9], and thus presumably currently not considered an
integral part of Ethereum’s consensus protocol. We therefore believe that
the perma-locking mechanism was added as an unrelated performance op-
timization. It seems plausible that other PBFT-style consensus deployments
feature a similar perma-lock and therefore can also be upgraded to OFlex
confirmation rules with only client-local changes.
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no other block inconsistent with a finalized checkpoint
will ever be finalized if ≤ n/3 validators are adversary.

2) When the finalized checkpoint is updated, the new
finalized checkpoint must extend the old one.

3) Validators only vote for blocks that extend the finalized
checkpoint in their view.

4) Votes for a block are included on-chain in descendant
blocks. Validators consider only votes included on-chain
to update their finalized checkpoint. Blocks with votes
deemed invalid are deemed invalid.
We see below how the above features realize the required

perma-lock and voting constraint, just as in OFlex-Streamlet
(Sec. 4.2). Items 1 and 2 show that a validator’s finalized
checkpoint behaves as its perma-lock, i.e., the finalized
checkpoint satisfies Casper’s original confirmation rule, and
once a block is finalized, further finalized checkpoints must
extend that block. The voting rule in Item 3 shows that
validators never vote for a block that is inconsistent with
their finalized checkpoint, i.e., perma-lock. Just as in OFlex-
Streamlet, the safety of Casper’s finality when f ≤ n/3
(Item 1) guarantees that the voting constraint in Item 3
is never active when f ≤ n/3 (recall that an analogous
property was required for liveness of OFlex-Streamlet).7

Recall from OFlex-Streamlet, that we also needed clients
to be able to infer how many validators have perma-locked a
certain block and when it is thus safe to confirm that block.
In Ethereum’s Casper implementation, having votes on chain
(Item 4) provides the evidence for the client to know when
a validator must have perma-locked, because if a validator
votes for a block, it must have seen (and deemed valid) all
votes contained in the chain leading up to its vote target.

Since perma-locking and post-voting are de-facto al-
ready implemented in Ethereum’s Casper, the following
suffices for optimal flexible consensus in Ethereum:

OFlex confirmation rules C′(qk) for Ethereum: A client
k confirms block A iff: (1) it sees a block C descending
from A that contains votes (in C or its prefix) to finalize
block A, and (2) it sees votes from qk validators for C
(included on-chain or received otherwise).

Fig. 7 illustrates how this rule provides safety in an
example with clients with tSk = n−1. The example proceeds
analogously to OFlex-Streamlet (Fig. 5). If a client sees n
validators vote for a block C which contains enough votes
to finalize a previous block A, then the client confirms A.
When the client sees a validator vote for C (Fig. 7 2 ), it
knows that this validator, if honest, must have seen the votes
included in the chain of C resulting in the finalization of
A, and therefore must have set A as its finalized checkpoint
(Fig. 7 1 ). This validator will thus never vote for a block
inconsistent with A (Fig. 7 3 ). Thus, if a client sees all n
replicas vote for C, then it knows that, unless all replicas
are adversary, a block inconsistent with A cannot obtain
votes from all replicas. Thus, clients that confirm blocks
with qk = n remain safe even when f = n− 1.

7. This justifies why Item 3 is a correct performance optimization: it does
not cause the optimized system to behave differently from the un-optimized
system under normal conditions when f ≤ n/3.

A

2n
3
+1

C

n

Votes fi-
nalizing A

F

2n
3
+1

H

n

Votes fi-
nalizing F

2

1

3

1 A

Figure 7. Illustration of OFlex confirmation rules for Ethereum. * Protocol
rules: 1 If a validator sees a block C that contains enough votes to finalize
block A, then the validator sets A as its finalized checkpoint. 2 From a
validator’s vote on block C, clients can infer that the validator, if honest,
must have set A as its finalized checkpoint. 3 An honest validator that
voted for C will never vote for F,H that are inconsistent with its finalized
checkpoint A. * Safety intuition: Seeing votes from n validators on block
C, a client with qk = n confirms block A. Due to steps 1 to 3 , when
2n
3

+ 1 ≤ f < n, blocks F,H may be finalized (by adversarial votes
alone), but will never obtain votes from all n validators. Therefore, no
client k′ with qk′ = n confirms a block inconsistent with A, unless all
validators are adversary, implying tSk = tS

k′ = n− 1.

Note that clients using OFlex rules can operate along-
side clients that continue to use Casper finality as their
confirmation rule. Specifically, all clients simultaneously
enjoy the flexible consensus guarantees (Def. 1) with their
respective resiliences (tLk = n

3 − 1, tSk = n
3 for clients

using finality). Although Casper finality and the OFlex rule
with qk = 2n

3 + 1 enjoy the same resiliences, the logs
confirmed by them are not identical. The OFlex rule requires
an additional block (C in Fig. 7).

5.2. Implementation

Before describing our implementation of the OFlex rule,
we first briefly explain the software stack that a user runs
in order to interact with the Ethereum blockchain, and how
our implementation fits in the current system. There are two
essential pieces of software: an Ethereum consensus client,
and an execution client, as shown in Fig. 8(a). The consensus
client connects to the Ethereum peer-to-peer network to
obtain latest blocks, and tries to confirm blocks according
to the consensus protocol (i.e., Casper finality). It feeds
confirmed blocks to the execution client, which executes the
transactions inside to obtain the system state (e.g., account
balances) with regard to the tip of the confirmed log. User
applications such as wallets can then query the execution
client for latest system state through the JSON-RPC API.

We notice that existing Ethereum consensus clients al-
ready expose all the data required to run the OFlex con-
firmation rule, namely the finalized checkpoint according
to votes in the chain leading up to any block C, and
the fraction of validators voting for C. As a result, the
OFlex rule can be implemented as a standalone program
that runs alongside an existing, unmodified consensus client,
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Figure 8. OFlex confirmation rules can be adopted by Ethereum users
unilaterally without any changes to internals or interfaces of execution
clients, consensus clients, or wallets. The OFlex confirmation client (this
work) determines a chain tip satisfying the user-provided safety level. The
Patronum RPC shim [34], [35] can provide responses to queries from the
wallet based on that chain tip.

subscribes to the client for chain data, and outputs the tip
of the chain confirmed by the OFlex rule with any desired
safety resilience. Fig. 8(b) shows one way to integrate such
a program into the existing system. Instead of connecting
directly to the execution client (which by default answers
queries with regard to the chain tip confirmed by Casper
finality), user applications connect to Patronum [34], [35],
an RPC proxy. Patronum learns the confirmed tip from the
OFlex rule, and rewrites user queries so that the execution
client always answers them with regard to this tip. This
process is transparent to the user as well as the consensus
and the execution clients, so that applications can benefit
from the new rule without any change to their code.

We implemented the OFlex confirmation rule following
this design in 1,100 lines of Rust code.8 For any block C, we
use the /states/finality_checkpoints endpoint
of the Ethereum Beacon API [36] to query the latest block
finalized by Casper according to votes in the chain leading to
C, and use the /states/committees endpoint to query
the set of validators selected to vote for C. We then use the
/blocks endpoint to fetch subsequent blocks and examine
the votes included to count the number of validators who
actually vote for C. We tested our implementation against
Prysm and Lighthouse, the two most popular Ethereum
consensus clients as of now [37].

5.3. Experiments

To evaluate the behavior of OFlex rules in the real world,
we use our implementation to apply the rule with various

8. Source code: https://github.com/tse-group/flexible-eth
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Figure 9. Empirical cumulative distribution function of latency to confirm
Ethereum mainnet blocks between slots 5,970,000 and 6,970,000 by the
OFlex rule with different quorums, and by Casper finality.
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Figure 10. Ethereum mainnet chain confirmed by Casper finality ( )
and by our OFlex confirmation rule with low quorum (67%, ) and high
quorum (99%, ). Shown are slots 6,423,500 to 6,425,500, covering
a finality outage incident [38], [39] on May 12th, 2023 (times in UTC).

quorum sizes on a section of Ethereum mainnet between
slots 5,970,000 (March 10th, 2023) and 6,970,000 (July
27th, 2023), covering roughly the most recent 1/7 of the
Ethereum PoS mainnet history as of when this paper is
written. We choose this section because it is recent enough to
reflect current statistics, and it covers two rare but interesting
events: the finality outage incident that happened on May
12th, 2023 [39], and the Shanghai hard fork that happened
on April 12th, 2023. During both events, participation of
validators dipped, allowing us to demonstrate the behavior
of OFlex rules under non-standard conditions.

Fig. 9 shows how the distribution of confirmation latency
changes with confirmation rule and quorum. Compared to
Ethereum’s Casper finality, OFlex rules incurs an extra
latency of approximately one epoch due to the extra round of
voting. This extra latency is proportional to the quorum size,
because a quorum of qk requires waiting for qk validators
to vote, which takes roughly (qk/n)-fraction of an epoch
to happen. This effect is shown by the curves shifting
towards right as quorum size increases. The key takeaway
is that for Ethereum mainnet, adopting OFlex rules results
in only modest increase of confirmation latency, even when

https://github.com/tse-group/flexible-eth
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Figure 11. Ethereum mainnet chain confirmed by Casper finality and by
our OFlex confirmation rule with different quorums (cf. legend). Shown
are slots 6,209,000 to 6,215,000, covering the Shanghai hard fork at slot
6,209,536 (on April 12th, 2023 at 22:27 UTC on the plot).

opting for extremely high quorum (e.g., 99%). For example,
the 95th-percentile tail latency to confirm blocks with 99%
quorum is 30 minutes, an increase of 60% compared to
Casper finality. We argue that this is a cost well worth pay-
ing, because confirming with 99% quorum offers resilience
against an extremely powerful 98% adversary, while Casper
finality is safe only against a 33% adversary. Similarly, once
adopting our rule, increasing the quorum size results in only
slight further increase of latency. For example, adjusting the
quorum size from 80% to 99% increases the tail latency by
25%, while boosting the safety resilience from 60% to 98%.
Operationally, we expect users adopting our rule to use very
high quorums to maximize the safety benefit.

Ethereum mainnet typically runs in a healthy steady-
state with close to 100% of validators correctly participating,
allowing our rule to achieve good confirmation latency even
with high quorums, as just shown. Now, we zoom into
two events when participation dipped, and examine how
our rules behave under such abnormal conditions. For each
event, we plot over time the growth of the logs confirmed by
our rules with different quorums, as well as that by Casper
finality. We also plot the participation rate (i.e., fraction of
validators online and actively voting) for reference.

Fig. 10 shows an incident that happened on May 12th,
2023, when a bug in some validators’ software was triggered
and brought them offline [39]. Before the incident, the logs
confirmed by OFlex rules closely tracked Casper finality,
as shown on the left side of the plot. At around 17:20,
the bug was triggered and participation quickly dropped
below the threshold required by Casper (67%) and OFlex
rules (67% and 99%, respectively), causing all three logs
to stop growing (the horizontal stretch of the lines). At
around 18:10, validators started to patch their software, and
participation surpassed 67% at around 18:30, allowing the
Casper log and the 67%-quorum log to recover. The 99%-
quorum log stalled for a while longer as there were not

enough validators to form a 99% quorum, and recovered at
around 20:50 when participation surpassed 99%.

Fig. 11 shows the Shanghai hard fork, when validators
had to upgrade their software in order to keep participating
post-fork. Unlike in the other incident, since this was a
scheduled transition, participation rate after the hard fork
never dropped below 90%. As a result, logs confirmed by
OFlex rules with quorum sizes no larger than 90% experi-
enced no pause and kept tracking Casper finality. The other
logs except for the one confirmed by 99%-quorum quickly
recovered as shown in the scope. It took significantly longer
for the participation rate to recover above 99% and for the
99%-quorum log to resume growth.

We remark that each user can choose to confirm with
different quorums at different times and for different trans-
actions, while maintaining high safety for all transactions
that were confirmed with a high quorum. For instance, a
user can choose to confirm with a 99% quorum most of the
time but switch to confirming with a lower quorum during
incidents such as the ones described above.

6. Related Work

Multi-threshold consensus: Multi-threshold Byzantine
fault tolerance [1], [2], [3], [4] can be viewed as a degenerate
case of flexible consensus in which all clients have the same
resilience pair (tL, tS) which may be different from ( 13 ,

1
3 ).

This is done for SMR consensus in [1], [4] and for reliable
broadcast in [1], [2], [3].

Multi-threshold BFT [1] argues that some applications
prefer a higher safety resilience than liveness resilience
(tS ≥ tL). The same problem is stated from another point
of view in [3], [5], [14], [40], [41]: ‘rational’ adversaries
may choose to attack safety but not liveness (cf. alive-
but-corrupt faults [14], deceitful faults [5], Byzantine mer-
chants [41]) because an adversary can expect sizeable profits
from double spends by attacking safety, but stands to gain
little and instead lose protocol rewards if it were to attack
liveness. Tolerating alive-but-corrupt adversaries in addition
to Byzantine adversaries is then equivalent to having a
higher safety resilience than liveness resilience. Similarly,
[42], [43], [44] consider other classes of adversaries.

Orthogonally, protocols in [1], [45], [46], [47] achieve
the respective optimal safety and liveness resiliences under
different network conditions (synchrony, asynchrony), but
without allowing clients flexibility to choose resilience pairs.
Flexible protocols: FBFT [14] allows clients to not only
choose resilience pairs, but also choose different network as-
sumptions (synchronous or partially synchronous). Protocols
with an optimistic fast path [48], [49], [50] allow clients to
trade-off between the liveness resilience and confirmation
latency, but not the safety resilience. In this work, we
focus on achieving the optimal trade-off between safety and
liveness resiliences for a fixed partially synchronous network
assumption. Moreover in FBFT, the replica logic is essen-
tially the same as in prior protocols such as Hotstuff [10]
(excluding changes geared towards flexibility in the network
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assumptions). In this work, we instead modify (in OFlex-
Streamlet) the replica voting rule with a restriction based on
perma-lock, which is crucial to achieving optimal flexibility.
Highway [40] also aims to provide flexibility resiliences but
has no proven liveness guarantees when the safety resilience
exceeds 1

3 as per [40, Thm. 2]. The idea of flexible quorums,
used by [14] and our work, also appears in [51].

Strenghtened fault tolerance: SFT [15] extends [14] from
one-shot Byzantine agreement to a full SMR protocol while
maintaining ‘linear message complexity’. We discuss how
our generic OFlex construction can also be made to achieve
linear message complexity: In every ‘round’ (whose duration
will be determined later), replicas should take turns being
an ‘aggregator’. During a round, all replicas send their post-
votes to the aggregator. The aggregator then collects all post-
votes it receives during the round for any log that is the
same as or an extension of the log that the aggregator itself
post-voted, and packages these post-votes into a certificate.
This solution preserves safety because post-votes cannot be
forged by the aggregator. Liveness is preserved because,
after GST, eventually, all replicas see the log that the ag-
gregator post-voted. Moreover, in the regime where liveness
needs to be provided (i.e., if f < n/3), the base protocol is
safe, so honest replicas only post-vote logs consistent with
the aggregator’s post-vote. Thus, if the round is long enough
(confirmation latency of the base protocol), then all honest
replicas are guaranteed to post-vote some log extending the
aggregator’s post-vote within that round. With this construc-
tion, if the base protocol has linear message complexity, then
so does the combined OFlex protocol (the only additional
messages are post-votes). Since all post-votes collected by
the aggregator extend a common prefix, the aggregator can
use a SNARK to reduce the message to constant size, thus
achieving linear communication complexity.

It is equally easy to pipeline the above process in
a linear-communication protocol such as DiemBFT [52]
(which [15] uses) such that round leaders of the protocol also
serve as aggregators. In SFT-DiemBFT, the main difficulty
was how to re-use votes for a block as votes for its ancestors
without double-counting conflicting votes. To do this, repli-
cas in SFT-DiemBFT [15] attach a ‘marker’ to votes through
which the replica signals to have not voted for an inconsis-
tent block in the recent past. In OFlex, such markers are not
needed since the perma-lock already provides the function
of the marker (the post-voting replica has never post-voted
and will never post-vote an inconsistent block). By adapting
the other techniques used in [15], one readily obtains an
‘OFlex-DiemBFT’ with linear message complexity, without
even the message overhead of the markers.

Snap-and-chat protocols: Snap-and-chat protocols [53]
provide a construction of flexible consensus where a ‘more
live’ consensus protocol and a ‘more safe’ one are con-
catenated to yield two confirmation rules, a ‘more live’ one
and a ‘more safe’ one. This construction can be extended
to yield a resilience-optimal flexible consensus protocol:
a concatenation of n

3 consensus protocols, each with a
different system-wide quorum, starting from one with a
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n
3
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3
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LOG(n
3
−2,n

3
+2)

LOG(n
3
−1,n

3
)

...

Concatenation of n
3
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Figure 12. Block diagram of an optimal flexible consensus protocol inspired
by snap-and-chat (cf. [53, Fig. 5]). This construction is a serial concatena-
tion of n

3
consensus protocols (replica logic Π, confirmation rule C). The

first protocol Π(1) = (Π(1), C(1)) uses a system-wide quorum q = 2n
3
+1

and achieves system-wide resiliences tL = n
3
− 1, tS = n

3
. At each

subsequent protocol, the system-wide quorum is increased by 1, which
decreases tL by 1 and increases tS by 2 for that protocol, all the way up
to Π(n

3
) = (Π(n

3
), C(

n
3
)) which has a system-wide quorum q = n and

resiliences tL = 0, tS = n − 1. The log output using Π(1) is treated as
input (i.e., ‘transactions’) to be sequenced by the next protocol Π(2) (a
replica ‘boycotts’ proposals in Π(2) inconsistent with its view of the log
of Π(1), cf. [53, Fig. 5]). Thus, Π(2) generates a ‘log of logs‘ which is
then flattened and de-duplicated to produce the output log of Π(2), which
is then input to Π(3) and so on. Replicas run all protocols simultaneously,
which makes this inefficient. A client k with resiliences (tLk , t

S
k) confirms

LOG
(tLk ,tSk)

output by the corresponding protocol and ignores the rest.

quorum q = 2n
3 + 1 all the way up to one with q = n.

A more detailed description is given in Fig. 12. Clearly,
running n

3 protocols simultaneously is impractical for the
replicas. Our generic construction (Fig. 2) points out that
all these protocols except the first one (q = 2n

3 + 1) can be
collapsed into a single round of post-vote and perma-lock.
Asymmetric quorums: Works [54], [55], [56], [57] model
that not all replicas may be equally trusted, thereby gener-
alizing the resilience from a fraction of replicas to sets of
replicas (called fail-prone sets). In these works, there is no
flexiblity. Federated consensus [58], [59] adds flexibility by
allowing replicas and clients to choose their own fail-prone
sets. However, clients have the same fail-prone sets for both
safety and liveness (i.e., both properties fail together when
replicas outside the fail-prone sets are adversary), making
this an orthogonal direction to flexible consensus.

7. Discussion

7.1. Stronger Consistency Guarantees for OFlex

In the flexible consensus formulation (Def. 1), con-
sistency between clients k, k′ is guaranteed only when
f ≤ min{tSk, tSk′}. This follows the definitions in [14],
[15]. The previous impossibility result 2tLk + tSk < n
bounds the resiliences when tSk = tSk′ ; thus the security
guarantees of OFlex protocols are optimal for clients with
equal resiliences. But can consistency be guaranteed when
f > min{tSk, tSk′} for clients with unequal resiliences?
In fact, a closer examination of the proofs of Thm. 1
and Lem. 1 show that the OFlex protocols guarantee con-
sistency between any clients k, k′ up to f = (tSk + tSk′)/2.
Conversely, we show in App. B that when the resilience
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pairs (tLk , t
S
k) and (tLk′ , tSk′) are chosen optimally (i.e., each

satisfying 2tLk+tSk = n−1), then consistency between clients
k, k′ is impossible if f > (tSk + tSk′)/2.

7.2. Flexible Accountable Safety

The works [4], [9], [30], [60], [61], [62], [63], [64],
[65] strengthen consensus protocols’ safety property to ac-
countable safety, which guarantees safety if few replicas
deviate from the protocol, and if safety is ever violated, then
a sizable number of replicas are identified to have provably
violated the protocol. Our OFlex protocols provide flexible
accountable safety: if two clients k, k′ confirm inconsistent
logs (a safety violation), then at least (tSk + tSk′)/2 replicas
must have provably violated the protocol (see Sec. 7.1 to
understand the increased resilience compared to Def. 1).

The following rule identifies adversary replicas in the
generic OFlex construction: a replica is detected adversary
if it sends two equivocating post-votes, i.e., two post-votes
for inconsistent logs LOG and LOG′. No such post-votes
will exist for any honest replica, due to perma-locking, and
authentication using signatures. On the other hand, as the
quorum-intersection-based safety arguments for OFlex show
(cf. Thm. 1 and Lem. 1), a necessary condition for a safety
violation between clients k, k′ is that at least (tSk + tSk′)/2
replicas have sent equivocating post-votes.

This rule readily makes safety accountable in the generic
OFlex construction (Sec. 3). Adapting the rule to OFlex-
Streamlet (Sec. 4.2), if a replica votes for a block whose
parent chain contains three adjacent blocks from consecutive
epochs, it shall never vote for a block inconsistent with the
second block of them (because it is perma-locked on that
block). For Ethereum (Sec. 5), if a validator votes for a
block whose state commits a certain block as finalized, it
shall never vote for a block inconsistent with that finalized
block (because it is, effectively, perma-locked on that block).

7.3. Preserving Safety after External Repair

Clients that use OFlex confirmation rules for Ethereum
with high qk retain safety up to high f , throughout the
consensus protocol’s execution. However, in case inconsis-
tencies occur in Casper finality or if liveness is lost (which
may occur already when f exceeds n/3), Ethereum intends
to use a process external to the consensus protocol (‘social
consensus’ [66], [67]) to ‘repair’ the protocol. Interestingly,
this intervention can be carried out in a manner that pre-
serves consistency of high-safety OFlex rules despite the
intervention, namely if care is taken to not revert transac-
tions deemed confirmed by OFlex rules with high qk for
which no conflicting confirmations have been observed.
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Algorithm 3 Streamlet protocol Π [11] (cf. Sec. 4.1)
1: ▷ Replica-side logic Π

2: on INIT()
3: B,V ← {B0}, {} ▷ Background task: receive blocks and votes

into B and V , respectively, subject to the canonical validation: retain
only messages with valid signatures; retain only blocks produced by
respective epoch leader; add messages only once hash pointers can
be resolved in B; add messages only when their epoch has come

4: for each epoch e = 1, 2, 3, ...
5: ▷ Propose (done by epoch leader at the start of the epoch)
6: B′ ← tip of any one longest notarized chain in (B,V)
7: h← Hash(B′)
8: txs← transactions not present in chain of B′

9: Sign and broadcast block (h, e, txs)

10: ▷ Vote (done by all replicas once during the epoch)
11: B ← first block from epoch e in B signed by epoch leader
12: B′ ← parent block of B in B
13: if B′ is tip of any longest notarized chain in (B,V)
14: h← Hash(B)
15: Sign and broadcast vote h

16: ▷ Client-side confirmation rule C
17: on INIT()
18: B,V ← {B0}, {} ▷ Background task: receive blocks and votes

into B and V , respectively, subject to the canonical validation: retain
only messages with valid signatures; retain only blocks produced by
respective epoch leader; add messages only once hash pointers can
be resolved in B; add messages only when their epoch has come

19: ▷ Confirmation
20: if (B,V) contains a notarized chain with three adjacent blocks

A,B,C from consecutive epochs
21: Choose A,B,C as such blocks with maximum height
22: LOG ← sequence of transactions as ordered in chain of B
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Appendix A.
OFlex-Streamlet Security Proof Details

For completeness, we provide a pseudocode of Streamlet
in Alg. 3. The pseudocode of OFlex-Streamlet in Alg. 2
highlights its differences with respect to Streamlet.

Proof of Lem. 3. This proof follows techniques from the
proof of [11, Lem. 2] and is recapped here for completeness.
Denote the heights of the blocks A,B,C as ℓ, ℓ + 1, ℓ + 2
respectively. Denote the epochs of A,B,C as e, e+1, e+2
respectively.

Assume for the sake of contradiction that some block
F ̸= B with epoch e′, at the same height as B, is also
notarized in the view of some honest replica. We look at
three cases.

First, if e′ ∈ {e, e+1, e+2}, then in one of these three
epochs, at least n/3 + 1 replicas must have voted for two
different blocks. This cannot happen if f ≤ n/3.

Second, let e′ < e. Since both blocks A and F are
notarized, at least n/3 + 1 replicas must have voted for

both blocks. Since f ≤ n/3, at least one of these replicas
must be honest. Note that this replica must have voted for
F by the end of epoch e′ and thus before the beginning of
epoch e. This implies that the replica must have observed
a notarized chain of length ℓ before the beginning of epoch
e (by observing F ’s notarized parent chain, which is a
prerequisite for voting). However, in epoch e, the honest
replica voted for block A which has length ℓ. This is a
contradiction because the parent chain of A is not one of
the longest notarized chains seen by the replica since it had
already seen a notarized chain of length ℓ.

Third, let e′ > e+2. In this case, since both blocks C and
F are notarized, at least n/3+1 replicas must have voted for
both blocks. Since f ≤ n/3, at least one of these replicas
must be honest. Note that this replica must have voted for C
by the end of epoch e+2 and thus before the beginning of
epoch e′. This implies that the replica must have observed
a notarized chain of length ℓ + 1 before the beginning of
epoch e′ (C’s notarized parent chain). However, in epoch e′,
the honest replica voted for block F which has length ℓ+1.
This is a contradiction because the parent chain of F is not
one of the longest notarized chains seen by the replica since
it had already seen a notarized chain of length ℓ+ 1.

Lemma 6 (cf. [11, Fact 3]). Suppose that f < n/3 and that
after GST, there are two epochs e and e+1 both with honest
leaders denoted Le and Le+1 respectively, and suppose that
Le and Le+1 propose blocks Be and Be+1 at heights ℓ0 and
ℓ1 respectively, it must be that ℓ1 ≥ ℓ0 + 1.

Proof. The proof is similar to that of [11, Fact 3], but
additionally uses the fact that the voting rule based on the
perma-lock is never invoked in the regime of interest for
liveness, i.e., f < n/3 (Lem. 4). All we need to prove is
that the longest notarized chain of Le+1 at the beginning of
epoch e + 1 is of length at least ℓ0. Since Le proposes a
block whose parent chain Le saw notarized at the beginning
of epoch e, due to synchrony, all honest replicas see this
notarized chain ∆ time into epoch e. Then, every honest
replica will vote for Be unless by time ∆ into epoch e, it had
already observed a conflicting notarized chain of length ℓ0
(otherwise, Be’s parent chain is one of the longest notarized
chains see by the honest replica, and by Lem. 4, Be is also a
descendant of the replica’s perma-lock). If all honest replicas
vote for Be, then since f ≤ n/3, all honest replicas see the
chain ending in Be (of length ℓ0) notarized by the beginning
of epoch e+ 1. If not, then at least one honest replica had
already observed a notarized chain of length ℓ0 which all
honest replicas observe by the beginning of epoch e + 1.
This completes the proof.

Lemma 7 (cf. [11, Lem. 5]). Suppose f < n/3. After GST,
suppose there are three consecutive epochs e, e + 1, e + 2
all with honest leaders denoted Le, Le+1, and Le+2, then
the following holds (below we use B to denote the block
proposed by Le+2 during epoch e+ 2):
1) by the beginning of epoch e+3, every replica/client will

observe a notarized chain ending at B and n− f votes
for B (and B had not received n− f votes before the

https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/attack-and-defense/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/attack-and-defense/
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beginning of epoch e);
2) furthermore, no conflicting block F ̸= B with the same

height as B will ever get notarized in the view of any
honest replica/client.

Proof. This proof is identical to that of [11, Lem. 5] and
is repeated for completeness. Let ℓ0, ℓ1, ℓ2 be the heights
of the blocks proposed by Le, Le+1, Le+2 respectively. By
Lem. 6, ℓ2 > ℓ1 > ℓ0. Recall that B is the block proposed
by Le+2 in epoch e+ 2, whose length is ℓ2.

We now argue that by the beginning of epoch e+3, no
honest replica voted for a conflicting F ̸= B at the same
height as B. No honest replica will have voted for a block
F ̸= B at height ℓ2 in epochs e, e + 1 or e + 2 because
the leaders Le and Le+1 proposed blocks at heights ℓ0 and
ℓ1 respectively, which are different from ℓ2, and the leader
Le+2 proposed the block B ̸= F . If an honest replica had
voted for such a block F before epoch e started, at that time
this replica must have observed a notarized parent chain of
length ℓ2 − 1. Due to synchrony after GST, this notarized
parent chain of length ℓ2−1 must have been observed by all
honest replicas by the beginning of epoch e+1. Therefore,
Le+1 must propose a block at length at least ℓ2. Thus we
have reached a contradiction.

Since by the beginning of epoch e+3, no honest replica
has signed any F ̸= B at length ℓ2, at this time there cannot
be a notarization for any F ̸= B at length ℓ2. Moreover,
Le+2’s proposal and the notarized parent chain that triggered
the proposal will be observed by all honest replicas at the
beginning of ∆ time into epoch e+ 2. Therefore all honest
replicas will vote for B by ∆ time into epoch e+ 2 (since
B’s parent is indeed one of the longest notarized chains seen
by any replica). Thus by the beginning of epoch e + 3, all
honest replicas will have seen a notarization for B. Thus, no
honest replica will ever sign any conflicting F ̸= B at length
ℓ2 after the start of epoch e+ 3 either; and any conflicting
F ̸= B at length ℓ2 cannot ever gain notarization.

Proof of Lem. 5. Due to Lem. 7 (1), client k observes
the blocks proposed by Le+2, ..., Le+5, henceforth denoted
B2, ..., B5, to have received n− tLk ≥ qk votes.

Further, the blocks B2, B3, B4, B5 must form a chain.
This is because due to Lem. 7 (2), the leader of epoch
e+ 3 observed the chain ending in B2 as notarized by the
beginning of epoch e + 3 and did not observe any other
notarized chains at the same length as B2. Therefore, the
honest leader of epoch e+3 must propose block B3 with the
chain ending in B2 as the parent chain. The same argument
holds for blocks B3, B4, B5. Thus, client k, based on its
confirmation rule, confirms the block B3 by the beginning
of epoch e+ 5.

Appendix B.
Impossibility Result for Strongly-Consistent
Flexible Consensus

In this section, we prove the impossibility result referred
to in Sec. 7.1: if two clients k, k′ choose optimal resilience

pairs, that is, 2tLk + tSk = n− 1 (and similarly for k′), then
consistency between the clients k and k′ is impossible if
f > (tSk+tSk′)/2. Observe that due to the optimality of the re-
silience pairs, this is equivalent to showing that consistency
is impossible if f > (n−1−2tLk )/2+(n−1−2tLk′)/2, i.e.,
for f ≥ n− tLk − tLk′ . We prove this in Thm. 3. This proof
is a generalization of the partially-synchronous resilience
trade-off (2tLk + tSk′ < n) proven in [6], [13].

Theorem 3. In a partially synchronous network, there is
no consensus protocol in which for all clients k, k′ with
0 ≤ tLk , t

L
k′ ≤ n:

• Liveness: For every tx input to all honest replicas, even-
tually, for all clients k with f ≤ tLk , tx ∈ LOGk.

• Safety: For all clients k, k′ with f ≤ n− tLk − tLk′ for all
times τ, τ ′, LOGτ

k and LOGτ ′

k′ are consistent.

Proof. Suppose that there is a consensus protocol Π which
provides the above mentioned liveness property. We will
now prove that there is an execution of the protocol in which
the safety property is violated. Suppose that there are two
clients k and k′. Let P,Q,R be disjoint subsets of the n
replicas such that |P | = tLk , |Q| = tLk′ , and |R| = n−tLk−tLk′ .
Consider the following three worlds:

World 1: A high-entropy transaction tx1 is sent to all
replicas. No other transactions are sent. Replicas in the
subsets P and R are honest. Replicas in the subset Q are
adversary and do not communicate with the honest replicas
and clients k, k′. Since f ≤ tLk′ in this world, due to liveness,
client k′ confirms tx1, i.e., tx ∈ LOGτ ′

k′ at some time τ ′.
World 2: A high-entropy transaction tx2 ̸= tx1 is sent to

all replicas. No other transactions are sent. Replicas in the
subsets Q and R are honest. Replicas in the subset P are
adversary and do not communicate with the honest replicas
and clients k, k′. Since f ≤ tLk in this world, due to liveness,
client k confirms tx2, i.e., tx2 ∈ LOGτ

k at some time τ .
World 3: Transaction tx1 is sent to replicas in P and

tx2 is sent to replicas in Q and both transactions are sent to
replicas in R. Replicas in the subsets P and Q are honest.
Replicas in R are adversary. The adversary chooses GST =
max{τ, τ ′} (recall from Sec. 2 that GST is chosen by the
adversary and unknown to honest replicas) and until GST,
replicas in P and Q cannot communicate with each other.
The adversary replicas in R perform a ‘split-brain’ attack.
One brain interacts with P and the client k′ as if it only
received input tx1 and this brain does not communicate with
replicas in Q and the client k. The other brain interacts with
Q and the client k as if it only received input tx2 and this
brain does not communicate with replicas in P and the client
k.

For client k′, worlds 1 and 3 are indistinguishable, so
tx1 ∈ LOGτ ′

k′ in world 3. For client k, worlds 2 and 3 are
indistinguishable, so tx2 ∈ LOGτ

k in world 3. Since tx1 is
high-entropy, tx1 ̸∈ LOGτ

k because no replicas saw tx1 in
world 2. Similarly, tx2 ̸∈ LOGτ ′

k′ . Thus, LOGτ
k and LOGτ ′

k′

are inconsistent. Thus, in world 3, where f ≤ n− tLk − tLk′ ,
there is a safety violation for clients k and k′. This shows
that there cannot be any protocol with the above safety and
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liveness properties.
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