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ABSTRACT

In permissioned digital currencies such as Central Bank Digital
Currencies (CBDCs), data disclosure is essential for gathering ag-
gregated statistics about the transactions and activities of the users.
These statistics are later used to set regulations.

Differential privacy techniques have been proposed to preserve
individuals’ privacy while still making aggregative statistical anal-
ysis possible. Recently, privacy-preserving payment systems fit for
CBDCs have been proposed. While preserving the privacy of the
sender and recipient, they also prevent any insightful learning from
their data. Thus, they are ill-qualified to be incorporated with a
system that mandates publishing statistical data.

We show that differential privacy and privacy-preserving pay-
ments can coexist even if one of the participating parties (i.e., the
user or the data analyst) is malicious. We propose a modular scheme
that incorporates verifiable local differential privacy techniques into
a privacy-preserving payment system. Thus, although the noise is
added directly by the user (i.e., the data subject), we prevent her
from manipulating her response and enforce the integrity of the
noise generation via a novel protocol.
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1 INTRODUCTION

Thousands of digital currencies, better known as cryptocurren-
cies, have emerged over the last decade. Bitcoin is the first digital
currency to achieve widespread adoption [24]. These currencies
are based on an immutable and distributed ledger known as the
blockchain. Recently, central banks worldwide have been show-
ing a growing interest in issuing central bank digital currencies
(CBDC) [27]. CBDCs are a digital form of a country’s fiat money
that would be widely available to the general public. CBDCs are
designed to be similar to cryptocurrencies.

Most cryptocurrencies are designed for unregulated permission-
less (i.e., public) blockchains and allow the public to participate
without a specific identity. However, financial institutions favor
permissioned platforms as they require identity management, au-
ditability, and non-deniability to uphold regulations set by the
government’s monetary policies.

The main objectives of a central bank are to maintain currency
stability, support monetary policies set by the government, and
support the financial system’s stability. Central banks collect and
analyze all the data and information they need to achieve their
objectives and fulfill their duties. The information collected by
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the central bank includes, among other things, sensitive personal
information (e.g., gender, age, and employment status) and infor-
mation about transactions (e.g., transaction type, monetary value,
and participating parties). To increase transparency and economic
efficiency and promote economic research, central banks make their
statistics and supporting data available to the general public and
market participants. Since the central bank is an official institution
of a country, it can collect data in its raw format without privacy
restrictions. To maintain confidentiality and information security
before publishing the data, they anonymize it using different tech-
niques such as Differential Privacy (DP).

Recently, privacy-preserving payment systems fit for CBDCs
have been proposed [3]. Such systems produce transactions that
are indistinguishable from random, and as a result, nothing can be
learned from observing them. Hence, a privacy-preserving payment
system prevents any insight gathering or learning from the data.
Therefore, using such systems hinders the ability of central banks
to collect the data they need. To mitigate the data collection prob-
lem, central banks would need access to the original transaction
information, or they would need to rely on user cooperation while
collecting the necessary data. As users are inclined to keep their
attributes and transactions private, central banks cannot fully rely
on their honest cooperation. Dishonest users can affect the integrity
of the data collected, for example, by manipulating their responses
or adding noise to their data in a biased method [10, 13].

We note that privacy-preserving data disclosure in not required
only in the case of CBDCs, but in all token systems that require built-
in governance and regulations such as enterprise networks [26].

To bridge the gap between preserving user privacy and uphold-
ing data integrity, we propose the Verifiable Differentially Private
(VDP) transaction scheme. This scheme incorporates verifiable local
differential privacy (LDP) based on zero-knowledge proofs into a
privacy-preserving payment system. By incorporating LDP tech-
niques, institutions (such as central banks) that need aggregated
statistics about their users can require those users to disclose their
private data while preserving user privacy and allowing plausible
deniability for the users. By adding zero-knowledge proofs to the
LDP protocol, those institutions can verify the integrity of the data
disclosed.

LDP mechanisms are usually based on a user sampling some
randomness and then using it for noise generation. This random-
ness must be kept secret from anyone but the user to ensure the
user’s privacy. At the same time, to ensure the integrity of the data,
the mechanism should force the user to generate and apply the
randomness in a non-biased manner. Therefore, to achieve these re-
quirements, even if one of the main participants (i.e., the user or the
analyst) is malicious, an LDPmechanismmust uphold the following



properties: (i) Neither the user nor the analyst can bias the genera-
tion of the noise; (ii) The user can prove in a privacy-preserving
manner that the noise is non-biased; (iii) Once the randomness
for a specific input is computed, the user cannot compute new
randomness or add a different amount of noise. We present the
VerRR algorithm as a simple, verifiable LDP mechanism based on
randomized response [17] that upholds the properties mentioned
above. The VerRR algorithm makes one binary attribute of a user
(e.g., gender, account type) differentially private.

An essential aspect of our VDP transaction scheme is its mod-
ularity; Each component can be changed or adjusted as needed,
and the scheme is not tied to any specific embodiment of any of its
components. Our main contributions are:
• The BindRandomness protocol. This protocol is designed to
agree on a non-biased randomness to be used in a probabilis-
tic algorithm while the randomness is verifiable but at the
same time privacy-preserving.
• The VDPtransfer scheme, which incorporates the VerRR al-
gorithm. This scheme provides any graph-hiding privacy-
preserving payment system with the ability to disclose the
private attributes of its users by applying a verifiable LDP
technique without harming their privacy.

The remainder of the paper is structured as follows. In Section 2,
we provide the relevant background on blockchain-based privacy-
preserving payment systems and verifiable differential privacy. In
Section 3, we introduce some preliminary concepts. We present
a high-level overview of our scheme in Section 4, and dive into
the scheme’s full details in Section 5. In Section 6, we evaluate the
performance of our scheme. We discuss design choices in Section 7
and summarize our contribution in Section 8.

2 BACKGROUND

This section gives a layout of the existing state-of-the-art on ver-
ifiable differential privacy and briefly summarizes how privacy-
preserving payment systems operate in blockchains.

2.1 Blockchain-Based Privacy-Preserving

Payment Systems

When modeling tokens or coins, there are two main approaches: (i)
The account model; (ii) The Unspent Transaction Output (UTXO)
model. Each model has its benefits. The account model is more user-
friendly as it presents an abstraction of accounts and balances, and
it is the model used in Ethereum [32]. The UTXO model is used in
Bitcoin [24] and zcash [6] and presents an abstraction of a plurality
of coins. Each coin has a balance and can be spent by fulfilling a
condition encoded in it (in most cases, presenting a signature that
is verifiable under a public key that its hash is encoded in the coin).
The advantage of the UTXO model over the account model is that
it is more concurrent when used in a privacy-preserving setting.
While it is considered an open problem how to "hide" the sender
among all possible senders in an account model [20], "hiding" the
sender in the UTXOmodel is easy. Therefore, in this work, we focus
on the UTXO model.

We describe the basics behind a privacy-preserving payment
system in the UTXO model. In this model, when a sender transfers
funds to a recipient, to prevent leakage of sensitive information that

may identify the parties in the payment, three things need to be
hidden from prying eyes: (i) the sender’s identity, (ii) the recipient’s
identity, and (iii) the amount transferred. Hiding the transferred
amount is usually done by encoding the amount in a cryptographic
commitment and providing a zero-knowledge proof that the sum
of input coins is greater or equal to the sum of the output coins.
Hiding the recipient is done by creating outputs that either have
one-time public keys [30] or by hiding the output token’s identity
by having the coin itself be a commitment [6] to its properties (e.g.,
owner, amount). We are left with hiding the sender; this is where
the various techniques vary the most. In Monero [30], the source
address is hidden among a randomly picked set of potential source
addresses via a ring signature. In Zcash [6], all coins are leaves
in a Merkle tree maintained by the network participants, and by
attaching a zero-knowledge proof of membership in the Merkle
tree of the spent token, it is guaranteed that the coin exists even
though it is impossible to knowwhich exact coin was spent. In order
to ensure the coin cannot be spent more than once, Zcash forces
the transaction to include a deterministic tag (termed ’nullifier’
or ’serial number’) that uniquely identifies the coin yet prevents
identifying the coin by the serial number. This is done by including
some randomness in the input to the commitment that forms the
coin, and defining the serial number as an application of a one-way
function on that randomness.

In our work, we focus on payment systems that adopt the ap-
proach of Zcash [6] for hiding the sender, recipient, and amount.
We mention the work of [4], which suggests a scheme similar to
Zcash but more fit for CBDC and permissioned settings, and re-
places the Merkle tree membership proof with proof of knowledge
of a signature of an entity that certifies the coin. Throughout the
paper, we use Zcash terminology. Nevertheless, we note that our
scheme is flexible enough to be used with any privacy-preserving
payment system that encodes the entire token as a commitment
and uses serial numbers as in [4, 6].

2.2 Differential Privacy

Differential privacy (DP) [15, 16] is a formal notion of privacy
designed to allow learning useful information about a population
while learning nothing about an individual. DP guarantees that
the presence or absence of any specific individual in a dataset does
not affect the query output results of that database. To achieve this
privacy requirement, DP models introduce randomness to the data.

There are two main models of DP: the centralized model and
the local model. In the centralized model, sensitive data is collected
centrally in a single dataset, and a trusted data curator has access
to the raw data. Each user sends her data to the curator without
noise in this model. Since we assume that analysts requesting access
to this dataset are malicious, the curator is in charge of correctly
executing the differentially private mechanisms the analysts specify.

Definition 1 (𝜖−differentially privacy [15]). A randomized
algorithm K is 𝜖−differentially private if for all data sets 𝐷1 and 𝐷2
differing on at most one element, and all 𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒 (K),

𝑃 [K(𝐷1) ∈ 𝑆] ≤ 𝑒𝜖𝑃 [K(𝐷2) ∈ 𝑅]

The probability is taken over the coin tosses of K .
2



The local model is based on the randomized response mechanism
as was first proposed by Warner in 1965 [31]. It was formalized
in the context of learning by Kasiviswanathan et al. [21]. In this
model, the data curator and the analyst are often the same, and
no trusted third party exists that holds the data and executes the
mechanism. Therefore, the user makes data differentially private
before sending it to the curator. Making the data differentially
private before disclosing it ensures that even if an adversary gains
access to the personal responses of individuals in the database, it
will not be able to learn much about the individual’s data.

Definition 2 (Local randomizer [17]). An 𝜖−local randomized
𝑅 : X → 𝑊 is an 𝜖−differentially private algorithm that takes as
input a database of size 𝑛 = 1.

We focus on incorporating local model techniques into our
scheme since our work is based on a privacy-preserving payment
system in which we assume that any of the parties (i.e., the users
or the analyst) but not both may be dishonest. Therefore, an honest
user cannot trust the analyst to properly blind her data without
leaking it.

2.3 Verifiable Differential Privacy

When applying DP techniques to preserve privacy, the standard
approach assumes that the noise is produced and applied in an
honest manner. However, recent works such as [11, 12] have shown
that this assumption is naive and that DP is indeed vulnerable to
differentmanipulation attacks affecting the integrity of the analyzed
data.

Several works have proposed different techniques to prevent
different types of manipulation attacks. The main objective of all
these works is to apply the noise and generate it in a verifiable
manner. In the centralized DP model, works such as [7, 25, 29] have
focused on a family of use cases in which the data subjects send
their data either in a clear or in an encrypted or secret-shared form
to a party or a set of parties that jointly form an entity called a
"curator". The latter applies noise and outputs an anonymized and
privacy-preserving data set for post-processing. While in the LDP
model, works such as [2, 22] have focused on adjusting known LDP
mechanisms by making them verifiable, thus giving the analyst the
ability to verify the process in which data subjects add the noise.

We outline the different approaches for verifiable differential
privacy employed by various works and highlight the differences
from our technique.

2.3.1 Secure Multi-Party Computation (sMPC). When using sMPC,
a data subject secretly shares its vote and distributes the shares
across several servers. In [7], if at least one of the servers collecting
the data is honest, the resulting computation is either correct or
detected to be incorrect. Unfortunately, such a single-client-multi-
server model does not fit the use case of our work, as we assume
the analyst, who is also the curator, can potentially be malicious
and is not split into independent parties.

2.3.2 Zero-Knowledge proofs. In [25], the curator assembles a data-
base out of the data elements belonging to different data subjects,
and then publishes a cryptographic commitment to the entire data-
base. Upon reception of a query from an entity interested in some

statistical property, the curator runs the differential privacy func-
tion and additionally produces1 a NIZK (Non-Interactive Zero-
Knowledge proof) that the result corresponds with the aforemen-
tioned commitment, and sends both the result and the proof back
to the requesting entity. The latter verifies the NIZK against the
commitment and determines if the differential privacy mechanism
was computed correctly.

The most notable downside of the naive zero-knowledge ap-
proach employed by previous works is that it is assumed that the
noise was sampled correctly and without bias. However, if the party
that produces the NIZK is malicious, it may use far from random
noise and thus either harm the privacy of the data subjects or skew
the results towards a value it favors. In contrast, in our technique,
we ensure that some of the randomness is sampled by the data
subject itself (unlike the work of [29] where the curator randomly
samples the randomness), thus producing noise that is non-biased
but also verifiable.

2.3.3 Adjusting known LDP Mechanisms. In [22], Kato et al. lever-
age cryptographic randomized response techniques [2] to make
existing LDP mechanisms verifiable. The most significant disadvan-
tage of their proposed method is that it is interactive. In contrast,
our proposed scheme is non-interactive. Interactive methods tend
to be more expensive and slower than non-interactive methods as
they require multiple round trips and direct communication with
the analyst. In addition, unlike non-interactive methods, interactive
methods do not allow throttling. Therefore, in a peak of usage in
the network, while non-interactive systems will form a queue that
will eventually be cleared without the users knowing about the
queue, interactive systems may freeze and force the users to wait
an unknown period of time.

In [23], Garrido et al. follow an approach based on zero-knowledge
Succinct Non-interactive ARgument of Knowledge (zk-SNARKs) to
adapt the implementation of select LDP mechanisms to a verifiable
computation technique to prove the correctness of a differentially
private query output. Although their approach is similar to the
approach we propose in this paper, their technique does not uphold
the unlinkability and untraceability properties needed in a privacy-
preserving payment system. These properties are not upheld since
the prover (i.e., the data subject) signs the randomness used as the
base of the LDP mechanism with its private key, and the verifier
(i.e., the analyst) needs to know the prover’s public key to verify
the integrity of the response. By knowing the prover’s public key,
the analyst can later make a connection between the generated ran-
domness and the transfer it was used in, thus revealing the identity
of the user making the transfer.

3 PRELIMINARIES

We recall key cryptographic and privacy building blocks.

3.1 Randomized Response

Dwork and Roth presented in [17] a variant of the randomized
response mechanism, in which a user answers a “Yes” or “No”
question as follows:

1For simplicity of presentation, we state that the curator produces the NIZK, but in
the cited paper it is delegated to a different party which is an analyst.
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(1) Flip a coin.
(2) If tails, then respond truthfully.
(3) If heads, then flip a second coin and respond "Yes" if heads

and "No" if tails.

The randomization in this algorithm comes from flipping two
coins and creates uncertainty about the true answer. This uncer-
tainty is the source of privacy, as it gives plausible deniability to
the data subject.

We prove that the randomized response algorithm described
above satisfies ln 3−differentially privacy.

Proof. Fix a response. A case analysis shows that

𝑃𝑟 [𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑌𝑒𝑠 |𝑇𝑟𝑢𝑡ℎ = 𝑌𝑒𝑠] = 0.75

Specifically, when the truth is "Yes" the outcome will be "yes" if the
first coin comes up tails (probability 0.5), or if the first and second
coins comes up heads (probability 0.5). Similarly,

𝑃𝑟 [𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑌𝑒𝑠 |𝑇𝑟𝑢𝑡ℎ = 𝑁𝑜] = 0.25

This occurs when the first and second coins come up heads (prob-
ability 0.25). Similar reasoning can be applied to the case of the
response being "No". Therefore, we obtain:

𝑃𝑟 [𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑌𝑒𝑠 |𝑇𝑟𝑢𝑡ℎ = 𝑌𝑒𝑠]
𝑃𝑟 [𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑌𝑒𝑠 |𝑇𝑟𝑢𝑡ℎ = 𝑁𝑜] =

0.75
0.25

=

𝑃𝑟 [𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑁𝑜 |𝑇𝑟𝑢𝑡ℎ = 𝑁𝑜]
𝑃𝑟 [𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = 𝑁𝑜 |𝑇𝑟𝑢𝑡ℎ = 𝑌𝑒𝑠] = 3

□

We note that when using the randomized response technique,
the number of "Yesses" and "Noes" depends on the result of tossing
the coin once or twice. Therefore, if an analyst wants to estimate the
true number of "Yesses", it would need to analyze the randomness
in the randomized response algorithm and estimate how many of
the "Yesses" are truthful responses and how many are “fake”, and
are a result of the random coin flips.

3.2 Basic Cryptographic Building Blocks

In this section, we outline self-contained building blocks that we
use in our scheme. As zero-knowledge proofs play a central part in
our scheme, we elaborate on them in the following section. We use
𝜆 to denote a system-wide security parameter.

3.2.1 Commitment Schemes. A commitment scheme is a protocol
between a sender and a receiver defined by three probabilistic
polynomial time algorithms: ⟨𝑆𝑒𝑡𝑢𝑝,𝐶𝑜𝑚𝑚𝑖𝑡,𝑂𝑝𝑒𝑛⟩. The sender
and receiver each invoke the 𝑆𝑒𝑡𝑢𝑝 operation with the desired
security parameter and then get back public parameters to be used
for 𝐶𝑜𝑚𝑚𝑖𝑡 and 𝑂𝑝𝑒𝑛. The sender uses the 𝐶𝑜𝑚𝑚𝑖𝑡 operation to
encode a message𝑚 and get back a commitment to𝑚. The sender
then sends the commitment to the receiver. At a later stage, the
sender may convince the receiver that the commitment encodes the
message𝑚 by interacting with the receiver via the𝑂𝑝𝑒𝑛 operation.
In order for the commitment scheme to be useful, it needs to satisfy
two security properties:

• Hiding: For any probabilistic polynomial time adversary
A there exists a negligible2 function 𝜖 such that for ev-
ery two messages𝑚0,𝑚1 chosen by A and a commitment
𝑐𝑚 ← 𝐶𝑜𝑚𝑚𝑖𝑡 (𝑚𝑏 ) for 𝑏 ∈ {0, 1} it holds that:

𝑃𝑟 [𝑏 ← A (𝑝𝑝, 𝑐𝑚)] − 1
2
≤ 𝜖 (𝜆) .

• Binding: For any probabilistic polynomial adversary A
there exists a negligible function 𝜖 such that for every 𝑚

and 𝑐𝑚𝑡 ← 𝐶𝑜𝑚𝑚𝑖𝑡 (𝑚) and every𝑚′ ≠𝑚 chosen by A:

𝑃𝑟
[
𝑂𝑝𝑒𝑛 (𝑝𝑝, 𝑐𝑚𝑡,𝑚) =𝑚′

]
≤ 𝜖 (𝜆) .

A commitment can either be information-theoretic binding or
hiding, and it can be computationally binding or hiding (but cannot
be both information-theoretic binding and hiding). In our scheme,
the commitment does not need to be homomorphically additive or
have any special property, and as such, it is completely pluggable.

3.2.2 Digital Signatures. A digital signature scheme is a triple
⟨𝐺𝑒𝑛, 𝑆𝑖𝑔𝑛,𝑉𝑒𝑟𝑖 𝑓 𝑦⟩ of probabilistic polynomial time algorithms.
𝐺𝑒𝑛(1𝜆) outputs (𝑠𝑘, 𝑝𝑘) a private key and a public key respec-
tively. For a message𝑚, 𝑆𝑖𝑔𝑛 (𝑚, 𝑠𝑘) outputs a signature 𝜎 . For a
message𝑚, a public key 𝑝𝑘 and a signature 𝜎 ,𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑝𝑘,𝑚, 𝜎) ac-
cepts or rejects. The security property we require from a signature
scheme is:

• Unforgability: For every probabilistic polynomial time ad-
versaryA with access to a signing oracle O which replies to
queries denoted by a set 𝑄 there exists a negligible function
𝜖 such that

𝑃𝑟 [𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑝𝑘,𝑚, 𝜎) = 1 ∧𝑚 ∉ 𝑄] ≤ 𝜖 (𝜆) .

As in the case of the commitment scheme, the signature scheme
employed by our protocol can vary, and its choice is insignificant.

3.2.3 Public Key Encryption. An encryption scheme is a triple
⟨𝐺𝑒𝑛, 𝐸𝑛𝑐, 𝐷𝑒𝑐⟩ of probabilistic polynomial time algorithms.𝐺𝑒𝑛(1𝜆)
outputs (𝑠𝑘, 𝑝𝑘) a private key and a public key respectively. For a
message𝑚, 𝐸𝑛𝑐 (𝑚, 𝑝𝑘) outputs a ciphertext 𝑐 . Given a ciphertext
𝑐 and a private key 𝑠𝑘 , 𝐷𝑒𝑐 (𝑐, 𝑠𝑘) outputs a message𝑚. For every
public key 𝑝𝑘 with a corresponding 𝑠𝑘 and message 𝑚 it holds
that 𝑃𝑟 [𝐷𝑒𝑐 (𝐸𝑛𝑐 (𝑚, 𝑝𝑘) , 𝑠𝑘) =𝑚] = 1. The security property we
require from an encryption scheme is:

• Indistinguishablility: For every probabilistic polynomial
time adversary A and every 𝑝𝑘 generated by 𝐺𝑒𝑛(1𝜆) and
for every two messages𝑚,𝑚′ there exists a negligible func-
tion 𝜖 such that:

𝑃𝑟 [A (𝐸𝑛𝑐 (𝑚, 𝑝𝑘)) = 1] − 𝑃𝑟
[
A

(
𝐸𝑛𝑐

(
𝑚′, 𝑝𝑘

) )
= 1

]
≤ 𝜖 (𝜆) .

Our protocol does not require any stronger property for the
encryption scheme, such as resistance against chosen ciphertext
attacks (CCA1 and CCA2).

2A function 𝜖 : N→ R is negligible if for every positive polynomial 𝑝 (𝑛) there exists
an 𝑁 such that ∀𝑛 > 𝑁 : 𝜖 (𝑛) < 1

𝑝 (𝑛)
4



3.3 Zero-Knowledge Proofs

For a language L ∈ 𝑁𝑃 , denote the relation 𝑅L to be the pairs
(𝑥,𝑤) of statements and witnesses for 𝑥 being in L.

A zero-knowledge proof is a protocol between a prover 𝑃 and
a verifier 𝑉 in which the prover can convince the verifier that it
knows a witness𝑤 for a statement 𝑥 if and only if (𝑥,𝑤) ∈ 𝑅L , and
the verifier learns nothing from the protocol.

More formally, a pair of algorithms (𝑃,𝑉 ) is a zero-knowledge
proof system for a language L if the following three conditions
hold:
• Completeness: For every 𝑥 ∈ L there exists𝑤 such that:

𝑃𝑟 [⟨𝑃 (𝑤),𝑉 ⟩(𝑥) = 1] = 1.

• Soundness: For every 𝑥 ∉ L and every 𝑃∗ and every 𝑤

there exists a negligible function 𝜖 such that:

𝑃𝑟
[
⟨𝑃∗ (𝑤),𝑉 ⟩(𝑥) = 1

]
≤ 𝜖 (𝜆) .

• Zero-knowledge: For every probabilistic polynomial time
𝑉 ∗ there exists a probabilistic polynomial time simulator 𝑆
such that for every 𝑥 ∈ L:

𝑉𝑖𝑒𝑤𝑃
𝑉 ∗ (𝑥) ≡ 𝑆 (𝑥) .

While zero-knowledge proofs are not restricted to statements be-
longing to languages in 𝑁𝑃 , they are often used for such, especially
for languages where verification of (𝑥,𝑤) ∈ 𝑅L is efficient and can
be modeled as a boolean or arithmetic circuit, but an efficient algo-
rithm to find𝑤 for a random 𝑥 is not known. A prominent example
is: (𝑥,𝑤) ∈ 𝑅L ⇔ 𝑓 (𝑤) = 𝑥 where 𝑓 is a collision resistant one
way function.

At first glance, proving knowledge of a hash pre-image of a string
may not seem particularly useful. However, it is vital in higher-level
constructions, such as anonymous set membership. Indeed, given a
set of items found as leaves in a Merkle tree, one can prove knowl-
edge of an item in the Merkle tree by proving in zero-knowledge
a path comprised of hash pre-images from one of the leaves to
the root of the Merkle tree. Such a technique is the cornerstone
behind the privacy-preserving cryptocurrency Zcash [6]. In Zcash,
a sender wishing to hide the payment source simply creates a zero-
knowledge proof that she uses a coin that was added to a Merkle
tree. The Merkle tree’s leaves are all coins added as part of past
transactions.

Zero-knowledge proof schemes come in different forms, each
with its strengths andweaknesses. In this work, we focus on schemes
ideal for privacy-preserving payments, and thus we require the
scheme to be non-interactive, efficiently verifiable, and have a small
proof size (succinct). A scheme with such properties is termed a
zk-SNARK3.

4 OVERVIEW OF OUR SCHEME

This section gives a high-level introduction to our scheme and the
entities participating in it.

Our privacy-preserving, verifiable, and differentially-private trans-
fer scheme expands the functionality of any given privacy-preserving
payment system (e.g., Zcash [6]) by enabling a third party (e.g., an

3Zero Knowledge Succinct Non-interactive ARgument of Knowledge

analyst) to collect statistics about user attributes while preserving
user privacy.

Before we elaborate on the participants, components, and trans-
action flow, we reiterate the scheme’s primary objective. The two
main actors in our setting are users who potentially have sensitive
information they want to keep private and an analyst who aims to
collect statistical insights by aggregating queries from user trans-
actions. The users conduct transactions of a privacy-preserving
nature. These transactions reveal nothing about the transactor’s
identity, the recipient’s identity, or the amount transferred. Each
transaction performed by a user is accompanied by an additional
result of applying an LDP algorithm4 to the user’s data.

We model our scheme as a protocol between two potentially
dishonest parties with conflicting goals. The first is the user who
wants to protect her privacy even at the expense of the analyst not
learning any useful statistical information. The second is the analyst
who wants to collect aggregative statistical information about the
user, even if it means de-anonymizing the user’s transactions to
maintain the collected data’s integrity and accuracy. Neither party
knows if the counter-party is honest or not, and therefore our
protocol needs to ensure the interest of any of the two parties as
long as that party is honest. Therefore, a setting where both parties
are malicious is outside of our scope.

A key observation is that an LDP mechanism involves sampling
randomness and using it for noise generation. Clearly, the random-
ness must be kept secret from anyone but the user itself, lest a
curious analyst can peel off the noise. At the same time, the scheme
should force the user to generate randomness in a non-biased man-
ner. Suppose the user is free to choose the randomness it uses. In
that case, it can manipulate the result of the LDP mechanism mak-
ing the data too "noisy", thus affecting the integrity of the data
collected by the analyst.

Consequently, we seek a protocol with the following properties:
(i) Neither the user nor the analyst can bias the generation of the
noise used for LDP; (ii) The user can prove in a privacy-preserving
manner that the noise is non-biased; (iii) Once the randomness
used to create the transaction’s noise is computed, the user cannot
compute new randomness or add a different amount of noise. We
prove that our protocol fulfills all three aforementioned properties
in Section 5.4.1.

Another important property of our protocol is that it is privacy-
preserving. We prove this property in Section 5.4.2.

4.1 Participants

Our scheme involves the following participants:

Users. They own tokens that represent assets in the real world.
Using a transfer transaction, users can exchange tokens within
the system. Collecting up-to-date statistics about the users’ private
attributes (e.g., age, gender, account type) is of interest to third-party
entities (e.g., the analyst).

Analyst. This entity has the authority to collect aggregated sta-
tistics about the private attributes and activities of the users in the

4In this work, we focus on the randomized response mechanism applied to one binary
attribute. However, we argue that our ideas can be extended to randomized response
vectors applied to multiple and non-binary attributes.
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system. We assume that the analyst is only interested in analyzing
statistical information regarding the system as a whole and is not
interested in learning about specific individuals in the system.

Registration authority. This is a privileged entity in charge of
registering all system users. For each user, it issues a long-term
credential (i.e., a signature) that binds the user’s public key to its
attributes. The same attributes will later be used as input to the
LDP algorithm.

4.2 Components

Our scheme consists of three modular components: (i) A protocol to
obtain and bind randomness. (ii) A verifiable LDP mechanism. (iii)
An expanded privacy-preserving transfer that includes verifiable
differentially-private data.

Obtain and bind randomness protocol. This protocol is a privacy-
preserving verifiable joint random number generation protocol run
between the user and the analyst. The protocol uses a serial number
created by the user to bind a set of unspent input random seeds
used in a specific transfer to their corresponding jointly generated
randomness. The analyst uses this serial number to verify that only
one randomness is created for each set of unspent inputs.

Verifiable LDP mechanism. This mechanism makes the user’s
attributes differentially private before they are disclosed to the
analyst. For simplicity, in this work, we use the basic randomized
responsemechanism described in Section 3.1 to make a single binary
attribute differentially private.

Expanded privacy-preserving transfer. Our verifiable differen-
tially private (VDP) transfer expands the transfer transaction de-
fined by the underlying privacy-preserving payment system. As
we explain in Section 2, our scheme works with any transfer mech-
anism that: (i) Encodes tokens as commitments to properties of the
token (token value, owner, and random seed are all part of the input
to a cryptographic commitment scheme). (ii) Uses serial number
exposure as a double-spending prevention (for a random seed 𝜌 ,
the serial number is 𝑃𝑅𝐹 (𝜌) ).

To verify the correctness of the randomness used as the source of
randomness in the LDP mechanism and to ensure that the analyst
cannot link a specific transfer to its sender, our VDP transfer uses
two serial numbers. The first serial number is the serial number
created by the user during the obtain and bind randomness protocol.
The second serial number, also created by the user, is used to prove
the correctness of the randomness used by the verifiable LDP mech-
anism. From the analyst’s point of view, the second serial number
will only be accepted if the first serial number was previously ob-
served (without being able to link the two together). The analyst
can verify that it has previously seen the first serial number thanks
to the fact that both serial numbers have the same precursor, a set of
unspent input random seeds. The generated serial numbers satisfy
the following security properties: (i) They are collision resistant –
two different sets of unspent tokens produce two different serial
numbers. (ii) They are deterministic – the same set of unspent to-
kens will always produce the same serial number. (iii) They are
unforgeable – only the user who owns the unspent tokens can
produce a valid serial number. Although both serial numbers are

Figure 1: Overview of the VDP Transfer Transaction

computed on the same set of unspent inputs, the analyst cannot link
them to each other thanks to their construction. The unspent input
seeds are passed through Pseudo-Random functions with different
keys and hence are computationally unlinkable.

Additionally, our transfer uses zk-SNARK proofs to verify the
integrity of the data disclosed by the user. The proofs prove that
the disclosed data matches the user’s original attributes and is
created using the jointly generated randomness as the base of the
randomness used in the LDP mechanism.

4.3 VDP Transaction Flow

The VDP transaction flow is illustrated in Figure 1. At first, the user
contacts the registration authority and engages in a registration
protocol to get a long-term credential. From then on, the user can
use this credential to verify its private attributes in every VDP
transfer transaction.

The VDP transfer transaction comprises the following stages: (1)
The user retrieves its tokens from the ledger. (2) The user contacts
the analyst and executes the BindRandomness protocol. Thus, the
user obtains a verifiable random value. (3) The user executes the
VDP transfer algorithm in three stages. First, the user makes its
attributes differentially private and encrypts the result using the
analyst’s public key. Then, the user computes the zk-SNARK proofs
needed to verify the jointly generated randomness and the integrity
of the differentially private attribute. Finally, the user executes the
underlying transfer transaction. (4) The user submits the encrypted
LDP result, and the result of the transaction execution for inclusion
in the ledger.

5 THE VDP TRANSACTION SCHEME

This section details the complete VDP transaction scheme.

5.1 The BindRandomness Protocol
The BindRandomness protocol presented in Figure 2 is a privacy-
preserving verifiable protocol executed between the user and the
analyst. This protocol has two main goals: (i) Obtaining an unbiased
random value jointly generated by the user and the analyst. (ii)
Computing a verifiable and unlinkable serial number. This serial
number will enable the user to later prove in zero-knowledge that
it knows a random value jointly generated with the analyst so that
the random value can be used as a source of randomness for a
randomized algorithm.
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BindRandomness
User Analyst

1 : 𝜉𝑢 ←$ {0, 1}𝜆

2 : 𝑐𝑚𝜉𝑢 = COMM(𝜉𝑢 )
3 : 𝜈1 = PRF1 ( ®𝜌 )

4 : (𝑐𝑚𝜉𝑢 , 𝜈1 )

5 : Check 𝜈1 ∉ ACC
6 : ACC← ACC ∪ {𝜈1}

7 : 𝜉𝐶 ←$ {0, 1}𝜆

8 : 𝜎𝐴 = Sign(𝑐𝑚𝜉𝑢 , 𝜈1, 𝜉𝐴 )

9 : (𝜎𝐴, 𝜉𝐴 )

10 : return 𝜉𝑢 , 𝑐𝑚𝜉𝑢 , 𝜎𝐴, 𝜉𝐴

Figure 2: The BindRandomness protocol.

The BindRandomness protocol takes as input a security param-
eter 𝜆 and a vector ®𝜌 = (𝜌1, . . . , 𝜌𝑚) s.t. ∀𝑖 ∈ [𝑚] : 𝜌𝑖 ∈ {0, 1}𝜆 .
®𝜌 represents𝑚 distinct seeds of unspent input tokens, and outputs
two random values 𝜉𝑢 , 𝜉𝐴 , a commitment 𝑐𝑚𝜉𝑢 , and a signature 𝜎𝐴 .

In the initial stages of the protocol, the user samples a random
value 𝜉𝑢 , commits to it using COMM(𝜉𝑢 ), and computes the serial
number 𝜈1 with PRF1 ( ®𝜌). The user then sends the commitment
𝑐𝑚𝜉𝑢 and the serial number 𝜈1 to the analyst. The analyst checks
if 𝜈1 was observed before and if so it aborts. Otherwise, the ana-
lyst will add 𝜈1 to some accumulator 𝐴𝐶𝐶 , and continue on with
sampling a random value 𝜉𝐴 and signing (𝑐𝑚𝜉𝑢 , 𝜈1, 𝜉𝐴) to obtain
𝜎𝐴 . The protocol ends with the analyst sending the user 𝜉𝐴 and the
signature 𝜎𝐴 . The user verifies the signature and discards 𝜉𝐴 if the
signature is found to be invalid.

After the protocol’s execution, the analyst has in its accumu-
lator a value 𝜈1 which is correlated to𝑚 unspent tokens that the
user may use in a future transaction. By signing the accompanied
commitment of the user 𝑐𝑚𝜉𝑢 alongside 𝜉𝐴 , the randomness picked
by the user, as well as the randomness picked by the analyst are
both indirectly bound to {𝜌𝑖 }𝑚𝑖=1 the seeds used for the unspent
input tokens. As we will see in the next section, this is a crucial part
of the security of our scheme: If the user used an unspent input’s
seed 𝜌𝑖 to obtain randomness from the analyst, it must also use
the corresponding unspent input in a transfer in order to use the
randomness for the LDP computation.

5.2 The VerRRMechanism

The VerRR algorithm is a simple, verifiable LDP mechanism based
on randomized response presented in Section 3.1. This mechanism
makes one binary attribute of the user differentially private. In this
setting, the user can answer any question that requires a binary
answer. For example, to answer the question "what is your gender?"
the user can reply "0" for male or "1" for female. To answer the
question "What is the account type?" the user can reply "0" for a
private account or "1" for a business account.

We chose this simple implementation as a proof of concept, but
argue that this mechanism can be easily replaced by a more sophis-
ticated LDP mechanism such as one capable of handling histogram
queries as in the Rappor mechanism used by Google [18]. As evi-
dent from our security proofs in Section 5.4, our technique achieves
simulation security and therefore the entire protocol inherits the
security of the LDP function.

The VerRR algorithm uses the jointly generated random value 𝜉
as the source of randomness needed to compute the double coin
toss coin1 and coin2. Based on the results of the coin tosses, the
algorithm determines the value of output ˆ𝑖𝑑 (the original 𝑖𝑑 value,
or a random output of "0" or "1").

The pseudocode for the VerRR algorithm is given in Algorithm 1.

Algorithm 1 VerRR

Input:

- Verifiable randomness 𝜉
- A private attribute 𝑖𝑑

Output:

- Two coin toss results coin1 and coin2
- A differentially private value ˆ𝑖𝑑

1: Compute first coin toss coin1 = (𝜉 mod 4) mod 2
2: Compute second coin toss coin2 = (𝜉 mod 4)/2
3: if coin1 = 0 then
4: ˆ𝑖𝑑 ← 𝑖𝑑

5: else
6: if coin2 = 0 then
7: ˆ𝑖𝑑 ← 1
8: else

9: ˆ𝑖𝑑 ← 0
10: end if

11: end if

12: Output coin1, coin2, ˆ𝑖𝑑

5.3 The VDP Transfer

The VDPtransfer algorithm expands the underlying transfer algo-
rithm (e.g., the Pour algorithm used by Zerocash [6]) by outputting
additional information about the user’s attributes. The analyst can
later use this information to generate statistics regarding system
users. To preserve privacy and allow plausible deniability, the user
applies an LDP mechanism to its attributes, making them differen-
tially private before disclosing them.

On a very high level, the algorithm expands the underlying
transfer algorithm of unspent𝑚 tokens with randomness seeds ®𝜌
such that | ®𝜌 | =𝑚 executed by user 𝑢 as follows:

(1) 𝑢 computes the jointly generated random value 𝜉 out of the
verifiable random values 𝜉𝑢 and 𝜉𝐴 obtained from executing
the BindRandomness protocol.

(2) 𝑢 uses 𝜉 as the source of randomness needed to generate the
random values used in the VerRR algorithm.

(3) 𝑢 makes her attributes 𝑖𝑑 differentially private and encrypts
their values using the analyst’s public key pk𝐴 .

(4) 𝑢 computes two zero-knowledge proofs—the Binding proof
𝜋𝜉 , and the Encrypted VDP proof 𝜋𝛿—to prove the connection
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between: the jointly generated random values 𝜉𝑢 , 𝜉𝐴, 𝜉 , the
unspent tokens with randomness seeds ®𝜌 , and the attributes
𝑖𝑑 that were made differentially private. Additionally,𝑢 binds
(𝜌)𝑚

𝑖=1 to 𝜈2 = 𝑃𝑅𝐹2 ( ®𝜌) and sends the underlying transfer
encoding, the proofs 𝜉𝑢 and 𝜉𝐴 , and𝜈2 to the analyst. Sending
to the analyst𝜈2 ensures that the user cannot reuse 𝜉 a second
time, and the analyst is expected to add 𝜈2 to an accumulator
𝐴𝐶𝐶 and ensure 𝜈2 ∉ 𝐴𝐶𝐶 upon receiving it from a user.
Since 𝜈1 is computed using 𝑃𝑅𝐹1 and 𝜈2 is computed using
𝑃𝑅𝐹2, and 𝑃𝑅𝐹1 ≠ 𝑃𝑅𝐹2 then also 𝜈1 is unlinkable to 𝜈2.

The pseudocode for the VDPtransfer algorithm is given in Algo-
rithm 2.

Algorithm 2 VDPtransfer

Input:

- Public parameters pp
- Verifiable randomness 𝜉𝑢 and its commitment 𝑐𝑚𝜉𝑢
- Serial number 𝜈1
- Verifiable randomness 𝜉𝐴
- Signature 𝜎𝐴 for (𝑐𝑚𝜉𝑢 , 𝜈1, 𝜉𝐴)
- Underlying transfer parameters:
((𝜃𝑜𝑙𝑑

𝑖
)𝑚
𝑖=1, (addr

𝑜𝑙𝑑
sk,𝑖 )

𝑚
𝑖−1,info

5)
Output:

- New tokens (𝜃𝑛𝑒𝑤
𝑖
)𝑚
𝑖=1

- Encrypted VDP value 𝛿
- Transfer transaction txVDP

1: Compute randomness 𝜉 = ADD(𝜉𝑢 , 𝜉𝐴)
2: Compute commitment 𝑐𝑚𝜉 = COMM(𝜉)
3: for each 𝑖 ∈ [𝑚]:

a: Parse 𝜃𝑜𝑙𝑑
𝑖

as (𝜌𝑖 , 𝑖𝑑 , addr𝑜𝑙𝑑pk,𝑖 , *)

b: Parse addr𝑜𝑙𝑑sk,𝑖 to retrieve 𝑎𝑜𝑙𝑑sk,𝑖

c: Parse addr𝑜𝑙𝑑pk,𝑖 to retrieve 𝑎𝑜𝑙𝑑pk,𝑖
4: Compute 𝜈2 = PRF2 ( ®𝜌) 𝑠 .𝑡 . ®𝜌 := (𝜌1, . . . , 𝜌𝑚)
5: Compute VerRR(𝜉, 𝑖𝑑) to retrieve (coin1, coin2, ˆ𝑖𝑑)
6: Set −→𝑤𝜉 = (𝜉𝑢 , 𝜉𝐴, 𝑐𝑚𝜉𝑢 , 𝜎𝐴, 𝜉, ®𝜌, 𝜈1, (𝑎𝑜𝑙𝑑𝑠𝑘,𝑖

)𝑚
𝑖=1)

7: Set −→𝑥𝜉 = (𝑐𝑚𝜌 , 𝜈2, (sn𝑜𝑙𝑑𝑖
)𝑚
𝑖=1, 𝑐𝑚𝜉 , pk𝐴)

8: Compute proof 𝜋𝜉 = Prove(pk𝜉 , 𝑥𝜉 , 𝑎𝜉 )
9: Encrypt and mask attribute 𝛿 = Encpk𝐴 (𝑟𝑢 , ˆ𝑖𝑑)
10: Set −→𝑤𝛿 = (coin1, coin2, 𝜉, 𝑖𝑑, 𝑟𝑢 , (𝑎𝑜𝑙𝑑𝑝𝑘,𝑖

)𝑚
𝑖=1)

11: Set −→𝑥𝛿 = (COMM𝜉 , 𝛿, pk𝐴, pk𝑅𝐴)
12: Compute proof 𝜋𝛿 = Prove(pk𝛿 , 𝑥𝛿 , 𝑎𝛿 )
13: Execute underlying transfer Pour(x)
14: Set txVDP = (txPour, 𝛿, 𝜋𝜉 , 𝜋𝛿 )
15: Output (𝜃𝑛𝑒𝑤

𝑖
)𝑛
𝑖=1, txVDP

5info represents the rest of the parameters needed for the underlying transfer

5.3.1 The Binding Proof. The proof, made by user 𝑢, is defined as
follows:

𝜋𝜉 =



verify(pk𝐴, 𝜎𝐴, ”𝑐𝑚𝜉𝑢 | |𝜈1 | |𝜉𝐴”) = 1∧
∃𝜉𝑢 , ∃𝜉𝐴, 𝑐𝑚𝜉𝑢 = COMM(𝜉𝑢 )∧
∃𝑐𝑚𝜉𝑢 , ∃𝜎𝐴, 𝜉 = ADD(𝜉𝑢 , 𝜉𝐴) ∧ 𝑐𝑚𝜉 = COMM(𝜉)∧
∃𝜉, ∃®𝜌, 𝜈1 = PRF1 ( ®𝜌) ∧ 𝜈2 = PRF2 ( ®𝜌)∧
∃𝜈1, ∃(𝑎𝑜𝑙𝑑𝑠𝑘,𝑖

)𝑚
𝑖=1) 𝑐𝑚𝜌 = COMM( ®𝜌) ∧ ®𝜌 ∈ ASC∧𝑚

𝑖=1 sn
𝑜𝑙𝑑
𝑖

= PRF𝑎𝑠𝑘 ( ®𝜌 [𝑖])


.

Where instances are of the form−→𝑥𝜉 = (𝑐𝑚𝜉 , 𝑐𝑚𝜌 , 𝜈2, (sn𝑜𝑙𝑑𝑖
)𝑚
𝑖=1, pk𝐴),

andwitnesses are of the form−→𝑤𝜉 = (𝜉𝑢 , 𝜉𝐴, 𝑐𝑚𝜉𝑢 , 𝜎𝐴, 𝜉, ®𝜌, 𝜈1, (𝑎𝑜𝑙𝑑𝑠𝑘,𝑖
)𝑚
𝑖=1).

We define ASC as an𝑚 relation (𝑛1, 𝑛2, ...𝑛𝑚) |𝑛1 < 𝑛2 < ... < 𝑛𝑚
(i.e., an 𝑚 relation where all the elements are smaller than the
elements to their right).

An instance −→𝑥𝜉 specifies a commitment for a jointly generated
randomness, a commitment for the unspent tokens, a public serial
number binding the unspent tokens to the jointly generated ran-
domness, the serial numbers of𝑚 distinct token (computed by the
underlying tokenmanagement system), and the analyst’s public key.
A witness −→𝑤𝜉 specifies user 𝑢’s randomness and commitment to it,
the analyst’s randomness and signature for it, the jointly generated
randomness, the seeds for the𝑚 distinct unspent tokens, the private
serial number binding the unspent tokens to the jointly generated
randomness, and the𝑚 private addresses of the𝑚 unspent tokens.

Given a Binding proof instance −→𝑥𝜉 , a witness −→𝑤𝜉 is valid for −→𝑥𝜉 if
the following statements hold:

(1) The signature 𝜎𝐴 created by the analyst is valid, i.e.,
verify(pk𝐴, 𝜎𝐴, ”𝑐𝑚𝜉𝑢 | |𝜈1 | |𝜉𝐴”) = 1

(2) The commitment 𝑐𝑚𝜉 is a valid commitment for randomness
𝜉 , i.e., 𝑐𝑚𝜉 = COMM(𝜉).

(3) The randomness 𝜉 was computed using the user’s random-
ness 𝜉𝑢 and the analyst’s randomness 𝜉𝐴 , i.e., 𝜉 = ADD(𝜉𝑢 , 𝜉𝐴).

(4) The vector ®𝜌 is sorted in ascending order, i.e.,
(𝜌1, 𝜌2, ..., 𝜌𝑚) |𝜌1 < 𝜌2 < ... < 𝜌𝑚 .

(5) The serial numbers 𝜈1, 𝜈2 are computed correctly, i.e.,
𝜈1 = PRF1 ( ®𝜌) and 𝜈2 = PRF2 ( ®𝜌).

(6) The public serial number 𝜈2 matches a private serial number
𝜈1, s.t. 𝜈1 appears in the analyst’s accumulator.

(7) The commitment 𝑐𝑚𝑢 is a valid commitment for the random-
ness 𝜉𝑢 generated by the user, i.e., 𝑐𝑚𝜉𝑢 = COMM(𝜉𝑢 ).

(8) The commitment 𝑐𝑚𝐴 is a valid commitment for the random-
ness 𝜉𝐴 generated by the analyst, i.e., 𝑐𝑚𝜉𝐴 = COMM(𝜉𝐴).

(9) For each 𝑖 ∈ [𝑚], the serial number sn𝑜𝑙𝑑
𝑖

of token 𝜃𝑜𝑙𝑑
𝑖

is
computed correctly, i.e., sn𝑜𝑙𝑑

𝑖
= PRF𝑎𝑠𝑘 (𝜌𝑖 ) s.t. 𝜌𝑖 = ®𝜌 [𝑖].

5.3.2 The Encrypted VDP Proof. The proof, made by user 𝑢, is
defined as follows:

𝜋𝛿 =



𝑐𝑚𝜉 = COMM(𝜉)∧
∃𝜉, ∃𝑖𝑑, ˆ𝑖𝑑 = VerRR(𝜉, 𝑖𝑑)∧
∃coin1, ∃coin2, coin1 = (𝜉 mod 4) mod 2∧
∃𝑟𝑢 , ∃(𝑎𝑜𝑙𝑑𝑝𝑘,𝑖

)𝑛
𝑖=1 coin2 = (𝜉 mod 4)/2∧

𝛿 = Encpk𝑅 (𝑟𝑢 , ˆ𝑖𝑑))∧
verify(pk𝑅, 𝜎𝑖𝑑 , ”(𝑎𝑝𝑘,𝑖 )𝑛𝑖=1 | |𝑖𝑑”) = 1


.

Where instances are of the form −→𝑥𝛿 = (COMM𝜉 , 𝛿, pk𝐴, pk𝑅𝐴), and
witnesses are of the form −→𝑤𝛿 = (coin1, coin2, 𝜉, 𝑖𝑑, 𝑟𝑢 , (𝑎𝑜𝑙𝑑𝑝𝑘,𝑖

)𝑚
𝑖=1).

8



An instance −→𝑥𝛿 specifies a commitment for a jointly generated
randomness, the encrypted value of the user’s attribute aftermaking
it differentially private, the analyst’s public key, and the registration
authority’s public key. Awitness−→𝑤𝛿 = (𝜉, coin1, coin2, 𝑖𝑑, 𝑟𝑢 , (𝑎𝑜𝑙𝑑𝑝𝑘,𝑖

)𝑚
𝑖=1)

consists of the jointly generated randomness and the two coin toss
results derived from it, the user’s attributes, the user’s random
scalar used during the ElGamal encryption process, and the𝑚 pub-
lic addresses of the𝑚 unspent tokens.

Given an Encrypted VDP proof instance −→𝑥𝜉 , a witness −→𝑤𝜉 is valid
for −→𝑥𝜉 if the following statements hold:

(1) The commitment 𝑐𝑚𝜉 is a valid commitment for randomness
𝜉 , i.e., 𝑐𝑚𝜉 = COMM(𝜉).

(2) The double coin toss results coin1 and coin2 are derived from
randomness 𝜉 , i.e., coin1 = (𝜉 mod 4) mod 2 and coin2 =

(𝜉 mod 4)/2.
(3) The encrypted value 𝛿 was computed by encrypting the

user’s attributes 𝑖𝑑 with the analyst’s public key pk𝐴 after
making them differentially private using coin1 and coin2, i.e.,
𝛿 = Encpk𝑅 (LDP(𝑖𝑑, coin1, coin2)).

(4) The signature created by the registration authority is valid,
i.e., verify(pk𝑅, 𝜎𝑖𝑑 , ”(𝑎𝑝𝑘,𝑖 )𝑛𝑖=1 | |𝑖𝑑”) = 1.

5.4 Security Analysis

In this section, we prove the security of our scheme. Specifically, we
prove that our scheme preserves integrity despite malicious parties
and preserves the user’s privacy.

5.4.1 Preserving Integrity. In our scheme, the user sends the ana-
lyst an encrypted result of computing the VerRR algorithm on her
private attributes termed 𝑖𝑑 . As the analyst does not see how the
user computes the noise, it is crucial that the scheme preserves the
integrity of the process in case the user is being dishonest. We prove
a stronger result; If either (but not both) of the parties is malicious,
the final result of our protocol distributes as an ideal functional-
ity F for a randomized response differential privacy algorithm. In
order to prove integrity, we first prove three lemmas:

Lemma 1. Let U be the uniform distribution. Unless both the
user and the analyst are malicious, and if the analyst accepts the
proofs accompanying the transaction, BindRandomness (see Figure

2) outputs 𝜉𝐴 and 𝜉𝑢 such that 𝜉𝐴 + 𝜉𝑢 ∼ U
(
0, 2𝜆

)
.

Proof. We split the proof into two cases:

(1) The user is malicious. If the user is malicious, then the an-
alyst is honest. Therefore, 𝜉𝐴 is sampled from a uniform
distribution. If 𝜉 was computed correctly by the user then
𝜉 ∼ U

(
0, 2𝜆

)
because 𝜉 = 𝜉𝐴 + 𝜉𝑢 and 𝜉𝐴 ∼ U

(
0, 2𝜆

)
. Oth-

erwise, 𝜉 was not computed correctly, and the analyst rejects
the proof 𝜋𝜉 .

(2) The analyst is malicious. If the analyst is malicious, then
the user is honest. If the user aborts in BindRandomness, it
is because the analyst sent a malformed 𝜎𝐴 . Therefore the
lemma holds vacuously (the analyst did not accept the proofs
because the user formed no proofs). Otherwise, the user did
not abort in BindRandomness and proceeded to compute

the joint randomness 𝜉 . It holds that 𝜉 ∼ U
(
0, 2𝜆

)
because

𝜉𝑢 ∼ U
(
0, 2𝜆

)
.

□

Lemma 2. Denote 𝜋𝜉 and 𝜋𝛿 to be Non-Interactive Zero-Knowledge
proofs accepted by the analyst with a corresponding commitment
𝐶𝑂𝑀𝑀𝜉 to 𝜉 and 𝛿 being the claimed result6 of applying VerRR on
𝑖𝑑 ∈ {0, 1}∗ with some randomness 𝜉 ′. Then it holds that: 𝜉 = 𝜉 ′.

Proof. Assume in contradiction that 𝜉 ′ ≠ 𝜉 . Since the analyst
accepted 𝜋𝜉 , it holds that ∃𝜎𝐴 such that

𝑣𝑒𝑟𝑖 𝑓 𝑦

(
𝑝𝑘𝐴, 𝜎𝐴, ”𝑐𝑚𝜉𝑢 | |𝜈1 | |𝜉𝐴”

)
= 1.

It follows from the collision resistance property of the commitment
scheme that ∃𝜉𝑢 and only one such that 𝜉𝑢 was committed to by
the user in BindRandomness. Since the user and the analyst cannot
be both malicious, there exists only a single 𝜉 for which 𝜋𝜉 is valid;
therefore, a single corresponding 𝐶𝑂𝑀𝑀𝜉 exists. However, from
the definition of 𝜋𝛿 , it operates on a commitment with the same
value of 𝐶𝑂𝑀𝑀𝜉 , however 𝜉 ′ ≠ 𝜉 in contradiction to the collision
resistance property of the commitment scheme. □

Lemma 3. Denote 𝑖𝑑 to be the user’s data and 𝛿 the result (claimed
by the user) of VerRR on some 𝑖𝑑′ accepted by the analyst. Then, it
holds that indeed 𝑖𝑑′ = 𝑖𝑑 .

Proof. By definition of 𝜋𝛿 , there exists a signature 𝜎𝑖𝑑 on 𝑖𝑑

that is verifiable under the registration authority’s public key 𝑝𝑘𝑅 .
Furthermore, by the definition of 𝜋𝛿 , it holds that 𝛿 is computed on
the same 𝑖𝑑 , therefore 𝑖𝑑′ = 𝑖𝑑 . □

Now that we have proved the lemmas above, we can prove the
integrity theorem:

Theorem 1 (preserving integrity). LetF an ideal functionality
for the VerRR computation where the user (U) sends its data 𝑖𝑑 and
the analyst (A) receives F (𝑖𝑑), and denote ⟨𝑈 (𝑖𝑑), 𝐴⟩ as a random
variable that represents the final LDP value to be sent to the analyst.
Then, unless both the user and analyst are malicious, it holds that:
⟨𝑈 (𝑖𝑑), 𝐴⟩ ∼ F (𝑖𝑑).

Proof. Follows from the conjunction of lemmas 1 to 3: From
Lemma 1, it follows that the combined randomness (later to be
termed 𝜉) distributes uniformly. This randomness is then verified
to be used by Lemma 2, and Lemma 3 ensures that the input to
the VerRR computation is the user’s data and not someone else’s.
It follows from the correctness of the three lemmas above that
the user computed the VerRR algorithm on her own data using a
uniformly random variable sampling. Therefore the result has the
same distribution as the result from the ideal functionality F . □

5.4.2 Preserving User Privacy.

Theorem 2 (preserving privacy). Let 𝑈 be an honest user that
completed a VDPtransfer preceded by interacting with the analyst via
BindRandomness. Once the transfer completes, the analyst’s guess
about which user sent theVDPtransfer or interacted viaBindRandomness
is the same as it was before.
6In the protocol, 𝛿 is an encryption of the result, but for simplicity, we omit this.
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Proof of Theorem 2. Since VDPtransfer’s output is two zero-
knowledge proofs 𝜋𝛿 and 𝜋𝜉 , there exist two simulators S𝛿 and S𝜉
that output a transcript that is indistinguishable to the analyst from
a real encoding of 𝜋𝛿 and 𝜋𝜉 . It remains to argue about the preceding
interactive step where the user obtains her randomness from the
analyst. We construct a simulator S for BindRandomness and the
VDPtransfer that outputs a transcript that is indistinguishable from
the analyst’s view. The simulatorS samples ®𝜌′ uniformly at random
from the domain of the underlying token transfer scheme, derives𝜈 ′1
and commits to it forming 𝑐𝑚𝜉𝑢 as the real user does and sends it to
the analyst. Next, if the analyst properly produces 𝜎𝐴 , the simulator
continues. Otherwise, it aborts. If the simulator S continues, then it
callsS𝛿 andS𝜉 and outputs their transcripts. Under the assumption
that an honest user also aborts if it detects the analyst sending it a
malformed signature 𝜎𝐴 , it can be seen that S𝛿 and S𝜉 only run if
𝜎𝐴 is well formed and valid. It remains to be argued that the joint
distribution of all messages sent by the simulators S𝛿 , S𝜉 and S is
indistinguishable from the joint distribution in the real case. Clearly,
it is not identical, as the simulator S does not have ®𝜌 , and the real
user does. However, ®𝜌′ is a vector of a uniformly random element
sampled from the same known distribution of ®𝜌 ; therefore, 𝜈 ′1 ∼ 𝜈1
and 𝜈 ′2 ∼ 𝜈2 from the real protocol, and thus the entire transcript is
indistinguishable to the analyst from the messages sent in the real
protocol. □

6 EVALUATION AND IMPLEMENTATION

We implement our scheme in ∼ 500 lines of Go using the Gnark
ZK-SNARK library [8]. Our implementation is available publicly
in [5]. We use the Groth16 [19] scheme instantiated with the BN-254
curve as it is the most efficient according to the evaluation of [14].

Our choices of public key encryption, digital signatures, com-
mitment schemes, and Pseudo-Random Functions were influenced
by efficiency considerations, particularly the cost of operations in
arithmetic circuits over a finite field that is the order of the BN-254
curve.

We use the MiMC [1] hash function for the Pseudo-Random
Function and the commitment scheme. Although it gives only com-
putational hiding and not information-theoretic hiding such as
the Pedersen [28] commitment, it is cheaper due to the smaller 7

number of constraints.
For Public Key Encryption and digital signatures we use Elgamal

and edDSA respectively, over a curve tailored to be efficient for
ZK-SNARKs as it is defined over a field whose order [9] is the order
of the BN-254 curve.

6.0.1 Performance evaluation. We benchmark on a c5a.2xlarge
AWS machine equipped with 8 vCPUs and 16GB RAM. We eval-
uate the performance of both our proofs (𝜋𝜉 , 𝜋𝛿 ) by running 100
independent trials and computing the number of constraints, aver-
ages for setup time, proof time and verification time for different
numbers of input tokens. The results are depicted in Table 1 and
Table 2 for 𝜋𝜉 and 𝜋𝛿 respectively.

As seen from the performance evaluation results shown in Figure
3, our scheme has a practical execution time. Moreover, the number
of inputs adds a negligible increase to the verification time, and has

7Scalar multiplication in Elliptic Curves has logarithmic complexity

a small magnitude on the proof generation time. Additionally, as the
verification time is very short (totaling less than 2ms for all input
sizes up to 16 inputs), we conclude that the additional computations
and data that we added with our VDPtransfer transaction do not
add much overhead to the original underlying transfer.

7 DISCUSSION

This section discusses our design choices and their implications.

7.1 The LDP Mechanism

Although some techniques for verifiable differential privacy have
been previously researched, none were suitable for the scenario pre-
sented in this paper—incorporating a verifiable LDP technique into
a privacy-preserving token management system (see Section 2.3).

Incorporating any LDP mechanism into a privacy-preserving
token management system, let alone a verifiable LDP mechanism
comes with a significant challenge of ensuring that the users’ pri-
vacy is preserved and that no additional information is leaked
during the data disclosure process. For example, in this scenario,
trying to make the value of a transfer differentially private using the
known Laplace mechanism [16] will not work because of outliers
that include very high transfer values. Even if we added noise sam-
pled from a Laplace distribution, it would not be enough to hide the
unusually high value; therefore, it would not preserve the privacy
of the user performing the transfer and does not fit our scenario.
Based on this observation, we decided to focus on requests for data
that require a binary answer and that could be made differentially
private using the simple randomized response mechanism [17], as
requests like that are less prone to outliers.

To adjust the randomized response mechanism, and make it ver-
ifiable, the randomness that the mechanism is based on needs to
be generated in a verifiable manner. The need for verifiable ran-
domness in a privacy-preserving token system presented us with
another challenge—How can a user obtain verifiable randomness
while still keeping her identity private? To the best of our knowl-
edge, our proposed scheme is the first to solve this challenge. We
solved this challenge by creating a non-interactive process that
leverages two serial numbers. Although the user creates the serial
numbers, the analyst cannot connect a specific randomness to a
specific transfer. The analyst cannot make this connection because
of the way the serial numbers are created and used. The first serial
number is created and used only during the process of obtaining
the randomness, and the second serial number is only used during
the transfer as part of the zk-SNARK proof (see Section 5).

7.2 The Zero-Knowledge Proof Scheme

We discuss the design choices of our underlying Zero-Knowledge
proof scheme and show that it is in the interest of a dishonest user
to operate as an honest user.

7.2.1 Trusted Setup vs. Transparent Setup. We employ the ZK-
SNARK scheme of Goth16 [19], which requires a trusted setup.
A Zero-Knowledge proof system with a trusted setup requires that
the randomness used during the setup be discarded. Otherwise, if
the randomness is leaked to some party, that party may generate
proofs on false statements. In comparison, in the transparent setup,
the randomness is public and known to all (including the verifier).
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Table 1: Performance of 𝜋𝜉 proof. Times are in milliseconds

# Inputs # Constraints Setup Proof Verification

1 9769 725 99 0.944
2 12678 889 113 0.959
4 18496 1417 164 0.971
8 30132 2064 216 1
16 53404 3741 364 1.04

Table 2: Performance of 𝜋𝛿 proof. Times are in milliseconds

# Inputs # Constraints Setup Proof Verification

1 12882 869 103 0.93
2 13155 879 104 0.935
4 13701 907 107 0.941
8 14793 966 114 0.951
16 16977 1288 157 0.961

(a) 𝜋𝜉 Proof (b) 𝜋𝛿 Proof

Figure 3: Performance Evaluation

Thus, a transparent setup requires no external trusted setup phase.
Although it may seem that the transparent setup is better than
the trusted setup, it is important to take into consideration that
the transparent setup usually requires a bigger proof size which
requires a longer computation time.

Fortunately, in our setting, a trusted setup fits our adversary
model perfectly, and there is no need for a proof scheme that has a
transparent setup. We can use the trusted setup since our scheme
includes a single analyst andmany (potentially infinite) users where
the analyst acts only as a verifier, and the users act as provers.
Therefore, the analyst can generate the trusted setup, as no party
needs to verify any proof generated by the analyst. As the data sent
by a user is composed of cryptographic commitments, the analyst
cannot learn from anything a user sends, even if the randomness
used during the trusted setup was never discarded.

7.2.2 Incentivising Conformation by Design. Our scheme has two
phases: (a) obtaining randomness; (b) using it in a transfer.

When obtaining the randomness to be later used in a transfer,
the randomness is only bound to the unspent outputs that the user
wishes to spend in the future. Consequently, if the user decides to
use an unspent output for a transfer to some recipient, she may
change the recipient right until she actually uses the randomness
in a transfer.

At first glance, it may seem like a dishonest user may never
reveal her real data or deliberately skew the analyst’s statistics by
consistently selecting noise that hides her data or has a bias. Such
a dishonest user may obtain randomness for an unspent output,
compute the corresponding noise, and if the noise is "bad", she has
three strategies: (i) To throw away the randomness and never use

it; (ii) Use the randomness by sending its corresponding unspent
outputs back to herself and then repeating the process by obtaining
new randomness; (iii) Trying to manipulate the randomness by
requesting new randomness corresponding to different subsets of
unspent outputs.

Discarding the randomness, as suggested in strategy (i), also
means discarding the funds associated with the unspent outputs
used to generate the randomness, which incurs a significant cost.
Hence, there is an incentive for a dishonest user not to do so.

Surprisingly, using the randomness by sending the unspent out-
puts back to the user, as suggested in strategy (ii), has absolutely
no effect on the analyst, as the analyst cannot differentiate between
a transfer to the same user and a transfer to a different user in the
first place! In other words, the analyst’s aggregated statistics stay
the same whether dishonest users pick this strategy or do not.

This leaves us with the last strategy (i.e., strategy (iii)) of the
dishonest user, which is binding various combinations of unspent
outputs with the same total sum for one of the combinations to
yield noise that hides the user’s data. In our implementation, the
user cannot simply reorder the set of unspent inputs and request a
new randomness since, as part of the 𝜋𝜉 proof, the user proves that
the random seeds of the unspent inputs are sorted in ascending
order. Therefore, the only reason strategy (iii) is possible is that
in our implementation, BindRandomness computes 𝜈1 as a 𝑃𝑅𝐹

on a vector 𝜔 = (𝜌1, 𝜌2, ..., 𝜌𝑚). Indeed, if the user has unspent
outputs corresponding to {𝜌1, 𝜌2, ..., 𝜌𝑙 } such that 𝑙 > 𝑚, it has( 𝑙
𝑚

)
independent attempts of obtaining a randomness it desires.

However, such a strategy can be easily mitigated by defining 𝜈1 as a
vector instead of a single value. Specifically, if in BindRandomness
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the user sends:

®𝜈1 = (𝑃𝑅𝐹1 (𝜌1), 𝑃𝑅𝐹1 (𝜌2), ..., 𝑃𝑅𝐹1 (𝜌𝑚))

and the analyst checks 𝜈1,𝑖 ∉ 𝐴𝐶𝐶 for every 𝜈1,𝑖 ∈ ®𝜈1, this strategy
becomes equivalent to the aforementioned strategy (i). We note
that defining 𝜈1 as a vector instead of a single value also eliminates
the need for the set of unspent inputs to be in ascending order.

8 CONCLUSIONS

In this work, we describe the VDP transaction scheme that fits the
needs of digital payment systems that require built-in governance
and regulations such as CBDCs. The scheme combines privacy-
preserving payment transfers with statistical insights gathering
without harming privacy. Since the VDP transaction scheme ex-
pands the functionality of any given privacy-preserving payment
system, it can uphold privacy guarantees towards the users. At
the same time, since the VDP transaction scheme incorporates a
mechanism for verifiable LDP, it can provide users with plausible
deniability and prevent bias in users’ responses, thus maintaining
the integrity of the statistical insights. To achieve verifiability, we
adapt the implementation of the random response mechanism; We
replace the randomness used in the original random response with
a jointly generated randomness and add zk-SNARK proofs. Fur-
thermore, we prove that our scheme can preserve user privacy and
statistical insight integrity even if one of the main participants (i.e.,
the user or the analyst) is malicious.
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