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Abstract
Interactive oracle proofs (IOPs) (Ben-Sasson et al., TCC 2016) have emerged as a powerful model for proof systems

which generalizes both Interactive Proofs (IPs) and Probabilistically Checkable Proofs (PCPs). While IOPs are not any
more powerful than PCPs from a complexity theory perspective, their potential to create succinct proofs and arguments
has been demonstrated by many recent constructions achieving better parameters such as total proof length, alphabet
size, and query complexity. In this work, we establish new results on the relationship between various notions of
soundness for IOPs. First, we formally generalize the notion of round-by-round soundness (Canetti et al., STOC 2019)
and round-by-round knowledge soundness (Chiesa et al., TCC 2019). Given this generalization, we then examine its
relationship to the notions of generalized special soundness (Attema et al., CRYPTO 2021) and generalized special
unsoundness (Attema et al., TCC 2022). We show that:

1. generalized special soundness implies generalized round-by-round soundness;
2. generalized round-by-round knowledge soundness implies generalized special soundness;
3. generalized special soundness does not imply generalized round-by-round knowledge soundness;
4. generalized round-by-round soundness (resp., special unsoundness) is an upper bound (resp., a lower bound)

on standard soundness, and that this relationship is tight when the round-by-round soundness and special
unsoundness errors are equal; and

5. any special sound IOP can be transformed via (a variant of) the Fiat-Shamir transformation into a non-interactive
proof that is adaptively sound in the Quantum Random Oracle Model.

1 Introduction
Probabilistic proof systems live at the heart of complexity theory and cryptography. Improvements in the practical
efficiency of these proof systems have led to breakthroughs in zero-knowledge, delegation of computation, and other areas.
Interactive oracle proofs (IOPs) were recently proposed [BCS16,RRR21] and have emerged as a powerful model for proof
systems. Many recent constructions [KPV19,BCS16,CMS19,COS20,BBHR18,BGKS20,GWC19,Pol22,CBBZ23]
of highly efficient and succinct proofs and arguments are compiled from IOPs. IOPs combine aspects of both
probabilistically checkable proofs (PCPs) and interactive proofs (IPs), allowing a multi-round interaction between the
prover and the verifier. A 𝜇-round IOP can be viewed as a 𝜇-round interactive proof (IP) where the verifier has PCP-like
access to each prover message.

With the emergence of IOPs, the quest for understanding the security of IOPs has also started. Fortunately, a recent
fruitful line of work has introduced many tools to understand this: these include the notions of state-restoration soundness
[BCS16], round-by-round soundness [CCH+19], and (generalized) special soundness [CDS94,Wik21,AFK22] albeit
some of these are in the context of multi-round IPs instead of IOPs. Another exciting line of work has attempted
to establish relationships between these soundness notions for IPs [Hol19] and studied similar notions for IOPs
[CMS19,COS20,KPV19].

This work formally analyzes and establishes the relationship between various soundness notions for IOPs. The
first such notion of soundness is round-by-round (RBR) soundness. RBR soundness captures the idea of “persistent
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falsehood” in an interactive oracle proof: if the protocol starts off in a situation where a statement is false and should be
rejected by the verifier (i.e., “doomed state”), then no matter how cleverly the prover responds in subsequent rounds, the
protocol will “forever remain doomed” (except with negligible probability). RBR knowledge soundness captures the
idea that if there was such a prover that could escape the “doomed state” with a higher (e.g., non-negligible) probability,
then there exists an extractor that can extract a valid witness given the (partial) transcript of this interaction. Other key
soundness notions we consider are special soundness and special unsoundness of IOPs. Special soundness was originally
introduced in the context of Σ-protocols [GMR89,Bab85] and was later generalized in [CDS94,Wik18,Wik21]. A
protocol is considered special sound if given a tree of accepting (see Definition 3.5) transcripts for an input, there exists
an extractor that can output a valid witness for the input. Special unsoundness [AFK22], on the other hand, argues about
certain verifier challenges being extremely “lucky” for a malicious prover.

Establishing clear relationships among the various notions of soundness for IOPs is interesting because these
soundness notions play a critical role in proving the Fiat-Shamir security [FS87] of multi-round protocols. Consequently,
understanding these interrelations offers multiple avenues to ensure Fiat-Shamir security, significantly enhancing such
cryptographic protocols’ applicability. This is demonstrated distinctly by our results (Figure 1), filling several of
previously empty space in the realm of relationships between these notions of soundness.

1.1 Our Results
In this paper, we formally establish new relations among generalized round-by-round (RBR) soundness and generalized
special soundness. More formally, let R represent a relation (e.g., an NP relation) for which a 𝜇-round interactive
protocol is executed; LR then represents the language corresponding to the relation R. Then for any statement 𝑥 ∉ LR,
RBR soundness is then defined with respect a series of “doomed” sets D𝑖 for all 𝑖 = 0, ..., 𝜇. These sets represent states
of the protocol (comprising of the statement and the transcript so far) from which the prover cannot possibly convince
the verifier that 𝑥 ∈ LR, except with small probability. Intuitively, the “doomed” set indicates that the protocol is in a
point of no return for the prover: no matter what the prover does, except with small probability, the verifier will reject at
the end of the interaction. Slightly more formally, RBR soundness (Definition 4.1) requires the following:

• If a statement 𝑥 ∉ LR, then the protocol begins in this “doomed” state.

• If the current state (comprising the statement and the transcript of all messages so far) is “doomed”, then no matter
what the prover’s next message is, the probability that the next state (including the prover’s next message and the
verifier’s next message) is not doomed is at most 𝜀𝑖 ( |x|), where 𝜀𝑖 are predefined error functions. This means that
once a state is doomed, it is highly likely that all future states will remain doomed, no matter what the prover does.

• After all the interaction rounds, if the interaction ends in a doomed state, then the verifier should indeed reject the
statement.

Note that this generalization considers the errors in each round individually, unlike previous definitions as noted in
Definition 4.1.1 RBR knowledge soundness is defined with respect to the same framework: a protocol is RBR knowledge
sound if there exists an efficient extractor such that if during any round 𝑖 of the interaction, if the prover can escape the
doomed set D𝑖 with probability larger than 𝜀𝑖 , then the extractor can extract a valid witness from the transcript of this
interaction thus far. For RBR knowledge soundness, the protocol always begins in a doomed state, even if 𝑥 ∈ LR.

The generalized special soundness notion we consider is due to Attema, Cramer, and Fehr [ACF21] and is defined
with respect to a tree of protocol transcripts. For a 𝜇-round IOP Π = (P,V), and (𝑘1, . . . , 𝑘𝜇) ∈ N𝜇, a (𝑘1, . . . , 𝑘𝜇)-tree
of accepting transcripts for x is a set of 𝑘 =

∏
𝑖 𝑘𝑖 accepting transcripts transcripts {𝜏1, . . . , 𝜏𝑘}, each with common first

message 𝑚, arranged in a tree of depth 𝜇 + 1 as follows. The nodes in each tree correspond to the prover’s messages and
the edges correspond to the verifier’s challenges, every node at depth 𝑖 − 1 (for 1 ≤ 𝑖 ≤ 𝜇) has 𝑘𝑖 children corresponding
to pairwise distinct challenges, and every complete transcript corresponds to exactly one path from the root node to a
leaf node in the tree. The protocol Π is (𝑘1, . . . , 𝑘𝜇)-special sound if there exists a polynomial time algorithm Ext that,
on input x and any (𝑘1, . . . , 𝑘𝜇)-tree of accepting transcripts for x, outputs a witness w such that (x,w) ∈ R.

1To the best of our knowledge, we are the first to formally define and analyze this generalized notion of round-by-round soundness. It is likely that
this notion of RBR soundness has been implicit in prior works (e.g., in RBR soundness proofs of [KPV19] as one example), but we were unable to
find prior work formally defining and analyzing this notion of RBR soundness.
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The notion of special unsoundness [AFK22] says that an IOP Π = (𝑃,𝑉) is ℓ-special unsound if there exists a
dishonest prover strategy 𝑃∗ such that during any round of the protocol, for any message 𝑚 sent by 𝑃∗, there exists
a “lucky” set of verifier challenges 𝐿 ⊂ C of size |𝐿 | = ℓ such that if the verifier 𝑉 responds with 𝑐 ∈ 𝐿, then 𝑃∗ can
“behave honestly” for the remainder of the protocol and 𝑉 will accept at the end of the protocol execution; here, C
represents the set of verifier challenges.

For these notions of soundness and their generalizations, we then prove the following results; see Figure 1 for a
high-level overview of all of our results. First we show that special soundness implies round-by-round soundness.

Theorem 1.1 (Special Soundness Implies RBR Soundness). Let Π = (P,V) be a 𝜇-round IOP for a relation R. Let C𝑖 be
the set of verifier challenges for round 𝑖 ∈ {1, . . . , 𝜇}, and let (𝑘1, . . . , 𝑘𝜇) ∈ N𝜇. Assume that Π is (𝑘1, . . . , 𝑘𝜇)-special
sound. Then Π is RBR sound with errors (

𝑘1 − 1
|C1 |

, . . . ,
𝑘𝜇 − 1
|C𝜇 |

)
. (1)

Next, we show that round-by-round knowledge soundness implies special soundness.

Theorem 1.2 (RBR Knowledge Implies Special Soundness). Let Π = (P,V) be a 𝜇-round IOP for a relation R. Let
C𝑖 be the set of verifier challenges for round 𝑖 ∈ {1, . . . , 𝜇}. Assume Π has round-by-round knowledge with errors
𝜀1, . . . , 𝜀𝜇, and let

(𝑘1, . . . , 𝑘𝜇) = (⌈|C1 |𝜀1⌉ + 1, . . . , ⌈|C𝜇 |𝜀𝜇⌉ + 1).
Suppose

∑
𝑖∈[𝜇]

∏
𝑗∈[𝑖 ] 𝑘 𝑗 is upper bounded by a polynomial (on the lengths of inputs). Then Π is (𝑘1, . . . , 𝑘𝜇)-special

sound.

We follow this up with a negative result: special soundness does not imply round-by-round knowledge soundness.

Theorem 1.3 (Special Soundness does not Imply RBR Knowledge). Assume NP ≠ P. Then for any polynomial function
𝜇( |x|), there exists a 𝜇-round IOP Π with the following properties:

• Π is (1, 𝜇. . ., 1)-special sound.

• If Π is RBR knowledge sound with errors (𝜀1, . . . , 𝜀𝜇), then 𝜀𝑖 (ℓ) = 1 for some input length ℓ and some 𝑖 ∈ [𝜇].
Finally, we show tight relationships between standard soundness, generalized round-by-round soundness, and special

unsoundness.

Theorem 1.4 (Relation Between Soundness, Round-by-round Soundness, and Special Unsoundness). Let Π be a
𝜇-round IOP for a relation R. Assume Π has soundness error 𝜀. Then the following hold:

• RBR soundness is an upper bound for soundness. If Π is round-by-round sound with errors 𝜀1, . . . , 𝜀𝜇, then

𝜀 ≤ 1 −
∏
𝑖∈[𝜇]

(1 − 𝜀𝑖)

for all x ∉ LR.

• Special unsoundness is a lower bound for soundness. If Π is special unsound with errors 𝜀′1, . . . , 𝜀
′
𝜇, then

1 −
∏
𝑖∈[𝜇]

(
1 − 𝜀′𝑖

)
≤ 𝜀

for all x ∉ LR. Moreover, there exists a dishonest unbounded prover P∗ that, given any input x, manages to make
the verifier accept with probability at least 1 −∏𝑖∈[𝜇]

(
1 − 𝜀′

𝑖

)
.

• Tightness of RBR soundness, soundness, and special unsoundness. Suppose Π is round-by-round sound with
errors 𝜀1, . . . , 𝜀𝜇 and that Π is special unsound with the same errors 𝜀1, . . . , 𝜀𝜇. Then

𝜀 =1 −
∏
𝑖∈[𝜇]

(1 − 𝜀𝑖) .

Moreover, the error is tight in the sense that there exists a dishonest prover P∗ that, given any input x, manages to
have the verifier accept with probability at least 𝜀.
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1.1.1 Special Soundness and State-restoration Soundness

Our results on the relationship between special soundness and round-by-round soundness (i.e., Theorem 1.1) gives
us new results on the relationship between special soundness and state-restoration soundness [BCS16]. Informally,
state-restoration (SR) soundness roughly states that an IOP remains secure (i.e., cannot convince a verifier of a false
statement) even if a malicious prover is allowed to rewind the verifier to any prior state at most 𝑏 ≥ 1 times (see [BCS16]
for complete details). It is known that state-restoration soundness and (non-generalized) round-by-round soundness are
equivalent [Hol19]; moreover, state-restoration soundness error 𝜀𝑠𝑟 (𝑏) and round-by-round soundness error 𝜀𝑟𝑏𝑟 must
satisfy 𝜀sr (𝑏) ≤ 𝑏𝜀rbr [CMS19,COS20,KPV19], and this relation holds between state-restoration knowledge soundness
and round-by-round knowledge soundness [COS20].

As a direct corollary of the above results (i.e., RBR soundness implies SR soundness) and Theorem 1.1, we obtain
the following result.

Corollary 1.5 (Special Soundness Implies State-restoration Soundness). Let Π be a 𝜇-round (𝑘1, . . . , 𝑘𝜇)-special
sound IOP with verifier challenge sets C1, . . . C𝜇. Then for 𝑏 ≥ 1, Π has state-restoration soundness error

𝜀sr (𝑏) ≤ 𝑏 ·max
𝑖

{
𝑘𝑖 − 1
|C𝑖 |

}
.

1.1.2 Special Soundness and Quantum-secure Fiat-Shamir

Recent cryptographic research put forth significant effort toward achieving post-quantum security of various cryptographic
primitives, which include post-quantum security of non-interactive proofs obtain via the Fiat-Shamir transformation (or
variants of this transformation) [CMS19,LZ19,DFMS19,CMSZ21]. With respect to post-quantum security, of interest
to us is the so-called BCS transformation due to Ben-Sasson et al. [BCS16]; informally, this transformation compiles
any IOP into a non-interactive proof via a variant of the Fiat-Shamir transformation in the random oracle model. In
[BCS16] it is shown that applying this transformation to any state-restoration sound IOP results in an adaptively secure
non-interactive proof in the random oracle model. The follow up work due to Chiesa et al. [CMS19] extend this work to
show that compiling any round-by-round (knowledge) sound IOP with the BCS transformation yields an adaptively
(knowledge) sound non-interactive proof in the random oracle model (ROM); we refer the reader to prior work (e.g.,
[BCS16,CMS19]) for complete details on this transformation. Furthermore, [CMS19] show that this transformation
yields a non-interactive proof that is secure in the quantum random oracle model (QROM) (i.e., secure against quantum
adversaries that are allowed to query the random oracle in superposition).

As a direct consequence of our results, the work of [CMS19] and Theorem 1.1 shows that any special sound IOP can
be compiled via the BCS transformation to obtain an adaptively sound non-interactive proof in the QROM. This gives
the following corollary.

Corollary 1.6 (Special Soundness Implies FS Security in the QROM). Let Π be a 𝜇-round (𝑘1, . . . , 𝑘𝜇)-special
sound IOP. Let BCS(Π) be the non-interactive proof obtained by applying the BCS transformation to Π, and let
𝜀 = max𝑖∈[𝜇]{(𝑘𝑖 − 1)/|C𝑖 |}. Then BCS(Π) has adaptive soundness error 𝑂 (𝑡2𝜀 + 𝑡3/2𝜆) against quantum attackers
that make at most 𝑡 −𝑂 (𝑞 log ℓ) queries to the random oracle, where 𝜆 is the output length of the random oracle in bits,
𝑞 is (an upper bound on) the total number of queries made by the verifier during any execution of Π, and ℓ is the total
number of symbols sent by both the prover and verifier during any execution of Π.

Remark 1.7. Note that Corollary 1.6 directly implies that the Fiat-Shamir transformation of any special sound interactive
proof is a secure non-interactive proof in the QROM.

To the best of our knowledge, the above corollary is the first result relating the special soundness of a protocol and
its security versus quantum adversaries when rendered non-interactive via the BCS transformation (i.e., a variant of
the Fiat-Shamir transformation). Thus Corollary 1.6 is the first result to our knowledge relating special soundness of
multi-round protocols to quantum security. Notably, due to Theorem 1.3, we do not obtain that the BCS transformation
of a special sound IOP is knowledge sound versus quantum adversaries; we leave it as an interesting open problem to
examine whether special soundness implies non-interactive knowledge soundness versus quantum adversaries. We
remark that the Fiat-Shamir transformation of quantum-secure Σ-protocols (i.e., 1-round interactive arguments) was
shown to be sound in the QROM [DFMS19].

4



Co
ro

lla
ry

1.
5

Corollary 1.6

RBR Knowledge
Soundness

Special
Soundness

Q-FS Knowledge
Soundness

FS Knowledge
Soundness

RBR
Soundness

Special
Unsoundness

Soundness

Q-FS
Soundness

FS
Soundness

SR Knowledge
Soundness

SR
Soundness

Th
eo

re
m

1.
4

Theorem
1.3Th

eo
re

m
1.

2

[CMS19]

[AFK22]

[CMS19]

Remark 4.4

The
ore

m
1.1

Dual
Noti

on
s

(Rem
ark

6.2
)

[CMS19]

[CCH+19]

⩽ [CCH+19]

⩽

[COS20] [CCH+19,COS20] [Hol19]
[BCS16]

Figure 1: Pictorial overview of the relations between soundness notions. FS and Q-FS denote non-interactive adaptive
security of the BCS transformation (i.e., a variant of the Fiat-Shamir transformation) in the random oracle model
and quantum random oracle model, respectively. SR denotes state-restoration soundness. “ =⇒ ” arrows represent
implications; “ ≠⇒ ” represents there is no implication; and the dashed↔ represents a relationship between notions
(described by the text). Text in bold indicate the main soundness notions we study in this work. Thick arrows, lines,
and background shading indicate our contributions. We remark that Corollary 1.5 follows from Theorem 1.1 and
[CCH+19,COS20], and Corollary 1.6 follows from Theorem 1.1 and [CMS19].
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1.2 Related Work
Interactive oracle proofs were introduced by Ben-Sasson et al. [BCS16], and along with it the notion of state-restoration
soundness. This notion of soundness was introduced to formally show the Fiat-Shamir [FS87] security of multi-round
IOPs in the random oracle model. The notion of round-by-round soundness was later introduced by Canetti et al.
[CCH+19] for a similar reason: to prove Fiat-Shamir security of multi-round protocols, but in the plain model. Note,
however, that round-by-round soundness readily implies Fiat-Shamir security in the random oracle model [CCH+19]. It
was widely known that round-by-round soundness implies state-restoration soundness (e.g., [CCH+19,COS20]), and it
was recently shown that state-restoration soundness implies round-by-round soundness [Hol19]. Special soundness was
recently shown to also imply Fiat-Shamir security of multi-round protocols [AFK22]; moreover, this work also shows
that special unsoundness of multi-round protocols readily admits an attack on the Fiat-Shamir transformed protocol.

Prior to these soundness tools, a variety of work [KRR17,CCRR18,HL18] circumvented the impossibility results of
[BDG+13] by using stronger hardness assumptions to construct Fiat-Shamir compatible hash function families. Another
line of work [GKR08,CMT12,BCGT13,Tha13,BTVW14,WTs+18,Set20,RR20] follows the frameworks of Kilian
[Kil92] and Micali [Mic94] to compile interactive oracle proofs [BCS16] into efficient arguments and SNARKs via
collision-resistant hash functions [BCS16,Kil92] or in the random oracle model [BCS16,Mic94].

2 Technical Overview
We give an overview of our main contributions in this section. Before we begin, we informally fix some notations.
Informally, for a 𝜇-round IOP Π = (𝑃,𝑉) for a relation R and vector (𝑘1, . . . , 𝑘𝜇) ∈ N𝜇, we say that tree 𝑇 is a
(𝑘1, . . . , 𝑘𝜇)-tree of transcripts for Π on any input x ∈ LR if 𝑇 is a depth 𝜇 + 1 tree such that nodes at level 𝑖 have 𝑘𝑖
outgoing edges, and the tree is labeled in the following way: every node at level 𝑖 is labeled with a prover message and
every edge is labeled with the corresponding challenge; moreover, the root of the tree is a single message 𝑚 sent by the
prover, and all leaves are prover messages. We say that 𝑇 is an accepting tree of transcripts if all root to leaf paths are
accepting transcripts (i.e., they are accepted by 𝑉 . Now given the notion of a tree of accepting transcripts, the protocol
Π is (𝑘1, . . . , 𝑘𝜇)-special sound [ACK21] if there exists a polynomial time extractor algorithm that when given as input
any (𝑘1, . . . , 𝑘𝜇) tree of accepting transcripts for an instance x, the extractor outputs a witness 𝑤 such that (𝑥, 𝑤) ∈ R.

2.1 Generalizing Round-by-round Soundness
A first step in our work is generalizing the notions of round-by-round (RBR) soundness and RBR knowledge soundness.
We first recall the notion of RBR soundness, introduced by Canetti et al. [CCH+19]. Informally, a public-coin interactive
protocol for a language L is round-by-round sound (RBR sound) if at any point during the execution of the protocol, the
protocol is in a well-defined state (depending on the protocol execution so far) and some of these states are “doomed”,
where being “doomed” means that no matter what message the prover sends, with overwhelming probability over the
verifier messages, the protocol remains “doomed”. A bit more formally, RBR soundness error 𝜀 states that: (1) if x ∉ L
the initial state of the protocol is “doomed”; (2) if the protocol is in a “doomed” state during any non-final round of the
protocol, then for any message sent by the prover, the protocol remains doomed with probability at least 1 − 𝜀 over the
verifier messages; and (3) if the protocol terminates in a “doomed” state, then the verifier rejects. To generalize RBR
soundness, we consider separate errors 𝜀𝑖 for each round of the protocol. That is, for item (2) above, if the protocol is in
a “doomed” state at the start of round 𝑖, then for any message sent by the prover, the protocol remains doomed with
probability at least 1− 𝜀𝑖 over the verifier messages. We use the notationD to denote the set of “doomed” states below.2

Chiesa et al. [CMS19] et al. extend RBR soundness to the notion of RBR knowledge soundness, which roughly says
that if (1) the protocol is in a “doomed” state during any round of interaction, and (2) every prover message can force the
protocol to leave this “doomed” state with probability at least 𝜀k (over the verifier randomness), then an extractor can
efficiently extract a witness (with probability 1) simply by examining the current protocol state and the prover’s next
message. Again, we extend the notion of RBR knowledge to allow for separate errors 𝜀k,𝑖 during any intermediate
round 𝑖 of the protocol. The formal definitions of RBR soundness and RBR knowledge can be found in Section 3.

2One can also consider separate doomed states D𝑖 for each round 𝑖 of the protocol, but setting D = ∪𝑖D𝑖 still captures the RBR soundness.
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2.2 Special Soundness Implies Round-by-round Soundness
In this section, we give an overview of our first main result: special soundness implies round-by-round soundness. More
formally, we show that any (𝑘1, . . . , 𝑘𝜇) special sound IOP is generalized RBR sound with errors 𝜀𝑖 = (𝑘𝑖 − 1)/|𝐶𝑖 |.
As a warm up, we first consider the non-generalized version of special soundness and RBR soundness (i.e., single error
bound 𝜀 for all rounds of RBR soundness, and only 𝑘-ary trees of accepting transcripts).

2.2.1 Warm Up: 1-round IOPs

As a warm-up, consider any 1-round (i.e., 3-move) public coin IOP Π = (𝑃,𝑉) with message spaceM and challenge
space C for some relation R. Suppose that Π is 𝑘-special sound. That is, there is an extractor Ext such that on any input
x and any 𝑘 accepting transcripts of the form (𝑚, 𝑐𝑖 , 𝑧𝑖) for 𝑐𝑖 ∈ C distinct for all 𝑖 and 𝑚, 𝑧1, . . . , 𝑧𝑘 ∈ M, the extractor
outputs a witness w such that (x,w) ∈ R.

Now we claim that Π is round-by-round sound with error 𝜀 = (𝑘 − 1)/|C|. This can be seen as follows. Fix an
input x and consider any first message 𝑚 ∈ M sent by the prover and any challenge 𝑐 sent by the verifier. We say that
(x, 𝑚, 𝑐) is completable if there exists 𝑧 ∈ M such that 𝑉 (x, 𝑚, 𝑐, 𝑧) = 1; i.e., the verifier accepts. Intuitively speaking,
for Π to be round-by-round sound, then the number of compleatable transcripts should be small for any x ∉ L; in other
words, for any first message 𝑚 sent by the prover, for 𝑐 $← C the probability that (x, 𝑚, 𝑐) is completable should be
at most 𝜀 defined above. Let 𝑃(x, 𝑚) be the probability that (x, 𝑚, 𝑐) is completable for 𝑐 $← C, and suppose that
𝑃(x, 𝑚) > 𝜀. This implies that there exist 𝛼 = ⌈|C| · 𝑃(x, 𝑚)⌉ > 𝜀 |C| = (𝑘 − 1) distinct challenges 𝑐1, . . . , 𝑐𝛼 ∈ C
such that (x, 𝑚, 𝑐𝑖) is completable for all 𝑖 ∈ {1, . . . , 𝛼}. Notice that 𝛼 > 𝑘 − 1 and so 𝛼 ≥ 𝑘 . This tell us that any
𝑘 of the 𝛼 completable transcripts (x, 𝑚, 𝑐𝑖) form a 𝑘-tree of accepting transcripts of the form 𝑇 = {(x, 𝑚, 𝑐𝑖 , 𝑧𝑖)}𝑖
where 𝑧𝑖 completes (x, 𝑚, 𝑐𝑖). Thus by 𝑘-special soundness of Π, we have that (x,Ext(x, 𝑇)) ∈ R; however, this is a
contradiction since x ∉ L. Then it must be the case that at most 𝛼 ≤ (𝑘 − 1) = 𝜀 |C| distinct challenges can result in a
completable transcript, which implies that 𝑃(x, 𝑚) ≤ (𝑘 − 1)/|C| as desired.

More formally, to show that Π has round-by-round soundness error 𝜀 = (𝑘 − 1)/|C|, we define a suitable doomed
set D as follows. First consider the following two sets:

• Define D0 to be the set of all (x, ∅) such that x ∉ LR .

• Define D1 to be the set of all (x, 𝑚, 𝑐) for 𝑚 ∈ M and 𝑐 ∈ C that are not completable.

Then we setD = D0∪D1. Under this definition ofD, clearly we have (x, ∅) ∈ D for allx ∉ LR by definition; moreover,
for any transcript (x, 𝑚, 𝑐) that is not completable, then for all 𝑧 ∈ M we have 𝑉 (x, 𝑚, 𝑐, 𝑧) = 0. Now supposing that
(x, ∅) is doomed (by definition), consider any potential prover message 𝑚. Let 𝑃(x, 𝑚) denote the probability that
(x, 𝑚, 𝑐) ∉ D, where the probability is taken over 𝑐 $←C. Suppose there exists a message 𝑚 ∈ M such that 𝑃(x, 𝑚) > 𝜀.
Then by our above argument, we reach a contradiction as we can construct a 𝑘-tree of accepting transcripts and output a
witness w, violating the assumption that x ∉ L. Thus it must hold that 𝑃(x, 𝑚) ≤ 𝜀 = (𝑘 − 1)/|C|, as desired.

2.2.2 Extending to 𝜇-round IOPs

Notice that the above argument crucially relies on the fact that if you can leave the doomed set in the first round with
probability larger than 𝜀 = (𝑘 − 1)/|C|, then you can manifest a 𝑘-tree of accepting transcripts. To extend the above
argument to 𝜇 > 1 round protocols, we want to preserve this above fact. Recall the notion of a completable transcript
from above, which states that for a given partial transcript (x, 𝑚, 𝑐), there exists a prover message 𝑧 ∈ M that causes the
verifier to accept the entire transcript (x, 𝑚, 𝑐, 𝑧). Now we extend this notion to any 𝜇-round IOP: informally, consider
any partial transcript of the form 𝜏𝑖 := (x, 𝑚1, 𝑐1, . . . , 𝑚𝑖 , 𝑐𝑖), where 𝑖 ≤ 𝜇 and message 𝑚 𝑗 ∈ M is sent by the prover
at the start of round 𝑗 and the verifier responds with challenge 𝑐 𝑗

$←C, for all 𝑗 ≤ 𝑖. Now intuitively, we want to say
that 𝜏𝑖 is completable if there is a sequence of messages and challenges 𝜎𝑖+1 = (𝑚𝑖+1, 𝑐𝑖+1, . . . , 𝑚𝜇, 𝑐𝜇, 𝑚𝜇+1) such that
𝑉 (𝜏𝑖 , 𝜎𝑖+1) = 1; i.e., (𝜏𝑖 , 𝜎𝑖+1) is a complete accepting transcript. However, under this definition we would not be able
to show our result.

In our above argument for the 1-round IOP case, we crucially relied on fact that the completable transcripts (x, 𝑚, 𝑐)
form an entire 𝑘-tree of accepting transcripts. Under our proposed extended definition of a completable transcript, this
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fact would no longer hold. To see this, suppose that (x, 𝑚1, 𝑐1,𝑖) is completable for at least 𝑘 challenges 𝑐1,1, . . . , 𝑐1,𝑘 .
Under our current definition of completable, this only implies that there exist 𝑘 sequences of messages and challenges
𝜎1,𝑖 such that (x, 𝑚1, 𝑐1,𝑖 , 𝜎1,𝑖) is an accepting transcript. Clearly, this is not a 𝑘-tree of accepting transcripts, so we
can no longer derive our contradiction as with the 1-round IOP case.

We address the above issue by extending the definition of a completable transcript to a 𝑘-completable transcript. For
any partial transcript 𝜏𝑖 for as defined above, we say that 𝜏𝑖 is 𝑘-completable if there exists a 𝑘-tree of transcripts 𝑇
of depth 𝜇 + 1 − 𝑖 such that for every 𝜎 ∈ 𝑇 , the transcript (𝜏𝑖 , 𝜎) is accepted by the verifier, where 𝜎 is of the form
(𝑚𝑖+1, 𝑐𝑖+1, . . . , 𝑚𝜇, 𝑐𝜇, 𝑚𝜇+1). Now under this definition, we can now proceed to extend our proof to 𝜇-round IOPs.

Suppose that Π is a 𝑘-special sound IOP. We argue that Π has round-by-round soundness error 𝜀 = (𝑘 − 1)/|C|.
Define a doomed set D as follows. First, consider the following sets:

• Define D0 to be the set of all (x, ∅) such that x ∉ LR .

• For all 𝑖 ∈ {1, . . . , 𝜇}, define D𝑖 to be the set of partial transcripts 𝜏𝑖 = (x, 𝑚1, 𝑐1, . . . , 𝑚𝑖 , 𝑐𝑖) such that 𝜏𝑖 is not
completable.

Now takeD = ∪𝜇
𝑖=0D𝑖 . Clearly, as required we have (x, ∅) ∈ D for allx ∉ LR . Moreover, if 𝜏𝜇 = (x, 𝑚1, 𝑐1, . . . , 𝑚𝜇, 𝑐𝜇)

is not 𝑘-completable, then for all 𝑚𝜇+1 ∈ M we have 𝑉 (𝜏𝜇, 𝑚𝜇+1) = 0 by definition of 𝑘-completable.
Let 𝜏0 = (x, ∅). We now argue that the probability that 𝜏1 = (𝜏0, 𝑚1, 𝑐1) is 𝑘-completable is at most 𝜀 for all

𝑚1 ∈ M and 𝑐1
$← C. Our argument now proceeds identically to the 1-round IOP case. Let 𝑃1 (x, 𝑚1) denote the

probability over 𝑐1
$←C that 𝜏1 = (x, 𝑚1, 𝑐1) is 𝑘-completable; in particular, 𝑃1 (x, 𝑚1) = Pr[𝜏1 ∉ D] by our definition.

Suppose there exists 𝑚1 ∈ M such that 𝑃1 (x, 𝑚1) > 𝜀. Now this implies that there exist at 𝛼 > 𝜀 |C| = (𝑘 − 1) distinct
challenges 𝑐1,1, . . . , 𝑐1,𝛼 ∈ C such that (x, 𝑚1, 𝑐1, 𝑗 ) is 𝑘-completable. By definition of completable, this implies that
for every 𝑗 ∈ {1, . . . , 𝛼} and partial transcript 𝜏1, 𝑗 = (x, 𝑚1, 𝑐1, 𝑗 ), there exists a 𝑘-tree of transcripts 𝑇2, 𝑗 of depth 𝜇

such that for all 𝜎 ∈ 𝑇1, 𝑗 , the complete transcript (𝜏1, 𝑗 , 𝜎) is accepted by the verifier. Since 𝛼 ≥ 𝑘 , taking any 𝑘 out of
𝛼 of the partial transcripts (x, 𝑚1, 𝑐1, 𝑗 ) along with their 𝑘-tree of transcripts 𝑇2, 𝑗 forms a 𝑘-tree of accepting transcripts
of depth 𝜇 + 1. Now by special soundness of Π, there exists an efficient extractor that extracts a witness w such that
(x, 𝑤) ∈ R when given this 𝑘-tree of accepting transcripts, contradicting our assumption that x ∉ L. Thus it must be
the case that 𝑃1 (x, 𝑚1) ≤ 𝜀 as required.

Now consider any intermediate round 𝑖 ≤ 𝜇 − 1 and let 𝜏𝑖 = (x, 𝑚1, 𝑐1, . . . , 𝑚1, 𝑐𝑖) be a partial transcript for
this round. Suppose that 𝜏𝑖 ∈ D; we now show that for all 𝑚𝑖+1 ∈ M, the probability that 𝜏𝑖+1 = (𝜏𝑖 , 𝑚𝑖+1, 𝑐𝑖+1) is
𝑘-completable is at most 𝜀 for 𝑐𝑖+1

$←C. Let 𝑃𝑖+1 (𝜏𝑖 , 𝑚𝑖+1) = Pr𝑐𝑖+1 [(𝜏𝑖 , 𝑚𝑖+1, 𝑐𝑖+1) ∉ D] denote this probability and
suppose there exists 𝑚𝑖+1 ∈ M such that 𝑃𝑖+1 (𝜏𝑖 , 𝑚𝑖+1) > 𝜀. By the same argument as above and by definition of 𝜀,
there exist at least 𝑘 distinct challenges 𝑐𝑖+1,1, . . . , 𝑐𝑖+1,𝑘 such that the partial transcript 𝜏𝑖+1, 𝑗 = (𝜏𝑖 , 𝑚𝑖+1, 𝑐𝑖+1, 𝑗 ) is
𝑘-completable. By definition of 𝑘-completable, this implies for each 𝜏𝑖+1, 𝑗 there exists a 𝑘-tree of transcripts 𝑇𝑖+2, 𝑗
of depth 𝜇 − 𝑖 such that for all 𝜎 ∈ 𝑇𝑖+1, 𝑗 , the transcript (𝜏𝑖+1, 𝑗 , 𝜎) is a complete and accepting transcript. Then we
can construct a 𝑘-tree of transcripts 𝑇𝑖+1 of depth 𝜇 − 𝑖 + 1 as 𝑇𝑖+1 = {(𝜏𝑖 , 𝑚𝑖+1, 𝑐𝑖+1, 𝑗 , 𝜎) 𝑗∈{1,...,𝑘} : 𝜎 ∈ 𝑇𝑖+1, 𝑗 }. Then
clearly 𝑇𝑖+1 forms a 𝑘-tree of transcripts that completes the partial transcript 𝜏𝑖; this contradicts the assumption that
𝜏𝑖 ∈ D, i.e., 𝜏𝑖 is not 𝑘-completable. Thus it must hold that 𝑃𝑖+1 (𝜏𝑖 , 𝑚𝑖+1) ≤ 𝜀 for all 𝑚𝑖+1 ∈ M, establishing the result.

2.2.3 Extending to Generalized Special Soundness and Generalized Round-by-round Soundness

The above argument naturally generalizes to (𝑘1, . . . , 𝑘𝜇) special soundness and (𝜀1, . . . , 𝜀𝜇) round-by-round soundness,
with message spacesM1, . . . ,M𝜇+1 and challenge spaces C1, . . . , C𝜇. First, we define a partial transcript 𝜏𝑖 to be
(𝑘𝑖+1, . . . , 𝑘𝜇)-completable if there exists a (𝑘𝑖+1, . . . , 𝑘𝜇)-tree of transcripts 𝑇 of depth 𝜇 − 𝑖 + 1 such that for all
𝜎 ∈ 𝑇 , (𝜏𝑖 , 𝜎) is a complete transcript and 𝑉 (𝜏𝑖 , 𝜎) = 1. Then under this definition, we define our doomed set
D = ∪𝜇

𝑖=0D𝑖 where D0 is defined identically as above and D𝑖 is the set of all partial transcripts 𝜏𝑖 that are not
(𝑘𝑖+1, . . . , 𝑘𝜇)-completable. Then setting 𝜀𝑖 = (𝑘𝑖 − 1)/|C𝑖 |, we can proceed with the above argument in an identical
fashion, deriving our contradictions and showing round-by-round soundness of the IOP Π.
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2.2.4 Special Soundness Implies Soundness in the Quantum Random Oracle Model

A direct consequence of the previous result is that the BCS transformation [BCS16] of a special sound IOP is sound in
the Quantum Random Oracle Model (QROM). Indeed, by the previous result, any special sound IOP is RBR sound, and,
due to a result of [CMS19], the BCS transformation of any RBR sound IOP is a sound non-interactive proof in the
QROM. In particular, this implies that the Fiat-Shamir transformation of any special sound Interactive Proof is sound in
the QROM.

2.3 Round-by-round Knowledge Implies Special Soundness
In this section, we give an overview of our second main result: round-by-round knowledge soundness implies special
soundness.

2.3.1 Warm Up: 1-round IOPs

We again consider a warm up to the proof by analyzing a 1-round public coin IOP Π = (𝑃,𝑉) with message spaceM
and challenge space C for some relation R. Let 𝜀 be the round-by-round knowledge error of Π. Let x be arbitrary and
let D be the doomed set for round-by-round knowledge error. By round-by-round (RBR) knowledge, we know there
exists a polynomial time extractor Ext such that that if for all 𝑚 ∈ M it holds that 𝑃(x, 𝑚) = Pr𝑐 [(x, 𝑚, 𝑐) ∉ D] > 𝜀,
then Ext(x, 𝑚) outputs a witness w such that (x,w) ∈ R, where the probability is taken over 𝑐 $←C. Crucially, for all
such transcripts (x, 𝑚, 𝑐) ∉ D, there exists 𝑧 ∈ M such that (x, 𝑚, 𝑐, 𝑧) is an accepting transcript; we leverage this fact
below.

Setting 𝑘 = ⌈|C|𝜀⌉ + 1, we now construct a polynomial-time extractor Ext′ such that given any 𝑘-tree of accepting
transcripts 𝑇 = {(x, 𝑚, 𝑐𝑖 , 𝑧𝑖) : 𝑐𝑖 ∈ C, 𝑧𝑖 ∈ M}𝑖∈{1,...,𝑘} , (x,Ext(𝑇)) ∈ R. Suppose that indeed for all 𝑚 ∈ M it
holds that 𝑃(x, 𝑚) > 𝜀. This implies that for any 𝑚 ∈ M, there are 𝛼 > 𝜀 |C| distinct challenges 𝑐1, . . . , 𝑐𝛼 such
that Ext(x, 𝑚, 𝑐𝑖) outputs a valid witness. This implies that 𝛼 ≥ ⌈𝜀 |C|⌉ + 1 = 𝑘 , and thus there are at least 𝑘 distinct
challenges 𝑐1, . . . , 𝑐𝑘 such that Ext(x, 𝑚, 𝑐𝑖) outputs a valid witness, for all 𝑚 ∈ M. Now given input a tree of accepting
transcripts 𝑇 defined above, our new extractor Ext′ (𝑇) simply runs Ext on input (x, 𝑚), followed by (x, 𝑚, 𝑐𝑖 , 𝑧𝑖)
for all 𝑖 ∈ [𝑘]. Then Ext′ outputs the same witness w that is given by Ext. Note that by assumption, we have that
(x, 𝑚, 𝑐𝑖 , 𝑧𝑖) ∉ D, and we have 𝑘 = ⌈𝜀 |C|⌉ + 1 such transcripts, so by round-by-round knowledge it must be the case that
Ext(x, 𝑚, 𝑐𝑖 , 𝑧𝑖) outputs a valid witness. Otherwise, if (x, 𝑚, 𝑐𝑖 , 𝑧𝑖) ∈ D, then the verifier would reject this transcript,
contradicting 𝑇 being a tree of accepting transcripts.

2.3.2 Extending to 𝜇-round IOPs

Extending the above intuition to 𝜇-round IOPs introduces some subtleties that must be handled. Suppose that Π is again
RBR knowledge sound with error 𝜀 and let 𝑘 = ⌈|C|𝜀⌉ + 1. Suppose we are given a 𝑘-tree of accepting transcripts 𝑇 of
depth 𝜇 + 1 with root 𝑚1. We now construct a special soundness extractor that extracts a valid witness given the tree 𝑇 .

Consider any partial transcript 𝜏𝑖 = (x, 𝑚1, 𝑐1, . . . , 𝑚𝑖 , 𝑐𝑖) such that 𝜏𝑖 is a path in 𝑇 . Then there is a unique message
𝑚∗

𝑖+1 such that (𝜏𝑖 , 𝑚∗𝑖+1) is a path in 𝑇 . Now suppose that 𝜏𝑖 has the following properties:

• 𝜏𝑖 ∈ D (i.e., 𝜏𝑖 is a doomed transcript);

• For all outgoing edges 𝑐𝑖+1,1, . . . , 𝑐𝑖+1,𝑘 connected to 𝑚𝑖+1, we have (𝜏𝑖 , 𝑚∗𝑖+1, 𝑐𝑖, 𝑗 ) ∉ D for all 𝑗 .

Clearly if 𝜏𝑖 has this property, then our extractor Ext′ when given tree 𝑇 as input, if Ext′ runs the RBR knowledge
extractor Ext on input (𝜏𝑖 , 𝑚∗𝑖+1, 𝑐𝑖, 𝑗 ) then Ext outputs a valid witness. This follows since by or definition of 𝑘 and by
RBR knowledge, the fraction of challenges 𝑐 ∈ C such that (𝜏𝑖 , 𝑚∗𝑖+1, 𝑐) ∉ D is strictly larger than 𝜀; i.e., 𝑘/|C| > 𝜀 by
definition.

Now we claim that for any tree of accepting transcripts 𝑇 , there exists some partial transcript 𝜏𝑖 that satisfies the
above stated properties, where 𝑖 ∈ [𝜇]. Supposing this claim is true, then the extractor Ext′ on input any 𝑘-tree of
accepting transcripts 𝑇 , simply runs Ext on input (𝜏𝑗 , 𝑚∗𝑗+1) over all possible partial transcripts 𝜏𝑗 that are in 𝑇 and start
at the root of 𝑇 and connect to node 𝑚∗

𝑗+1. Then clearly by the above claim, Ext outputs a valid witness w such that
(x,w) ∈ R; else this would violate RBR knowledge. Thus Ext′ outputs this same witness w.
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All that remains to be shown is the above claim. We give a full proof of this claim in Section 5. At a high level, we
show the claim by reverse induction on 𝑖 ∈ [𝜇]. For 𝑖 = 𝜇, if the claim does not hold, then clearly 𝑇 is no longer a tree
of accepting transcripts as there is some complete transcript that remains in the doomed set, violating the assumption
that 𝑇 is an accepting tree of transcripts. Then fixing 𝑖 < 𝜇 and assuming the claim is true for all 𝑗 such that 𝑖 < 𝑗 ≤ 𝜇,
suppose 𝜏𝑖−1 is a partial transcript in the tree 𝑇 . If 𝑚∗

𝑖
is the unique node in 𝑇 such that (𝜏𝑖−1, 𝑚∗𝑖 ) is a path in 𝑇 , if

for all outgoing edges 𝑐𝑖,1, . . . , 𝑐𝑖,𝑘 of 𝑚∗
𝑖

we have (𝜏𝑖−1, 𝑚∗𝑖 , 𝑐𝑖, 𝑗 ) ∉ D, then we are done. Otherwise, there exists
some outgoing edge 𝑐𝑖, 𝑗∗ of 𝑚∗

𝑖
such that (𝜏𝑖−1, 𝑚∗𝑖 , 𝑐𝑖, 𝑗∗ ) ∈ D. Now if this happens, by our induction hypothesis,

we have that for 𝑚∗
𝑖+1 which has incoming edge 𝑐𝑖, 𝑗∗ and all outgoing edges 𝑐𝑖+1, 𝑗 from 𝑚∗

𝑖+1, the partial transcript
(𝜏𝑖−1, 𝑚∗𝑖 , 𝑐𝑖, 𝑗∗ , 𝑚∗𝑖+1, 𝑐𝑖+1, 𝑗 ) ∉ D. This completes the induction step and the proof.

2.3.3 Extending to Generalized Round-by-round Knowledge and Generalized Special Soundness

The above argument again naturally extends to the generalized RBR knowledge and generalized special soundness
cases. Indeed, taking 𝑘𝑖 = ⌈|C𝑖 |𝜀𝑖⌉ + 1 for RBR knowledge errors 𝜀𝑖 , the above argument holds by replacing all 𝑘-tree
of transcripts with (𝑘1, . . . , 𝑘𝜇)-tree of transcripts, and by considering the RBR knowledge error 𝜀𝑖 for any partial
transcript 𝜏𝑖 . See Section 5 for full details.

2.4 Special Soundness Does Not Imply Round-by-round Knowledge
Roughly, one of our main results states that an IOP may be (𝑘1, . . . , 𝑘𝜇)-special sound with small 𝑘𝑖’s, but at the same
time only have RBR knowledge with errors (𝜀1, . . . , 𝜀𝜇) if 𝜀𝑖 = 1 for some 𝑖.

We begin by providing intuition on why this is the case. Afterward we will give a more technical explanation. To this
end, observe that the extractor Extspec given by the definition of special soundness is given access to a tree of accepting
complete transcripts, while the extractor ExtRBR from the RBR knowledge definition only receives partial transcripts as
inputs. Thus, in a sense, Extspec has more information to work with than ExtRBR. More precisely, suppose an IOP Π is
built in a way that accepting complete transcripts “contain full information” about a valid witness, but that no partial
transcript contains such information. Then, given a tree of accepting transcripts, the extractor Extspec is able to extract
a witness from it, since the tree contains complete transcripts that include “full information” about a valid witness.
However, ExtRBR is never given a complete accepting transcript, and instead only sees partial transcripts. Consequently,
by our assumptions on Π, the extractor ExtRBR may be unable to reconstruct a witness from these partial transcripts, no
matter how likely it is that the partial transcript leaves certain doomed set. Under this informally described scenario, Π
would be special sound, but it would not have RBR knowledge soundness.

We next formalize the ideas above. For simplicity, we restrict ourselves to IOP’s where the prover and verifier
perform only one round of communication, i.e. 𝜇( |x|) = 1 for all input x. Our full result deals with IOP’s with arbitrarily
(polynomialy) many rounds of interaction.

Fix a relation R so that the language LR is in NP but not in P. Now we construct an IOP Π = (P,V) for R such that,
as hinted above, its partial transcripts contain “no information” about witnesses, while its complete transcript do. To
this end, for any (x,w) ∈ R, we have P send the 0 bit as its first message 𝑚1. Then we have V reply with a random
string 𝑐, to which the honest prover P replies by sending the entire witness w. Then V accepts the proof if and only if
(x,w) ∈ R and 𝑚1 = 0.

Clearly, Π is (1)-special sound, since any complete accepting transcript for x contains a witness w. On the other
hand, all non-complete partial transcripts for Π are of the form (x), (x, 0), or (x, 0, 𝑐). Neither of these “contains
information” about a witness for x (other than the information provided by the input x itself).

Now assume Π has RBR knowledge with error 𝜀1, and letD and Ext be a corresponding doomed set and an extractor
algorithm. Then, by definition of RBR knowledge, whenever we have

Pr
𝑐
[(x, 0, 𝑐) ∉ D] > 𝜀1, (2)

the extractor Ext is able to find a valid witness for x just from seeing (x, 0). However, if x ∈ LR, then the probability
Pr𝑐 [(x, 0, 𝑐) ∉ D] must be 1, because for all 𝑐, the partial transcript (x, 0, 𝑐), which comprises all 𝜇 rounds of
interaction, can be extended into a complete accepting transcript (x, 0, 𝑐, 𝑚). Then, by definition of doomed set, we
must have (x, 0, 𝑐) ∉ D. It follows from this and Eq. (2), that if 𝜀1 ( |x|) < 1, then the extractor Ext is able to output a
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witness for x just from seeing (x, 0). With these arguments in mind, and assuming 𝜀1 ( |x|) < 1, it is straightforward to
build a deterministic polynomial time algorithm that recognizes the language LR, contradicting our assumption that LR

is in NP but not in P. Thus, Π cannot have RBR knowledge soundness, i.e. if it has RBR knowledge, then the error 𝜀1 is
not negligible —in fact, it is 1.

In Section 5 we formulate these ideas in full formality. Moreover, instead of restricting ourselves the 1-round
IOPs, we generalize our arguments to construct a 𝜇-round IOP that is special sound but does not have RBR knowledge
soundness, for any polynomial 𝜇 = 𝜇( |x|).

2.5 Special Unsoundness and Round-by-round Soundness are Dual
Finally, we relate round-by-round soundness and the notion of special unsoundness [AFK22]. Informally, an IOP
Π = (𝑃,𝑉) is ℓ-special unsound if there exists a dishonest prover strategy 𝑃∗ such that during any round of the protocol,
for any message 𝑚 sent by 𝑃∗, there exists a “lucky” set of verifier challenges 𝐿 ⊂ C such that |𝐿 | = ℓ such that if the
verifier 𝑉 responds with 𝑐 ∈ 𝐿, then 𝑃∗ can “behave honestly” for the remainder of the protocol and 𝑉 will accept at the
end of the protocol execution.

Given the above notion of special unsoundness, it is immediate on an intuitive level that special unsoundness
and RBR soundness are “dual” notions: RBR soundness states that for any dishonest prover strategy, the probability
the prover gets “lucky” is upper bounded by some 𝜀, whereas special unsoundness says that there exists a prover
strategy where the probability the prover gets “lucky” is lower bounded by some 𝜀′. We formalize this relationship in
Section 6. Assume that Π is an 𝜀-sound 𝜇-round IOP, and assume that Π is generalzied round-by-round sound with
errors (𝜖1, . . . , 𝜖𝜇) and special unsound with errors (𝜖 ′1, . . . , 𝜖 ′𝜇). Then for 𝜖 = 1 −∏𝑖 (1 − 𝜖𝑖) and 𝜖 ′ = 1 −∏𝑖 (1 − 𝜖 ′𝑖 ),
it holds that 𝜖 ′ ≤ 𝜀 ≤ 𝜖 . Moreover, we show that if 𝜖 ′

𝑖
= 𝜖𝑖 for all 𝑖, then we have 𝜀 = 𝜖 . See Section 6 for complete

details.

3 Preliminaries
A relation R is a subset of pairs (x;w) ∈ {0, 1}∗ × {0, 1}∗. The strings x are called inputs (these are often called
also statements or instances), and the strings w are called witnesses. To each relation R there corresponds a language
𝐿R ⊆ {0, 1}∗ consisting of all statements x such that (x,w) ∈ R for some w. When (x,w) ∈ R, we say that w is a
valid witness for x. We assume our relations to be in the class NP.

We parameterize our security functions either by the length |x| of an input, but for ease of exposition we omit
these from our notation, i.e. we write expressions such as “soundness error 𝜀” instead of “soundness error 𝜀( |x|)”. We
proceed similarly for other types of functions.

We denote by N be the set of all positive non-zero integers. For any 𝑚 ∈ N, we let [𝑚] denote the set {1, . . . , 𝑚}.
For any finite set 𝑆, we let 𝑠 $← 𝑆 denote the process of sampling an element of 𝑆 uniformly and independently at random.

3.1 Interactive Oracle Proofs
Given a map 𝑓 ∈ 𝐴𝐵 for some sets 𝐴, 𝐵, we denote by ⟦ 𝑓 ⟧ an oracle to the map 𝑓 . This is a hypothetical algorithm that
takes elements 𝑎 ∈ 𝐴 as input, and outputs 𝑓 (𝑎) instantaneously.

Definition 3.1 (Interactive Proofs (IP)). A 𝜇-round interactive proof for a relation R is a pair of interactive algorithms
Π = (P,V) such that:

• For x ∈ 𝐿R and w such that (x,w) ∈ R, before the start of the protocol, P receives both (x,w) as input and V
receives x as input.

• P(x,w) and V(x) exchange 2𝜇( |x|) + 1 messages, where P sends the first and last message, and during any
round of interaction P sends message 𝑚𝑖 to V. After P sends 𝑚𝜇 ( |x | )+1, V either accepts or rejects.

We require the following properties to hold:
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• Completeness: for all (x,w) ∈ R, we have

Pr [⟨P(w),V⟩(x) = accept] = 1,

where ⟨P(w),V⟩(x) denotes the output of P and V interacting on common input x where P is additionally given
w as input, and the above probability holds over the random coins of V.

• 𝜖-Soundness: for any x ∉ 𝐿R and any unbounded interactive algorithm P∗, we have

Pr [⟨P∗,V⟩(x) = accept] ≤ 𝜖,

where the probability is taken over the random coins of V.
We say that Π is public-coin if all messages sent by V are independent uniform random strings of some bounded length
and the output of V does not depend on any secret state.

Remark 3.2. In this paper, all IP’s and IOP’s are assumed to be public-coin. As seen above, 𝜇 is a function that depends
on |x|, however we omit explicitly referring to this dependence, writing 𝜇 to refer both to the function and to the value
𝜇( |x|).

Definition 3.3 (Interactive Oracle Proof). An Interactive Oracle Proof (IOP) for a relation R is a 𝜇-round IP (P,V)
for R in which, for all x, at each round of interaction 𝑖 ∈ [𝜇(x)], P sends 𝑚𝑖 and V receives oracle access to 𝑚𝑖 via
⟦𝑚𝑖⟧. Crucially, at the end of the interactive phase, V does not necessarily need to read the whole 𝑚𝑖 in order to decide
whether to accept or reject.

Definition 3.4 (Message Spaces and 𝑖-round Partial Transcripts). Let Π be a 𝜇-round IOP Π = (P,V) for a relation R.
We denote byM1, . . . ,M𝜇+1 the sets of all potential prover’s messages, so that, at round 𝑖 ∈ [𝜇], P sends a message
fromM𝑖 . The setM𝜇+1 constitutes the set of all potential prover’s last messges. Similarly, we let C1, . . . , C𝜇 be the sets
of all potential verifier’s messages, which we refer to as challenges, so that at Round 𝑖 ∈ [𝜇] V replies with a challenge
from C𝑖 . These sets do not depend on x or any message/challenge previously exchanged between the prover and the
verifier.

Given 𝑖 ∈ [𝜇], we define a 𝑖-round partial transcript as a vector of the form 𝜏 = (x, 𝑚1, 𝑐1, . . . , 𝑚𝑖 , 𝑐𝑖) where
𝑚𝑖 ∈ M 𝑗 and 𝑐𝑖 ∈ C𝑗 for all 𝑗 ∈ [𝑖]. We also let a 0-round partial transcript be a “vector” of the form (x). We write
PartTr(𝑖) to denote the set of all 𝑖-round partial transcripts. A complete transcript is a transcript of the form (x, 𝜏, 𝑚)
where (x, 𝜏) ∈ PartTr(𝜇) and 𝑚 ∈ M𝜇+1. Such a transcript is accepting if V(x, 𝜏, 𝑚) = accept.

3.2 Special Soundness
Let P be a potentially dishonest prover for Π, let x be a statement for a relation R, and let 𝜏 ∈ PartTr(𝑖). We write
P(x, 𝜏) to denote the state of P at the beginning of Round 𝑖 + 1 if (x, 𝜏) is the transcript so far.

Definition 3.5 (Tree of Transcripts). Let Π = (P,V) be a 𝜇-round IOP. Let (𝑘1, . . . , 𝑘𝜇) ∈ N𝜇. A (𝑘1, . . . , 𝑘𝜇)-tree of
transcripts for x is a set of 𝑘 =

∏
𝑖 𝑘𝑖 complete transcripts (𝜏1, . . . , 𝜏𝑘) with common first message 𝑚, arranged in a

tree of depth 𝜇 + 13 and arity 𝑘1, . . . , 𝑘𝜇, respectively. The nodes in the tree correspond to the prover’s messages, and
the edges correspond to the verifier’s challenges. Every internal node at depth 𝑖 − 1 (1 ≤ 𝑖 ≤ 𝜇) has 𝑘𝑖 children with
distinct challenges. Every 𝜏𝑗 , 𝑗 ∈ [𝑘] corresponds to one path from the root to the leaf node.

Finally, we say that the tree is a (𝑘1, . . . , 𝑘𝜇)-tree of accepting transcripts for x if every transcript is accepted by V.

Definition 3.6 (Special Soundness). Let Π be a 𝜇-round IOP for a relation R, and let (𝑘1, . . . , 𝑘𝜇) ∈ N𝜇. We say Π is
(𝑘1, . . . , 𝑘𝜇)-special sound if there exists a polynomial time algorithm Ext that, on input x and any (𝑘1, . . . , 𝑘𝜇)-tree of
accepting transcripts for x, outputs a witness w such that (x,w) ∈ R.

3We set the root vertex of a tree to be of depth 1 (as opposed to 0).
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Figure 2: 3-round IOP tree as a (3, 2, 3)-tree of transcripts with a highlighted complete/accepting transcript.

3.3 Special Unsoundness
The notion of special unsoundness was introduced in [AFK22] in the context of analysing the security of the Fiat-Shamir
transformation of the parallel repetition of an interactive proof. The authors describe an attack to such protocol and
analyse its security. Later in Section 6 we will showcase the interest of this definition in a more general context, unrelated
to the parallel repetition of IP’s.

Definition 3.7 (Special Unsoundness [AFK22]). Let Π be a 𝜇-round IOP, and let (ℓ1, . . . , ℓ𝜇) ∈ N𝜇. We say that Π has
(ℓ1, . . . , ℓ𝜇)-special unsoundness if there exists a dishonest prover A of the following form and so that in the execution
with V and input x the following holds:

• A starts off in active mode, which is so that in every round 𝑖, when A sends the message 𝑚𝑖 , there exists a subset
L𝑖 ⊆ C𝑖 such that |L𝑖 | = ℓ𝑖 (defined as a function of the state of A at shit point) such that if the subsequent
challenge 𝑐𝑖 is in L𝑖 , then A switches into passive mode.

• If A switches into passive mode, then it remains in passive mode until the end of the protocol, and V accepts at
the end of the protocol.

4 Generalized Special Soundness and Unsoundness, and Round-by-round
Soundness and Knowledge

In this section, we define the notions of generalized round-by-round soundness and knowledge, respectively. These
are essentially the original definitions from [CCH+19] and [CMS19] with the modification that, instead of having a
“one-size-fits-all-rounds” soundness/knowledge error, we consider an error for each round. Following [Hol19], we
use a formalism based on “doomed” sets of partial transcripts, as opposed to using a “state function”. We will often
abbreviate the expression “round-by-round” as RBR.

Definition 4.1 ((Generalized) Round-by-round Soundness). An IOP Π = (P,V) for a relation R has (generalized)
round-by-round soundness with errors (𝜀1, . . . , 𝜀𝜇) if there exists a (not necessarily efficiently computable) “doomed
set” D of partial transcripts such that the following properties hold:

1. If x ∉ LRi
, then (x) ∈ D.

2. For any x and any 𝜇-round partial transcript (x, 𝜏) ∈ PartTr(𝜇) and any last prover message 𝑚 ∈ M𝜇+1, if
(x, 𝜏) ∈ D then 𝑉 (x, 𝜏, 𝑚) = reject.

3. If (x, 𝜏) ∈ D and (x, 𝜏) ∈ PartTr(𝑖 − 1) is a (𝑖 − 1)-round partial transcript for some 𝑖 ∈ [𝜇], then for all
𝑚 ∈ M𝑖 we have

Pr
𝑐

$←C𝑖
[(𝜏, 𝑚, 𝑐) ∉ D] ≤ 𝜀𝑖 .
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If for all 𝑖 ∈ [𝜇], 𝜀𝑖 = 𝜀𝑖 ( |x|) is a negligible function of the input length |x|, then we simply say that Π has RBR
soundness.

The original definition of round-by-round soundness considers only the scenario in which 𝜀1 = . . . = 𝜀𝜇, and in that
case one says that Π has RBR soundness with error 𝜀, where 𝜀 = 𝜀𝑖 for all 𝑖.

Definition 4.2 ((Generalized) Round-by-round Knowledge). We say an IOPΠ = (P,V) for a relationR has (generalized)
round-by-round knowledge with errors (𝜀1, . . . , 𝜀𝜇) if there exists a (not necessarily efficiently computable) “doomed
set” D of partial transcripts such that the following properties hold:

• For all possible inputs x, not necessarily in LR, we have (𝑥) ∈ D.

• For any 𝜇-round partial transcript (x, 𝜏) ∈ PartTr(𝜇) and any last prover message 𝑚 ∈ M𝜇+1, if (x, 𝜏) ∈ D,
then V(x, 𝜏, 𝑚) = reject.

• There exists a polynomial time algorithm Ext, called extractor, with the following properties. If (x, 𝜏) ∈ D and
(x, 𝜏) ∈ PartTr(𝑖 − 1) for some 𝑖 ∈ [𝜇], and for all 𝑚 ∈ M𝑖 we have

Pr
𝑐

$←C𝑖
[(x, 𝜏, 𝑚, 𝑐) ∉ D] > 𝜀𝑖 ,

then Ext(x, 𝜏, 𝑚) outputs a witness w such that (x,w) ∈ R.
In this case, we say that the partial transcript (x, 𝜏, 𝑚) above is an RBR extractable partial transcript.

If for all 𝑖 ∈ [𝜇], 𝜀𝑖 = 𝜀𝑖 ( |x|) is a negligible function of the input length |x|, then we simply say that Π has RBR
knowledge soundness.

The original definitions of RBR soundness and knowledge consider only the case in which the errors are the same
for each round, i.e. 𝜀1 = . . . = 𝜀𝜇.
Remark 4.3. Often in this paper we will drop the term “generalized” and talk simply of RBR soundness and RBR
knowledge, referring always to the generalized definitions provided above.
Remark 4.4 (RBR Knowledge Implies RBR Soundness). An IOP with RBR knowledge with errors (𝜀1, . . . , 𝜀𝜇) is
necessarily RBR sound with errors (𝜀1, . . . , 𝜀𝜇). This is because if (x, 𝜏, 𝑚) is an RBR extractable partial transcript,
then the extractor from the definition of RBR knowledge outputs a witness w such that (x,w) ∈ R, and so x ∈ LR.
Hence, if D is the doomed set with which Π has RBR knowledge, the subset D′ ⊆ D consisting of all (x, 𝜏) ∈ D such
that x ∉ LR is a doomed set with which Π has RBR soundness with errors (𝜀1, . . . , 𝜀𝜇).

The following remark highlights the relation between the generalized and non-generalized versions of round-by-round
soundness.
Remark 4.5. Let Π be an IOP with 𝜇 rounds. Suppose Π is round-by-round sound with errors (𝜀1, . . . , 𝜀𝜇). Then Π is
round-by-round sound with error 𝜀), where

𝜀 = max
𝑖∈[𝜇]
{𝜀𝑖}.

Conversely, if Π is round-by-round sound with error 𝜀, then it is round-by-round sound with errors (𝜀1, . . . , 𝜀𝜇) where
𝜀𝑖 = 𝜀 for all 𝑖 ∈ [𝜇].

5 Relating Special Soundness and Round-by-round Knowledge
We begin this section by stating our main results, and proof each of them afterwards. The first one states that special
soundness implies RBR soundness.

Theorem 1.1 (Special Soundness Implies RBR Soundness). Let Π = (P,V) be a 𝜇-round IOP for a relation R. Let C𝑖 be
the set of verifier challenges for round 𝑖 ∈ {1, . . . , 𝜇}, and let (𝑘1, . . . , 𝑘𝜇) ∈ N𝜇. Assume that Π is (𝑘1, . . . , 𝑘𝜇)-special
sound. Then Π is RBR sound with errors (

𝑘1 − 1
|C1 |

, . . . ,
𝑘𝜇 − 1
|C𝜇 |

)
. (1)
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As a corollary of Theorem 1.1 and [CMS19], we see that special sound IOPs can be compiled to secure non-interactive
proofs in the quantum random oracle model via the BCS transformation [BCS16].

Corollary 1.6 (Special Soundness Implies FS Security in the QROM). Let Π be a 𝜇-round (𝑘1, . . . , 𝑘𝜇)-special
sound IOP. Let BCS(Π) be the non-interactive proof obtained by applying the BCS transformation to Π, and let
𝜀 = max𝑖∈[𝜇]{(𝑘𝑖 − 1)/|C𝑖 |}. Then BCS(Π) has adaptive soundness error 𝑂 (𝑡2𝜀 + 𝑡3/2𝜆) against quantum attackers
that make at most 𝑡 −𝑂 (𝑞 log ℓ) queries to the random oracle, where 𝜆 is the output length of the random oracle in bits,
𝑞 is (an upper bound on) the total number of queries made by the verifier during any execution of Π, and ℓ is the total
number of symbols sent by both the prover and verifier during any execution of Π.

The next result states that RBR knowledge implies special soundness.

Theorem 1.2 (RBR Knowledge Implies Special Soundness). Let Π = (P,V) be a 𝜇-round IOP for a relation R. Let
C𝑖 be the set of verifier challenges for round 𝑖 ∈ {1, . . . , 𝜇}. Assume Π has round-by-round knowledge with errors
𝜀1, . . . , 𝜀𝜇, and let

(𝑘1, . . . , 𝑘𝜇) = (⌈|C1 |𝜀1⌉ + 1, . . . , ⌈|C𝜇 |𝜀𝜇⌉ + 1).
Suppose

∑
𝑖∈[𝜇]

∏
𝑗∈[𝑖 ] 𝑘 𝑗 is upper bounded by a polynomial (on the lengths of inputs). Then Π is (𝑘1, . . . , 𝑘𝜇)-special

sound.

Finally, the third result shows that under a mild assumption, in general, special soundness can only imply a
non-interesting notion of RBR knowledge.

We can now state the third result of this section.

Theorem 1.3 (Special Soundness does not Imply RBR Knowledge). Assume NP ≠ P. Then for any polynomial function
𝜇( |x|), there exists a 𝜇-round IOP Π with the following properties:

• Π is (1, 𝜇. . ., 1)-special sound.

• If Π is RBR knowledge sound with errors (𝜀1, . . . , 𝜀𝜇), then 𝜀𝑖 (ℓ) = 1 for some input length ℓ and some 𝑖 ∈ [𝜇].
We proceed to prove each of the results above. Before proving Theorem 1.1 we introduce some terminology.

Definition 5.1 (Complete paths, rooted paths, and identification of paths with their label). First, we say a path in a tree
is complete if it starts at the root node and it ends in a leaf. We say a path is rooted if it start at the root node. All
complete paths are rooted.

For ease of presentation we introduce the following abuse of notation and terminology: we identify rooted paths
with their labels, which are partial transcript.4

Definition 5.2 ((𝑘𝑖 , . . . , 𝑘𝜇)-tree of Transcripts). Let Π be a 𝜇-round IOP, let (𝑘1, . . . , 𝑘𝜇) ∈ N𝜇, and let 𝑖 ∈ [𝜇]. By a
(𝑘𝑖 , . . . , 𝑘𝜇)-tree of transcripts we refer to a subtree 𝑇 ′ of a (𝑘1, . . . , 𝑘𝜇)-tree 𝑇 of transcripts such that the root node
of 𝑇 ′ is at depth 𝑖 in 𝑇 . In other words, 𝑇 ′ is a tree of depth 𝜇 − 𝑖 + 1, where for depths 1, . . . , 𝜇 − 𝑖 + 1, nodes have
𝑘𝑖 , . . . , 𝑘𝜇 children, respectively. Each complete path in 𝑇 ′ corresponds to a suffix of a complete transcript. Note that if
𝑖 = 1 then we recover the original definition of (𝑘1, . . . , 𝑘𝜇)-tree of transcripts.
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R3 R3 R3

R2

R3 R3 R3
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R3 R3 R3

R1

R2

R3 R3 R3

R2

R3 R3 R3

R2

R3 R3 R3

R1

R2

R3 R3 R3

R2

R3 R3 R3

R2

R3 R3 R3

Figure 3: (3, 3, 3)-tree of transcripts with a highlighted complete transcript.
4Technically, this is ambiguous because two distinct rooted paths could, theoretically, have the same label. However in our context there will never

be risk of confusion.
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Recall that we use PartTr(𝑖) to denote the set of 𝑖-round partial transcripts of an IOP.

Definition 5.3 (Completable Transcripts). Following the notation above, let 𝑖 = 1, . . . , 𝜇+1, and let (x, 𝜏) ∈ PartTr(𝑖−1).
We say (x, 𝜏) is completable if one of the following holds:

• 𝑖 ∈ [𝜇] and there exists a (𝑘𝑖 , . . . , 𝑘𝜇)-tree of transcripts 𝑇 ′ such that, for all complete path 𝜏′ in 𝑇 ′, the transcript
(x, 𝜏, 𝜏′) is accepted by the verifier (following our convention from Definition 5.1, here we identify the path 𝜏′

with the sequence of messages and challenges associated to each of its nodes and edges (i.e. its label)). We say
that 𝑇 ′ completes (x, 𝜏).

• 𝑖 = 𝜇 and there exists 𝑚 ∈ M𝜇+1 such that the complete transcript (x, 𝜏, 𝑚) is accepted by the verifier.
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R3 R3 R3
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Figure 4: 3-round IOP tree with a highlighted completable partial transcript. In this figure, the highlighted path through
the tree ends in the second round with node R2, and the hanging tree (with dashed red edges) at R2 represents the tree
that completes the partial transcript.

Recall that, given a IOP with RBR knowledge (𝜀1, . . . , 𝜀𝜇), by a RBR extractable transcript we refer to a partial
transcript (x, 𝜏, 𝑚) where (x, 𝜏) ∈ PartTr(𝑖 − 1) and Pr

𝑐𝑖
$←C𝑖
[(x, 𝜏, 𝑚) ∉ D] > 𝜀𝑖 .

Proof of Theorem 1.1. Assume Π is (𝑘1, . . . , 𝑘𝜇)-special sound. We define a doomed set D of partial transcripts as
the union D =

⋃𝜇

𝑖=0D𝑖 , where each D𝑖 ⊆ PartTr(𝑖), i.e. D𝑖 consists of 𝑖-round partial transcripts. These sets D𝑖 are
defined as follows.

D0 := {(x) | x ∉ LR},
D𝑖 := {(x, 𝜏) ∈ PartTr(𝑖) | (x, 𝜏) is not completable} .

We now prove that Π has RBR soundness with errors 𝜀𝑖 = (𝑘𝑖 − 1)/|C𝑖 | for all 𝑖 ∈ [𝜇]. Let Ext be the extractor from
the definition of special soundness, and fix an input x. Let 𝑖 =∈ [𝜇], and take a doomed (𝑖 − 1)-round partial transcript
(x, 𝜏) ∈ PartTr(𝑖 − 1) ∩ D = D𝑖−1. In particular, either 𝑖 = 1 and (x, 𝜏) = (x) ∈ D0, or (x, 𝜏) ∈ D𝑖 for 𝑖 ≥ 1, and
then by definition (x, 𝜏) is not completable. Given 𝑚 ∈ M𝑖 , denote

𝑃𝑖 (x, 𝜏, 𝑚) := Pr
𝑐

$←C𝑖
[(x, 𝜏, 𝑚, 𝑐) ∉ D𝑖] .

Assume 𝑃𝑖 (x, 𝜏, 𝑚) > 𝜀𝑖 . Then there are at least 𝑘𝑖 distinct challenges 𝑐1, . . . , 𝑐𝑘𝑖 such that (x, 𝜏, 𝑚, 𝑐 𝑗 ) ∉ D𝑖 for all
𝑗 ∈ [𝑘𝑖]. Thus each (x, 𝜏, 𝑚, 𝑐 𝑗 ) is completable. We claim that then also (x, 𝜏) is completable. Indeed, let 𝑇1, . . . , 𝑇𝑘𝑖
be each a (𝑘𝑖+1, . . . , 𝑘𝜇)-tree of transcripts such that each 𝑇𝑗 completes the 𝑖-round partial transcript (x, 𝜏, 𝑚, 𝑐 𝑗 ), for
all 𝑗 ∈ [𝑘𝑖]. By definition, for each complete path 𝜏𝑗 in 𝑇𝑗 , the complete transcript (x, 𝜏, 𝑚, 𝑐 𝑗 , 𝜏𝑗 ) is accepted by the
verifier. Now construct a (𝑘𝑖 , . . . , 𝑘𝜇)-tree 𝑇 of transcripts as follows: Create a a root node 𝑉𝑅 with label 𝑚, and create
𝑘𝑖 childs 𝑉𝑅1

, . . . , 𝑉𝑅𝑘𝑖
for the root node 𝑉𝑅, labeling the edges with the challenges 𝑐1, . . . , 𝑐𝑘𝑖 , respectively. Now,

attach the trees 𝑇1, . . . , 𝑇𝑘𝑖 to the child vertices 𝑉𝑅1
, . . . , 𝑉𝑅𝑘1

. The resulting tree 𝑇 is a (𝑘𝑖 , . . . , 𝑘𝜇)-tree of transcripts
with root labeled as 𝑚. Moreover, each complete path in 𝑇 has label of the form (𝑚, 𝑐 𝑗 , 𝜏

′) for some 𝑗 ∈ [𝑘𝑖]. Hence, 𝑇
completes (x, 𝜏) since (x, 𝜏, 𝑚, 𝑐 𝑗 , 𝜏

′) is a complete transcript that is accepted by the verifier, for all choices of 𝑚, 𝑐 𝑗

and 𝜏′. The claim is proved.
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As a consequence if 𝑖 ≥ 2 then 𝑃𝑖 (x, 𝜏, 𝑚) cannot be strictly larger than 𝜀𝑖 if (x, 𝜏) ∈ D𝑖−1. Now assume that 𝑖 = 1,
so that (x, 𝜏) = (x) ∈ PartTr(0) is a 0-round partial transcript, and assume (x) ∈ D0. Suppose towards contradiction
that 𝑃1 (x, 𝑚) > 𝜀1 for some 𝑚 ∈ M1. Then the tree 𝑇 with root 𝑚 that completes (x) (obtained through the argument
above) is a (𝑘1, . . . , 𝑘𝜇)-tree of accepting transcripts for x. Given x and 𝑇 as input, the “special soundness extractor”
Ext outputs a valid witness for x, contradicting the fact that D0 consists precisely of those (x) such that x ∉ LR.
Finally, notice that by definition, for any (x, 𝜏) ∈ PartTr(𝜇) with (x, 𝜏) ∈ D, and any 𝑚 ∈ M𝜇+1, we have that the
verifier rejects (x, 𝜏, 𝑚). This proves that Π is RBR sound with the claimed errors. □

Proof of Corollary 1.6. This is a direct consequence of Theorem 1.1 and of Theorem 8.6 from [CMS19]. The
former yields that any (𝑘1, . . . , 𝑘𝜇)-special sound IOP has RBR soundness (in the usual, not generalized sense)
≤ max𝑖∈[𝜇]{(𝑘𝑖 − 1)/|D𝑖 |}. The latter states that the BCS transformation of a RBR sound IOP is sound in the Quantum
Random Oracle Model, with the parameters and soundness errors from the statement of the corollaries. □

Next, we prove Theorem 1.2.

Proof of Theorem 1.2. Assume Π has RBR knowledge with errors (𝜀1, . . . , 𝜀𝜇). Let D be a corresponding doomed
set. Let (𝑘1, . . . , 𝑘𝜇) = (⌈|C1 |𝜀1 + 1⌉, . . . , ⌈|C𝜇 |𝜀𝜇 + 1⌉), fix an input x, and let 𝑇 be a (𝑘1, . . . , 𝑘𝜇)-tree of accepting
transcripts for x.

For convenience we introduce the following notation: let 𝜏 be a rooted path in 𝑇 (i.e. a path starting at the root of 𝑇)
with (x, 𝜏) ∈ PartTr(𝑖) for some 𝑖 = 0, . . . , 𝜇. Then, recall from the definition of 𝑖-round partial transcripts, 𝜏 ends
with a challenge 𝑐 from C𝑖 . As such, the path 𝜏 has a uniquely defined node right after 𝑐 in the tree 𝑇 . We denote it by
EndNode(𝜏).

We claim there is a rooted path 𝜏 in 𝑇 with the following properties:

• (x, 𝜏) ∈ PartTr(𝑖 − 1) and (x, 𝜏) ∈ D for some 𝑖 ∈ [𝜇].

• For each of the 𝑘𝑖 edges with challenges (𝑐𝑖, 𝑗 ) 𝑗∈[𝑘𝑖 ] departing from node EndNode(𝜏), we have

(x, 𝜏,EndNode(𝜏), 𝑐𝑖, 𝑗 ) ∉ D .

Observe that for such a path, the transcript (x, 𝜏,EndNode(𝜏)) is RBR extractable since the fraction of challenges
𝑐 ∈ C𝑖 such that (x, 𝜏,EndNode(𝜏), 𝑐) ∉ D is at least 𝑘𝑖/|C𝑖 | > (𝑘𝑖 − 1)/|C𝑖 | = 𝜀𝑖 . Accordingly, we also call the path
RBR extractable (as we identify paths with labels).

We now prove the theorem under the assumption that the claim above is true. To do so, we define an extractor Extspec
for the special soundness of Π in the following way: given an input x and a (𝑘1, . . . , 𝑘𝜇)-tree 𝑇 ′ of accepting transcripts
for x, the extractor Extspec enumerates all paths in 𝑇 ′ of the form (𝜏, 𝑚) where (x, 𝜏) ∈ PartTr(𝑖) and 𝑚 = EndNode(𝜏)
for some 𝑖 = 0, . . . , 𝜇. Then it successively runs the RBR knowledge extractor Extrbr on all the transcripts (x, 𝜏, 𝑚). If
Extrbr eventually outputs a witness w, then Extspec outputs w, otherwise it outputs ⊥.

Assuming the claim above is true, we know that at least one of the transcripts (x, 𝜏, 𝑚) is RBR extractable, and
so Extspec eventually outputs a valid witness. Finally, the total number of transcripts to inspect is exactly the number
of vertices in 𝑇 , which is exactly 1 +∑𝑖∈[𝜇]

∏
𝑗∈[𝑖 ] 𝑘 𝑗 . By hypothesis, this is bounded by a polynomial in |x|, and so

Extspec runs in polynomial time, as needed. We conclude that, once our previous claim is proved, the theorem will also
be proved.

For technical reasons we prove a more general claim. Intuitively, the claim says that if we are given a rooted path 𝜏

in the tree (not necessarily a complete path), then the RBR extractable rooted path we are looking for can be found “by
continuing 𝜏”. Formally, our new claim says that if 𝜏 is a rooted path in 𝑇 and (x, 𝜏) ∈ PartTr(𝑖 − 1), then there is a
RBR extractable rooted path in 𝑇 of the form (𝜏, 𝜏′, 𝑚), where (x, 𝜏, 𝜏′) ∈ PartTr( 𝑗 − 1) for some 𝑗 ≥ 𝑖 (if 𝑗 = 𝑖, then
𝜏′ = ∅), and 𝑚 = EndNode(𝜏, 𝜏′). Of course, if this claim is true, then the original one is true as well.

To prove the claim we proceed by reverse induction on 𝑖 ∈ [𝜇]. Let (x, 𝜏) be as in the induction hypotheses.
Suppose 𝑖 = 𝜇. Let 𝑐𝜇,1, . . . , 𝑐𝜇,𝑘𝜇 be all edges leaving from 𝑚 = EndNode(𝜏). Notice that, for all 𝑡 ∈ [𝑘𝜇], the

rooted path (𝜏, 𝑚, 𝑐𝜇,𝑡 ) is a 𝜇-round partial transcript, and thus (x, 𝜏, 𝑚, 𝑐𝜇,𝑡 ) ∉ D, as otherwise the verifier would reject
(x, 𝜏, 𝑚, 𝑐𝜇,𝑡 , 𝑚

′), where 𝑚′ = EndNode(𝜏, 𝑚, 𝑐𝜇,𝑡 ) ∈ M𝜇+1, contradicting that 𝑇 is a tree of accepting transcripts.
Hence (x, 𝜏, 𝑚, 𝑐𝜇,𝑡 ) ∉ D for all 𝑡 ∈ [𝑘𝜇].
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Now fix 𝑖 ∈ [𝜇 − 1] and assume the claim is true for all 𝑗 with 𝑖 < 𝑗 ≤ 𝜇. Let 𝑚 = EndNode(𝜏) ∈ M𝑖 and
𝑐𝑖,1, . . . , 𝑐𝑖,𝑘𝑖 ’s be as before. If (x, 𝜏, 𝑚, 𝑐𝑖,𝑡 ) ∉ D for all 𝑡 ∈ [𝑘𝑖], then we are done. Otherwise, there exists 𝑡0 such
that (x, 𝜏, 𝑚, 𝑐𝑖,𝑡0 ) ∈ D. Let 𝑚′ = EndNode(x, 𝜏, 𝑚, 𝑐𝑖,𝑡0 ) ∈ M𝑖+1. Then (x, 𝜏, 𝑚, 𝑐𝑖,𝑡0 , 𝑚

′) is of the form (x, 𝜏′, 𝑚′)
where (x, 𝜏′) ∈ PartTr(𝑖 + 1) and (x, 𝜏′) ∈ D. Now we can apply our induction hypothesis on (x, 𝜏′). The claim then
follows immediately. This completes the proof of the theorem. □

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. Let R be a relation such thatLR is a language in NP but not in P. Let 𝜇 = 𝜇( |x|) be a polynomial
function on the length of inputs. We define a 𝜇-round IOP Π for R as follows. Let (x,w) ∈ R. The first 𝜇 messages
sent by the honest P to the verifier V are all the single bit message 0. The last message sent by P is the witness w. As
for the verifier, as in all public-coin IOPs, all challenges sent by V are uniformly sampled random strings. At the end
of the protocol, V checks whether (x,w) ∈ R, and accepts only if this is the case and all of the messages sent by the
prover are the single bit 0.

This IOP Π is sound with soundness error 0. Moreover, Π is (1, 𝜇. . ., 1)-special sound, since any (1, 𝜇. . ., 1)-tree of
accepting transcripts for an input x has a valid witnessw for x in its one leaf. Observe also that Π is perfectly complete,
i.e. an honest prover convinces the verifier with probability 1.

Now assume Π has RBR knowledge with errors (𝜀1, . . . , 𝜀𝜇). Let D be the corresponding doomed set of partial
transcripts, and let Ext be the corresponding extractor. We argue that for some input length ℓ and some 𝑖 ∈ [𝜇] we have
𝜀𝑖 (ℓ) = 1. Indeed, assume towards contradiction that this is not the case. We will describe a deterministic polynomial
time algorithm that, given any x ∈ LR, outputs a valid witness w for x.

To this end, fix first (x,w) ∈ R. By our previous assumption, we have 𝜀𝑖 ( |x|) < 1 for all 𝑖. Let 𝑖 ∈ [𝜇], let (x, 𝜏)
be a (𝑖 − 1)-round partial transcript with (x, 𝜏) ∈ D, and let 𝑚 ∈ M𝑖 . Define

𝜌(x, 𝜏, 𝑚) := Pr
𝑐∈C𝑖
[(x, 𝜏, 𝑚, 𝑐) ∉ D]

Let (x, 𝜏′) be a 𝜇-round partial transcript generated from the interaction of the honest prover and the verifier, so that
(x, 𝜏′) = (x, 0, 𝑐1, 0, 𝑐2, . . . , 0, 𝑐𝜇) for some challenges 𝑐𝑖 . Observe that (x, 𝜏′,w) is a complete transcript that is
accepted by the verifier. Hence, by definition of RBR knowledge, (x, 𝜏′) ∉ D. Let 𝜌𝑖−1 := 𝜌(x, 0, 𝑐1, . . . , 0, 𝑐𝑖−1, 0).
We claim that 𝜌𝑖−1 = 1 for some 𝑖 ∈ [𝜇]. Indeed, if this was not the case, Π would not be perfectly complete, since,
given (x,w) the honest prover would only convince the verifier with probability at most 1 −∏𝑖∈[𝜇] (1 − 𝜌𝑖−1) (i.e. the
probability that, for some 𝑖, a doomed partial transcript (x, 0, 𝑐1, . . . , 0, 𝑐𝑖−1, 0) escapes the doomed set after receiving
a challenge 𝑐𝑖), but this latter probability is strictly less than 1 unless 𝜌𝑖−1 = 1 for some 𝑖 ∈ [𝜇]. This proves our claim.

Now, let 𝑖 ∈ [𝜇] be such that 𝜌𝑖−1 = 1. Then, since 𝜌𝑖−1 > 𝜀𝑖 ( |x|), given (x, 0, 𝑐1, . . . , 𝑐𝑖−1, 0) the extractor Ext
outputs a valid witnessw′ for x in polynomial time. Notice that, conversely, if x ∉ LR, then given any partial transcript
of the form (x, 0, 𝑐1, . . . , 𝑐𝑖−1, 0), Ext outputs ⊥ in polynomial time.

This suggests the following polynomial algorithm Ext′ for the language LR. Given an arbitrary input x, generate 𝜇

partial transcripts of the form (x, 0, 𝑐1, . . . , 0, 𝑐𝑖−1, 0), for 𝑖 ∈ [𝜇]. Here the 𝑐𝑖 are strings generated in an arbitrary
deterministic manner. Give each of these as input to Ext. If, for some of these, Ext outputs a valid witness w′ for x,
then Ext′ outputs w′. Otherwise Ext′ outputs ⊥.

The algorithm Ext′ is a deterministic algorithm. Moreover, it runs in polynomial time because 1) 𝜇( |x|) is
polynomial and 2) Ext runs in polynomial time. This contradicts the fact that LR is in NP but not in P. Thus, our initial
assumption that 𝜀𝑖 ( |x|) < 1 for all x and all 𝑖 ∈ [𝜇] cannot hold. □

6 Special Unsoundness as the Dual of Round-by-round Soundness
In this section we discuss relations between the soundness, the RBR soundness, and the special unsoundness of an IOP
Π. We will see that RBR soundness and special unsoundness are “dual” concepts of each other, and that the former
upper bounds the soundness of Π, while the latter lower bounds it, and moreover allows an attack to Π whose success
probability is this lower bound. We will also see that when the RBR soundness and the special unsoundness errors are
the same, then these errors are tight and their combination equals the soundness of Π.
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We begin by formulating a variation of the definition of special unsoundness (cf., Definition 3.7). The main
differences are that, instead of having sets of “lucky challenges”, we have sets of “lucky partial transcripts”. The
motivation behind this alternative formulation is that it highlights why special unsoundness acts as the dual notion of
RBR soundness.

Definition 6.1 (Special Unsoundness [AFK22] – alternative formulation). Let Π be a 𝜇-round IOP for a relation R. We
say Π is special unsound with errors (𝜀1, . . . , 𝜀𝜇) if there exist a set L of “lucky” partial transcripts, and an unbounded
prover algorithm P∗ such that, for all x, the following hold.

• For all x ∉ LR we have that the 0-round partial transcript (x) does not belong to L.

• Let (x, 𝜏) ∈ PartTr(𝜇) be a 𝜇-round partial transcript. Assume (x, 𝜏) ∈ L. Then V(x, 𝜏, 𝑚) = accept for any
last prover’s message 𝑚 ∈ M𝜇+1.
Moreover, for all 𝑖 ∈ [𝜇 − 1] and (x, 𝜏) ∈ L ∩ PartTr(𝑖 − 1), P∗ is able to compute 𝑚 ∈ M𝑖 such that
(x, 𝜏, 𝑚, 𝑐) ∈ L for all 𝑐 ∈ C𝑖 .
In words, given a (𝑖 − 1)-round partial transcript that is “lucky”, P∗ is able to choose a message fromM𝑖 so that
the subsequent 𝑖-round partial transcript is lucky, no matter what challenge the verifier sends.
Consequently (by induction), in this case the prover is then able to find a lucky complete transcript, making the
verifier accept.

• Let 𝑖 ∈ [𝜇] and let (x, 𝜏) ∈ PartTr(𝑖 − 1) be a (𝑖 − 1)-round partial transcript produced during the interaction of
the prover and the verifier , and let 𝑚 ← P∗ (x, 𝜏). Then it holds that

Pr
𝑐

$←C𝑖
[(x, 𝜏, 𝑚, 𝑐) ∈ L] ≥ 𝜀𝑖 .

Remark 6.2 (Special Unsoundness as the Dual Notion of RBR Soundness). Definition 6.1 can be understood as the dual
of RBR soundness in the sense that the sets L,D of lucky and doomed transcripts from the respective definition have
opposite properties:

• An input x ∉ L does not belong to L, while it belongs to D.

• The verifier rejects any doomed complete transcript, while it accepts any complete lucky transcript.
On the other hand, given a non-lucky partial transcript, if after some subsequent round the partial transcript is
lucky, the verifier will eventually accept.

• For all round 𝑖 ∈ [𝜇 − 1], and for all prover, the probability that a (𝑖 − 1)-round doomed partial transcripts stops
being doomed at Round 𝑖 is at most 𝜀𝑖 . On the other hand, there exists a prover that for all non-lucky (𝑖 − 1)-round
partial transcript, the probability that the transcript becomes lucky in the next round is at least 𝜀′

𝑖
.

Remark 6.3 (Equivalence between Definition 3.7 and Definition 6.1). Definitions 3.7 and 6.1 are indeed equivalent: the
set of “lucky” challenges from Definition 3.7 depend on the partial transcript so far, hence one may as well define a
set of “lucky” partial transcripts instead, as we did in Definition 6.1. Moreover, the active and passive modes of the
adversary P∗ from Definition 3.7 can be seen as analogues of P∗ having or not produced a lucky partial transcript. If it
has (passive mode), then P∗ operates in a way that all subsequent transcripts are lucky, and so, following this analogy,
P∗ stays in passive mode until the end of the proof. As required, at the end of the proof, if the complete transcript is
lucky (analogously, if P∗ is in passive mode), the verifier accepts.

The next result relates the notions of soundness, RBR soundness, and special unsoundness of an IOP. The key
observation is that the concepts of special unsoundness and round-by-round soundness are dual of each other. As
a result, and intuitively speaking, we have that the special unsoundness “error” lower bounds the soundness of the
protocol, while the round-by-round soundness “error” upper bounds it.

Theorem 1.4 (Relation Between Soundness, Round-by-round Soundness, and Special Unsoundness). Let Π be a
𝜇-round IOP for a relation R. Assume Π has soundness error 𝜀. Then the following hold:

19



• RBR soundness is an upper bound for soundness. If Π is round-by-round sound with errors 𝜀1, . . . , 𝜀𝜇, then

𝜀 ≤ 1 −
∏
𝑖∈[𝜇]

(1 − 𝜀𝑖)

for all x ∉ LR.

• Special unsoundness is a lower bound for soundness. If Π is special unsound with errors 𝜀′1, . . . , 𝜀
′
𝜇, then

1 −
∏
𝑖∈[𝜇]

(
1 − 𝜀′𝑖

)
≤ 𝜀

for all x ∉ LR. Moreover, there exists a dishonest unbounded prover P∗ that, given any input x, manages to make
the verifier accept with probability at least 1 −∏𝑖∈[𝜇]

(
1 − 𝜀′

𝑖

)
.

• Tightness of RBR soundness, soundness, and special unsoundness. Suppose Π is round-by-round sound with
errors 𝜀1, . . . , 𝜀𝜇 and that Π is special unsound with the same errors 𝜀1, . . . , 𝜀𝜇. Then

𝜀 =1 −
∏
𝑖∈[𝜇]

(1 − 𝜀𝑖) .

Moreover, the error is tight in the sense that there exists a dishonest prover P∗ that, given any input x, manages to
have the verifier accept with probability at least 𝜀.

Remark 6.4. The quantity 𝜌 := 1 −∏𝑖∈[𝜇] (1 − 𝑥𝑖) is, for small 𝑥𝑖’s, approximately
∑

𝑖∈[𝜇] 𝑥𝑖 , as this is the first-order
term in the Taylor approximation of 𝜌 around the point (0, . . . , 0).

Proof. We begin by proving Item 1 of the theorem. Assume x ∉ LR and let P∗ be any unbounded dishonest prover. Let
(x, 𝜏) ∈ PartTr(𝜇) be a 𝜇-round partial transcript produced during the interaction of P∗ and V, and let 𝑚 ∈ M𝜇, so that
(x, 𝜏, 𝑚) is a complete transcript. Let 𝜌 := = 1 − Π𝑖∈[𝜇] (1 − 𝜀𝑖).

Let 𝑃 := Pr←⟨P∗ ,V⟩ [V(x, 𝜏) = accept]. 𝑃 ≤ 𝜌 (for all input length ℓ and all x, 𝜏, with |x| = ℓ).
In order to have V(x, 𝜏, 𝑚) = accept, it is necessary (but not sufficient) that (x, 𝜏) ∉ D𝜇. Hence

Pr
(𝜏,𝑚)←⟨P∗ ,V⟩ (x)

[V(x, 𝜏) = accept] ≤ Pr
(𝜏,𝑚)←⟨P∗ ,V⟩ (x)

[(x, 𝜏) ∉ D𝜇] .

Let 𝐸𝑖 be the event that the prefix of (x, 𝜏) that is a 𝑖-round partial transcript, is not in a doomed set. Assume
for now that P∗ has the capacity to, if 𝐸𝑖 has happened, make 𝐸𝑖+1, . . . , 𝐸𝜇 occur with probability 1. Then
Pr(𝜏,𝑚)←⟨P∗ ,V⟩ (x) [(x, 𝜏) ∉ D𝜇] is the probability that, among 𝜇 trials (each trial corresponding to “leaving the doomed
set” at one of the 𝜇 rounds of interaction), each with success probability at most 𝜀𝑖 (𝑖 ∈ [𝜇]), respectively, one of them
succeeds. This is because once Π∗ manages to produce a partial transcript that is not in D, it is able to operate (by our
assumption), in a way that the subsequent partial transcripts never belong toD again. The aforementioned probability is
precisely 𝜌 = 1 − Π𝑖∈[𝜇] (1 − 𝜀𝑖). Hence

Pr
(𝜏,𝑚)←⟨P∗ ,V⟩ (x)

[(x, 𝜏) ∉ D𝜇] ≤ 𝜌. (3)

Now consider any other attacker P∗′ that, once it has obtained a partial transcript that does not belong to D, it
operates in a way that makes it possible for a further partial transcript to ends back up in D. This attacker always
produces a non-doomed complete transcript with at most the probability that the previous attacker P∗ does. This is
because once a previously doomed partial transcript has been extended so that it is not in a doomed set, P∗ ends with a
non-doomed complete transcript with probability 1, while the probability of P∗′ may be smaller. This completes the
proof of Item 1.

Next we prove Item 2. Fix an input x ∉ LRi
. Let P∗ be the dishonest prover from Definition 6.1. As before,

let (x, 𝜏) ∈ PartTr(𝜇) be a 𝜇-round transcript produced during the interaction of the prover and the verifier, and let
𝑚 ∈ M𝜇.
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In order to have V(x, 𝜏, 𝑚) = accept, it is sufficient (but not necessary) that there exist a prefix (x, 𝜏𝑖) of (x, 𝜏) that
is a 𝑖-round partial transcript and belongs to the lucky set L. Let 𝐸 be the event that such a prefix exists. Similarly as in
Item 1, the probability of 𝐸 occurring is at least 𝜌′ := 1 −∏𝑖∈[𝜇] (1 − 𝜀′𝑖). i.e. the probability that after 𝜇 trials, each
with success probability 𝜀′

𝑖
, at least one trial was successful. Hence

Pr
(𝜏,𝑚)←⟨P∗ ,V⟩ (x)

[V(x, 𝜏, 𝑚) = accept] ≥ 𝜌′, (4)

proving Item 2.
Item 3 follows from Items 1 and 2, since under its hypotheses we have that any malicious prover convinces the

verifier with probability at most 1−∏𝑖∈[𝜇] (1− 𝜀𝑖), and that there exists a prover that convinces the verifier with at least
this probability. □

Remark 6.5. In [CCH+18], the authors prove that, given a 𝜇-round interactive proof/argument Π with soundness 𝜀sound
and round-by-round soundness 𝜀rbr (in the non-generalized sense of RBR soundness), one has 𝜀sound ≤ 𝜇𝜀rbr. The
previous Theorem 1.4 yields a slight improvement in this formula, giving 𝜀sound ≤ 1 − (1 − 𝜀rbr)𝜇. We remark however
that we expect this improvement to be known already (at least in folklore), and that when the errors are small, the
improvement is negligible (cf., Remark 6.4).
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