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Abstract. From the work by Laguillaumie and Vergnaud in ICICS’04, it
has been widely believed that multi-designated verifier signature schemes
(MDVS) can be constructed from ring signature schemes in general. How-
ever in this paper, somewhat surprisingly, we prove that it is impossible
to construct an MDVS scheme from a ring signature scheme in a black-
box sense (in the standard model). The impossibility stems from the
difference between the definitions of unforgeability. To the best of our
knowledge, existing works demonstrating the constructions do not pro-
vide formal reduction from an MDVS scheme to a ring signature scheme,
and thus the impossibility has been overlooked for a long time.
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1 Introduction

A multi-designated verifiers signature scheme (MDVS) [15] is a special variant
of a (standard) digital signature scheme. Its prominent property is the off-the-
record (OTR) [3], a.k.a. source hiding, which guarantees that a set of verifiers
designated by a signer is able to simulate the signer’s signature. Due to this
property, it is useless for non-designated verifiers to verify a signature, as they
cannot decide if it is created by a signer or simulated by a set of designated
verifiers. Recently, as an important application, MDVS is expected to be used
in messaging applications [7].

Prior to MDVS, a (single) designated verifier signature scheme is proposed
by Chaum [17], and by Jakobsson et al. [13]. Desmedt asks the question if we
can construct MDVS at CRYPTO’03 ramp session. Then, Laguillaumie and
Vergnaud [15] demonstrate the first construction of an MDVS scheme based on
a ring signature scheme under the computational Diffie-Hellman assumption.
Since then, several MDVS schemes have been proposed based on ring signature
schemes [15, 16, 24, 26], and it is said that an MDVS scheme can be constructed
from a ring signature scheme in general.

It seems that such a construction has been widely believed because MDVS
has similar structures with ring signature. Roughly, a ring signature scheme is
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an extension of a digital signature scheme which provides anonymity for signers,
meaning that a verifier who receives a ring signature cannot decide which ring
member created the signature. In other words, any ring member is able to create
a valid ring signature. Therefore, intuitively, if we regard a ring as a set of a
signer and designated verifiers, it seems that we can construct an MDVS scheme
from a ring signature scheme.

However, to the best of our knowledge, it is still unclear if such a construction
is possible, as the existing works do not provide formal discussion on it. That
is, they only propose the constructions in natural language, and never show
formal security proofs by providing a reduction from an MDVS scheme to a ring
signature scheme. For instance, the previous work [15], which proposes an MDVS
scheme from a ring signature scheme for the first time, only discusses security as
follows: “The unforgeability of MDVS is guaranteed by the unforgeability of the
underlying ring signature scheme. The source hiding property comes naturally
from the source hiding of the ring signature.”

To the best of our knowledge, it is Zhang et al. [26] who formalize the security
definitions of MDVS for the first time (in 2012), whereas they do not formally
demonstrate the reduction from an MDVS scheme to a ring signature scheme.
We further mention the recent formalization by Damg̊ard et al. [7], which consid-
ers simulation by a subset of designated verifiers and claims that consistency is
one of the standard requirements for MDVS. Since the desirable security require-
ments for MDVS are formalized, we are now ready to demonstrate the reduction
formally by following them.

1.1 Our Contribution

Somewhat surprisingly, we demonstrate that it is impossible to construct an
MDVS scheme from a ring signature scheme in a black-box manner in the stan-
dard model (in other words, we prove that there is no generic construction of an
MDVS scheme based on a ring signature scheme). This counterintuitive result
stems from the difference between the definitions of the unforgeability of MDVS
and ring signature: A designated verifier in an MDVS scheme can be corrupted
in the experiment, whereas a ring member in a ring signature scheme cannot be.
(For formal definitions, see Section 2.)

While the formal proof is provided in Section 3, we provide its overview here.
We follow the meta-reduction paradigm [9] to show the impossibility on unforge-
ability. If we want to formally show that the MDVS construction is unforgeable,
we should demonstrate a reduction algorithm R, who is given a PPT adversary
A against the unforgeability of the MDVS scheme, then breaks the unforgeabil-
ity of the underlying ring signature scheme. That is, R plays the unforgeability
game of the ring signature scheme as an adversary, along with simulating the
unforgeability game of the MDVS scheme between A. In this reduction, R should
deal with a query made by A that corrupts a designated verifier in the simulated
game. If we regard a ring of the ring signature scheme as a set of a signer and
designated verifiers of the MDVS scheme, R cannot forward the corruption query
to the challenger of the unforgeability game of the ring signature scheme, as it



On the Black-Box Impossibility of MDVS from Ring Signature Schemes 3

leads to corrupt a ring member. Therefore, R should answer the query without
relying on the challenger. However, if this is possible, R is able to break the
unforgeability of the ring signature scheme without A, which contradicts the
security of the ring signature scheme.

We emphasize that it is an important task to give a formal proof even on
a seemingly trivial matter, because it might be a case that it could not be
established. We believe that this work is a prime example.

1.2 Related Work

The seminal work by Impagliazzo and Rudich [12] demonstrates a separation
between a key agreement and a one-way function. This line of research has been
successful, and there are a lot of follow-up works [10, 19, 22, 23]. We emphasize
that a black-box impossibility only denies a generic construction of a primitive
based on another primitive. Thus, if we rely on a concrete assumption, e.g. the
RSA assumption and the discrete logarithm assumption, we might be able to
circumvent such an impossibility.

We note that in spite of our result, it is known that a single designated verifier
signature scheme (DVS) is equivalent to a ring signature scheme where a ring
consists of two members. More precisely, Brendel et al. [4] show the construction
of DVS from ring signature, and Hashimoto et al. [11] prove the inverse direction.
However, we claim that this fact does not contradict our result. This is because
the designated verifier in a DVS is not allowed to be corrupted, because a single
secret key of the designated verifier is sufficient for a simulator. In other words, it
leads to an obvious attack against unforgeability of the MDVS scheme. Therefore,
our observation does not work for DVS.

Several constructions of MDVS from primitives rather than ring signature
have been proposed so far. Chow [6] demonstrates a construction from multi-
chameleon hash, whereas he does not define MDVS formally. Further, Damg̊ard
et al. [7] propose two generic constructions of MDVS; one is from a pseudorandom
function, a pseudorandom generator, a key agreement, and an NIZK; and the
other is from a functional encryption.

We mention recent works related to MDVS. It is used as a building block for
a multi-designated receiver signed public key encryption scheme [5, 20]. Further,
a new (M)DVS, a designated verifier linkable ring signature scheme [1], has been
proposed.

Finally, ring signature schemes with additional properties have been pro-
posed so far, such as accountable ring signature [25], linkable ring signature [18],
traceable ring signature [8], deniable ring signature [14], claimable ring signature
and repudiable ring signature [21]. We might be able to circumvent the impos-
sibility that is exposed by this work by using these ring signature schemes with
additional properties. We leave it as an open problem.
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2 Preliminaries

Throughout this paper, we let λ ∈ N be a security parameter. We abbreviate
a probabilistic polynomial time algorithm as a PPT algorithm. We denote a
polynomial function and a negligible function by poly(·) and negl(·), respectively.
For any n ∈ N, let [n] := {1, 2, · · · , n}. A subroutine X of an algorithm Π is
denoted by Π.X. A security property is defined by a game (or an experiment)
between a challenger and an adversary. If the result of the game is 1, we say that
the adversary wins the game.

2.1 Multi-Designated Verifier Signature

In this section, we recall the definition of multi-designated verifier signature
(MDVS). We follow the most standard definition of MDVS by [7] except that all
designated verifiers are required to participate to simulate a signature4, rather
than the definition by Zhang et al. [26]. The work [7] claims that the basic secu-
rity requirements for MDVS are unforgeability, OTR, and consistency. Namely,
consistency is a property which guarantees that verification results are the same
among designated verifiers, which is not required in [26].

Let I denote a set of users’ identities and we use I in the definition of an
MDVS scheme. The formal definition is as follows. 5

Definition 1 (MDVS). A multi-designated verifier signature scheme (MDVS)
scheme consists of the following six algorithms (Set,SKG,VKG,Sig,Vrf,Sim):

– Set(1λ) → (pp,msk) : Given a security parameter 1λ, it outputs a public
parameter pp and a master secret key msk.

– SKG(pp,msk, idS) → (spkidS , sskidS) : Given a public parameter pp, a master
secret key msk, and an identity idS ∈ I, it outputs the signer’s public key
spkidS and secret key sskidS .

– VKG(pp,msk, idV)→ (vpkidV , vskidV) : Given a public parameter pp, a master
secret key msk, and an identity idV ∈ I, it outputs the verifier’s public key
vpkidV and secret key vskidV .

– Sig(pp, sskidS , {vpkidV}idV∈D,m)→ σ : Given a public parameter pp, a signer’s
secret key sskidS , a set of verifiers’ public keys {vpkidV}idV∈D of designated
verifiers D, and a message m ∈M, it outputs a signature σ.

– Vrf(pp, {vpkidV}idV∈D, vskid′V , spkidS ,m, σ) → 1/0 : Given a public parameter
pp, a set of public keys {vpkidV}idV∈D of designated verifiers D, a verifier’s
secret key vskid′V , a signer’s public key spkidS , a message m, and a signature
σ, it outputs 1 (meaning accept) or 0 (meaning reject).

4 Note that this setting is limited compared to one by [7] in the sense that their
definition considers simulation by any subset of designated verifiers. However, we
stress that adopting a weaker definition makes our result better since our goal is to
show a black-box impossibility from a ring signature scheme to an MDVS scheme.

5 Note that, using I, we give each algorithm an identifier only to make a user explicit.
That is, we do not consider so-called “identity-based” primitives (e.g., identity-based
signature).
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– Sim(pp, {vpkidV}idV∈D, {vskidV}idV∈D, spkidS ,m) → σ : Given a public parame-
ter pp, a set of public keys {vpkidV}idV∈D of designated verifiers D, a set of
secret keys {vskidV}id∈D of designated verifiers D, a signer’s public key spkidS ,
and a message m, it outputs a simulated signature σ.

Definition 2 (Correctness). An MDVS scheme Π = (Set,SKG,VKG,Sig,Vrf,
Sim) satisfies correctness if for any security parameter λ ∈ N, any (pp,msk) ←
Set(1λ), any set of verifiers’ identities D ⊆ I, any verifier’s identity id′V ∈ D,
any signer’s identity idS ∈ I, and any message m ∈M, it holds that

Vrf(pp, {vpkidV}idV∈D, vskid′V , spkidS ,m,Sig(pp, sskidS , {vpkidV}idV∈D,m)) = 1,

where (spkidS , sskidS) ← SKG(pp,msk, idS) and (vpkidV , vskidV) ←
VKG(pp,msk, idV) for all idV ∈ D.

We require an MDVS scheme to satisfy unforgeability, consistency, and off-
the-record (OTR) as security requirements, as discussed in [7]. However, since
our paper uses only the definition of unforgeability, we here introduce only it
formally. The formal definitions of consistency and OTR are provided in Ap-
pendix A.1 for completeness.

Definition 3 (EUF-CMA). An MDVS scheme Π = (Set,SKG,VKG,Sig,Vrf,
Sim) is existentially unforgeable under an adaptive chosen-message attack (EUF-
CMA) if for any security parameter λ ∈ N, and any PPT adversary A, it holds
that Pr[ExpEUFDVSΠ,A(1

λ) = 1] ≤ negl(λ) where ExpEUFDVS is defined as
follows:

ExpEUFDVSΠ,A(1
λ)

LVPK := ∅;LSPK := ∅;LVSK := ∅;LSSK := ∅;LSign := ∅;LVrf := ∅;
(pp,msk)← Set(1λ);
(id∗S,D∗,m∗, σ∗)← AOSPK,OSSK,OVPK,OVSK,OSig,OVrf (pp) :
output 1 if(∃id′V ∈ D∗ \ LVSK s.t.Vrf(pp, {vpkidV}idV∈D, vskid′V , spkid∗S ,m

∗, σ∗) = 1)

∧ (id∗S /∈ LSSK) ∧ ((D∗, id∗S,m
∗) /∈ LSign)

otherwise 0

where OSPK,OSSK,OVPK,OVSK,OSig, and OVrf work as follows:

OSPK: Given idS ∈ I, if idS has already been queried previously, then it picks
(idS, spkidS , sskidS) from LSPK and returns spkidS . Otherwise, it computes
(spkidS , sskidS) ← SKG(pp,msk, idS), returns spkidS , and updates LSPK :=
LSPK ∪ {(idS, spkidS , sskidS)}.

OSSK: Given idS ∈ I, if (idS, spkidS , sskidS) ∈ LSPK, then it returns sskidS , and
updates LSSK := LSSK ∪ {idS}. Otherwise, it calls OSPK(idS) to generate
(spkidS , sskidS) along with updating LSPK := LSPK ∪ {(idS, spkidS , sskidS)}, re-
turns (spkidS , sskids), and updates LSSK := LSSK ∪ {idS}. Note that we regard
the signer corresponding to idS ∈ LSSK as a corrupted signer.
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OVPK: Given idV ∈ I, if idV has already been queried previously, then it picks
(idV, vpkidV , vskidV) from LVPK and returns vpkidV . Otherwise, it computes
(vpkidV , vskidV) ← VKG(pp,msk, idV), returns vpkidV , and updates LVPK :=
LVPK ∪ {(idV, vpkidV , vskidV)}.

OVSK: Given idV ∈ I, if (idV, vpkidV , vskidV) ∈ LVPK, then it returns vskidV ,
and updates LVSK := LVSK ∪ {idV}. Otherwise, it calls OVPK(idV) to gen-
erate (vpkidV , vskidV) along with LVPK := LVPK∪{(idV, vpkidV , vskidV)}, returns
(vpkidV , vskidV), and updates LVSK := LVSK ∪ {idV}. Note that we regard the
verifier corresponding to idV ∈ LVSK as a corrupted verifier.

OSig: Given D ⊆ I, idS ∈ I, and m ∈M, it does the followings:
– If (idS, ·, ·) /∈ LSPK, then call OSPK on idS to generate (spkidS , sskidS).
– For all idV ∈ D s.t. (idV, ·, ·) /∈ LVPK, call OVPK on idV to generate

(vpkidV , vskidV).
– Return σ ← Sig(pp, sskidS , {vpkidV}idV∈D,m), and update LSign := LSign ∪
{(D, idS,m)}.

OVrf : Given id′V, idS ∈ I,m ∈ M, D ⊆ I where id′V ∈ D, and σ, it does the
followings:
– If id′V /∈ D, then return 0.
– If (idS, ·, ·) /∈ LSPK, then call OSPK on idS to generate (spkidS , sskidS).
– For all idV ∈ D, if (idV, ·, ·) /∈ LVPK, then call OVPK on idV to generate

(vpkidV , vskidV).
– Return b = Vrf(pp, {vpkidV}idV∈D, vskid′V , spkidS ,m, σ) and update LVrf :=

LVrf ∪ {(D, id′V, idS,m, σ)}.

2.2 Ring Signature

In this section, we review the definition of ring signature. We follow the strongest
definition by [2]. Namely, as security properties for ring signature, we require
unforgeability w.r.t. insider corruptions and anonymity against full key exposure.
We remark that this stronger definition makes our result better, as it means an
MDVS scheme cannot be obtained from such a stronger ring signature scheme
in a black-box manner.

Definition 4 (Ring Signature). A ring signature scheme consists of four
PPT algorithms (Set,KG,Sig,Vrf) that work as follows:

– Set(1λ)→ pp : Given a security parameter 1λ, it outputs a public parameter
pp.

– KG(pp)→ (pk, sk) : Given a public parameter pp, it outputs a public key pk
and a secret key sk.

– Sig(pp, sk, {pki}i∈[n],m)→ σ : Given a public parameter pp, a secret key sk,
a set of public keys (or a ring) {pki}i∈[n] where n = poly(λ), and a message
m, it outputs a signature σ. If there is no i ∈ [n] s.t. (pki, sk) ← Set(pp),
then it returns ⊥.

– Vrf(pp, {pki}i∈[n],m, σ) = 1/0 : Given a public parameter pp, a set of public
keys {pki}i∈[n] where n = poly(λ), a message m, and a signature σ, it outputs
1 (meaning accept) or 0 (meaning reject).
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A ring signature scheme (Set,KG,Sig,Vrf) satisfies correctness if for any security
parameter λ, any pp← Set(1λ), and any message m ∈M, it holds that

Vrf(pp, {pki}i∈[n],m,Sig(pp, sk, {pki}i∈[n],m)) = 1,

where for any i ∈ [n], pki is generated by KG, and in particular, there exists
i ∈ [n] s.t. (pki, sk)← KG(pp).

Next, we define the unforgeability w.r.t. insider corruption as follows. Similar
to MDVS, Anonymity is provided in Appendix A.2, as it does not appear in our
discussion.

Definition 5 (Unforgeability w.r.t. Insider Corruptions). A ring signa-
ture scheme Πrs = (Set,KG,Sig,Vrf) satisfies unforgeability w.r.t. insider cor-
ruptions if for any security parameter λ and any PPT adversary A who is al-
lowed to make at most q = poly(λ) queries to oracles, Pr[ExpEUFRSΠrs,A(1

λ)

= 1] ≤ negl(λ) where the experiment ExpEUFRSΠrs,A(1
λ) is defined as follows:

ExpEUFRSΠrs,A(1
λ)

LPK := ∅;LSK := ∅;LSign := ∅; pp← Set(1λ);
({pk∗i }i∈[n],m

∗, σ∗)← AOPK,OSK,ORSig(pp) :
Output 1 if (Vrf(pp, {pk∗i }i∈[n],m

∗, σ∗) = 1) ∧ (∀i ∈ [n], (pk∗i , sk
∗
i ) ∈ LPK)

∧(∀i ∈ [n], (pk∗i , sk
∗
i ) /∈ LSK) ∧ (∀j ∈ [n], (pk∗j , {pk

∗
i }i∈[n]\{j},m

∗, σ∗) /∈ LSign),
otherwise 0

where n = poly(λ) s.t. n ≤ q, and OPK,OSK and ORSig work as follows:

OPK: Given pp, it computes (pk, sk)← KG(pp), returns pk, and updates LPK :=
LPK ∪ {(pk, sk)}.

OSK: Given pk, if (pk, sk) ∈ LPK, then it returns sk, and updates LSK := LSK ∪
{(pk, sk)}. Otherwise, it returns ⊥. Note that we regard LSK as a set of
corrupted entities.

ORSig: Given a signer’s public key pk, a set of public keys {pki}i∈[n′] where n′ =
poly(λ), and a message m, it does the followings:
– If (pk, sk) /∈ LPK, then returns ⊥.
– If (pk, {pki}i∈[n′],m, σ) ∈ LSign, then returns σ.
– Returns σ ← Sig(pp, sk, {pk}∪{pki}i∈[n′],m) and updates LSign := LSign∪
{(pk, {pki}i∈[n′],m, σ)}.

In the following, for simplicity, we say that a ring signature scheme satisfies
EUF-CMA security if it satisfies the above definition.

3 Main Result

Now we provide the black-box impossibility of an MDVS scheme from a ring
signature scheme. Formally, we assume that EUF-CMA security of the MDVS
scheme can be based on EUF-CMA security of the ring signature scheme, i.e.
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there exists a PPT reduction algorithm R that reduces EUF-CMA security of the
MDVS scheme to EUF-CMA security of the ring signature scheme. (We remark
that all existing constructions follow this reduction.) Then, we demonstrate that
such an R contradicts the existence of the ring signature scheme.

Shortly, the impossibility stems from the difference between their EUF-CMA
security. That is, in ExpEUFRS a public key in the challenge ring should not be
corrupted, whereas in ExpEUFDVS a part of (but not all) designated verifiers can
be corrupted. Recall that existing constructions of MDVS from ring signature
schemes regard a ring as a set of a signer and designated verifiers. Thus the
difference between the two definitions is problematic when we consider such a
construction.

Despite the above intuitive discussion, we should consider the case that a
ring and a set of a signer and designated verifiers are distinct, as we want to
show a black-box impossibility. In other words, there might be a case that such
a construction is possible. Thus, we should deal with this counterintuitive con-
struction.

Before demonstrating the separation formally, we describe our idea below.
We have to deal with the following two cases.

Firstly, in the case of regarding a ring as a set of a signer and designated
verifiers, we follow the meta reduction paradigm [9]: Let A be a PPT adver-
sary that breaks EUF-CMA security of the MDVS scheme with non-negligible
probability. Then, we assume that RA breaks EUF-CMA security of the ring
signature scheme with non-negligible probability. If A wants to corrupt a desig-
nated verifier and makes a corruption query, R should simulate the answer by
itself without accessing its corruption oracle, because corrupting a ring member
immediately violates the winning condition in ExpEUFRS. However, if such a
simulation is possible, then R is able to break EUF-CMA security of the ring
signature scheme without A.

Secondly, in the case that a ring and a set of a signer and designated verifiers
are distinct, we show that the underlying ring signature scheme is not secure.
Intuitively, the EUF-CMA security of the ring signature scheme is broken by
corrupting public keys outside of the ring in this case.

Theorem 1. Let Πrs = (Set,KG,Sig,Vrf) be a ring signature scheme. There
is no black-box construction ΠΠrs

mdvs = (Set,SKG,VKG,Sig,Vrf,Sim) of an MDVS
scheme based on Πrs, whose EUF-CMA security is reduced to EUF-CMA secu-
rity of Πrs.

Proof. Suppose that there exists a PPT adversary A that breaks the EUF-CMA
security of ΠΠrs

mdvs with non-negligible probability, and let R be a PPT reduction
algorithm from the EUF-CMA security of ΠΠrs

mdvs to the EUF-CMA security
of Πrs. In other words, RA breaks the EUF-CMA security of Πrs with non-
negligible probability. Note that RA plays the experiment ExpEUFRSΠrs,RA(λ)
as an adversary, while simulating the experiment ExpEUFDVSΠmdvs,A(λ) to A as
a challenger. We demonstrate that we can construct a PPT reduction algorithm
that is able to break EUF-CMA security of Πrs with non-negligible probability,
or Πrs is not secure. The algorithm RA works in ExpEUFRSΠrs,RA(λ) as follows:
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Setup Phase: The challenger computes a public parameter ppRS ←
Πrs.Set(1

λ) and gives it to R.
Challenge Phase: Given ppRS, R computes (ppMDVS,mskMDVS) and gives

ppMDVS to A. In other words, R and A play ExpEUFDVSΠΠrs
mdvs,A

(λ). As al-

ready mentioned, R could ask the challenger of ExpEUFRSΠrs,RA(λ) to call
an oracle if necessary. When A outputs (id∗S,D∗,m∗

MDVS, σ
∗
MDVS), R returns

(R∗,m∗
RS, σ

∗
RS) to the challenger, where R∗ = {pk∗i }i∈[n] be a set of public

keys (or a ring) and n = poly(λ).
Verification Phase: The adversary RA wins the game if all the following con-

ditions are satisfied.
– Πrs.Vrf(ppRS, R

∗,m∗
RS, σ

∗
RS) = 1.

– Every pk∗i is created via the oracle OPK.
– Every pk∗i is not queried to OSK.
– The signature σ∗

RS is not created via ORSig on (pk∗j , R
∗,m∗

RS).

The third condition means that every public key in R∗ should not be corrupted
when RA wins the game. Our idea is that if A makes a query that violates the
third condition, then R should answer it without asking the challenger to call
OSK. However, there might be a case that such a query is never made. Thus, we
consider the following two events to show the separation:

(i) RA wins the game and A makes a query that corrupts a public key in R∗.
(ii) RA wins the game but A does not make a query that corrupts a public key

in R∗.

Event (i): We first observe what happens if this event occurs. Suppose that A
makes a query that corrupts a public key pk∗i in R∗. In such a case, R cannot ask
the challenger to call OSK on pk∗i , because it immediately violates the winning
condition for RA. Therefore, R somehow manages to create the corresponding
secret key sk∗i and returns it to A, without calling OSK. We exploit this power and
construct a PPT algorithm R′ that breaks EUF-CMA security of Πrs, without
relying on A, as follows.
– Given a public parameter ppRS from the challenger, R′ creates R∗ =
{pk∗i }i∈[n] via calling OPK, where n = poly(λ).

– For each i ∈ [n], R′ tries to create the secret key sk∗i by exploiting the above
mentioned capability. Once such a key is obtained, then R′ moves to the next
step.

– R′ chooses a message m∗, and computes σ∗ ← Πrs.Sig(pp, sk
∗
i , R

∗,m∗). Note
that this computation is not recorded in LSign, as it is conducted locally by
R′.

– R′ returns (R∗,m∗, σ∗) to the challenger.

Observe that it holds that Πrs.Vrf(pp, {pk∗i }i∈[n],m
∗, σ∗) = 1 due to the correct-

ness of Πrs if sk∗i is a valid secret key. Further, the remaining conditions for R′

to win ExpEUFRSΠrs,R′(λ) are satisfied, as every pk∗i is created via OPK, every
pk∗i is not corrupted by OSK, and the signature σ∗ is not created via ORSig. As R′

is able to create sk∗i with non-negligible probability, R′ wins ExpEUFRSΠrs,R′(λ)
with non-negligible probability, which contradicts the existence of Πrs.
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Event (ii): Intuitively, if this event occurs, the EUF-CMA security of Πrs is
broken by corrupting only public keys that are outside of R∗. We argue that this
event contradicts the EUF-CMA security of Πrs. In other words, we demonstrate
that a ring signature scheme that allows this event is not EUF-CMA secure.

Although we do not know how ΠΠrs
mdvs is constructed, we put very natural

assumptions on it. Overall, a subroutine of Πrs should be used in a “correspond-
ing” subroutine in ΠΠrs

mdvs. The public parameter ppMDVS is created based on
ppRS. To construct public keys spkidS and vpkidV , public keys generated by OPK

should be used. Similarly, secret keys sskidS and vskidV contain secret keys that
are created by OPK, where they correspond to public keys in spkidS and vpkidV .
(We note that multiple underlying keys might be used to construct a single key.)
Further, during the creation of a signature by ΠΠrs

mdvs, regardless of whether it is
real or simulated, Πrs.Sig is used. Similary, ΠΠrs

mdvs.Vrf uses Πrs.Vrf.

Even in Event (ii), there might be a case that RA forges a ring signature by
using ORSig. Here, we need to further consider two cases, i.e. if A asks R a query
that necessitates the query (pk∗j , R

∗,m∗
RS) to ORSig (i.e. Πrs.Sig) for some j ∈ [n]

or not.

Firstly, suppose that A makes such a query. In this case, R cannot call
ORSig on (pk∗j , R

∗,m∗
RS) as it immediately violates the winning condition of

ExpEUFRSΠrs,RA(λ). Therefore, R should somehow compute and return a valid
signature to A by itself, which immediately violates the EUF-CMA security of
Πrs. Here, R might make a query to ORSig on another input, and return it to A.
However, if such a “substitutional” answer, say σ†, works well, then Πrs is no
longer EUF-CMA secure. That is, it does not change the view of A and thus it
holds that Πrs.Vrf(ppRS, R

∗,m∗, σ†) = 1. However, it contradicts the EUF-CMA
security of Πrs if there exists a PPT algorithm that finds such a substitution
with non-negligible probability. Furthermore, if R computes a substitutional an-
swer without relying on ORSig, such an R is able to break the EUF-CMA security
of Πrs without relying on A, which also contradicts the security of Πrs.

Secondly, we assume that A never makes a query that necessitates R the
query (pk∗j , R

∗,m∗
RS) to ORSig. This means that the fourth winning condition of

ExpEUFRS is satisfied. Even in this case, we can also prove that Πrs is no longer
EUF-CMA secure. By assumption, the second condition is fulfilled, and as we
are considering Event (ii), the third condition is also satisfied. Therefore in this
case, the EUF-CMA security of Πrs is compromised by assuming the existence of
a PPT adversary A that neither corruputs a ring member nor creates a signature
by calling a signing oracle on (pk∗j , R

∗,m∗
RS). Thus, if Πrs allows this event, we

conclude that it is not EUF-CMA secure.

4 Conclusion

In this paper, we demonstrated that it is impossible to construct an MDVS
scheme from a ring signature scheme in a black-box manner, whereas such a
construction has been widely believed for a long time. It seems that such folklore
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has spread due to a lack of formal discussion. Therefore, we claim that having a
formal discussion is important even on a seemingly trivial matter.

One of our future works is to consider the construction in the random oracle
model, as we showed the impossibility only in the standard model. Further,
we might be able to circumvent the impossibility if we consider stronger ring
signature schemes.
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A Omitted Security Properties for MDVS and Ring
Signature

A.1 Consistency and OTR for MDVS

In this section, we review the definition of consistency and OTR for MDVS.
Regarding OTR, compared to the work in [7], we recall a weaker definition for
OTR that a simulator requires all secret keys of designated verifiers for simplicity.
In [7], they define “OTR for any subset,” which means that a part of the secret
keys of designated verifiers is sufficient for a simulator. We note that requiring
a weaker OTR for MDVS makes our result better, as we want to show a black-
box impossibility of an MDVS scheme from a ring signature scheme. That is,
even such a weaker MDVS scheme cannot be obtained based on a ring signature
scheme in a black-box manner.

Definition 6 (Consistency). An MDVS scheme Π = (Set,SKG,VKG,Sig,Vrf,
Sim) is consistent if for any security parameter λ ∈ N, and a stateful PPT
adversary A, it holds that Pr[ExpConstΠ,A = 1] ≤ negl(λ) where ExpConst is
defined as follows:

ExpConstΠ,A(1
λ)

LVPK := ∅;LSPK := ∅;LVSK := ∅;LSSK := ∅;LSign := ∅;LVrf := ∅;
(pp,msk)← Set(1λ);
(id∗S,D∗,m∗, σ∗)← AOSPK,OSSK,OVPK,OVSK,OSig,OVrf (pp, spkidS , idS) :
Output 1 if ((spkid∗S , sskid

∗
S
) ∈ LSPK) ∧ (∀idV ∈ D∗, (vpkidV , vskidV ∈ LVPK))

∧(∃idV, id′V ∈ D∗ s.t. idV ̸= id′V ∧ (vpkidV , vskidV), (vpkid′V , vskid
′
V
) /∈ LVSK

∧Vrf(pp, {vpkidV}idV∈D∗ ,vskidV ,spkid∗S ,m
∗,σ∗)=1

∧Vrf(pp, {vpkidV}idV∈D∗ , vskid′V , spkid∗S ,m
∗, σ∗) = 0)

otherwise 0

where OSPK,OSSK,OVPK,OVSK,OSig and, OVrf are defines as in Definition 3.

Definition 7 (OTR). An MDVS scheme Π = (Set,SKG,VKG,Sig,Vrf,Sim) is
off-the-record (OTR) if for any security parameter λ ∈ N, and a stateful PPT
adversary A, it holds that Pr[ExpOTRΠ,A = 1] ≤ negl(λ) where ExpOTR is
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defined as follows:

ExpOTRΠ,A(1
λ)

LVPK := ∅;LSPK := ∅;LVSK := ∅;LSSK := ∅;LSign := ∅;LVrf := ∅;
(pp,msk)← Set(1λ); (spkidS , sskidS)← SKG(pp,msk, idS);
(D∗,m∗)← AOSPK,OSSK,OVPK,OVSK,OSig,OVrf (pp, spkidS , idS);
σ0 ← Sig(pp, sskidS , {vpkid}id∈D∗ ,m∗);
σ1 ← Sim(pp, {vpkid}id∈D∗ , {vskid}id∈D∗ , spkidS ,m

∗); b← {0, 1};
b′ ← AOSPK,OSSK,OVPK,OVSK,OSig,OVrf (σb) :
Output 1

if (b′ = b) ∧ (idS /∈ LSSK) ∧ (∃idV ∈ D∗ s.t. idV /∈ LVSK) ∧ ((·, ·, ·, ·, σb) /∈ LVrf)
otherwise 0

where OSPK,OSSK,OVPK,OVSK,OSig, and OVrf are defines as in Definition 3.

A.2 Anonymity for Ring Signature

Here, we recall the definition of anonymity against full key exposure of a ring
signature scheme as follows.

Definition 8 (Anonymity). A ring signature scheme Πrs = (Set,KG,Sig,Vrf)
satisfies anonymity if for any security parameter λ, and any PPT adversary A
who is allowed to make at most q queries to oracles, |Pr[ExpAnoΠrs,A(1

λ) =

1]− 1/2| ≤ negl(λ), where ExpAnoΠrs,A(1
λ) is defined as follows:

ExpAnoΠrs,A(1
λ)

LPK := ∅;LSK := ∅;LSign := ∅; pp← Set(1λ);
(m∗, pk0, pk1, {pk

∗
i }i∈[n])← AOPK,OSK,ORSig(pp);

output⊥ if (pk0, sk0), (pk1, sk1) /∈ LPK;
b← {0, 1};σb ← Sig(pp, skb, {pk0, pk1} ∪ {pk

∗
i }i∈[n],m

∗);
b′ ← AOPK,OSK,ORSig(σb) :
output 1 if b′ = b, otherwise 0.

where n = poly(λ) s.t. n ≤ q, and the oracles OSK and ORSig are defined as in
Definition 5.


