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1 Introduction

In [1] the authors especially report on experiments they made comparing the distribu-
tions of scores for random targets and BDD targets. They discovered that the distribu-
tion of scores for BDD targets deviate from the predictions made under the independence
heuristic. Here, we want to derive approximations for the distributions which take into
account the dependency that occur in the scores. These approximations lead to new
formulas that seem to describe the result in [1, Table 1] quite accurately.

2 The Dual Distinguishing in [1]

We adopt the notation of [1] and repeat the approach described in [1, Section 2.3]. Given
a BDD sample t = v + e with v ∈ Λ for any dual vector w ∈ Λ∨ one has

⟨t, w⟩ ≡ ⟨e, w⟩ mod 1.

One naturally considers the total score over many dual vectors W ⊂ Λ∨ given by

fW (t) =
∑
w∈W

fw(t) with fw(t) = cos(2π⟨t, w⟩).

In [1, Lemma 4] approximations of the expectation values and variances of a single fw(t)
are given for the two cases ”random targets vs. BDD targets”. In general, we have for
the variance of the score

V (fW (t)) =
∑
w∈W

V (fw(t)) +
∑

w,w̃∈W,w ̸=w̃

Cov(fw(t), fw̃(t))

If the [1, Heuristic 2 (Independence Heuristic)] is valid, the second sum over the single
covariances is equal to 0. However, in the following we want to derive approximations
of this second sum. In the end, this might explain that in the experiments in [1, Table
1] the measured variance is much larger as predicted.
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3 Computing the covariances for random targets

We use the definition as in [2, Definition 1 (Random target distribution)]. Let Λ be
a full-rank n-dimensional lattice, B is a basis of Λ. The random target distribution
for Λ corresponds to the distribution obtained by sampling target vectors t uniformly
at random from the fundamental parallelepiped generated by the basis B. (We write
vectors as columns. The components of α with t = Bα, are uniform on [−1

2 ,
1
2 ].) We fix

two dual vectors w, w̃ ∈ W,w ̸= w̃ and write explicitely

w = (B−1)Tµ, w̃ = (B−1)T µ̃

where the components of µ and µ̃ are integers. We consider the 2-dimensional distribu-
tion of (

⟨t, w⟩
⟨t, w̃⟩

)
=

(
⟨α, µ⟩
⟨α, µ̃⟩

)

and its reduction (
⟨α, µ⟩ mod 1
⟨α, µ̃⟩ mod 1

)

as a random variable in α. We want to compute the probabilities for −1/2 ≤ s, s̃ ≤ 1/2

P (⟨α, µ⟩ mod 1 ≤ s, ⟨α, µ̃⟩ mod 1 ≤ s̃)

= Vol(⟨α, µ⟩ mod 1 ≤ s, ⟨α, µ̃⟩ mod 1 ≤ s̃)

We can compute this volume as as sub-volume of the n-dimensional cube by counting
over the points (k1p , . . . ,

kn
p ), kj integers with −p/2 ≤ kj ≤ p/2, for very large prime p

and going to the limit. As approximation we get the sum∑
r,r̃, with
r/p≤s,r̃/p≤s̃

[ ∑
kj , with∑

j µjkj/p mod 1=r/p,∑
j µ̃jkj/p mod 1=r̃/p

1

pn

]

=
∑

r,r̃, with
r≤sp,r̃≤s̃p

[ ∑
kj , with∑

j µjkj mod p=r,∑
j µ̃jkj mod p=r̃

1

pn

]

where r, r̃ are integers in [−p/2, p/2]. We assume that µ and µ̃ are linearly independent
(over the rational numbers or the real numbers). Then the second sum has exactly pn−2

solutions. In the end, we derive as approximation∑
r,r̃, with
r≤sp,r̃≤s̃p

1

p2
≈ (s+

1

2
)(s̃+

1

2
)
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Therefore, the random variables ⟨α, µ⟩ mod 1 and ⟨α, µ̃⟩ mod 1 are independent and the
covariances vanish.

4 Approximations for computing the covariances for BDD targets

We now assume that t is chosen as a BDD sample by sampling e from an n-dimensional,
continuous gaussion distribution with covariance matrix σ2

0 ·1n . We fix two dual vectors
w, w̃ ∈ W,w ̸= w̃ and consider the 2-dimensional distribution of(

⟨e, w⟩
⟨e, w̃⟩

)

as a random variable in e. This random variable is again gaussianly distributed with
covariance matrix

Σ = σ2
0

(
||w||2 ⟨w, w̃⟩
⟨w, w̃⟩ ||w̃||2

)
Let us assume that w and w̃ are linear independent and hence define a 2-dimensional
positive definite subspace of Rn and Σ is invertible. We set

P̃ (z) =
1

2π
√
det(Σ)

e−
1
2
zTΣ−1z

The distribution of the reduced random variable

c =

(
c1
c2

)
=

(
⟨e, w⟩ mod 1
⟨e, w̃⟩ mod 1

)

is equal to

P (c) =
∑
µ∈Z2

P̃ (c+ µ).

We use the well known Poisson summation formula and get

P (c) =
∑
µ∈Z2

P̃ (c+ µ) =
∑
v∈Z2

e−2πi⟨v,c⟩e−2π2vtΣv.

We now start the computation by

E(fw(t) · fw̃(t))

=

∫
c1,c2

cos(2πc1) · cos(2πic2)P (c1, c2)dc1dc2

=
∑
v∈Z2

e−2π2vtΣv

∫
c1

cos(2πc1)e
−2πiv1c1dc1 ·

∫
c2

cos(2πc2)e
−2πiv2c2dc2
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It is easily seen that each univariate integral (in c1 or c2, respectively) vanishes for all
v1, except for v1 = ±1 and for v2 = ±1, respectively. Namely, we have

2

∫ 1

0
cos(2πnt)e−2πimtdt =

∫ 1

0
e2πi(n−m)tdt+

∫ 1

0
e2πi(−n−m)tdt.

The first integral on the right-hand side vanishes except for n = m and the second
integral vanishes except for n = −m. Both integrals are equal to 1 if they do not vanish
and the claim follows.

Therefore, we get

E(fw(t) · fw̃(t))

=
1

4

∑
v1=±1,v2±1

e−2π2vtΣv

=
1

2
∆a +

1

2
∆b

where we set

∆a = e−2π2||w+w̃||2σ2
0

∆b = e−2π2||w−w̃||2σ2
0

∆c = e−2π2||w||2σ2
0

∆d = e−2π2||w̃||2σ2
0

[1, Lemma 4] states the equality for the expectation value

E(fw(t)) = e−2π2σ2
0 ||w||2

In the end, we derive for the covariance

Cov(fw(t), fw̃(t)) =
1

2
∆a +

1

2
∆b −∆c ·∆d (B)

We look at the sum over all single covariances∑
w,w̃∈W,w ̸=w̃

Cov(fw(t), fw̃(t)). (C)

Instead of computing this sum via (B) directly we now want to find plausible approxi-
mations that give simple formulas. We set m0 = #W . Note that

1

m2
0

∑
w,w̃∈W,w ̸=w̃

Cov(fw(t), fw̃(t)). (D)
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can be interpreted as a computation of a mean. Therefore, we can expect that the
expression (D) is near to the expectation value if we treat w, w̃ ∈ W,w ̸= w̃ as random
variables. In the simplest approximation these random variables are gaussian distributed
with covariance matrix τ20 1n. The expectation value is of the form

E(eγY )

where Y is (standard)-χ-square distributed. For γ < 0.5 this is identical to

E(eγY ) = (1− 2γ)−k/2,

where k denotes the degrees of freedom of Y . ∆a (resp. ∆b) depends on

||w + w̃||2, resp. ||w − w̃||2

which has n degrees of freedom, whereas ∆c ·∆d depends on

||w||2 + ||w̃||2

which has 2n degrees of freedom. In the end, we derive as an approximation of (D)

(1− 4γ0)
−n/2 − (1− 2γ0)

−n

where γ0 = −2π2σ2
0τ

2
0

For the total variance we therefore expect as approximation

V (fW (t)) =
∑
w∈W

V (fw(t)) +
∑

w,w̃∈W,w ̸=w̃

Cov(fw(t), fw̃(t))

≈ m0

2
+m2

0[(1− 4γ0)
−n/2 − (1− 2γ0)

−n]

[1, Lemma 4] states as approximation for the expectation value

E(fW (t)) =
∑
w∈W

e−2π2σ2
0 ||w||2

Again, we further expect

E(fW (t)) ≈ m0(1− 2γ0)
−n/2

If the expectation value of the score is larger than its standard deviation, we can expect
that we can in fact distinguish the cases ”random targets vs. BDD targets” with good
probability. However, this is only the case if

2(1− 2γ0)
−n − (1− 4γ0)

−n/2 ≥ 0

This condition can be reformulated as

|γ0| ≤ 2r +
√

r + 4r2 ≈
√
r ≈

√
ln(2)

2n
with r =

22/n − 1

4
(E)
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5 Conclusions and Interpretations

1. If γ0 is small, concretly such as (E) is fulfilled, we can expect that the usual
dual attack should work by just computing the score fW (t). We then distinguish
between the cases ”random targets vs. BDD targets” by checking if the score fW (t)
lies above a certain bound.

2. If γ0 is very small, we can approximate (D) by

(1− 4γ0)
−n/2 − (1− 2γ0)

−n

≈ e2nγ0 − e2nγ0 = 0

Therefore, we can just neglect this term in the computation of the variance. In
the end, the score behaves as if the independence heuristic is valid.

3. If (E) is not fulfilled, the expectation value lies well within the interval given by
the standard deviation. In order to distinguish the cases ”random targets vs. BDD
targets” we should not look at the expectation values but rather we should consider
the different standard deviations. The standard deviations are notably different if
for example

2
m0

2
≤ m0

2
+m2

0[(1− 4γ0)
−n/2 − (1− 2γ0)

−n]

⇐⇒ 1

2m0
≤ (1− 4γ0)

−n/2 − (1− 2γ0)
−n

Again, we have a simple conditions on m0 for the success of distinguishing the
cases. In practice, we just check if the absolute value of the score |fW (t)| lies
above a certain bound.

4. We computed some numerical experiments where w was chosen from a gaussian
distribution but not from the dual lattice Λ∨. We noticed that in general the score
does not look like a gaussian distribution. The same observation is made in [1, 5.3]
where the w were taken from the dual lattice.

5. By the technique described above (i.e. using the Poisson summation formula) it is
certainly possible to compute approximations of higher moments of the distribution
of the score. With a good approximation of the distribution one could choose a
better distinguisher.

6. A natural question arises: What are good weights in the formula for the total score
taking into account the covariances? We therefore consider weights βw in

fβ(t) =
∑
w∈W

βw cos(2π⟨t, w⟩).
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We have

E(fβ(t)) =
∑
w∈W

βwe
−2π2σ2

0 ||w||2

V (fβ(t)) =
1

2

∑
w∈W

β2
w +

∑
w,w̃∈W,w ̸=w̃

βwβw̃ Cov(fw(t), fw̃(t))

As in [2, 5.1] a natural choice for βw are weights that maximize the quotient

E(fβ(t))
2

V (fβ(t))

LetM be them0×m0-matrix with entries Cov(fw(t), fw̃(t)) for w ̸= w̃ and 1
2 on the

diagonal and γ the vector of length m0 with components e−2π2σ2
0 ||w||2 in w. Since

V (fβ(t)) is a quadratic form in the weights βw, we can use the Cauchy-Schwarz
inequality for computing the maximizing weights. The maximizing weights are
given by

M−1γ

If however the maximum of
E(fβ(t))

2

V (fβ(t))
is small compared to 1, we try to distinguish

the cases ”random targets vs. BDD targets” by looking at the different stan-
dard deviations. The quotient of the two standard deviation is maximal for the
eigenvector of the largest eigenvalue of M . Again, we computed some numerical
experiments, (where w was chosen from a gaussian distribution but not from the
dual lattice Λ∨). We observed only slight improvements of the scores by using
good weights. In the end, it seems to be a valid approach to use just the simple
form of the score and to dispense with the computational effort for the optimal
choice of the weights.
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