
Public-Key Encryption from Average Hard NP Language

Hongda Li1, Peifang Ni2,3, and Yao Zan1

1. State Key Laboratory of Information Security, Institute of Information Engineering, CAS
2. Institute of Software, Chinese Academy of Sciences

3. Zhongguancun Laboratory, Beijing
lihongda@iie.ac.cn, peifang2020@iscas.ac.cn,zanyao@iie.ac.cn

Abstract. The question of whether public-key encryption (PKE) can be constructed from
the assumption that one-way functions (OWF) exist remains a central open problem. In
this paper we give two constructions of bit PKE scheme derived from any NP language
L, along with a polynomial-time instance-witness sampling algorithm. Furthermore, we
prove that if L is average hard NP language, the the presented schemes is CPA secure. Our
results give a positive answer to this longstanding problem, as the existence of OWF im-
plies the existence of average hard NP language with a polynomial-time instance-witness
sampling algorithm.
Additionally, we obtain a witness encryption (WE) scheme for NP language based on the
presented PKE scheme. This result highlights that WE scheme can also be established
based on the existence of OWF.

Keywords: public-key encryption, one-way function, average hard NP language, witness en-
cryption.

1 Introduction

Public-key encryption (PKE) stands as a crucial primitive in modern cryptography, first in-
troduced by Diffie and Hellman [10] in 1976. Following the work of [10], numerous works
have explored different approaches to constructing PKE based on various assumptions (such
as integer factoring problem, discrete logarithm problem, LWE, et.al) [3]. In recent, Berman
et al. [4] present a PKE construction under a general complexity assumption that average hard
NP language (with a polynomial-time instance-witness sampling algorithm) has a laconic SZK
argument system. As discussed in [4], the laconism requirement for SZK arguments may make
the assumption stronger than the existence of OWF. This observation is supported by the work
of Nguyen et al. [20], demonstrating that the existence of OWF implies every language in N-
P has a SZK augment. Given that currently known constructions of PKE rely on specialized
assumptions believed to be stronger than the existence of OWF, which is both necessary and
sufficient for private key encryption [12, 16], it is natural to ask what assumption is minimum
for realizing PKE and whether PKE can be constructed from OWF.

The earliest exploration of this issue came from R. Impagliazzo and S. Rudich [18]. Unfor-
tunately, they established the impossibility of constructing PKE from OWFs in fully black-box
manner (black-box construction and black-box reduction)[22]. The result of [18] indicates that
any PKE construction relying on OWF must rely on non-black-box techniques. In fact, non-
black-box techniques are widely recognized as more powerful than black-box technique and

2 Hongda Li, Peifang Ni, and Yao Zan

can be used to break through the impossibility of black-box technique [2, 7, 19, 21]. However,
we do not currently know how to construct public-key encryption schemes based on OWF, and
only a few works have demonstrated the non-black-box separation between PKE and OWF.
Brakerski et al. in [6] proved limitations of a class of non-black-box techniques (specifically
those related to zero-knowledge proofs relative to some oracles) for constructing PKE from
OWF. Dachman-Soled [9] considered a special non-black-box technique (black-box construc-
tion and non-black-box reduction) and showed the impossibility of obtaining PKE from OWF.
S. Garge and M. Hajiabadi in their recent work [14] studied the possibility of constructing
PKE using Yao’s garbling techniques (a non-black-box technique based on OWF) and proved
that garbling circuit that has OWF gates is insufficient for PKE. However, these negative an-
swers presented in [6, 9, 14] do not rule out the possibility of basing PKE on the existence of
OWF by other special non-black-box techniques. As a result, the question of whether PKE
can be constructed based on OWF remains one of the central open problems in the field of
cryptography.

In work [17], Impagliazzo described five possible worlds we could live in, and used the
word "Minicrypto" for the world in which OWFs exist but public-key cryptography does not
and word "Cryptomania" for the world in which public-key cryptography is possible. Clear-
ly, the open problem (whether PKE can be constructed based on OWF) is in fact whether
"Cryptomania"="Minicrypto". The non-black-box separations of [6, 9, 14] may be viewed as
an indication that "Cryptomania" and "Minicrypto" are different. However, it remains uncertain
whether there an inherent gap exists between "Cryptomania" and "Minicrypto".

This paper centers its attention on exploring the possibility of constructing PKE based
on OWF. Considering that the existence of one bit encryption is sufficient to construct PKE
schemes for messages of arbitrary length, we only consider bit encryption scheme. By giving
two non-black-box constructions of PKE from average hard NP language with an efficient
sampling algorithm S, we give a positive answer to the aforegoing open question.

1.1 Our Contributions

In this paper, we present two constructions of PKE scheme based on an NP language L with
a polynomial-time sampling algorithm that output instance-witness pair. We prove that, if L is
average hard, the presented PKE schemes are CPA secure. It is well known that the existence
of average hard NP language with a instance-witness sampling algorithm is equivalent to the
existence of OWF. Therefore our results confirm in fact that PKE can be based on OWF, that
is, "Cryptomania" and "Minicrypto" are actually the same world.

We now sketch our schemes. Assume that L is average hard NP language with a sam-
pling algorithm S and NP relation RL. Let (x,w) ← S(1λ), where λ is security parameter,
|x| = `, |w| = p. In our PKE schemes, instance x ∈ L and security parameter λ are used
as public key pk, and the witness w of x (satisfying RL(x,w) = 1) is used as private key
sk. When encrypting b (b = 0, 1), the encryption algorithm Enc (taking as inputs pk and b)
generates a ciphertext Ĉb which is a garbled circuit (called as constrained-partial-input garbled
circuit). When decrypting a ciphertext Ĉb, the decryption algorithm Dec (taking as inputs sk
and Ĉb) compute Ĉb on inputting sk, b′ = Ĉb(sk), and outputs a decrypted message b′. For
the correctness and security of the scheme, obviously, Ĉb must satisfies following conditions:

1) When RL(x,w) = 1, Ĉb(w) reveals b, that is, Ĉb(w) = b;

Public-Key Encryption from Average Hard NP Language 3

2) Without w satisfying RL(x,w) = 1, it is hard to obtain b from Ĉb, that is, Ĉ0 and Ĉ1 are
computationally indistinguishable.

In order to obtain Ĉb, we first construct a random circuit C(u, v) : {0, 1}` × {0, 1}p → {0, 1}
by randomizing NP relation RL(x,w), and then garble C to generate Ĉb.

Here, We emphasize that we use a new garbling circuit scheme which is essentially Yao’s
garbled circuit scheme but slightly changed. Ĉb contains two encoding tables for u and v
respectively, all garbled logical gates, and a decoding table. Note that we need to constrain
u in Ĉb taking a random value ũ (therefore, Ĉb is called as constrained-partial-input garbled
circuit), so the encoding table for u only contains the encoding of this random value ũ. In
following, we use Ĉb(v) = Ĉb(ũ, v) to mean to compute Ĉb on inputting (ũ, v). In order to
meet the above two conditions, our first scheme makes Ĉ0 and Ĉ1 have the same encoding
table for v but different values ũ, while our second scheme makes Ĉ0 and Ĉ1 have different
encoding tables for v but the same value ũ.

Yao’s garbled circuit is used for secure two-party computation, in where both parties wish
to carry out a joint computation of a shared function without disclosing their private input. The
scenario we consider in the paper is different from secure two-party computation. Specifically,
in our PKE scheme the function and the circuit C to compute it are both randomly generated
during encryption and so are not public. Moreover, the garbled circuit Ĉb (ciphertext) is only
used for decryption and does not need to be verified at all, so C can contain non-standard logic
gates (other than AND, OR, NOT, NAND and NOR). This also makes it easier to hide the
information of C through Yao’s garbled circuit scheme.

In addition, notice that Yao’s garbled circuit scheme requires a private key encryption
scheme, while our new scheme does not. Ĉb contains the encoding table of v, so any one
who obtains Ĉb can compute Ĉb(v) for any v. This results in the fact that private key encryp-
tion scheme is no longer needed when garbling C. In other words, each garbled logic gates in
Ĉb is in fact its truth table represented by the encoding corresponding to the input and output.
In particular, the truth tables may be incomplete since u is constrained to be ũ.

We highlight that the first construction of bit PKE scheme is a witness encryption (WE).
This result shows that WE scheme can also be based on the existence of OWF. Moreover, S.
Garge et al. in [13] presented ways to obtain non-black-box constructions of PKE and identity-
based encryption (IBE) and attribute-based encryption (ABE) from WE and OWF. Therefore,
combining the second construction with the results of [13], we can further obtain non-black-
box constructions of PKE, IBE and ABE from OWF.

1.2 About Witness Encryption

Witness encryption (WE), proposed by Garge et al. in 2013 [13], is a encryption scheme for
some NP language. In WE defined for L with NP relation RL, the encryption algorithm take
as inputs an instance x and a message to generates a ciphertext. A ciphertext relative to x can
be decrypted correctly using a witness w for x ∈ L (satisfying RL(x,w) = 1) and hides the
message when x /∈ L. WE is a powerful cryptographic primitive and can be used to construct
many other cryptographic schemes. Garge et al. in [13] show non-black-box constructions of
PKE, IBE and ABE from WE. Therefore, if it is possible to construct WE scheme from OWF,
then the results of [13] would show a possible way to construct PKE from OWF. However,
all known constructions of WE rely on stronger assumptions, and the works of [13, 15, 8]

4 Hongda Li, Peifang Ni, and Yao Zan

construct WE scheme from multilinear maps, and the work of [11] constructs WE scheme
from indistinguishability obfuscation (iO) [1].

1.3 Organization of the Paper

In section 2 we present notions that we need. Specifically, we detail a new garbled circuit
scheme (called as constrained-partial-input garbled circuit) which is essentially Yao’s garbled
circuit scheme but slightly changed. In section 3 we formally describe our PKE scheme and
proofs. Section 4 is an extension of section 3 and obtains a WE scheme for L ∈ NP from the
presented scheme.

2 Preliminaries

2.1 Notations and Assumptions.

Throughout the paper, λ is the security parameter. For any probabilistic polynomial time algo-
rithm A(·), we use y = A(x) or y ← A(x) to denote the output of A(x). For a set S, y ←R S
denotes that y is uniformly chosen from S. For L ∈ NP , L is the complement of L. A function
negl(·) is negligible if for any any polynomial p(·), negl(λ) < 1/p(λ) when λ is large enough.
We denote by poly(λ) an arbitrary polynomial.

Average hard NP problem. Let L be an NP language with witness relation RL. Assume there
exists a sampling algorithm S: (x,w) ← S(1λ), where |x| = `(λ), |w| = p(λ), such that
RL(x,w) = 1. Say that L is average hard if it is computationally impossible to distinguish
between x ∈ L and x ∈ L. It is well known that the existence of average hard NP problem
is equivalent to the existence of OWF. Here, for simplicity we assume that there exists a PPT
sampling algorithm S ′ on L, so L is average hard if for any PPT distinguisher D, it holds that∣∣∣∣ Pr

(x,w)←S(1λ)

[
D(1λ, x) = 1

]
− Pr
x←S′(1λ)

[
D(1λ, x) = 1

]∣∣∣∣ = negl(λ)

Levin reduction. Levin reduction from NP language L with NP relation RL to Γ with NP re-
lationRΓ consists of three computable functions π0 and (π1, π

′
1), denoted as π = (π0, π1, π

′
1),

satisfying:

1) y ∈ L⇔ π0(y) ∈ Γ ;
2) RL(y, w) = 1⇒ RΓ (π0(y), π1(y, w)) = 1;
3) RΓ (π0(y), w′) = 1⇒ RL(y, π

′
1(y, w

′)) = 1.

where |π0(y)| = poly(|y|), |π1(y, w)| = poly′(|y|) and poly, poly′ are any polynomials. It is
known that most of the known NPC language have Levin reduction from any NP language.

2.2 Public Key Encryption

Definition 1. An public key encryption scheme is a tuple of PPT algorithmΠ = (Gen,Enc,Dec),

– Key generation algorithm Gen: (pk, sk)← Gen(1λ), Gen takes as input security param-
eter λ and outputs a pair of key (pk, sk);

Public-Key Encryption from Average Hard NP Language 5

– Probabilistic encryption algorithm Enc: c ← Enc(pk,m), Enc takes as inputs public
key pk and a message m ∈M and outputs ciphertext c;

– Decryption algorithm Dec: m′ = Dec(sk, c), Dec takes as input private key sk and a
ciphertext c and outputs m′.

And it satisfies the following properties:
Correctness. For any message m, it is holds that

Pr[m = m′ : (pk, sk)← Gen(1λ); c← Enc(pk,m);m′ = Dec(sk, c)] ≥ 1− negl(λ)

Chosen plaintext attack (CPA): Let Π = (Gen,Enc,Dec) be PKE scheme. For any adver-
sary A, define CPA experiment ExptCPA

A,Π as follows:

ExptCPA
A,Π(1λ, b):

– The challenger computes (pk, sk)← Gen(1λ) and then sends pk to A;
– A randomly selects two message m0,m1 from message space M and sends to challenger;
– The challenger computes c← Enc(pk,mb) and sends c to A;
– A returns b′;
– ExptCPA

A,Π(1λ) = b′.

A’s advantage is defined as follows:

AdvCPA
A,Π(λ) =

∣∣Pr [ExptCPA
A,Π(1λ,m0) = 1

]
− Pr

[
ExptCPA

A,Π(1λ,m1) = 1
]∣∣

Specifically, if we focus on bit encryption, that isM = {0, 1}, the advantage ofA is as follows:

AdvCPA
A,Π(λ) =

∣∣∣∣∣ Pr
pk,Enc
A

[
A(1λ, pk, Enc(pk, 0)) = 1

]
− Pr

pk,Enc
A

[
A(1λ, pk, Enc(pk, 1)) = 1

]∣∣∣∣∣
Definition 2. (CPA secure) Assume Π = (Gen,Enc,Dec) is a PKE scheme. Say Π is CPA
secure, if for any PPT adversary A, AdvCPA

A,Π(λ) is negligible.

2.3 Witness Encryption

Definition 3. ([13]) An witness encryption scheme for an NP language L with NP relation R
consists of the following two polynomial-time algotithms:

– Encryption algorithm Encrypt: c← Encrypt(1λ, x,m), Encrypt takes as input a secu-
rity parameter 1λ, an instance x and a message m ∈M , and outputs ciphertext c;

– Decryption algorithm Decrypt: Decrypt(c, w) = m′/⊥, Dec takes as input a ciphertext
c and an string w, and outputs m′ or the symbol ⊥.

satisfying the following two conditions:

– Correctness. For any message m and any x ∈ L such that R(x,w) = 1, it is holds that

Pr[m = m′ : c← Encrypt(1λ, x,m);m′ = Decrypt(w, c)] ≥ 1− negl(λ)

– Soundness Security. For any x /∈ L, any PPT adversary A and two messages m0,m1, it
is holds that∣∣Pr[A(Encrypt(1λ, x,m0)) = 1]− Pr[A(Encrypt(1λ, x,m1)) = 1]

∣∣ < negl(λ)

6 Hongda Li, Peifang Ni, and Yao Zan

2.4 Garbled Circuits

In this section, we present a new garbled circuits scheme, known as garbled circuit scheme with
constrained-input. Garbled circuit was first presented by Yao [23], and has been formalized by
Bellare et al. [5]. Yao’s garbled circuit is used for secure two-party computation in where both
parties wish to carry out a joint computation of a shared function without disclosing their
private input. The scenario and security requirements we consider in the paper are different
from secure two-party computation.

Let C be a circuit that takes as input (u, v) ∈ {0, 1}` ×{0, 1}p and outputs z = C(u, v) ∈
{0, 1}o.C is a directed acyclic graph that has s = `+p input vertices (with no incoming edges)
and o output vertices (with no outgoing edges and one incoming edge). All other vertices are
logical operation gate, including OR gate, AND gate and NOT gate (corresponding to logical
operator ∨,∧,¬ respectively). We can assume, without loss of generality, that the outgoing
edges of all NOT gates are only connected to AND or OR gates, and there is no output vertex
whose incoming edge come from some input vertex.

The reason why we divide the input ofC into two parts is that they are dealt with differently.
In short, we will garble C for a given ũ such that one can obtain C(ũ, v) using the garbled
circuit for any v. Specifically, for any given ũ we generate garbled circuit Ĉ under constrained-
input u = ũ, and require that there exists an algorithm Eval such that Eval(Ĉ, v) = C(ũ, v)
for any v.

In this paper, the construction of circuit C is related to an average hard NP language. To be
a little more specific, for an average hard NP language L with NP relation RL and sampling
algorithms S,S ′, we construct a function Ψ(u, v) by randomizing NP relationRL, and then let
C be a randomly selected circuit computing Ψ(u, v), that is, C(u, v) = Ψ(u, v). To garble C,
we first determine an instance x̃ and then obtain constrained-input ũ. Garbled circuit Ĉ under
constrained-input u = ũ can be used to compute Ψ(ũ, v). To meet the need of constructing
PKE scheme from average hard NP problem, we furthermore require that Ĉ with constrained-
input ũ can hide ũ.

To achieve this aim, we need to formally eliminate all NOT gates in C by introducing
composite gates. In detail, for any OR or AND gate g in C, assume that its two incoming edges
are from vertices g′ and g′′ corresponding to the first and second inputs of g respectively, do as
follows:

– If one of g′ and g′′ is NOT gate, such as g′ (or g′′), define composite logical g∗: g∗(a, b) =
g(a, b) (or g∗(a, b) = g(a, b)), replace g with composite logical gate g∗ and eliminate
NOT gate g′ (or g′′) (see Fig. 1);

– If g′ and g′′ are all NOT gate, define composite logical g∗: g∗(a, b) = g(a, b) (in fact, if g
is a OR or AND gate, then g∗ is a NAND or NOR gate), replace g with composite logical
gate g∗ and eliminate NOT gates g′ and g′′ (see Fig. 2).

Public-Key Encryption from Average Hard NP Language 7

ġ

¬ g′′

g

ġ

g′′

g∗

ġ g̈

¬ ¬

g

ġ g̈

g∗

Fig. 1 Fig. 2

Obviously, there are six different kinds of composite logic gates (including NAND, NOR),
denoted as ∨1,∨2,∨3 and ∧1,∧2,∧3, where

a ∨1 b = a ∨ b , a ∨2 b = a ∨ b , a ∨3 b = a ∨ b

a ∧1 b = a ∧ b , a ∧2 b = a ∧ b , a ∧3 b = a ∧ b

In the following, let’s assume that the circuit C consists of 8 different logic gates (∨,∧, and 6
composite gates). For simplicity, we use a symbol ∗� to denote any composite logic gates.

2.4.1 Garbling Circuit Scheme
Let C be a circuit that takes as input (u, v) ∈ {0, 1}` × {0, 1}p and outputs z = C(u, v) ∈
{0, 1}o. C contains s = `+ p input vertices V1 = In1, · · · , Vs = Ins, and t logical gate ver-
tices Vs+1, · · · , Vs+t labeled logical operations gs+1 ∈ {∨,∧, ∗�}, · · · , gs+t ∈ {∨,∧, ∗�} re-
spectively, and o output vertices Vs+t+1 = Out1, · · · , Vs+t+o = Outo. On inputting (u, v) ∈
{0, 1}` × {0, 1}p, C computes and outputs C(u, v) ∈ {0, 1}o. Following the ideal of Yao’s
garbled circuits, we define an algorithmGarble to garble C with constrain-input u = ũ, where
ũ = ũ1 · · · ũ` ∈ {0, 1}` is given.

Garbling algorithm: Garble

On inputting (ũ, C, ρ) and security parameter 1λ, where ρ ∈ {0, 1}p, Garble(ũ, C, ρ; 1λ)
proceeds as follows:

1. Randomly select σ = σ1 · · ·σp ∈ {0, 1}p and s + t + o pairs of key {(K0
i ,K

1
i)}

s+t+o
i=1

(requiring K0
i 6= K1

i), where Kb
i ∈ {0, 1}λ is as the encoding of b (b = 0, 1). Assign

K ũi
i to input vertex Ini and its outgoing edge (i = 1, · · · , `), and (K

σj
`+j ,K

1−σj
`+j) to input

vertex In`+j and its outgoing edge, j = 1, · · · , p. E =
{(
K0
`+j ,K

1
`+j

)}p
j=1

is called

the original encoding table and D =
{(

0,K0
s+t+i

)
,
(
1,K1

s+t+i

)}o
i=1

is call the decoding
table.

2. Generate all garbled logical gates, i.e. garbled computation tables for Vk (k = s+1, · · · , s+
t), gate by gate.

8 Hongda Li, Peifang Ni, and Yao Zan

– For any k ∈ {s+ 1, · · · , s+ t}, assume Vk’s two incoming edges are from Vi and Vj
and Vi, Vj have been assigned. According to the assignment of Vi, Vj , it can be done
as follows:
• Vi is assigned Ka

i and Vj is assigned Kb
j . Vk’s garbled computation table V̂k is as

follows:
Vi Vj Vk

1 Ka
i Kb

j K
gk(a,b)
k

and Vk and its outgoing edges are assigned Kgk(a,b)
k ;

• Vi is assignedKa
i and Vj is assigned (Kb

j ,K
1−b
j). When gk(a, b) = gk(a, 1−b) =

c, Vk’s garbled computation table V̂k is as follows:

Vi Vj Vk

1 Ka
i Kb

j Kc
k

2 Ka
i K1−b

j Kc
k

and Vk with its outgoing edges are assigned Kc
k. When c = gk(a, b) 6= gk(a, 1−

b), Vk’s garbled computation table V̂k is as follows:

Vi Vj Vk

1 Ka
i Kb

j Kc
k

2 Ka
i K1−b

j K1−c
k

Vk and its outgoing edge are assigned (Kc
k,K

1−c
k), where c = gk(a, b);

• Vi is assigned (Ka
i ,K

1−a
i) and Vj is assignedKb

j . When gk(a, b) = gk(1−a, b) =
c, Vk’s garbled computation table V̂k is as follows:

Vi Vj Vk

1 Ka
i Kb

j Kc
k

2 K1−a
i Kb

j Kc
k

and Vk with its outgoing edges are assigned Kc
k. When c = gk(a, b) 6= gk(1 −

a, b), Vk’s garbled computation table V̂k is as follows:

Vi Vj Vk

1 Ka
i Kb

j Kc
k

2 K1−a
i Kb

j K1−c
k

Vk and its outgoing edge are assigned (Kc
k,K

1−c
k), where c = gk(a, b);

• Vi is assigned (Ka
i ,K

1−a
i) and Vj is assigned (Kb

j ,K
1−b
j). Vk’s garbled compu-

tation table V̂k is as follows:
Vi Vj Vk

1 Ka
i Kb

j K
gk(a,b)
k

2 Ka
i K1−b

j K
gk(a,1−b)
k

3 K1−a
i Kb

j K
gk(1−a,b)
k

4 K1−a
i K1−b

j K
gk(1−a,1−b)
k

Public-Key Encryption from Average Hard NP Language 9

Vk and its outgoing edges are assigned (Kc
k,K

1−c
k), where c = gk(a, b).

– For k ∈ {s+ t+1, · · · , s+ t+ o}, Vk is output vertex. Assume Vk’s incoming edges
are from Vi. Vk is assigned Ka

k or (Ka
k ,K

1−a
k) if Vi is assigned Ka

i or (Ka
i ,K

1−a
i).

3. Use K ũ to denote the encoding of ũ, that is, K ũ =
(
K ũ1

1 , · · · ,K ũ`
`

)
. Let

Ê =
{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

=
{(
K
ρj
`+j ,K

1−ρj
`+j

)}p
j=1

meaning K̂b
`+j (j = 1, · · · , p) will be treated as the encoding of b. Ê is called the encoding

table of Ĉ.
4. Output garbled circuit Ĉ =

{
K ũ, Ê, {V̂k}s+t+ok=s+1, D

}
, that is

Ĉ =
{
K ũ, Ê, {V̂k}s+tk=s+1, D

}
← Garble(ũ, C, ρ; 1λ)

Note that our garbled circuits is slightly different in form from Yao’s (see appendix A
for details of Yao’s garbled circuit). First of all, Yao’s garbled circuits requires an encryption
scheme to encrypt the garbled computation table, while our garbled circuits does not; Second,
some garbled computation tables in garbled circuit Ĉ are incomplete since the input vertex Ini
is only assigned K ũi , i = 1, · · · , `, that is, u is limited to be ũ; Third, Yao’s garbled circuit
requires a private encoding table, and in our garbled scheme, although the encoding table Ê ={(
K̂0
`+j , K̂

1
`+j

)}p
j=1

is public, but the relationship between Ê and the original encoding table

E, i.e. the randomly selected ρ = ρ1 · · · ρp implied by the relation
{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

={(
K
ρj
`+j ,K

1−ρj
`+j

)}p
j=1

, is not public.

Let Ĉ ← Garble(ũ, C, ρ; 1λ) (call it constrained-partial-input garbled circuit for C). Ĉ
is actually the encoded representation of C(u, v) when fixing u = ũ. So, Ĉ can be used to
compute C(ũ, v ⊕ ρ) for any v ∈ {0, 1}p. To this end, we define the algorithm Eval(Ĉ, w)

which, on inputting ỹ and any v ∈ {0, 1}p, compute C(ũ, w ⊕ ρ). The algorithm Eval(Ĉ, v)
is follows:

Eval(Ĉ, v)

On inputting w ∈ {0, 1}p and Ĉ, Eval(Ĉ, v) completes:
1) Interpret Ĉ =

{
K ũ, Ê, {V̂k}s+t+ok=s+1, D

}
, where K ũ =

(
K ũ1

1 , · · · ,K ũ`
`

)
,

Ê =
{
(K̂0

`+j , K̂
1
`+j)

}p
j=1

, D =
{(

0,K0
s+t+i

)
,
(
1,K1

s+t+i

)}o
i=1

2) Let K̂v = (K̂v1
`+1, · · · , K̂

vp
`+p) = (Kv1⊕ρ1

`+1 , · · · ,Kvp⊕ρp
`+p). (K̂v is the encoding of

v corresponding to Ê)
3) Use (K ũ, K̂v) to compute all the garbled gates Vs+1, · · · , Vs+t, gate by gate,

by checking the corresponding garbled computation tables and then obtain the
values assigned to the output vertices Vs+t+1, · · · , Vs+t+o. Assume the value of
the output vertex Vs+t+i is Kai

s+t+i, i = 1, · · · , o.
4) Obtain a1, · · · , ao by checking D and let Eval(w, Ĉ) = a1 · · · ao.

10 Hongda Li, Peifang Ni, and Yao Zan

Obviously, since K̂v = (Kv1⊕ρ1
`+1 , · · · ,Kvp⊕ρp

`+p) is actually the encoding of v ⊕ ρ, it holds

that Eval(Ĉ, v) = C(ũ, v ⊕ ρ). For convenience, we use Ĉ(v) to denote Eval(Ĉ, v), that is,
Ĉ(v) = Eval(Ĉ, v).

2.4.2 Hiding Property
Unlike Yao’s garbled circuits used for secure two-party computation, our garbled circuits are
used to build public-key encryption scheme, so the required security is also different from the
security of Yao’s garbled circuits, specifically, it requires that Ĉ ← Garble(ũ, C, ρ; 1λ) can
hide ũ and ρ. Obviously, if C is public, Ĉ ← Garble(ũ, C, ρ; 1λ) is unlikely to hide ũ and ρ.
However, when C is not public, that is, the truth tables of the logic gates in C are kept secret,
Ĉ ← Garble(ũ, C, ρ; 1λ) can hide ũ and ρ. In other words, it is impossible to obtain ũ and ρ
from Ĉ ← Garble(ũ, C, ρ; 1λ) without knowing C.

First, it is completely impossible to get (ũ, ρ) by computing Ĉ(w) = Eval(Ĉ, w) =
C(ũ, w ⊕ ρ), because C(ũ, v) doest not reveal any information about (ũ, v) when C is un-
known.

Second, {V̂k}s+t+ok=s+1 andD in Ĉ (i.e. Ĉ =
{
K ũ, Ê, {V̂k}s+t+ok=s+1, D

}
← Garble(ũ, C, ρ; 1`))

do not reveal ũ and ρ. Clearly, Garble "encrypts" the truth table of each logical gate gk in C
by encoding the inputs and output respectively as random keys, that is, the garbled logical gate
for V̂k in Ĉ is the encrypted truth table of gk and is a garbled computation table. To indicate
the relationship with gk, we denote V̂k by ĝk below. There are six types of garbled computation
tables, one is complete and five are incomplete. A complete garbled computation table ĝk is as
follows:

Table 1 ĝk
Vi Vj Vk

1 Ka
i Kb

j Kc1
k = K

gk(a,b)
k

2 Ka
i K1−b

j Kc2
k = K

gk(a,1−b)
k

3 K1−a
i Kb

j Kc3
k = K

gk(1−a,b)
k

4 K1−a
i K1−b

j Kc4
k = K

gk(1−a,1−b)
k

An incomplete garbled computation table is a part of ĝk and has the following three forms:

Vi Vj Vk
1 Ka

i Kb
j Kc

k

Vi Vj Vk
1 Ka

i Kb
j Kc

k

2 K1−a
i Kb

j Kc
k

Vi Vj Vk
1 Ka

i Kb
j Kc

k

2 K1−a
i Kb

j K1−c
k

If each garbled computation table ĝk in Ĉ hides the truth table of gk, then Ĉ does not leak
ũ and ρ. Obviously, if any complete garbled computation table ĝk (as given in Table 1) does
not leak the truth table of gk (that is, a, b, c), then any incomplete garbled computation table
will not. Therefore, to show Ĉ ← Garble(ũ, C, ρ; 1λ) will not leak ũ and ρ, we only need to
prove that any complete garbled computation table ĝk (as given in Table 1) in Ĉ will not leak
(a, b, c).

Public-Key Encryption from Average Hard NP Language 11

For a given ĝk, there exist c ∈ {0, 1}, such that only one of c1, c2, c3 and c4 equals c, the
others are 1 − c. The fact that ĝk does not leak (a, b, c) means that a and b can be 1 or 0,
respectively, regardless of which one of c1, c2, c3, c4 equals c and c = 0 or c = 1. Notice that
Garble picks randomly σ = σ1 · · ·σp and assigns (K

σj
`+j ,K

1−σj
`+j) to In`+j (j = 1, · · · , p)

and its outgoing edge. This means that the order of ĝk does not reveal a and b. So, the only thing
that can be obtained from ĝk is which one of the c1, c2, c3, c4 is equal to c. This means that for
a given ĝk, gk could be any one of the 8 possible logical gates (∨,∧ and six composite logical
gates), corresponding to 8 different sets of values for (a, b, c). In particular, if c is public, gk can
be any of the 4 possible logic gates (when c = 0, the 4 possible logic gates are ∨,∨1,∨2,∨3;
when c = 1, the 4 possible logic gates are ∧,∧1,∧2,∧3), corresponding to 4 different sets of
values for (a, b).

For example, when ĝk satisfies c2 = c and c1 = c3 = c4 = 1 − c, a and b can take any
value, and different values correspond to different logic gates. Specifically, when c = 1, the
four different sets of values for (a, b) correspond four different (composite) logical gates, as
shown in the following table (Table 2):

Table 2 Value of (a, b) and corresponding gk
a b gk c2 = gk(a, 1− b) c1 = c3 = c4

1 0 0 gk(a, b) = a ∧ b 1 0
2 0 1 gk(a, b) = a ∧ b 1 0
3 1 0 gk(a, b) = a ∧ b 1 0
4 1 1 gk(a, b) = a ∧ b 1 0

When c = 0, the four different sets of values for (a, b) and the corresponding (composite)
logical gate gk are shown in the following table (Table 3):

Table 3 Value of (a, b) and corresponding gk
a b gk c2 = gk(a, 1− b) c1 = c3 = c4

1 0 0 gk(a, b) = a ∨ b 0 1
2 0 1 gk(a, b) = a ∨ b 0 1
3 1 0 gk(a, b) = a ∨ b 0 1
4 1 1 gk(a, b) = a ∨ b 0 1

Ĉ ← Garble(ũ, C, ρ; 1λ) hides the constrained input ũ and the encoding of input v (i.e. ρ)
when C is secret, but it reveals the topology (how gates are connected up) and size (number of
gates) of C and have the functionality of C, that is, Ĉ(w) = C(ũ, w ⊕ ρ) for any w. So, the
following claims hold.

Claim 1 Let C : {0, 1}`+p → {0, 1}o and u0, u1 ∈ {0, 1}`. Ĉσ ← Garble(ũσ, C, ρ; 1
λ),

σ = 0, 1. For any PPT algorithm D, it holds that∣∣∣∣PrD [D(u0, u1, Ĉσ) = σ
]
− 1

2

∣∣∣∣ = negl(λ) (1)

That is, (u0, u1, Ĉ0) and (u0, u1, Ĉ1) are indistinguishable.

12 Hongda Li, Peifang Ni, and Yao Zan

Proof. Let s = `+ p and assume that C has t logical gates. By the definition,

Ĉσ =
{
Kuσ , Ê, {V̂k}s+t+ok=s+1, D

}
← Garble(uσ, C, ρ; 1

`)

where
Kuσ =

(
K
uσ,1
1 , · · · ,Kuσ,`

`

)
Ê =

{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

=
{(
K
ρj
`+j ,K

1−ρj
`+j

)}p
j=1

Let µ = µ1 · · ·µ` = u0⊕u1. Define circuitC ′ by adding some "NOT" gates onC, specifically,
adding a NOT gate (¬) on the outgoing edge of the input vertex Vi when µi = 1, i = 1, · · · , `.
Obviously, we have that

C ′(u, v) = C(u⊕ µ, v) (2)

It is important to emphasize that C ′ and C are the same size and have the same topology
(because of the use of composite logic gates). Furthermore, it follows from Equation (2) that if
we reinterpret Kuσ,i

i (the encoding of uσ,i) as Ku1−σ,i
i (the encoding of u1−σ,i), i = 1, · · · , `,

(i.e. interpret Kuσ as Ku1−σ), then Ĉσ is actually a garbled circuit of C ′ with the constrained-
input u = u1−σ .

In fact, interpreting Kuσ as Ku1−σ is only related to the logic gates vertices where at
least one input comes from the input nodes V1, · · · , V`. Let Vk be the logical gate vertex, the
corresponding logical gate is gk, and the two inputs are from the nodes Vi and Vj . Here, we use
ĝk to denote the garbled computation table V̂k. When i, j ≤ `, Vi, Vj are assignedKuσ,i

i ,K
uσ,j
j ,

respectively, and the garbled computation table ĝk is shown in Table 4. When only one of i, j is
greater than `, for example j > `, Vi is assigned Kuσ,i

i and Vj is assigned (Kb1
j ,K

b2
j) (where

b1 6= b2 or b1 = b2,), so ĝk is shown in Table 5 (when b1 = b2, ignore the second line):

Table 4 ĝk (when i, j ≤ `)
Vi Vj Vk

1 Kuσ,i
i K

uσ,j
j Kc1

k = K
gk(uσ,i,uσ,j)
k

Table 5 ĝk (when i ≤ `, j > `)

Vi Vj Vk

1 Kuσ,i
i Kb1

j Kc1
k = K

gk(uσ,i,b1)
k

2 Kuσ,i
i Kb2

j Kc2
k = K

gk(uσ,i,b2)
k

(Here, b1 = b2 or b1 = 1⊕ b2)

When Kuσ,i is reinterpreted as Ku1−σ,i and the output encoding Kc1
k remains unchanged

(meaning that c1, c2 remain unchanged in Table 5), the garbled computation tables (Table 4
and Table 5) will be rewritten as follows, respectively:

Table 6 ĝk (when i, j ≤ `)
(replace Kuσ,i

i with Ku1−σ,i
i)

Vi Vj Vk

1 Ku1−σ,i
i K

u1−σ,j
j Kc1

k = K
gk(u1−σ,i⊕µi,u1−σ,j⊕µj)
k

Table 7 ĝk (when i ≤ `, j > `)
(replace Kuσ,i

i with Ku1−σ,i
i)

Vi Vj Vk

1 Ku1−σ,i
i Kb1

j Kc1
k = K

gk(u1−σ,i⊕µi,b1)
k

2 Ku1−σ,i
i Kb2

j Kc2
k = K

gk(u1−σ,i⊕µi,b2)
k

Public-Key Encryption from Average Hard NP Language 13

It is easy to see that after Kuσ,i is reinterpreted as Ku1−σ,i (while not changing the output of
Vk), ĝk becomes the garbled computation table for g∗k defined by g∗k(a, b) = gk(a ⊕ µi, b).
Therefore, when we reinterpret Kuσ,i as Ku1−σ,i for i = 1, · · · , `, i.e. reinterpret Kuσ as
Ku1−σ , Ĉk is actually a garbled circuit of C ′ with the constrained-input u = u1−σ . In oth-
er words, Ĉσ can be reinterpreted as Ĉσ ← Garble(ũ1−σ, C

′, ρ; 1λ). It follows that get-
ting σ from (u0, u1, Ĉσ) is equivalent to guessing which of Cσ ← Garble(uσ, C, ρ; 1

λ) and
Cσ ← Garble(u1−σ, C

′, ρ; 1λ) holds, while when C is secret, the latter is obviously impossi-
ble (because C ′ and C are the same size and have the same topology). This argument implies
that it must be impossible to get b only from (u0, u1, Ĉb ← Garble(ub, C, ρ; 1

`)) when C is
unknown. That is, Equation (1) holds.

Claim 2 Let C : {0, 1}`+p → {0, 1}o and ũ ∈ {0, 1}`. Ĉσ ← Garble(ũ, C, ρ(σ); 1λ), where
ρ(σ) = ρ

(σ)
1 · · · ρ

(σ)
p ∈ {0, 1}p is randomly selected, σ = 0, 1. For any PPT algorithm D, it

holds that ∣∣∣∣PrD [D(ρ(0), ρ(1), Ĉσ) = σ
]
− 1

2

∣∣∣∣ = negl(λ) (3)

That is, (ρ(0), ρ(1), Ĉ0) and (ρ(0), ρ(1), Ĉ1) are indistinguishable.

Proof. Similar to the proof of Claim 1.
Let s = `+ p and assume that C has t logical gates. By the definition,

Ĉσ =
{
Kuσ , Ê, {V̂k}s+t+ok=s+1, D

}
← Garble(ũ, C, ρσ; 1

`)

where

Ê =
{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

=

{(
K
ρ
(σ)
j

`+j ,K
1−ρ(σ)j

`+j

)}p
j=1

Let δ = δ1 · · · δp = ρ(0) ⊕ ρ(1). Define circuit C ′ as follows:

C ′(u, v) = C(u, v ⊕ δ) (4)

Obviously, C ′ can be obtained by adding some "NOT" gates on C, specifically, adding a NOT
gate (¬) on the outgoing edge of the input vertex V`+j when δj = 1, j = 1, · · · , p, so
C ′ and C are the same size and have the same topology because composite logic gates are

used. Furthermore, it follows that if we reinterpret
(
K̂0
`+j , K̂

1
`+j

)
=

(
K
ρ
(σ)
j

`+j ,K
1−ρ(σ)j

`+j

)
as(

K̂0
`+j , K̂

1
`+j

)
=

(
Kρ(1−σ)

`+j ,K
1−ρ(1−σ)j

`+j

)
for j = 1, · · · , p, then Ĉσ is actually a garbled

circuit of C ′ with the encoding table

Ê =
{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

=

{(
K
ρ
(1−σ)
j

`+j ,K
1−ρ(1−σ)j

`+j

)}p
j=1

In fact, let Vk be the logical gate vertex, the corresponding logical gate is gk, and the
two inputs are from the nodes Vi and Vj . For convenience, we use ĝk to denote the garbled
computation table V̂k. Below, we only consider the case of ` < i, j ≤ `+p, and it is completely
similar when only one of the i, j is greater than ` but not more than s = ` + p, so the details
are omitted.

14 Hongda Li, Peifang Ni, and Yao Zan

When both Vi and Vj are input vertices and i, j > `, the garbled computation table ĝk in
Ĉσ for gk is shown in Table 8:

Table 8 ĝk
Vi Vj Vk

1 K
ρ
(σ)
i
i K

ρ
(σ)
j

j Kc1
k = K

gk

(
ρ
(σ)
i ,ρ

(σ)
j

)
k

2 K
ρ
(σ)
i
i K

1−ρ(σ)j

j Kc2
k = K

gk

(
ρ
(σ)
i ,1−ρ(σ)j

)
k

3 K1−ρ(σ)i
i K

ρ
(σ)
j

j Kc3
k = K

gk

(
1−ρ(σ)i ,ρ

(σ)
j

)
k

4 K1−ρ(σ)i
i K

1−ρ(σ)j

j Kc4
k = K

gk

(
1−ρ(σ)i ,1−ρ(σ)j

)
k

When we replace
(
K
ρ
(σ)
i

`+i ,K
1−ρ(σ)i

`+i

)
with

(
K
ρ
(1−σ)
i

`+i ,K
1−ρ(1−σ)i

`+j

)
and do not changeKc1

k ,K
c2
k ,K

c3
k ,K

c4
k ,

ĝk will be rewritten as follows and denoted as ĝ∗k:

Table 9 ĝ∗k
Vi Vj Vk

1 K
ρ
(1−σ)
i
i K

ρ
(σ)
j

j Kc1
k = K

gk

(
ρ
(1−σ)
i ⊕δi,ρ(σ)j

)
k

2 K
ρ
(1−σ)
i
i K

1−ρ(σ)j

j Kc2
k = K

gk

(
ρ
(1−σ)
i ⊕δi,1−ρ(σ)j

)
k

3 K1−ρ(1−σ)i
i K

ρ
(σ)
j

j Kc3
k = K

gk

(
1−ρ(1−σ)i ⊕δi,ρ(σ)j

)
k

4 K1−ρ(1−σ)i
i K

1−ρ(σ)j

j Kc4
k = K

gk

(
1−ρ(1−σ)i ⊕δi,1−ρ(σ)j

)
k

It is easy to see that ĝ∗k (rewritten ĝk) is the the garbled computation table for g∗k defined by

g∗k(a, b) = gk(a⊕δi, b). In other words, if we reinterpret
(
K̂0
`+i, K̂

1
`+i

)
=

(
K
ρ
(σ)
i

`+i ,K
1−ρ(σ)i

`+i

)
as
(
K̂0
`+i, K̂

1
`+i

)
=

(
K
ρ
(1−σ)
i

`+i ,K
1−ρ(1−σ)i

`+i

)
, the garbled computation table ĝk becomes the

garbled computation table for g∗k.

Similarly, if we reinterpret
(
K
ρ
(σ)
i

`+i ,K
1−ρ(σ)i

`+i

)
as
(
K
ρ
(1−σ)
i

`+i ,K
1−ρ(1−σ)i

`+i

)
and

(
K
ρ
(σ)
j

`+j ,K
1−ρ(σ)j

`+j

)
as
(
K
ρ
(1−σ)
j

`+j ,K
1−ρ(1−σ)j

`+j

)
, the garbled computation table ĝk becomes the garbled computation

table for g∗k defined by g∗k(a, b) = gk(a⊕ δi, b⊕ δj).

Therefore, if we reinterpret
(
K̂0
`+j , K̂

1
`+j

)
=

(
K
ρ
(σ)
j

`+j ,K
1−ρ(σ)j

`+j

)
as
(
K̂0
`+j , K̂

1
`+j

)
=(

Kρ(1−σ)

`+j ,K
1−ρ(1−σ)j

`+j

)
for j = 1, · · · , p, then Ĉσ is actually a garbled circuit of C ′ with the

encoding table

Ê =
{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

=

{(
K
ρ
(1−σ)
j

`+j ,K
1−ρ(1−σ)j

`+j

)}p
j=1

Public-Key Encryption from Average Hard NP Language 15

In other words, Ĉσ can be interpreted as Cσ ← Garble(u,C ′, ρ(1−σ); 1λ). Therefore, extract-
ing σ from (ρ(0), ρ(1), Ĉσ) is equivalent to guessing which of Cσ ← Garble(u,C, ρ(σ); 1λ)
and Cσ ← Garble(u,C ′, ρ(1−σ); 1λ) holds, while the latter is impossible when C is secret, so
extracting σ from (ρ(0), ρ(1), Ĉσ) is also impossible. That is, Equation (3) holds.

Claim 3 Let C : {0, 1}`+p → {0, 1}o and u0, u1 ∈ {0, 1}`. Ĉσ ← Garble(uσ, C, ρ
(σ); 1λ),

where ρ(σ) = ρ
(σ)
1 · · · ρ

(σ)
p is randomly selected, σ = 0, 1. For any PPT algorithm D, it holds

that ∣∣∣∣PrD [D((u0, ρ(0)), (u1, ρ(1)), Ĉσ) = σ
]
− 1

2

∣∣∣∣ = negl(λ) (5)

That is, ((u0, ρ(0)), (u1, ρ(1)), Ĉ0) and ((u0, ρ
(0)), (u1, ρ

(1)), Ĉ1) are indistinguishable.

Proof. Similar to the proofs of Claim 1 and Claim 2.
Let s = `+ p and assume that C has t logical gates. By the definition,

Ĉσ =
{
Kuσ , Ê, {V̂k}s+t+ok=s+1, D

}
← Garble(ũ, C, ρσ; 1

`)

where
Kuσ =

(
K
uσ,1
1 , · · · ,Kuσ,`

`

)
Ê =

{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

=

{(
K
ρ
(σ)
j

`+j ,K
1−ρ(σ)j

`+j

)}p
j=1

Let µ = µ1 · · ·µ` = u0 ⊕ u1, δ = δ1 · · · δp = ρ(0) ⊕ ρ(1). Define circuit C ′ as follows:

C ′(u, v) = C(u⊕ µ, v ⊕ δ) (6)

Obviously, C ′ can be obtained by adding some "NOT" gates on the outgoing edge of the input
vertex of C, so C ′ and C are the same size and have the same topology.

From the proofs of Claim 1 and Claim 2, it follows that if we reinterpret Kuσ,i as Ku1−σ,i

for i = 1, · · · , `, and reinterpret
(
K̂0
`+j , K̂

1
`+j

)
=

(
K
ρ
(σ)
j

`+j ,K
1−ρ(σ)j

`+j

)
as
(
K̂0
`+j , K̂

1
`+j

)
=(

Kρ(1−σ)

`+j ,K
1−ρ(1−σ)j

`+j

)
for j = 1, · · · , p, then Ĉσ is actually a garbled circuit of C ′ with the

constrained-input u1−σ and the encoding table

Ê =
{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

=

{(
K
ρ
(1−σ)
j

`+j ,K
1−ρ(1−σ)j

`+j

)}p
j=1

In other words, Ĉσ can be interpreted as Cσ ← Garble(u1−σ, C
′, ρ(1−σ); 1λ). Therefore, get-

ting σ from ((u0, ρ
(0)), (u1, ρ

(1)), Ĉσ) is equivalent to guessing which ofCσ ← Garble(uσ, C, ρ
(σ); 1λ)

and Cσ ← Garble(u1−σ, C
′, ρ(1−σ); 1λ) holds, while the latter is impossible when C is se-

cret. Therefore, getting σ from ((u0, ρ
(0)), (u1, ρ

(1)), Ĉσ) is also impossible, that is, Equation
(5) holds. The claim thus follows.

3 PKE from Average Hard Language

We focus on bit encryption scheme, since the existence of one bit encryption is sufficient to
construct PKE schemes for messages of arbitrary length.

16 Hongda Li, Peifang Ni, and Yao Zan

3.1 Basic Idea

Let L be an average hard NP language with NP relation RL and sampling algorithms S on L.
PKE schemes based on L use an instance x ∈ L and its corresponding witness w as public key
and private key, respectively. Before giving the presented schemes, we first sketch the basic
idea of constructing PKE scheme.

Let (x,w)← S(1λ). Clearly, L is average hard means that to search a witness w for x ∈ L
(satisfying RL(x,w) = 1) must be hard. This further implies that, if only black-box access
is allowed, no PPT algorithm (without holding x’s witness) can distinguish f1(u) = R(x, u)

and f0(u) ≡ 0. Therefore, if we can construct circuits, denoted as Ĉb (b = 0, 1), from x, such
that Ĉb(u) = fb(u) and obtaining Ĉb is equivalent to black-box access to Ĉb, then Ĉb can
be used as the ciphertext of b. With this motivation in the mind, we can naturally recall VBB
obfuscator defined by Barak in [1]. Specifically, if there exists an VBB obfuscator, denoted
by O, PKE scheme based on L is very simple: for (x,w) ← S(1λ), set (pk, sk) = (x,w),
compute cb = O(fb) when encrypting b and compute b′ = cb(sk) when decrypting cb. Clearly,
the correctness and security of the scheme are respectively derived from the functionality and
VBB property of O.

Unfortunately, VBB obfuscator is too strong and does not exist even if OWF exists. But
based on this observation, we can get a new strategy of constructing PKE from average hard
NP language L, described as follows:

For (x,w) ← S(1λ), construct random (garbled) circuits Ĉb (b = 0, 1) just based on the
average hardness of L, satisfying the following conditions:
1) When RL(x,w) = 1, Ĉb(w) = b (correctness);
2) The circuit Ĉb itself will not reveal b, that is, Ĉ0 and Ĉ1 are computationally indistin-

guishable (security).

Next, we will show how to generate such (garbled) circuits Ĉb for (x,w)← S(1λ). Briefly,
it can be divided into two steps:

First, we construct a random function Ψ by randomizing NP relation RL, and then select
a circuit C computing Ψ . Specifically, for (x,w) ← S(1λ), where |x| = `, |w| = p, we
randomly select α ∈ {0, 1}`, β ∈ {0, 1}p and then define a random algorithm Randomize to
generate circuit C. The details of Randomize is as follows.

Randomize(RL, α, β; 1
λ)

– Randomly select one-to-one function F , where F : {0, 1}` → {0, 1}`′ , `′ ≥ `.
– Define L′ ∈ NP as follows:

L′ = {y : ∃u, v, such that y = F (u), RL(u⊕ α, v ⊕ β) = 1}

Let RL′ be the corresponding NP relation.
– Randomly select NPC language Γ with NP relation RΓ , and let π = (π0, π1, π

′
1)

be Levin reduction from L′ to Γ . Consider the following function:

Ψ(u, v) = RΓ (π0(F (u)), π1(F (u), (u, v)))

– Select circuit C computing Ψ(u, v), that is, C(u, v) = Ψ(u, v).
– Output C.

Public-Key Encryption from Average Hard NP Language 17

For a given function Ψ , there are many circuits computing Ψ . If C to compute Ψ , it is not
difficult to obtain a new circuit, which is functionally equivalent to C, from C. For Example,
let C computes Ψ , we can first construct a circuit C ′ equivalent to C by adding a pair of NOT
gates on the one incoming edge of any logic gate in C (since ¬¬a = a), and then apply De
Morgan’s law to convert C ′ into its equivalent circuit C ′′, requiring C ′′ satisfies the following
requirement: the outgoing edges of all NOT gates are only connected to AND or OR gates, and
there is no output vertex whose incoming edge come from some input vertex. Obviously, C ′′

is functionally equivalent to C.
It is easy to see that Ψ(u, v) is closely related to RL. Specifically, since π = (π0, π1, π

′
1) is

Levin reduction from L′ to Γ , Ψ(u, v) satisfies the following three properties:

1) When RL(x,w) = 1, there must be Ψ(u, v) = 1 for u = x⊕ α, v = w ⊕ β.
(In fact, RL(x,w) = 1 means that (x⊕α,w⊕ β) is a witness of y = F (x⊕α) ∈ L′. So,
by the Levin reduction π, Ψ(x⊕ α,w ⊕ β) = 1.)

2) When Ψ(u, v) = 0, RL(x,w) = 0 holds for x = u⊕ α,w = v ⊕ β.
(In fact, although Ψ(u, v) = 0 does not implies π0(F (u)) /∈ Γ , it means that π1(F (u), (u, v))
is not a witness for π0(F (u)) ∈ Γ . This further means that (u, v) must not be a witness
for F (u) ∈ L′, that is, RL(x,w) = 0 for x = u⊕ α and w = v ⊕ β.)

3) When Ψ(u, v) = 1, there must be x = u⊕ α ∈ L.
(In fact, Ψ(u, v) = 1 means that π0(F (u)) ∈ Γ , so F (u) ∈ L′. That is, there exist v such
that RL(u⊕ α, v ⊕ β) = 1. This means x = u⊕ α ∈ L.)

Second, we construct Ĉb by a garbling algorithm. We briefly show how to generate Ĉb
for the given public key pk = (x, λ): (x,w) ← S(1λ), |x| = `, |w| = p. Assume that
C ← Randomize(RL, α, β; 1

λ), where α, β is randomly selected.C contains s = `′+p input
vertices V1, · · · , V`′+p, and t composite logical gate vertices Vs+1, · · · , Vs+t labeled logical
operations gs+1, · · · , gs+t, and one output vertices Vs+t+1. We can obtain Ĉb by garbling
C(u, v) with constrain-input u = ũ.

Let GenGC be the algorithm generating the garbled circuits Ĉb, the details of are as fol-
lows:

GenGC(x; 1λ)

– Randomly select x0 ∈ L: x0 ← S ′(1λ). Set x1 = x.
– Randomly select α ∈ {0, 1}`, β ∈ {0, 1}p.
– Let C ← Randomize(RL, α, β; 1

λ).
– Compute ũ = xb ⊕ α, and then garble C(u, v) with constraining u = ũ. That is,

let

Ĉb =

{
K ũ, Ê,

{
V̂k

}s+t+1

k=s+1
, D

}
← Garble

(
ũ, C, β; 1λ

)
where D =

{(
0,K0

s+t+1

)
,
(
1,K1

s+t+1

)}
and

K ũ =
{
K ũi
i

}`
i=1

, Ê =
{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

=
{(
K
βj
`+j ,K

1−βj
`+j

)}p
j=1

– Output Ĉb.

18 Hongda Li, Peifang Ni, and Yao Zan

Here, for simplicity we assume that S ′(1λ) is distributed on L, that is, Pr[S ′(1λ) ∈ L] = 1.
We show that Ĉb generated by GenGC meets the two requirements mentioned above.

1) Ĉb(w) reveals b when RL(x,w) = 1. In fact, from the construction of Ψ and the cor-
rectness of Garble, we have that

Ĉb(w) = Eval(Ĉb, w)

= C(ũ, w ⊕ β)
= C(F (xb ⊕ α), w ⊕ β)
= RΓ (π0(F (xb ⊕ α)), π1(F (xb ⊕ α), xb ⊕ α,w ⊕ β))

So, when RL(x1, w) = 1, Ĉ1(w) = 1 since ỹ = Fun(x1 ⊕ α) ∈ L′ and RL′(ỹ, (xb ⊕ α,w⊕
β)) = 1. In addition, x0 ∈ L means F (x0⊕α) /∈ L′ because F is one-to-one, thus also means
π0(F (xb ⊕ α) /∈ Γ , so Ĉ0(v) = 0 for any v.

2) Ĉb itself does not reveal b. In fact, Ĉb and Ĉ1−b are computationally indistinguishable,
and the proofs for this are given in Subsection 3.2 (i.e. the proof of theorem 1). Here we
only show that it is impossible to get b by computing Cb. When RL(x,w) = 0, Ĉ0(w) =

Ĉ1(w) ≡ 0, it means that it is impossible to get b by computing Ĉb unless there is w satisfying
RL(x,w) = 1. However, the assumption that L is average hard ensures that no adversary can
find w from Ĉ1 such that Ĉ1(w) = 1.

Assume, on the contrary, that there exists a PPT algorithm A which can find w, satisfying
Ĉ1(w) = 1, with a non-negligible probability ε, that is,

Pr[Ĉ1(w) = 1 : x← S(1λ), Ĉ1 ← GenGC(x; 1λ), w ← A(x, Ĉ1; 1
λ)] = ε

we can define PPT algorithm B which can find witness for x ∈ L with the same probability ε.
The details of B are as follows:

B(x; 1λ)

On inputting x and security parameter λ, B(x; 1λ) do:
– Randomly select α ∈ {0, 1}`, β ∈ {0, 1}p.
– Run Randomize(RL, α, β; 1λ), record F (one-to-one function) and π (Levin re-

duction from L′ to Γ) and finally obtain C ← Randomize(RL, α, β; 1
λ);

– Compute ũ = x⊕ α, and then garble C(u, v) with constrain-input u = ũ, i.e.

Ĉ1 ← Garble
(
ũ, C, β; 1λ

)
– Run A(x, Ĉ1; 1

λ) and obtain its return w: w ← A(x, Ĉ1; 1
λ);

– If w = ⊥ or Ĉ1(w) = 0, fail and stop;
– If Ĉ1(w) = 1, do as follows:
• Compute φ = π1(F (ũ), ũ, w ⊕ β);
• Set (u′, v′) = π′1(ũ, φ), where |u′| = `, |v′| = p.

– Output v = v′ ⊕ β.

Let ũ = x⊕ α. Obviously, when w (the return of A(Ĉ1)) satisfies Ĉ1(w) = 1, that is,

RΓ (π0(F (ũ)), π1(F (ũ), ũ, w ⊕ β)) = 1

Public-Key Encryption from Average Hard NP Language 19

This means that φ = π1(F (ũ), ũ, w ⊕ β) is the witness for z = π0(F (ũ)) ∈ Γ . From the
definition of Levin reduction π, it follows that (u′, v′) = π′1(ỹ, φ) is a witness for ỹ = F (ũ) ∈
L′, that is, (u′, v′) satisfies ỹ = F (u′) andRL(u′⊕α, v′⊕β) = 1. Notice that u′ = ũ = x⊕α
because F is one-to-one. So, RL(x, v′⊕ β) = RL(u

′⊕α, v′⊕ β) = 1. In other words, v′⊕ β
is the witness for x ∈ L. Therefore, we obtain

Pr[RL(x, v) = 1 : x← S(1λ), v ← B(x; 1λ)] = ε

This contradicts the assumption that L is average hard.

3.2 PKE Scheme I

3.2.1 Construction of PKE Scheme
Assume that L is an average hard NP language with NP relation RL and sampling algorithms
S on L and S ′ on L. In fact, it is sufficient for our PKE scheme to require Pr[S ′(1λ) /∈ L] ≤
negl(λ).

Our tool for constructing PKE schemes is garbled circuits with constrained-input, and the
security of PKE schemes depends on the hiding property of garbled circuits. Our first PKE
scheme Π1 = (Gen,Enc,Dec) as follows:

Construction 1: PKE scheme Π1 = (Gen,Enc,Dec)

– Gen(1λ): (x,w)← S(1λ), set pk = (x, λ) and sk = w. |x| = `, |w| = p.
– Enc(pk, b), b ∈ {0, 1}:
• Randomly select α ∈ {0, 1}` by selecting x ∈ L (i.e. x ← S ′(1λ)) and

setting α = x⊕ x. Randomly select β = β1 · · ·βp ∈ {0, 1}p.
• Run Randomize to get a circuit C: C ← Randomize(RL, α, β; 1

λ), where
C : {0, 1}` × {0, 1}p → {0, 1}. Assume C contains t logical gate vertices
and set s = `+ p.

• If b = 1, set ũ = x⊕ α; otherwise set ũ = x′ ⊕ α, where x′ ← S ′(1λ).
• Garble C with constraining u = ũ, i.e.

Ĉ =

{
K ỹ, Ê,

{
V̂k

}s+t+1

k=s+1
, D

}
← Garble

(
ũ, C, β; 1λ

)
where

K ũ = {K ũi
i }

`
i=1, D =

{(
0,K0

s+t+1

)
,
(
1,K1

s+t+1

)}
Ê =

{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

=
{(
K
βj
`+j ,K

1−βj
`+j

)}p
j=1

• Output ciphertext cb = Ĉ.

– Dec(sk, cb): Interpret cb = Ĉ =

{
K ũ, Ê,

{
V̂k

}s+t+1

k=s+1
, D

}
as a garbled circuit.

Compute a = Dec(sk, cb) = Ĉ(sk) = Eval(sk, Ĉ) and output a.

Correctness. Obviously, if Pr[S ′(1λ) ∈ L] = 1, it holds that

Pr[Dec(sk,Enc(pk, b)) = b : (pk, sk)← Gen(1λ)] = 1

20 Hongda Li, Peifang Ni, and Yao Zan

In fact, by the definition,

a = Dec(sk,Enc(pk, b)) = RΓ (π0(F (xb ⊕ α)), π1(F (xb ⊕ α), xb ⊕ α, sk ⊕ β))

where x1 = x ∈ L, x0 = x′ ∈ L. When b = 1, (x1⊕α, sk⊕β) is a witness for F (x1⊕α) ∈ L′,
where L′ is defined as follows:

L′ = {y : ∃u, v, such that y = F (u), RL(u⊕ α, v ⊕ β) = 1}

So, π0(F (x1⊕α)) ∈ Γ and the corresponding witness is π1(F (x1⊕α), x1⊕α, sk⊕β) since
π is Levin reduction from L′ to Γ , that is, a = Dec(sk,Enc(pk, 1)) = 1. When b = 0, by the
definition, we have that F (x0 ⊕ α) /∈ L′. It follows that π0(F (x0 ⊕ α)) /∈ Γ . Therefore, we
further get that

a = Dec(sk,Enc(pk, 0)) = RΓ (π0(F (x0 ⊕ α)), π1(F (x0 ⊕ α), xb ⊕ α, sk ⊕ β)) = 0

Obviously, if S ′ satisfies Pr[S ′(1λ) /∈ L] ≤ negl(λ), an error may occur only when
decrypting the ciphertext of 0, and the error probability must be negligible.

3.2.2 Proof of Security

In the following, we assume that Pr[S ′(1λ) ∈ L] = 1 for simplicity. We start from proving
the following lemmas.

Lemma 1. For any x, x′ ← S ′(1λ), let Ĉ ′ ← Enc(pk′, 1), where pk′ = (x′, λ), then (x, Ĉ ′)

and (x′, Ĉ ′) are computationally indistinguishable. That is, for any PPT algorithm A, it holds
that ∣∣∣∣∣∣∣∣ Pr

x′←S′(1λ)

x←S′(1λ)
Enc,A

[A(x, Ĉ ′) = 1]− Pr
x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]

∣∣∣∣∣∣∣∣ = negl(λ) (7)

Proof. Let Ĉ ← Enc(pk, 1), where pk = (x, λ). It is easy to see that (x, Ĉ) and (x′, Ĉ ′) have
the same distribution. So, we only need to show that (x, Ĉ) and (x, Ĉ ′) are computationally
indistinguishable.

By the definition, we have that

Ĉ ← Garble
(
ũ, C, β; 1λ

)
, ũ = x⊕ α

Ĉ ′ ← Garble
(
ũ′, C, β; 1λ

)
, ũ′ = x′ ⊕ α

where α, β are randomly selected and C ← Randomize(RL, α, β; 1
λ). Note that C computes

Ψ(u, v) = RΓ (π0(F (u)), π1(F (u), (u, v))), where π = (π0, π1, π
′
1) is Levin reduction from

L′:
L′ = {y : ∃u, v, such that y = F (u), RL(u⊕ α, v ⊕ β) = 1}

to Γ with NP relation RΓ .
To prove (x, Ĉ) and (x, Ĉ ′) are computationally indistinguishable, we let u0 = x and

Ĉ0 ← Garble
(
u0, C, β; 1

λ
)

and then prove that both (x, Ĉ) and (x, Ĉ ′) are computationally indistinguishable from (x, Ĉ0).

Public-Key Encryption from Average Hard NP Language 21

1) (x, Ĉ0) and (x, Ĉ ′) are computationally indistinguishable. Since x, x /∈ L, it is easy to
see that C(u0, v) = C(ũ,v) ≡ 0 for any v ∈ {0, 1}p. Therefore, by Claim 1 (given in
Subsection 2.4), we have that (u0, ũ′, Ĉ0) and (u0, ũ

′, Ĉ ′) are computationally indistin-
guishable. It follows that (x, Ĉ0) = (u0, Ĉ0) and (x, Ĉ ′) = (u0, Ĉ

′) are computationally
indistinguishable.

2) (x, Ĉ0) and (x, Ĉ) are computationally indistinguishable. Similar to 1), by Claim 1 (given
in Subsection 2.4), we have that (u0, ũ, Ĉ0) and (u0, ũ, Ĉ) are computationally indistin-
guishable. So, (u0, Ĉ0) and (u0, Ĉ) are computationally indistinguishable, i.e. (x, Ĉ0) and
(x, Ĉ) are computationally indistinguishable.

Combining 1) and 2), we have that (x, Ĉ) and (x, Ĉ ′) are computationally indistinguishable.
It follows that (x, Ĉ ′) and (x′, Ĉ ′) are computationally indistinguishable. This means that E-
quation (7) holds.

Lemma 2. For any x ← S(1λ), x′ ← S ′(1λ), let Ĉ ′ = Enc(pk′, 1), where pk′ = (x′, λ),
then (x, Ĉ ′) and (x′, Ĉ ′) are computationally indistinguishable. That is, for any PPT algorithm
A, we have ∣∣∣∣∣∣∣∣ Pr

x′←S′(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]− Pr
x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]

∣∣∣∣∣∣∣∣ = negl(λ) (8)

Proof. Assume towards contradiction that there exists a PPT algorithmA distinguishing (x, Ĉ ′)

and (x′, Ĉ ′) with advantage ε(λ) ≥ 1
poly(λ) for positive polynomial poly. That is,

∣∣∣∣∣∣∣∣ Pr
x′←S′(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]− Pr
x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]

∣∣∣∣∣∣∣∣ = ε(λ) ≥ 1

poly(λ)

holds for infinitely λ’s.
To obtain a contradiction, we construct an algorithm D to distinguish x ∈ L and x ∈ L as

follows:

D(x; 1λ)

On inputting x and security parameter λ, D(x; 1λ) do:
– Let x′ ← S ′(1λ), set pk′ = (x′, λ).
– Run Enc(pk′, 1) and obtain Ĉ ′ ← Enc(pk′, 1).
– Randomly select b ∈ {0, 1}.
– If b = 0, invoke A with ∆

def
= (x′, Ĉ ′), otherwise invoke A with ∆

def
= (x, Ĉ ′).

Finally, obtainA’s return b′: b′ ← A(∆).
– Output 1 if b′ = b, otherwise, output 0.

22 Hongda Li, Peifang Ni, and Yao Zan

Then we have

Pr
x←S(1λ)
D

[D(x; 1λ) = 1] =
1

2
Pr

x′←S′(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1] +
1

2
Pr

x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 0]

=
1

2
+

1

2
Pr

x′←S′(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]− 1

2
Pr

x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1] (9)

and

Pr
x←S′(1λ)
D

[D(x; 1λ) = 1] =
1

2
Pr

x′←S′(1λ)

x←S′(1λ)
Enc,A

[A(x, Ĉ ′) = 1] +
1

2
Pr

x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 0]

=
1

2
+

1

2
Pr

x′←S′(1λ)

x←S′(1λ)
Enc,A

[A(x, Ĉ ′) = 1]− 1

2
Pr

x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]

(10)

Combining Equation (9) with Equation (10), it follows that∣∣∣∣∣ Pr
x←S(1λ)
D

[D(x; 1λ) = 1]− Pr
x←S′(1λ)
D

[D(x; 1λ) = 1]

∣∣∣∣∣
=

1

2

∣∣∣∣∣∣∣∣ Pr
x′←S′(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]− Pr
x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]

− Pr
x′←S′(1λ)

x←S′(1λ)
Enc,A

[A(x, Ĉ ′) = 1] + Pr
x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]

∣∣∣∣∣∣∣∣
≥ 1

2
ε− 1

2

∣∣∣∣∣∣∣∣ Pr
x′←S′(1λ)

x←S′(1λ)
Enc,A

[A(x, Ĉ ′) = 1]− Pr
x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]

∣∣∣∣∣∣∣∣
Furthermore, by Lemma 1, we have that∣∣∣∣∣ Pr

x←S(1λ)
D

[D(x; 1λ) = 1]− Pr
x←S′(1λ)
D

[D(x; 1λ) = 1]

∣∣∣∣∣ ≥ 1

2
(ε(λ)− negl(λ)) (11)

for infinitely λ’s. Equation (11) contradicts the assumption that L is an average hard NP lan-
guage. So Equation (8) holds.

Lemma 3. For any x ← S(1λ), x′ ← S(1λ), let Ĉ ′ = Enc(pk′, 1), where pk′ = (x′, λ),
then ((x, λ), Ĉ ′) and ((x′, λ), Ĉ ′) are computationally indistinguishable. That is, for any PPT

Public-Key Encryption from Average Hard NP Language 23

algorithm A, it holds that∣∣∣∣∣∣∣∣ Pr
x′←S(1λ)
Enc,A

[A((x′, λ), Ĉ ′) = 1]− Pr
x′←S(1λ)

x←S(1λ)
Enc,A

[A((x, λ), Ĉ ′) = 1]

∣∣∣∣∣∣∣∣ = negl(λ) (12)

Proof. Obviously, we only need to prove (x, Ĉ ′) and (x′, Ĉ ′) are computationally indistin-
guishable. Assume, on the contrary, that there exists a PPT algorithm A which can distinguish
(x, Ĉ ′) and (x′, Ĉ ′) with advantage ε ≥ 1

poly(λ) for positive polynomial poly, that is,∣∣∣∣∣∣∣∣ Pr
x′←S(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]− Pr
x′←S(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]

∣∣∣∣∣∣∣∣ = ε(λ) ≥ 1

poly(λ)

holds for infinitely λ’s.
To obtain a contradiction, we construct an algorithm D to distinguish x′ ∈ L from x′ ∈ L.

The details of D are as follows:

D(x′; 1λ)

On inputting x′ and security parameter λ, D(x′; 1λ) do:
– Set pk′ = (x′, λ).
– Run Enc(pk′, 1) and obtain Ĉ ′ ← Enc(pk′, 1).
– Randomly select b ∈ {0, 1}, x← S(1λ).
– If b = 0, invoke A with ∆

def
= (x, Ĉ ′), otherwise invoke A with ∆

def
= (x′, Ĉ ′).

Finally, obtainA’s return b′: b′ ← A(∆).
– Output 1 if b′ = b, otherwise, output 0.

From the definition of D, we have

Pr
x′←S(1λ)
D

[D(x′; 1λ) = 1] =
1

2
Pr

x′←S(1λ)
Enc,A

[A(x′, Ĉ ′) = 1] +
1

2
Pr

x′←S(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 0]

=
1

2
+

1

2
Pr

x′←S(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]− 1

2
Pr

x′←S(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]

(13)

and

Pr
x′←S′(1λ)

D

[D(x′; 1λ) = 1] =
1

2
Pr

x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1] +
1

2
Pr

x′←S′(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 0]

=
1

2
+

1

2
Pr

x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]− 1

2
Pr

x′←S′(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]

(14)

24 Hongda Li, Peifang Ni, and Yao Zan

Combining Equation (13) with Equation (14), we obtain that∣∣∣∣∣ Pr
x′←S(1λ)
D

[D(x′, 1λ) = 1]− Pr
x′←S′(1λ)

D

[D(x′, 1λ) = 1]

∣∣∣∣∣
=

1

2

∣∣∣∣∣∣∣∣ Pr
x′←S(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]− 1

2
Pr

x′←S(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]

+
1

2
Pr

x′←S′(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]− 1

2
Pr

x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]

∣∣∣∣∣∣∣∣
≥ 1

2
ε(λ)− 1

2

∣∣∣∣∣∣∣∣ Pr
x′←S′(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]− Pr
x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]

∣∣∣∣∣∣∣∣
Moreover, by Lemma 2, it holds that∣∣∣∣∣∣∣∣ Pr

x′←S′(1λ)

x←S(1λ)
Enc,A

[A(x, Ĉ ′) = 1]− Pr
x′←S′(1λ)
Enc,A

[A(x′, Ĉ ′) = 1]

∣∣∣∣∣∣∣∣ = negl(λ)

Therefore, we have that∣∣∣∣∣ Pr
x′←S(1λ)
D

[D(x′, 1λ) = 1]− Pr
x′←S′(1λ)

D

[D(1λ, x′) = 1]

∣∣∣∣∣ ≥ 1

2
(ε(λ)− negl(λ)) (15)

holds for infinitely λ’s. This contradicts the assumption that L is an average hard NP language.
The lemma thus follows.

From the above lemmas, we can prove the following theorem:

Theorem 1. The PKE scheme Π1 is CPA secure when L is an average hard NP language.

Proof. Assume (x,w) ← S(1λ), where |x| = `, |w| = p, pk = (x, λ) and sk = w. Let
cb ← Enc(pk, b).

Note that c0 and c1 are constructed from x′ /∈ L and x ∈ L respectively, so they are
indistinguishable because L is average hard. Briefly, according to the definition of Enc, cb
is a garbled circuit, cb = Ĉ, and so, to distinguish (pk, c0) and (pk, c1) means to determine
whether there exists w such that Ĉ(w) = 1. This must be difficult without knowing w which
satisfies RL(x,w) = 1.

Suppose, to the contrary, Π is not CPA secure, that is, there is a CPA adversary A and a
polynomial poly, such that

AdvCPA
A,Π1

(λ) =

∣∣∣∣∣ Pr
pk,Enc
A

[A(pk,Enc(pk, 0)) = 1]− Pr
pk,Enc
A

[A(pk,Enc(pk, 1)) = 1]

∣∣∣∣∣ > 1

poly(λ)

Public-Key Encryption from Average Hard NP Language 25

holds for infinitely λ’s. Then, we can construct an algorithm D to distinguish x′ ∈ L from
x′ ∈ L with a non-negligible probability.

Define the algorithm D as follows:

D(x′; 1λ)

On inputting x′ and security parameter λ, D(x′; 1λ) do:
– Let (x,w)← S(1λ), set pk = (x, λ). |x| = `, |w| = p.
– Run Enc without specifying plaintext to get a ciphertext Ĉ, denoted by Ĉ ←
Enc(pk, ?). The details are as follows:
• Randomly select α ∈ {0, 1}`, β ∈ {0, 1}p.
• C ← Randomize(RL, α, β; 1

λ). Assume C has t logical gates.
• Set ũ = x′ ⊕ α.
• Garble C with constraining u = ũ, i.e.

Ĉ =

{
K ũ, Ê,

{
V̂k

}s+t+1

k=s+1
, D

}
← Garble

(
ũ, C, β; 1λ

)
where s = `+ p.

– Invoke A with (pk, Ĉ) and obtain A’s return b′: b′ ← A(pk, Ĉ).
– Output b′.

Obviously, when x′ ∈ L, Ĉ ← Enc(pk, ?) is the same as Ĉ ← Enc(pk, 0), that is, Ĉ is a
normal ciphertext of 0 (with pk = (x, λ) as the public key). So it holds that

Pr
x←S′(1λ)
D

[D(x′; 1λ) = 1] = Pr
pk,Enc
A

[A(pk,Enc(pk, 0)) = 1] (16)

In contrast, when x′ ∈ L, Ĉ, generated by Ĉ ← Enc(pk, ?), is not a normal ciphertext
obtained by encrypting 1 with pk = (x, λ) because ũ = x′⊕α is inconsistent with pk = (x, λ).
However, by Lemma 3, we have that (x, Ĉ) and (x′, Ĉ) are computationally indistinguishable.
That is, for any PPT algorithm B, it is holds that∣∣∣∣∣∣ Pr

Ĉ,B
x←S(1λ)

[
B((x, λ), Ĉ) = 1

]
− Pr

Ĉ,B
x′←S′(1λ)

[
B((x′, λ), Ĉ) = 1

]∣∣∣∣∣∣ = negl(λ) (17)

Furthermore, note that, when x′ ∈ L, Ĉ ← Enc(pk, ?) is the same as Ĉ ← Enc(pk′, 1), i.e.
if pk′ = (x′, λ) is used as public key, then Ĉ is a normal ciphertext of 1. Therefore, we have
that

Pr
B,Ĉ

x′←S(1λ)

[
B((x′, λ), Ĉ) = 1

]
= Pr

B,Enc
(pk′,sk′)←Gen(1λ)

[B(pk′, Enc(pk′, 1)) = 1]

= Pr
B,Enc

(pk,sk)←Gen(1λ)

[B(pk,Enc(pk, 1)) = 1] (18)

26 Hongda Li, Peifang Ni, and Yao Zan

Since Equations (17) holds for A, so, from Equation (16),(17), we have that, for infinitely λ’s,∣∣∣∣ Pr
(x′,w′)←S(1λ)

[
D(x′; 1λ) = 1

]
− Pr
x′←S′(1λ)

[
D(x′; 1λ) = 1

]∣∣∣∣
=

∣∣∣∣∣∣∣∣ Pr
(x′,w′)←S(1λ)

(x,w)←S(1λ)

A,Ĉ

[
A((x, λ), Ĉ) = 1

]
− Pr

x′←S′(1λ)

(x,w)←S(1λ)

A,Ĉ

[
A((x, λ), Ĉ) = 1

]∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣ Pr
(x′,w′)←S(1λ)

A,Ĉ

[
A((x′, λ), Ĉ) = 1

]
± negl(λ)− Pr

x′←S′(1λ)

(x,w)←S(1λ)

A,Ĉ

[
A((x, λ), Ĉ) = 1

]∣∣∣∣∣∣∣∣
Notice that (18) holds for A, that is,

Pr
A,Ĉ

x′←S(1λ)

[
A((x′, λ), Ĉ) = 1

]
= Pr

A,Enc
(pk′,sk′)←Gen(1λ)

[A(pk′, Enc(pk′, 1)) = 1]

So we have∣∣∣∣ Pr
(x′,w′)←S(1λ)

[
D(x′; 1λ) = 1

]
− Pr
x′←S′(1λ)

[
D(x′; 1λ) = 1

]∣∣∣∣
=

∣∣∣∣∣∣ Pr
(pk′,sk′)←Gen(1λ)

Enc,A

[A(pk′, Enc(pk′, 1)) = 1]± negl(λ)− Pr
(pk,sk)←Gen(1λ)

Enc,A

[A(pk,Enc(pk, 0)) = 1]

∣∣∣∣∣∣
≥

∣∣∣∣∣∣ Pr
(pk,sk)←Gen(1λ)

Enc,A

[A(pk,Enc(pk, 1)) = 1]− Pr
(pk,sk)←Gen(1λ)

Enc,A

[A(pk,Enc(pk, 0)) = 1]

∣∣∣∣∣∣− negl(λ)
≥ AdvCPA

A,Π1
(λ)− negl(λ) > 1

poly(λ)
− negl(λ)

This contradicts the assumption that L is an average hard NP language. The theorem thus
follows.

3.3 PKE Scheme II

In this subsection, we will present another scheme which is slightly different from Π1.

3.3.1 Construction of PKE Scheme
Let L be an average hard NP language with NP relation RL and sampling algorithm S on L.
Construct PKE scheme Π2 = (Gen,Enc,Dec) as follows:

Public-Key Encryption from Average Hard NP Language 27

Construction 2: PKE scheme Π2 = (Gen,Enc,Dec)

– Gen(1λ): (x,w)← S(1λ), set pk = (x, λ) and sk = w. |x| = `(λ), |w| = p(λ).
– Enc(pk, b), b ∈ {0, 1}:
• Randomly select α ∈ {0, 1}` by selecting x ∈ L (i.e. x← S(1λ)) and setting
α = x⊕ x. Randomly select β = β1 · · ·βp ∈ {0, 1}p.

• Run Randomize to get circuit C: C ← Randomize(RL, α, β; 1
λ), where

C : {0, 1}` × {0, 1}p → {0, 1}. Assume C contains t logical gate vertices.
Set s = `+ p.

• If b = 1, set ρ1 = β, otherwise, randomly select ρ0 ∈ {0, 1}p satisfying
ρ0 6= β.

• Set ũ = x⊕ α, and garble C with constraining u = ũ, i.e.

Ĉb =

{
K ũ, Êb,

{
V̂k

}s+t+1

k=s+1
, D

}
← Garble

(
ũ, C, ρb, 1

λ
)

where
K ũ = {K ũi

i }
`
i=1

Êb =
{(
K̂0
`+j , K̂

1
`+j

)}p
j=1

=
{(
K
ρb,j
`+j ,K

1−ρb,j
`+j

)}p
j=1

D =
{(

0,K0
s+t+1

)
,
(
1,K1

s+t+1

)}
• Output ciphertext cb = Ĉb.

– Dec(sk, cb): Interpret cb = Ĉb =

{
K ũ, Êb,

{
V̂k

}s+t+1

k=s+1
, D

}
as a garbled cir-

cuit. Compute a = Eval(Ĉb, sk) and output a.

Correctness. It is easy to see that, compared with Π1, Π2 only changes the encryption of
0. In Π2, different encoding tables are used for encrypting 0 and 1, specifically, the encoding

tables for encrypting b is Êb =
{(
K
ρb,j
`+j ,K

1−ρb,j
`+j

)}p
j=1

. This results in an negligible error

when decrypting the ciphertext of 0. Specifically, the following claim holds:

Claim 4 Assume (x,w)← S(1λ), pk = (x, λ) and sk = w. We have that

(1) Pr
(pk,sk)←S(1λ)

Enc

[Dec(sk,Enc(pk, 1)) = 1] = 1

(2) Pr
(pk,sk)←S(1λ)

Enc

[Dec(sk,Enc(pk, 0)) = 0] ≥ 1− negl(λ)

Proof. From the definitions of Garble and Randomize, it holds that

Ĉb(v) = Eval(Ĉb, v)

= C(ũ, v ⊕ ρb)
= RΓ (π0(F (ũ)), π1(F (ũ), ũ, v ⊕ ρb)) (19)

where for ũ = x⊕ α, F is a one-to-one function, π = (π0, π1, π
′
1) is Levin reduction from L′

with NP relation RL′ to Γ with NP relation RΓ .

28 Hongda Li, Peifang Ni, and Yao Zan

(1) Recall that L′ is defined as follows:

L′ = {y : ∃u, v, such that y = F (u), RL(u⊕ α, v ⊕ β) = 1}

Clearly, RL(x,w) = 1 means that RL′(F (ũ), (ũ, w ⊕ ρ1)) = 1, which further means that
RΓ (π0(F (ũ)), π1(F (ũ), ũ, w⊕ρ1)) = 1 because π is Levin reduction fromL′ to Γ . Therefore,
it follows that Ĉ1(sk) = 1. In other words, we have that

Pr
(pk,sk)←S(1λ)

Enc

[Dec(sk,Enc(pk, 1)) = 1] = Pr
(pk,sk)←S(1λ)

Enc

[Eval(Ĉ1, sk) = 1] = 1

(2) Let
ε = Pr

(pk,sk)←S(1λ)
Enc

[Dec(sk,Enc(pk, 0)) = 1] (20)

Form Equation (19) and the definition of Dec, we have that

Pr
(pk,sk)←S(1λ)

Enc

[Dec(sk,Enc(pk, 0)) = 1] = Pr
(pk,sk)←S(1λ)

Enc

[Ĉ0(sk) = 1]

= Pr
(pk,sk)←S(1λ)

Enc

[RΓ (π0(ỹ), π1(ỹ, ũ, w
′)) = 1] (21)

where ỹ = F (ũ) and w′ = sk⊕ρ0. Since ρ0 is randomly selected, w′ is uniformly distributed.
Note that RΓ (π0(ỹ), π1(ỹ, ũ, w′)) = 1 means that π1(ỹ, ũ, w′) is a witness of π0(ỹ) ∈ Γ .
Following the fact that π = (π0, (π1, π

′
1)) is Levin reduction from L′ to Γ , we have that

π′1(ỹ, π1(ỹ, ũ, w
′)) is a witness of ỹ ∈ L′. Therefore, it follows from Equation (20) and (21)

that
Pr

(pk,sk)←S(1λ)
Enc

[RL′(ỹ, π
′
1(ỹ, π1(ỹ, ũ, w

′)) = 1] ≥ ε (22)

Let (u′, v′) = π′1(ỹ, π1(ỹ, ũ, w
′)). From RL′(ỹ, (u

′, v′)) = 1, we know that (u′, v′) is a
witness for ỹ ∈ L′. By the definition, it must holds that ỹ = F (u′) and v′ ⊕ β is a witness of
u′ ⊕ α ∈ L. Recall that F is one-to-one, so we can get u′ = ũ, i.e. u′ ⊕ α = ũ⊕ α = x, from
ỹ = F (ũ) = F (u′). Therefore, v′ ⊕ β is a witness of ũ ⊕ α = x ∈ L. If ε is non-negligible,
then Equation (22) (i.e. Equation (20)) means that there exists PPT algorithm B breaking the
assumption that L is average hard. The details of B are as follows:

B(x; 1λ)

On inputting x (|x| = `) and security parameter λ, B(x; 1λ) do:
– Randomly select α ∈ {0, 1}` by selecting x ∈ L (i.e. x ← S(1λ)) and setting
α = x⊕ x. Randomly select β = β1 · · ·βp ∈ {0, 1}p.

– Run Randomize(RL, α, β; 1
λ), record F (one-to-one function) and π =

(π0, π1, π
′
1) (Levin reduction from L′ to Γ) and finally obtain C:

C ← Randomize(RL, α, β; 1
λ)

– Compute ũ = x⊕ α and ỹ = F (ũ).
– Randomly select w′ ∈ {0, 1}p, compute z′ = π1(ỹ, ũ, w

′).
– If RΓ (π0(ỹ), z′) = 1, compute (u′, v′) = π′1(ỹ, z

′) ∈ {0, 1}`+p.
– Output v′ ⊕ β.

Public-Key Encryption from Average Hard NP Language 29

Clearly, RΓ (π0(ỹ), z′) = 1 (that is, z′ is the witness for π0(ỹ) ∈ Γ) means that (u′, v′) =
π′1(ỹ, z

′) ∈ {0, 1}`+p is a witness for ỹ ∈ L′. That is, (u′, v′) satisfies ỹ = F (u′) andRL(u′⊕
α, v′ ⊕ β) = 1. Since ỹ = F (ũ) = F (u′), we have that u′ = ũ and RL(x, v

′ ⊕ β) =
RL(u

′ ⊕ α, v′ ⊕ β) = 1. Therefore, we have that

Pr
B
[RL(x,w) = 1 : w ← B(x, 1λ)] = Pr

B
[RΓ (π0(ỹ), π1(ỹ, ũ, w

′)) = 1] ≥ ε (23)

If ε is non-negligible, Equation (23) contradicts the assumption that L is average hard. In other
words, if L is average hard, it must hold that

Pr
(pk,sk)←(1λ)

Enc

[Dec(sk,Enc(pk, 0)) = 0] ≥ 1− negl(λ)

3.3.2 Proof of Security

We first prove the following lemma.

Lemma 4. For x← S ′(1λ), then Ĉ1 ← Enc(pk, 1) and Ĉ0 ← Enc(pk, 0) are computation-
ally indistinguishable, where pk = (x, λ). That is, for any PPT algorithm A, it holds that∣∣∣∣∣∣ Pr

x←S′(1λ)
A,Enc

[
A((x, λ), Ĉ0) = 1

]
− Pr

x←S′(1λ)
A,Enc

[
A((x, λ), Ĉ1) = 1

]∣∣∣∣∣∣ = negl(λ) (24)

Proof. Let C ← Randomize(RL, α, β; 1
λ), where α, β are randomly selected. By the defini-

tion of Enc(pk, b), we have

Ĉb =

{
K ũ, Êb,

{
V̂k

}s+t
k=s+1

, D

}
← Garble

(
ũ, C, ρb; 1

λ
)

where ũ = x ⊕ α, ρb = ρb,1 · · · ρb,p ∈ {0, 1}p is randomly selected and satisfies ρ1 = β and
ρ0 6= β, C compute

Ψ(u, v) = RΓ (π0(F (u)), π1(F (u), (u, v)))

where π = (π0, π1, π
′
1) is Levin reduction from L′:

L′ = {y : ∃u, v, such that y = F (u), RL(u⊕ α, v ⊕ β) = 1}

to Γ with NP relation RΓ .
To prove ((x, λ), Ĉ0) and ((x, λ), Ĉ1) are computationally indistinguishable, we select

ρ′ ∈ {0, 1}p randomly , set ũ′ = x and let

Ĉ ′ ← Garble
(
ũ′, C, ρ′; 1λ

)
and then prove that both (x, Ĉ0) and (x, Ĉ1) are computationally indistinguishable from (x, Ĉ ′).
This means that ((x, λ), Ĉ0) and ((x, λ), Ĉ1) are computationally indistinguishable.

Since x, x /∈ L, we have that F (ũ) = F (x ⊕ α) /∈ L′ and F (ũ′) = F (x ⊕ α) /∈ L′. It
follows that C(ũ, v) = C(ũ′, v) ≡ 0 for any v ∈ {0, 1}p.

30 Hongda Li, Peifang Ni, and Yao Zan

1) (x, Ĉ ′) and (x, Ĉ0) are computationally indistinguishable. In fact, by Claim 3 (given in
Subsection 2.4), we have that ((ũ′, ρ′), (ũ, ρ0), Ĉ ′) and ((ũ′, ρ′), (ũ, ρ0), Ĉ0) are compu-
tationally indistinguishable. Therefore, (x, Ĉ ′) = (ũ′, Ĉ ′) and (x, Ĉ0) = (ũ′, Ĉ0) are
computationally indistinguishable.

2) (x, Ĉ ′) and (x, Ĉ1) are computationally indistinguishable. Similar to 1), it follows from
Claim 3 that ((ũ′, ρ′), (ũ, ρ1), Ĉ ′) and ((ũ′, ρ′), (ũ, ρ1), Ĉ1) are computationally indis-
tinguishable. Therefore, (x, Ĉ ′) = (ũ′, Ĉ ′) and (x, Ĉ1) = (ũ′, Ĉ1) are computationally
indistinguishable.

Combining (1) and (2), we have that (x, Ĉ0) and (x, Ĉ1) are computationally indistinguishable.
It follows that ((x, λ), Ĉ0) and ((x, λ), C1) are computationally indistinguishable. That is,
Equation (24) holds. This concludes the proof.

Theorem 2. The PKE scheme Π2 is CPA secure when L is an average hard NP language.

Proof. If Π2 is not CPA secure, then there exist an algorithm D to attack the average hardness
of L.

Suppose towards contradiction that there exists a PPT adversary A breaking Π2’s CPA
security with non-negligible advantage, that is, there exists a polynomial poly, such that

AdvCPA
A,Π2

(λ)=

∣∣∣∣∣∣ Pr
(x,w)←S(1λ)
A,Enc

[
A(pk, Ĉ1) = 1

]
− Pr

(x,w)←S(1λ)
A,Enc

[
A(pk, Ĉ0) = 1

]∣∣∣∣∣∣≥ 1

poly(λ)
(25)

holds for infinitely λ’s. To obtain a contradiction we construct algorithm D to break the hard-
ness of L. The details of D are as follows:

D(x; 1λ)

On inputting x and security λ, D(x; 1λ) do:
– Set pk = (x, λ) and randomly select b ∈ {0, 1}.
– Ĉb ← Enc(pk, b).
– Invoke A with (pk, Ĉb) and obtain A’s return b′: b′ ← A(1λ, pk, Ĉb).
– If b = b′, then σ = 1, otherwise, σ = 0.
– Output σ.

From the strategy of D, it is easy to obtain that

Pr
(x,w)←S(1λ)

D

[
D(x; 1λ) = 1

]
= Pr

(x,w)←S(1λ)
A,Enc

[
A(1λ, pk, Ĉb) = b

]
=
1

2
Pr

(x,w)←S(1λ)
A,Enc

[
A(pk, Ĉ1) = 1

]
+

1

2
Pr

(x,w)←S(1λ)
A,Enc

[
A(pk, Ĉ0) = 0

]

=
1

2
+

1

2

 Pr
(x,w)←S(1λ)
A,Enc

[
A(pk, Ĉ1) = 1

]
− Pr

(x,w)←S(1λ)
A,Enc

[
A(pk, Ĉ0) = 1

] (26)

Public-Key Encryption from Average Hard NP Language 31

and

Pr
x←S′(1λ)
D

[
D(x; 1λ) = 1

]
= Pr

x←S′(1λ)
A,Enc

[
A(pk, Ĉb) = b

]
=
1

2
Pr

x←S′(1λ)
A,Enc

[
A(pk, Ĉ1) = 1

]
+

1

2
Pr

x←S′(1λ)
A,Enc

[
A(pk, Ĉ0) = 0

]

=
1

2
+

1

2

 Pr
x←S′(1λ)
A,Enc

[
A(pk, Ĉ1) = 1

]
− Pr

x←S′(1λ)
A,Enc

[
A(pk, Ĉ0) = 1

] (27)

Therefore, combining Equation (26) with (27) we have that

∣∣∣∣∣ Pr
(x,w)←S(1λ)

D

[
D(x; 1λ) = 1

]
− Pr

x←S′(1λ)
D

[
D(x; 1λ) = 1

]∣∣∣∣∣
≥

∣∣∣∣∣∣12
 Pr

(x,w)←S(1λ)
A,Enc

[
A(pk, Ĉ1) = 1

]
− Pr

(x,w)←S(1λ)
A,Enc

[
A(pk, Ĉ0) = 1

]∣∣∣∣∣∣
−

∣∣∣∣∣∣12
 Pr

x←S′(1λ)
A,Enc

[
A(pk, Ĉ1) = 1

]
− Pr

x←S′(1λ)
A,Enc

[
A(pk, Ĉ0) = 1

]∣∣∣∣∣∣
From Lemma 4 and the assumption (Equation (25)), we further obtain

∣∣∣∣∣ Pr
(x,w)←S(1λ)

D

[
D(x; 1λ) = 1

]
− Pr

x←S′(1λ)
D

[
D(x; 1λ) = 1

]∣∣∣∣∣ ≥ 1

2

(
1

poly(λ)
− negl(λ)

)

This contradicts the assumption that L is an average hard NP language. The theorem thus
follows.

4 Witness Encryption Scheme

In this section, we will show that the construction of PKE scheme Π1 in fact presents a WE
scheme. By the definition of Π1, Enc take as inputs pk = (x, λ) (an instance x and security
parameter λ) and b ∈ {0, 1} to produce a garbled circuit Ĉb as the ciphertext of b, and Dec use
w to decrypt Ĉb, satisfying Pr[Dec(Enc(x, b, 1λ), w) = b] = 1− negl(λ) when RL(x,w) =
1. Witness encryption derived from Π1 = (Gen,Enc,Dec) is as follows:

32 Hongda Li, Peifang Ni, and Yao Zan

Construction 3: Witness Encryption Π = (Encrypt,Decrypt)

Assume L ∈ NP . Enc,Dec are defined as in Construction 1.
– Encrypt(x, b, 1λ), b ∈ {0, 1}, |x| = `:
• Set pk = (x, λ), and run Enc(pk, b): Ĉb ← Enc(pk, b),
• Output ciphertext Ĉb.

– Decrypt(w, cb): Interpret Ĉb =
{
K ũ, Ê,

{
V̂k

}s+t+1

k=s+1
, D

}
as a garbled circuit.

Compute a = Eval(Ĉb, w) and output a.

Correctness. Follows from the correctness of Π1.
Soundness. Soundness security requires that Encrypt(1λ, x, 0) and Encrypt(1λ, x, 1) are
indistinguishable when x /∈ L, that is, for any x /∈ L, any PPT adversary A, it holds that∣∣Pr[A(Encrypt(1λ, x, 0)) = 1]− Pr[A(Encrypt(1λ, x, 1)) = 1]

∣∣ < negl(λ) (28)

By the definition, we have that

Ĉ0 ← Encrypt(x, 0, 1λ) = Garble(u0, C, β; 1
λ), u0 = x′ ⊕ α (29)

Ĉ1 ← Encrypt(x, 1, 1λ) = Garble(u1, C, β; 1
λ), u1 = x⊕ α (30)

whereα ∈ {0, 1}`, β ∈ {0, 1}p are randomly selected, x′ /∈ L,C ← Randomize(RL, α, β; 1
λ).

Since x, x′ /∈ L, it follows from the definition of Randomize that C(u1, v) = C(u0, v) ≡ 0

for any v. Note that Ĉ0 and Ĉ1 differ only because of u1 6= u0. By Claim 1 (given in Sub-
section 2.4), we have that (u0, u1, Ĉ0) and (u0, u1, Ĉ1) are computationally indistinguishable,
and thus Ĉ0 and Ĉ1 are computationally indistinguishable. That is, Equation (28) holds.

On the other hands, comparing Equation (29) and (30), we can find that Ĉ0 ← Encrypt(x, 0, 1λ)

is the same as Ĉ ′1 ← Encrypt(x′, 1, 1λ), while Ĉ1 ← Encrypt(x, 1, 1λ) can also be inter-
preted as Ĉ ′0 ← Encrypt(x′, 0, 1λ), that is,

Encrypt(x, 0, 1λ) = Encrypt(x′, 1, 1λ)

Encrypt(x, 1, 1λ) = Encrypt(x′, 0, 1λ)

This means that for a given ciphertext Ĉ∗ ← Encrypt(x, b, 1λ) (where x /∈ L), there exists
x′ /∈ L such that Ĉ∗ can be interpreted as Ĉ∗ ← Encrypt(x′, 1 − b, 1λ). In other words, a
ciphertext of b relative to x is a ciphertext of 1 − b relative to x′. Therefore, it is completely
impossible for an adversary to extract b from a given ciphertext Ĉb ← Encrypt(x, b, 1λ)
without auxiliary input x. This also means that for any PPT adversary A, Equation (28) holds.

Therefore, we conclude the following conclusion:

Theorem 3. LetL ∈ NP . IfEnc,Dec are the same as in Construction 1, thenΠ = (Encrypt,Decrypt)
given by Construction 3 is a bit WE scheme for L.

The soundness of WE requires an adversary to distinguish pairs of ciphertexts relative to
instances x /∈ L without obtaining x. In fact, Π in fact satisfies a stronger soundness, which
allows adversary to obtain the auxiliary input x. That is, for any PPT adversaryA, it holds that∣∣Pr[A(x,Encrypt(1λ, x, 0)) = 1]− Pr[A(x,Encrypt(1λ, x, 1)) = 1]

∣∣ < negl(λ) (31)

Public-Key Encryption from Average Hard NP Language 33

The proof of this is simple. Recall α = x ⊕ x, where x /∈ L. Let u′ = x and Ĉ ′ ←
Garble

(
u′, C, β; 1λ

)
, It is easy to see that C(u′, v) = C(u0, v) ≡ 0 for any v ∈ {0, 1}p.

Therefore, by Claim 1 (given in Subsection 2.4), we have that (u′, u0, Ĉ0) and (u′, u0, Ĉ
′) are

computationally indistinguishable. It follows that (x, Ĉ0) = (u′, Ĉ0) and (x, Ĉ ′) = (u′, Ĉ ′)

are computationally indistinguishable. Similarly, we can obtain that (x, Ĉ1) = (u′, Ĉ1) and
(x, Ĉ ′) = (u′, Ĉ ′) are computationally indistinguishable. And thus, we have that (x, Ĉ0) and
(x, Ĉ1) are computationally indistinguishable. That is, Equation (31) holds.

Soundness of WE is only for x /∈ L and so it is different from CPA security of PKE,
which is for normal public-key. Specifically, Π1’s CPA security is based on the assumption
that L ∈ NP is average hard, while Π’s soundness is unconditional and has nothing to do
with whether L is average hard or not. The following corollary is immediately apparent.

Corollary. For any L ∈ NP , if there exist sampling algorithms S on L and S ′ on L, then there
exists WE scheme for L.

Note that Garg et al. in [13] showed that it is impossible to reduce breaking the soundness of
WE scheme to solving the simple non-interactive assumption on which the soundness is based.
Obviously, this impossibility does not seem to contradict our results, because it does not rule
out the possibility that there is a WE scheme that does not require any difficulty assumption.

In addition, Garg et al. in [13] presented ways to obtain non-black-box constructions of
PKE and identity-based encryption (IBE) and attribute-based encryption (ABE) from WE and
OWF. Therefore, by our WE scheme Π = (Encrypt,Decrypt) and the constructions of [13],
we can not only obtain non-black-box construction of PKE from OWF, but also non-black-box
construction of IBE and ABE from OWF.

References

1. Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
Ke Yang. On the (im)possibility of obfuscating programs. In CRYPTO, pages 1-18, 2001.

2. Boaz Barak. How to go beyond the black-box simulation barrier. In Proceedings of FOCS ’01, pages
106-115, 2001.

3. Boaz Barak. The complexity of public-key cryptography. In: Lindell, Y. (ed.) Tutorials on the Foun-
dations of Cryptography, pp. 45-77. Springer International Publishing (2017).

4. Itay Berman, Akshay Degwekar, Ron D. Rothblum, Prashant Nalini Vasudevan. From Laconic Zero-
Knowledge to Public-Key Cryptography. Electron. Colloquium Comput. Complex. TR17 (2017).

5. Mihir Bellare, Viet Tung Hoang, Phillip Rogaway. Foundations of garbled circuits. In Proceedings of
the 2012 ACM conference on Computer and communications security, 2012, pages 784-796 (2012).

6. Zvika Brakerski, Jonathan Katz and Gil Segev, Arkady Yerukhimovich. Limits on the power of zero-
knowledge proofs in cryptographic constructions. In Theory of Cryptography Conference, 2011, pp
559-578.

7. Boaz Barak, Yehuda Lindell. Strict polynomial-time in simulation and extraction. SIAM Journal on
Computing, 33(4):783¨C818, August 2004.

8. Yilei Chen, Vinod Vaikuntanathan, Hoeteck Wee. GGH15 beyond permutation branching programs:
Proofs, attacks, and candidates. In Advances in Cryptology ¨C CRYPTO 2018, pages 577-607.

9. Dana Dachman-Soled. Towards Non-Black-Box Separations of Public Key Encryption and One Way
Function. In Theory of Cryptography Conference. Springer, Berlin, Heidelberg, LNCS 9986, pages
169-191,2016.

34 Hongda Li, Peifang Ni, and Yao Zan

10. Whitfield Diffie, Martin E. Hellman. New directions in cryptography. IEEE Trans. Inf. Theory 22(6),
644¨C654 (1976), https://doi.org/10.1109/TIT.1976.1055638.

11. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, Brent Waters. Candidate
Indistinguishability Obfuscation and Functional Encryption for all Circuits. In IEEE 54th Annual
Symposium on Foundations of Computer Science (2013), pages 40-49.

12. Oded Goldreich, Shafi Goldwasser, Silvio Micali. How to construct random functions. Journal of the
Acm, 1986, 33(4):792-807.

13. Sanjam Garg, Craig Gentry, Amit Sahai, Brent Waters. Witness Encryption and its Applications.
In Proceedings of the forty-fifth annual ACM symposium on Theory of computing. pages 467-476,
2013.

14. Sanjam Garge, Mohammad Hajiabadi, Mohammad Mahmoody, Ameer Mohammed. Limits on
the Power of Garbling Techniques for Public-Key Encryption. In Advances in Cryptology-
CRYPTO(2018), pages 335-364,2018.

15. Craig Gentry, Allison B. Lewko, Brent Waters. Witness Encryption from Instance Independent As-
sumptions. In Advances in cryptology - CRYPTO 2014, pages 426-443.

16. Russell Impagliazzo, Michael Luby. One-way functions are essential for complexity based cryptog-
raphy. In IEEE 30th Annual Symposium on Foundations of Computer Science, 1989.

17. Russell. Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth An-
nual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June 19-22, 1995.
pp. 134-147. IEEE Computer Society (1995), https://doi.org/10.1109/SCT.1995.514853.

18. Russell Impagliazzo, Steven Rudich. Limits on the the provable consequences of one-way permuta-
tions. In CRYPTO ’88: Proceedings on Advances in cryptology, February 1990, Pages 8¨C26.

19. Mohammad Mahmoody, Rafael Pass. The Curious Case of Non-Interactive Commitments ¨C On the
Power of Black-Box vs. Non-Black-Box Use of Primitives. In Advances in Cryptology-CRYPTO,
2012.

20. Minh-Huyen Nguyen, Shien Jin Ong, Salil P. Vadhan. Statistical Zero-Knowledge Arguments for
NP from Any One-Way Function. In 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings. IEEE, 2006.

21. Omkant Pandey, Manoj Prabhakaran, Amit Sahai. Obfuscation-based Non-black-box Simulation and
Four Message Concurrent Zero Knowledge for NP. In Theory of Cryptography Conference, 2015.

22. Omer Reingold, Luca Trevisan, Salil P. Vadhan. Notions of reducibility between cryptographic prim-
itives. In TCC, pages 1-20, 2004.

23. Andrew Chi-Chih. Yao. Protocols for secure computations. In 23rd annual symposium on founda-
tions of computer science (SFCS 1982). IEEE, 1982, pages 160-164.

A Yao’s garbled circuit scheme

Garbled circuit was first presented by Yao[23], and has been formalized by Bellare et al. [5].
According to the formal language of [5], a garbling circuit schemeGarble is defined by a tuple
algorithms, Garble = (Gb,En,Ev,De, V e).

Definition 4. (Garbled Circuits) A garbling circuit scheme consists of a tuple of polynomial
algorithms Garble = (Gb,En,Ev,De, V e).

– Gb(1n, C), taking the security parameter n and a circuit C : {0, 1}` → {0, 1}k as input,
outputs a garbled circuit Ĉ of C and a pair of keys (e, d), where e is an encoding key and
d is decoding list.

– En(e, x), taking x ∈ {0, 1}` and encoding key e as input, outputs the garbled encoding x̂
of x ∈ {0, 1}`.

Public-Key Encryption from Average Hard NP Language 35

– Ev(Ĉ, x̂) evaluates garbled circuit Ĉ on garbled encoding x̂, and outputs a garbled output
ŷ.

– De(d, ŷ) outputs the decoding of ŷ.
– V e(C, Ĉ, e) output 1 if Ĉ is a valid garbling circuit of C, output 0 otherwise.

A garbling scheme is called correct if for any x, there is De(d,Ev(Ĉ, En(e, x))) = C(x).
Garbled circuit is used for secure two-party computation, in where both parties wish to carry
out a joint computation of a shared function without disclosing their private input. So, it needs
to satisfy privacy and authenticity, roughly speaking, it require (Ĉ, En(e, x), d) does not leak
any information about x except for C(x) The details are not given here, see [5].

Yao’s garbled circuits scheme [23] is as follws. Let C : {0, 1}` → {0, 1}k be a acyclic
circuit that has m + k gates. So C has t = ` +m + k wires, denoted as w1, · · · , wt, where
w1, · · · , w` are the input wires andwt−k+1, · · · , wt are the output wires ofC. To garbleC,Gb
first selects a pair of key (K0

i ,K
1
i) from key spaceK to represent the bit values of 0 or 1 on wire

wi (i = 1, · · · , t), and sets e = {K0
i ,K

1
i }`i=1, d = {(0,K0

t−k+1), (1,K
1
t−k+1), · · · , (0,K0

t), (1,K
1
t)}.

Once all the keys for the wires in the circuit have been chosen, garble each gate in C
as follows: For any gate g with two input wires wi, wj and one output wire wo, compute
ca,b = EKa

i
(EKb

j
(K

g(a,b)
o)), a, b = 0, 1. The garbled gate of g is represented by a “garbled

computation table” ĝ = (c0, c1, c2, c3) which is the random order of (c0,0, c0,1, c1,0, c1,1). The
garbled circuit Ĉ of C consist of the garbled gate for each gate, Ĉ = {{ĝ}g∈C}.

For any x = x1 · · ·x`, x̂ = En(e, x) = {Kx1
1 , · · · ,Kx`

` } is the encoding of x. Ev(Ĉ, x̂)
computes each gate according its “garbled computation table”, gate by gate, and obtains the
output of k output gates, ŷ = Ev(Ĉ, x̂). Finally, De(d, ŷ) decodes ŷ, De(d, ŷ) = z1 · · · zk if
and only if ŷ = (Kz1

t−k+1, · · · ,K
zk
t). V e(C, Ĉ, e) verifies every ĝ = (c0, c1, c2, c3), gate by

gate, by decrypting c0, c1, c2, c3. V e(C, Ĉ, e) = 1 if all the verifications pass, V e(C, Ĉ, e) = 0
otherwise.

It is easy to see that Yao’s garbled circuits scheme is correct. In addition, Yao’s garbled
circuits scheme satisfies privacy and authenticity[5].

