
SIGMA: Secure GPT Inference with Function Secret Sharing

Kanav Gupta∗
Microsoft Research

kanav0610@gmail.com

Neha Jawalkar∗†
Indian Institute of Science

jawalkarp@iisc.ac.in

Ananta Mukherjee
Microsoft Research

t-mukherjeea@microsoft.com

Nishanth Chandran
Microsoft Research

nichandr@microsoft.com

Divya Gupta
Microsoft Research

divya.gupta@microsoft.com

Ashish Panwar
Microsoft Research

ashishpanwar@microsoft.com

Rahul Sharma
Microsoft Research

rahsha@microsoft.com

Abstract—Secure 2-party computation (2PC) enables
secure inference that offers protection for both proprietary ma-
chine learning (ML) models and sensitive inputs to them. How-
ever, the existing secure inference solutions suffer from high
latency and communication overheads, particularly for trans-
formers. Function secret sharing (FSS) is a recent paradigm for
obtaining efficient 2PC protocols with a preprocessing phase.
We provide SIGMA, the first end-to-end system for secure
transformer inference based on FSS. By constructing new
FSS-based protocols for complex machine learning functional-
ities, such as Softmax and GeLU, and also accelerating their
computation on GPUs, SIGMA improves the latency of secure
inference of transformers by 11 − 19× over the state-of-the-
art that uses preprocessing and GPUs. We present the first
secure inference of generative pre-trained transformer (GPT)
models. In particular, SIGMA executes GPT-Neo with 1.3 billion
parameters in 7.4s and HuggingFace’s GPT2 in 1.6s.

1. Introduction

In the problem of secure inference, model providers own
proprietary machine learning (ML) models that they want to
offer as services and clients who want to learn the inference
results on their sensitive data. The security requirement is
that the client should learn nothing about the model beyond
the inference output and the model provider should learn
nothing about the client’s input. This problem can be solved
by the technique of secure 2-party computation (2PC) that
provides cryptographic security guarantees.

In recent years, the applicability of 2PC-based solutions
has scaled up from models with thousands of parame-
ters [10], [39], [48], [50]–[52], [55], [58], [60], [62], [72],
to models with millions of parameters [20], [32], [35], [38],
[42], [59], [73], [76], to now BERT models with hundreds
of millions of parameters [7], [19], [33], [41], [45]. In this
paper, we take a step further in this direction by provid-
ing secure inference of Generative Pre-trained Transformer
(GPT) models with billions of parameters.

. * Equal contribution.

. † Work done while at Microsoft Research.

Transformer-based generative language models have
gained significant traction in recent times due to their re-
markable performance on various natural language tasks
e.g., question-answering, summarization, language transla-
tion, code generation [15], [16], [67]. Apart from ensuring
model/input privacy, secure inference of such models opens
up other interesting scenarios like “prompt privacy”. AI
companies are spending significant efforts building prompts
that lead to good inference results and they want to keep the
prompts hidden. Secure inference allows a company holding
a proprietary prompt and a client holding sensitive data to
generate inference results from a public language model
without revealing their inputs to each other. However, the
current state-of-the-art systems for secure inference deliver
unsatisfactory results on transformers.

We posit that a system for secure ML inference must
satisfy the following requirements: (1) accuracy - i.e., the
accuracy under secure inference should match that of the
plaintext, (2) security - i.e., the system should provide
standard 2PC security, (3) efficiency - i.e., the latency and
communication overheads of secure inference should be low,
and (4) scalability - i.e., the system must scale to models
with billions of parameters. We show that existing systems
fail to meet (often more than one of) these requirements.

Existing secure transformer inference systems include
THE-X [19], Iron [33], and CrypTen [41], [45], [75] (we
discuss other works in Section 8). THE-X sacrifices both
accuracy, by replacing complex non-linearities (based on
elementary functions, e.g., ex) with simple non-linearities
(max(x, 0)), and security, by revealing intermediate values.
Iron maintains both accuracy and security, but has huge
communication overheads, requiring over a hundred GB of
communication even for BERT models. Although CrypTen
leverages GPU acceleration and preprocessing to improve
efficiency, its online latency and communication for secure
inference are still significant. Moreover, it fails to provide
standard 2PC security because it uses insecure1 local trun-

1. Secure inference works like CrypTen [41] and many others [52],
[65], [72], [73], [76] use cheap local truncations that have recently been
established as insecure [46].

cations. Furthermore, because of GPU memory overflows,
it fails to scale to larger models.

1.1. Our Contributions

In this paper, we propose SIGMA2 - a system
that advances the state-of-the-art for secure inference of
transformer-based models along multiple dimensions. Like
CrypTen, SIGMA works in 2PC with preprocessing model
and uses GPU acceleration, but is an order of magnitude
more efficient in latency and communication while pro-
viding standard 2PC security guarantees. SIGMA maintains
the model accuracy under secure inference through precise
approximations of complex non-linearities and scales effi-
ciently to GPT models with billions of parameters.

SIGMA leverages Function Secret Sharing (FSS) based
2PC protocols [11], [14], [32], [38] and builds on Orca [38]
that is the state-of-the-art in GPU-accelerated FSS-protocols.
However, Orca focuses primarily on convolutional neu-
ral networks (CNNs) that use simple non-linearities like
ReLU. We show that Orca’s techniques pose unacceptable
overheads for transformers because of their heavy use of
complex non-linearities (Section 7.1.2).

Since the latency of secure inference in transformers
is dominated by complex non-linearities - GeLU, Softmax,
and layer normalization [33] - we propose new FSS-based
protocols for these operations and accelerate them with
GPUs. Realizing these operations requires accurate com-
putation of various elementary functions, e.g., exponenti-
ation, reciprocal square root, inverse, etc. The prior work
of Pika [71] uses large look-up tables (LUTs) for these
functions. Although this approach is general, Grotto [64]
shows that large LUTs are inefficient and provides proto-
cols based on custom splines (when they exist). SIGMA’s
protocols minimize the size of LUTs, to maintain accuracy,
while being more efficient than Grotto (Section 7.1.1). For
instance, for GeLU over 50-bit values, while Pika requires
an LUT of size 250, SIGMA uses an LUT of size 28 and
overall requires 9× lower compute than Grotto in the same
threat model.

We evaluate SIGMA on various models based on GPT
and BERT [15], [23], which are widely used for next-word-
predictions and classification tasks, respectively. Our novel
protocols allow us to securely and accurately evaluate GPT-
Neo with 1.3 billion parameters – “a transformer model
designed using EleutherAI’s replication of the GPT-3 ar-
chitecture” [4] – in 7.4 seconds. SIGMA runs the smaller
GPT2 model [3] from HuggingFace (tens of millions of
downloads each month) in 1.6 seconds, and the BERT
models in 0.1− 4.7 seconds. Overall, SIGMA improves the
latency of secure inference by 11.5− 19.4× over the state-
of-the-art. Finally, by evaluating on GPT models with up to
13 billion parameters, we show that SIGMA scales well to
even bigger models.

To guarantee standard 2PC security, SIGMA does away
with local truncations and instead uses secure faithful trun-

2. Secure Inference of GPT Models Accelerated

cations. Truncations are used extensively in both linear lay-
ers, i.e., after matrix multiplications, and non-linear layers.
We provide a new protocol for faithful truncation (Sec-
tion 4.2) that is much more efficient than the prior work [11]
(up to 30×). Even though our truncations are costlier than
(almost free) local truncations in CrypTen, our massive
performance gains in GeLU and Softmax make SIGMA more
than 10× faster than CrypTen for end-to-end inference.

Our large scale evaluations are made possible by
SIGMA’s frontend that allows users to succinctly express a
transformer architecture of choice and run it with SIGMA’s
protocols optimized for CPUs or GPUs (Section 6). The
protocol design for CPUs and GPUs differ, and we support
both (Section 5.1). In fact, SIGMA running on CPUs is
already faster than CrypTen running on GPUs. SIGMA will
be made publicly available.
Organization. Section 2 discusses cryptography background.
Section 3 provides an overview of transformers and GPUs.
Section 4 provides our protocols for primitive operations
like truncations and comparisons. Section 5 builds on these
primitives to provide novel protocols for complex non-
linearities. Section 6 provides implementation details, Sec-
tion 7 describes our empirical results, Section 8 discusses
related work, and Section 9 concludes.

2. Preliminaries

2.1. Notation

Let λ be the computational security parameter, N = 2n

and L = 2ℓ. Let R denote the set of real numbers and U2n

denote the set of n-bit unsigned integers. We use standard
2’s complement representation to represent signed values
in UN . For x ∈ UN , intn(x) and uintn(x) denote the
corresponding signed and unsigned integers in Z, respec-
tively. We denote arrays using boldface and its i-th element
(starting at 0) using the same symbol in normal typeface
followed by [i], e.g., a = {a[0], a[1], a[2], . . . }.
Fixed-Point Representation. Fixed-point representation,
parameterized by bitwidth n and precision f , encodes a
real value r ∈ R into an n-bit integer x ∈ UN such
that x =

⌊
r · 2f

⌋
mod N . Conversely, an n-bit fixed-point

number x with precision f decodes into real number intn(x)
2f

.
Operators. For a predicate b, 1{b} ∈ {0, 1} returns 1 if b
is true and 0 otherwise. For n < ℓ, x ∈ UN , extendn,ℓ(x)
returns x appended with (ℓ−n) 0’s on the left. For x ∈ UN ,
MSBn(x) ∈ {0, 1} denotes the most-significant bit of x.
Secret Sharing. For x ∈ UN , secret sharing samples
random shares x0, x1 ∈ UN such that x = x0+x1 mod N
holds, and is denoted by share(x). When x0 is held by P0

and x1 is held by P1, we denote the process of exchanging
the shares and adding them to reconstruct the underlying
value by reconstruct(xb) for b ∈ {0, 1}.

2.2. Threat Model

This work considers standard 2PC in the preprocess-
ing model [8], [9], [14], [22], [37] that has also received

significant attention in the context of secure machine learn-
ing [32], [38], [41], [63], [64], [76]. That is, there are two
parties P0 and P1 with inputs x0 and x1 and they wish to
compute a public function y = f(x0, x1) without revealing
anything more than the function output y to each other. In a
preprocessing phase that is independent of the inputs to the
function x0 and x1, correlated randomness is generated and
made available to P0 and P1. This randomness can be gener-
ated through multiple ways - a trusted dealer [11], [14], [32],
[38], [41], [63], [64], [76], generic 2PC protocols [28], [78],
or through more efficient specialized 2PC protocols [24]. In
this work, we consider the first approach. All our protocols
satisfy the standard notion of simulation-based security [17],
[28], [47] with security provided against a semi-honest static
probabilistic polynomial time (PPT) adversary corrupting
either P0 or P1.

2.3. Function Secret Sharing

A Function Secret Sharing (FSS) [12], [13] scheme is a
pair of algorithms (Gen,Eval). Gen splits a function g into
two function shares (g0, g1) and Eval takes as input b ∈
{0, 1}, function share gb and input x and returns gb(x). The
correctness property of an FSS scheme requires that g0(x)+
g1(x) = g(x) for all x. The security property requires that
each function share gb hides the function g.

Definition 1 (FSS: Syntax [12], [13]). A (2-party) FSS
scheme is a pair of algorithms (Gen,Eval) such that:
• Gen(1λ, ĝ) is a PPT key generation algorithm that given
1λ and ĝ ∈ {0, 1}∗ (description of a function g) outputs a
pair of keys (k0, k1). We assume that ĝ explicitly contains
descriptions of input and output groups Gin,Gout.

• Eval(b, kb, x) is a polynomial-time evaluation algorithm
that given b ∈ {0, 1} (party index), kb (key defining gb :
Gin → Gout) and x ∈ Gin (input for gb) outputs yb ∈ Gout

(the value of gb(x)).

(k0, k1) are called FSS keys and the number of bits required
to store one FSS key is called key size. We formally define
correctness and security of an FSS scheme in Appendix F.

2.4. 2PC with preprocessing from FSS

Consider secure computation of a circuit with gates
{gi}i and wires {wi}i. We describe the 2PC protocol with
preprocessing using FSS from [14] in two phases.
Offline Phase. For each wire wi, sample a random mask
ri from the appropriate group. Then, for each of the gate
g with input wire wi and output wire wj , generate an FSS
key for its offset function g[ri,rj](x) = g(x − ri) + rj and
provide one key to each party. For input and output wires
of the circuit belonging to party b, that party also learns the
masks associated with those wires.
Online Phase. For each input wire wi with value xi owned
by a party b, party b calculates x̂i = xi + ri and sends it
to party 1 − b. Now, the parties evaluate the circuit gates
in topological order. To evaluate a gate g with input and

output wire wi and wj respectively, both parties evaluate
the corresponding FSS key on x̂i to get secret shares of
x̂j = g[ri,rj](x̂i) = g(x̂i−ri)+rj = g(xi)+rj . The parties
then reconstruct these shares to get masked value x̂j . For
the output wires, the party owning the wire subtracts the
corresponding mask to get the final output value.

Protocol Structure and Security for FSS protocols. We
use (̂·) to denote masked values. Consider a function F and
input x such that y = F (x). Protocol for F , denoted by
ΠF , has two phases GenF and EvalF . GenF is executed in
the preprocessing phase on input and output masks rin and
rout, respectively, to produce the preprocessing material or
keys for F made available to P0 and P1. The number of bits
required to store the key for ΠF is called the key size and is
denoted by keysize(ΠF). Next, EvalF is the protocol run by
P0 and P1 in the online phase on masked input x̂ = x+ rin

and their respective keys. At the end of EvalF , P0 and P1

learn secret-shares of masked output value ŷ = y+ rout. All
protocols presented in this paper have the above structure.

Security for ΠF = (GenF ,EvalF) is defined through the
following two interactions. 1) A real interaction in which
GenF is executed in the preprocessing phase (with input and
output masks rin and rout) and P0 and P1 execute EvalF in
the online phase with keys obtained in the preprocessing
phase. This interaction happens in the presence of an ad-
versary A and the environment Z . 2) An ideal interaction
in which P0 and P1 send their inputs to a functionality
that computes the functionality faithfully (i.e., unmasks x̂
to get x, computes y = F (x), computes ŷ = y + rout and
provides shares of ŷ to P0 and P1). We say that protocol
ΠF securely realizes function F if for every adversary A
in the real interaction, there is an adversary S (called the
simulator) in the ideal interaction such that no environment
Z can distinguish between the two interactions.

2.5. Distributed Point Function (DPF)

The point function f•
α,β : UN → Gout takes as input

x ∈ UN and outputs β ∈ Gout if x = α and 0 otherwise. The
corresponding FSS-scheme for point function (Gen•n,Eval

•
n)

is called Distributed Point Function [12], [13]. Notation-
ally, we write (k•0 , k

•
1) ← Gen•n(1

λ, α, β,Gout) and yb =
Eval•n(b, k

•
b , x), for x ∈ UN . For all our protocols, it suffices

to have Gout = {0, 1} and β = 1, and this allows us to
leverage the construction of DPF with early termination
optimization (that is applicable for small payloads) [13].

Theorem 1 (Cost of DPF from [13]). Given PRG G :
{0, 1}λ → {0, 1}2λ+2 and let ν = log2(λ+1). When n > ν,
there exists a DPF for f•

α,1 : UN → {0, 1} with key size
(n− ν) · (λ+2)+2λ. Number of PRG invocations in Gen•n
is 2(n− ν) and in Eval•n is n− ν. When n ⩽ ν, keysize of
2n and 0 PRG invocations in Gen•n and Eval•n is required.

Similar to prior FSS works [13], [64], [71], we set
λ = 127 and implement the required length doubling PRG
using 2 calls to AES-128 in counter mode. As previously
observed [13], [64], a single AES call suffices for Eval•n as

only half of the output is used. From here on, we refer to
it as an half-PRG call.

2.6. Comparisons using DPF Keys

Comparison function f<
α,β : UN → Gout takes as input

x ∈ UN and returns β ∈ Gout if x < α and 0 otherwise.
Previous works [11], [32] used a specialized FSS-scheme
called Distributed Comparison Function (DCF) to realize
this functionality. Recent work of [64] showed that when
Gout = {0, 1}, β = 1, FSS scheme for comparison function
can be constructed using the DPF construction from [13].

Theorem 2 (FSS for comparison using DPF [64]). There
exists an algorithm Eval<n such that ∀x, α ∈ UN :

(k•0 , k
•
1)← Gen•n(1

λ, α, 1, {0, 1})
=⇒ Eval<n (0, x, k

•
0) + Eval<n (1, x, k

•
1) = f<

α,1(x)

and Eval<n invokes DPF half-PRG max(n−ν, 0) times. Thus,
(Gen•n,Eval

<
n) is an FSS-scheme for comparison function.

Compared to DCF construction from [11] that requires a
length quadrupling PRG, above construction results in > 2×
lower compute cost.

3. Overview of Transformers

3.1. Architecture Overview

Transformers is a neural network architecture used
commonly in natural language tasks. At a high level,
a transformer architecture consists of an encoder and a
decoder [70]. The encoder generates a sequence of hidden
states from the given input sequence. The decoder takes the
hidden states produced by the encoder and generates the
output sequence. Real-world models stack multiple encoder
and decoder blocks, as shown in Figure 1, to obtain
high accuracy results. Further, transformers can be used in
both encoder-decoder (e.g., BERT) and decoder-only mode
(e.g., GPT). We discuss the key components of a single
transformer block below:

Token embeddings: Transformers represent a natural lan-
guage input as a sequence of tokens (e.g., each word can
be represented as a token) wherein each token is a one-
dimensional vector of size dmodel. The token embedding
matrix We ∈ Rdmodel×NV , where NV is the vocabulary size,
maps each token to its corresponding embedding vector.
Further, each token is also assigned a positional encoding
vector of size dmodel that encodes the token’s position in
the input sequence [70]. The sum of the token embedding
vector and the positional encoding vector is used as input
to the transformer block.
Self-attention and multi-head attention (MHA): The self-
attention mechanism helps the model attend to different
parts in the input sequence. It maps a query and a set of
key-value pairs to an output as follows:

Linear

Matmul

Softmax

Matmul

Layer norm Layer norm

Linear

GeLU

Linear

output

FF
NA
tt
e
n
ti
o
n

Q K

V

Token

embeddings

Positional

embeddings

Linear operations Non-linear operations

Transformer

Block-n

Transformer

Block-k

Transformer

Block-0

Softmax

Linear

output

input

Figure 1: Architecture of a transformer neural network

Attention (Q, K, V) = softmax(QKT /
√
dmodel)V

where Q ∈ Ry×dmodel is the query matrix and K,V ∈
Rz×dmodel are key and value matrices, respectively (here, y
and z represent the length of primary and context sequence.)

The multi-head attention module consists of multiple
attention heads that operate in parallel, each over dmodel

num heads

in the above formulation (e.g., num heads = 12 in GPT-
2). The outputs of the attention heads are concatenated and
linearly transformed to obtain the MHA output.
Softmax: For a vector x ∈ Rk, define xmax =
max(x0, x1, . . . , xk−1). The softmax function on x returns
a vector y ∈ Rk such that:

y[i] = ex[i]∑k−1
j=0 ex[j]

= ex[i]−xmax∑k−1
j=0 ex[j]−xmax

Since exponentials in the first expression can get arbitrarily
large, the second expression is preferred where exponential
is only computed on negative values (including 0).
Feed forward network (FFN): FFN consists of two fully
connected layers wherein the first layer transforms the input
from dimension dmodel to dff , and the second layer trans-
forms it back to dmodel (typically, dff = 4× dmodel). FFN
for a matrix X ∈ Rz×dmodel (where z is the sequence length)
can be represented as:

FFN(X) = GeLU(XW1 + b1)W2 + b2

where W1 ∈ Rdmodel×dff and W2 ∈ Rdff ×dmodel are the
weight matrices and b1 ∈ Rdff , b2 ∈ Rdmodel are the bias
vectors for first and second layers within FFN. GeLU is the
Gaussian Error Linear Unit activation function [34].
Activation: An activation function applies a non-linear
transformation element-wise to the given input vector and its
output determines which of the neurons should be activated
in the next layer. Popular examples of activation functions
include ReLU, GeLU, tanh etc. Language models commonly
use GeLU which returns a vector y ∈ Rk for x ∈ Rk s.t.:

yi = GeLU(xi) = xi

2 (1 + erf (xi√
2

))

where erf is an integral of a Gaussian [34].
Layer normalization: Layer norm is used to normalize the
distribution of activations at each layer of the neural net-
work. For a vector of real values x ∈ Rk, let m =

∑
xi/k

and v = (
∑

(xi−m)2)/k denote it’s mean and variance, re-
spectively. For zi = xi−m and model parameters γ, β ∈ R,
the layer normalization returns a vector y ∈ Rk s.t.:

yi = γ · xi −m√
v

+ β = γ · zi√∑
z2i /k

+ β (1)

3.2. Secure Inference of Transformers

Based on the above description and the literature on
cryptographic protocols, the layers in a transformer can be
classified into two categories - linear and non-linear.

Linear layers. These consist of the matrix multiplications
occurring in multihead attention (MHA) and feed forward
(FFN) layers. Similar to all prior works on secure inference,
we work with fixed-point arithmetic. Here, multiplying
two fixed-point values with precision f over integers
results in a fixed-point value with implicit precision 2f .
Hence, multiplications must be followed by a truncation
operation to bring the precision back to f . For the
matrix multiplications over integers, we use the existing
protocol [14], [32], [38] that relies on Beaver-triple
like correlations generated in preprocessing phase. For
truncations, as one of our contributions, we provide a
significantly more efficient protocol compared to the prior
work [11], [32] (see Section 4.2).

Non-linear layers. These consist of GeLU, Softmax and
LayerNorm. In Section 5, we provide novel precise protocols
for these non-linearities over fixed-point arithmetic that not
only preserve the accuracy of transformers but also lead to
efficient secure inference on transformers (Section 7).

Putting things together. For each of the layers of the trans-
formers, we provide a secure protocol where the evaluating
parties start with masked input, i.e., for an input x and
random mask rin, parties hold x̂ = x + rin and after the
protocol learn masked output, i.e., ŷ = y+ rout for output y
and mask rout. Given this invariant, we are able to trivially
put together the secure protocols for each layer to obtain a
secure protocol for inference and prove security by invoking
the sequential composition theorem [17], [47].

3.3. GPU-accelerated Secure Inference

Graphics Processing Units (GPUs) support thousands of
concurrent threads and provide much higher memory band-
width compared to CPUs [2]. Therefore, GPUs are a natural
fit for accelerating transformers in plaintext: (1) several
linear layers (e.g., in FFN) in a transformer network involve
large matrix multiplications that can be accelerated using
GPUs, often by up to two orders of magnitude compared to
CPUs. (2) the non-linear layers are memory intensive and
hence benefit from the high memory bandwidth of GPUs.
Under secure inference, the linear layers can be accelerated
similar to plaintext. However, the non-linear layers require
several rounds of network communication between the client

and the model provider, and transfer of large pre-generated
keys from CPU to GPU over the PCIe links. Therefore,
communication and key transfer overheads dominate the
overall time under secure inference.

We reduce the size of communication and data transfer,
at the expense of some extra computation, as follows: (1)
we reduce network communication with an efficient packing
scheme for non-standard bitwidths. This adds extra compu-
tation for packing and unpacking values which we imple-
ment efficiently on the GPU itself. (2) we reduce the number
of DPF keys needed for GeLU from two to one at the cost
of one extra evaluation of the same key per element. These
optimizations reduce network communication by 1.2−1.5×
and key transfer by 1.8× over a naı̈ve port of our CPU
protocols to the GPU. Note that without these optimizations,
a GPU’s compute units would often remain idle. Hence, the
additional computation is essentially free for SIGMA.

4. Crypto Building Blocks

Similar to ORCA [38], we design efficient protocols
with multi-round online phase. Our goal is to achieve low
key size, online compute and online communication while
ensuring small constant round complexity. At the end of
EvalF , the evaluators learn secret-shares of masked output
value ŷ = y + rout. Now, EvalF can be followed by a
reconstruct to obtain the masked output value ŷ and we
denote this modified protocol by Π̂F . As the input and
output masks are unknown to the evaluators, the cleartext
values remain hidden from the evaluators.

We first provide a summary of protocols for multiplica-
tion, selection, and lookup tables from prior works. Then,
we describe our novel FSS-based protocols for truncation
and comparison. All of these are used as sub-protocols by
our novel protocols for complex non-linearities (Section 5).

4.1. Protocols from Previous Works

Multiplication. For secure multiplication of two n-bit in-
tegers, [14] provides a beaver-triple based (non-interactive)
FSS-protocol ΠMul

n with keysize of 3n bits.
Select. The functionality selectn : {0, 1} × UN → UN

takes as input a selector bit s and a payload x such that
selectn(s, x) = x if s = 1 and 0 otherwise. Orca [38] pro-
vides a non-interactive protocol Πselect

n that realizes selectn
securely with keysize 4n.
SelectLin. Let selectlinn,γ : {0, 1}2 × UN → UN be a
functionality parameterized by a length 4 vector of pairs of
elements, γ = {(α0, β0), (α1, β1), (α2, β2), (α3, β3)} with
αi, βi ∈ UN ,∀i ∈ [4]. It takes as input two selector bits s0,
s1, and a payload x, and outputs selectlinn,γ(s0, s1, x) =
α2s0+s1x+β2s0+s1 . This functionality can be easily realized
using one-time truth tables as described in [21] and results
in a non-interactive protocol Πselectlinγ

n with keysize 8n.
Look-up Table. The functionality LUTn,ℓ,T : UN → UL is
parameterized by input bitwidth n, output bitwidth ℓ and a
public table T ∈ UN

L . It takes as input x ∈ UN and returns

T [x] ∈ UL. Pika [71] provides a protocol ΠLUT
n,ℓ,T such that

keysize(ΠLUT
n,ℓ,T) = keysize(DPFn,1) + n+ 2ℓ. Online phase

invokes the DPF PRG 2n−ν − 1 times, where ν = log2(λ+
1), and communicates 2ℓ bits in 1 round.

4.2. Our Truncation Protocol

As discussed in Section 3.2, linear layers or matrix
multiplication needs to be followed by an element-wise trun-
cation to bring down precision. Our protocols for complex
non-linearities also use multiple truncations. The literature
considers (cheap) local truncations [41], [52], [72], [73],
[76] and (expensive) faithful truncations [11], [32], [59].
While local truncations are almost free to implement, a very
recent work Li et al. [46] shows that these do not satisfy
standard simulation-based security and are insecure. In light
of this, in this work, all our protocols for secure inference
only use faithful truncations or arithmetic right shifts (ARS).
Here, we provide new protocols for truncation that are much
more efficient than prior FSS-based protocol from [11], [32].

ARS with guaranteed gap. We first consider the case
when the input is known have a gap w.r.t. the bitwidth
used. In particular, we require that v ∈ UN is such that
v ∈ [0, 2n−2)∪ [2n − 2n−2, 2n). Looking ahead, within our
protocols for non-linearities, this assumption holds many a
times from domain knowledge.

We first use the following relation from [25] to reduce
ARS to logical right shift (LRS), i.e., a reduction of shift
of signed values to unsigned values. In particular, for n-
bit values and shift amount f , when v ∈ [0, 2n−2) ∪ [2n −
2n−2, 2n), for x = v + 2n−2,

ARSn,f (v) = LRSn,f (x)− 2n−f−2

where LRSn,f (x) =
⌊

x
2f

⌋
. Note that constraint on v implies

that x = v+2n−2 seen as an unsigned value lies in [0, 2n−1)
which would be crucial for the optimization that we do.

Now, given the above relation, to construct a protocol for
ARSn,f (v), we construct a protocol for LRSn,f (x) using the
following lemma (also used in [11], [59]).

Lemma 1. For x0 = x̂ mod 2f and r0 = rin mod 2f ,

LRS
[rin,rout]
n,f (x̂) = LRSn,f (x̂)− LRSn,f (r

in)

+ 2n−f · 1{x̂ < rin} − 1{x0 < r0}+ rout (2)

When x ∈ [0, 2n−1), following observation3 (proof in Ap-
pendix H) provides an efficient way to compute 1{x̂ < rin}.
Lemma 2. For x̂ = x+ rin mod N , if x < 2n−1,

1{x̂ < rin} = 1{MSBn(x̂) = 0} ∧ 1{MSBn(r
in) = 1}

We provide a formal description of our protocol for LRS
for inputs with a gap in Figure 2 (security proof in Ap-
pendix I.1). Here, the term 1{x0 < r0} is computed using

3. Similar observation was also used by [25] for their probabilistic LRS
protocol that ignores the LSB correction term 1{x0 < r0} and referred to
as MSB-to-Wrap optimization in SIRNN [58] and used in various protocols.

DPF-based comparison with 1-bit output to allow for smaller
FSS key and lower online compute. Once the evaluators
learn the masked value of this bit (ŵ), they do a local
extension (ẑ). They use ẑ and arithmetic shares of the mask
(r(w)) provided by the dealer to obtain arithmetic shares of
u = 1{x0 < r0}. It is trivial to extend this to ARS (with
the same cost) and we summarize the cost in Theorem 3.

Logical Right-Shift with Gap ΠGapLRS
n,f

GenGapLRSn,f (rin, rout) :

1: (k•0 , k
•
1)← Gen•f (1

λ, rin mod 2f , 1, {0, 1})
2: c

$← {0, 1}, r(w) = extend1,n(c)
3: m = 2n−f · extend1,n(MSBn(r

in))
4: r = rout − LRSn,f (r

in)
5: share (r(w),m, r)

6: For b ∈ {0, 1}, kb = k•b ||r
(w)
b ||mb||rb

EvalGapLRSn,f (b, kb, x̂) :

1: Parse kb as k•b ||r
(w)
b ||mb||rb

2: ŵb = Eval<f (b, k
•
b , x̂ mod 2f) + r

(w)
b mod 2

3: ŵ = reconstruct(ŵb), ẑ = extend1,n(ŵ)

4: ub = bẑ + r
(w)
b − 2ẑr

(w)
b

5: tb = mb · extend1,n(1−MSBn(x̂))
6: return b · LRSn,f (x̂) + rb + tb − ub

Figure 2: Protocol for Logical Right-Shift with Gap

Theorem 3. There exists a protocol ΠGapARS
n,f that realizes

ARSn,f securely for cleartext inputs in [0, 2n−2) ∪ [2n −
2n−2, 2n) such that keysize(ΠGapARS

n,f) = keysize(DPFf,1) +
3n. The online phase requires 1 evaluation of DPFf,1 and
communication of 2 bits in 1 round.

Truncate-Reduce. TRn,f : UN → U2n−f is defined as
dropping the lower f bits of the n-bit input and returning
the output as an (n−f)-bit number. It can be expressed as:

TRn,f (x) = LRSn,f (x) mod 2n−f

Note that Equation 2 for LRS does not rely on gap in
inputs. Now, as the term 2n−f · 1{x̂ < rin} cancels out due
to mod operation, we can realize truncate-reduce securely
using a single comparison for 1{x0 < r0}. We omit details
and summarize cost below:

Theorem 4. There exists a protocol ΠTR
n,f that re-

alizes TRn,f securely such that keysize(ΠTR
n,f) =

keysize(DPFf,1) + 2(n − f). The online phase requires 1
evaluation of DPFf,1 and communicates 2 bits in 1 round.

ARS without known gap. Let SignExtℓ,n : UL → UN be
defined as sign extending a value in ℓ-bits to equivalent value
in n-bits. When input to ARS is not known to have a gap, we
express4 ARSn,f as TRn,f followed by SignExtn−f,n. We

4. Similar approach was used in Orca [38] for stochastic truncations.

use our protocol for (faithful) truncate-reduce and replace
DCF in the protocol for sign-extension from Orca [38] with
DPF-based comparison. We summarize overall costs below:

Theorem 5. There exists a protocol ΠARS
n,f that realizes

ARSn,f securely such that keysize(ΠARS
n,f) = keysize(ΠTR

n,f)+
keysize(DPFn−f,1) + 2n+1. Online phase requires 1 eval-
uation each of DPFf,1 and DPFn−f,1 and communicates
2(n− f) + 4 bits in 3 rounds.

Cost Comparison. In contrast, [11] gave a protocol for
ARSn,f (also used in [32]) that requires a key size of approx-
imately n(λ+ 2n) + f(λ+ n) bits and online phase makes
2(n + f − 1) AES calls. Concretely, for n = 64, f = 12,
ΠGapARS

n,f has 17.5× smaller key size and 30× lower online
compute, and ΠARS

n,f has 2.5× smaller key size and 3× lower
online compute.

4.3. Our DReLU and Comparison Protocols

For an n-bit value x ∈ UN in 2’s complement notation,
derivative of ReLU or DReLU is defined as

DReLUn(x) = 1{x < 2n−1} = 1⊕MSBn(x)

and the offset function of DReLUn can be written as

DReLU[rin,rout]
n (x̂) = DReLUn(x̂− rin mod N)⊕ rout

= MSBn(x̂− rin mod N)⊕ 1⊕ rout

Prior FSS works [11], [14], [32], [38] provide a non-
interactive protocol for DReLU that uses a DCF key for
comparison and evaluates it twice during online phase. In
contrast, we provide a non-interactive protocol that does a
single evaluation of a DPF key for comparison. In all, we
get > 4× reduction in online compute.

Our protocol builds on the logic used in CrypT-
Flow2 [59] for MSB computation over secret shares (in
log n rounds). For x ∈ UN such that x = x0+x1 mod N ,
y0 = x0 mod 2n−1 and y1 = x1 mod 2n−1,

MSBn(x) = MSBn(x0)⊕MSBn(x1)⊕ 1{y0 + y1 ≥ 2n−1}

Using this above, we get

DReLU[rin,rout]
n (x̂) = MSBn(x̂)⊕MSBn(2

n − rin)

⊕ 1{2n−1 − y0 − 1 < y1} ⊕ 1⊕ rout

where y0 = x̂ mod 2n−1 and y1 = (2n − rin) mod 2n−1.
Based on above equation, we provide a protocol for

DReLUn in Figure 3 (security proof in Appendix I.1) where
we compute 1{2n−1 − y0 − 1 < y1} using a single evalua-
tion of DPF-based comparison.

Theorem 6. ΠDReLU
n (non-interactively) securely realizes

DReLUn with keysize(ΠDReLU
n) = keysize(DPFn−1,1) + 1.

Online phase requires 1 evaluation of DPFn−1,1.

Comparison. To compare two values x, y, i.e., to compute
x ⩾ y, similar to all prior works, we re-write it as x−y ⩾ 0
and realize it using a call to ΠDReLU

n .

DReLU ΠDReLU
n

GenDReLU
n (rin, rout) :

1: x1 = 2n − rin

2: y1 = x1 mod 2n−1

3: (k•0 , k
•
1)← Gen•n−1(1

λ, y1, 1, {0, 1})
4: r = rout ⊕MSBn(x1)⊕ 1
5: share r
6: For b ∈ {0, 1}, kb = rb||k•b

EvalDReLU
n (b, kb, x̂) :

1: Parse kb as rb||k•b
2: ŷ = x̂ mod 2n−1

3: tb ← Eval<n−1(b, k
•
b , 2

n−1 − ŷ − 1)
4: return b ·MSBn(x̂)⊕ rb ⊕ tb

Figure 3: Protocol for DReLU.

5. Our protocols for complex non-linearities

Here, we describe our protocols for various complex
non-linearities - GeLU (Section 5.1), softmax (Section 5.2),
and layer normalization (Section 5.3). Finally, in Sec-
tion 5.4, we discuss a few transformers-specific optimiza-
tions that allow us to compute these non-linearities over
smaller tensors or smaller bitwidths in certain scenarios.
Computing these non-linear functions requires efficient com-
putation of various unary functions - GeLU, exponential,
inverse, and reciprocal square root. Pika’s approach to com-
pute any arbitrary elementary function is to just look up
the correct output from a table [71]. However, for an n-
bit input, it requires a lookup table (LUT) of size 2n, and
computing it securely requires roughly 2n−7 PRG calls. In
contrast, Grotto [64] uses custom splines and DPFs to realize
a subset of functions required in transformers (see Section 7
for a thorough comparison).

In SIGMA, we devise function-dependent strategies to
significantly reduce the size of LUTs used, while ensuring
that our protocols provide good numerical approximations
and hence, preserve the accuracy of transformers when run
securely using our protocols. For f = 12 used by all
our benchmarks, our protocols use LUTs of size 28 for
GeLU and exponential, an LUT of size between 213 and
216 for inverse, and an LUT of size 213 for reciprocal
square root, independent of bitwidth n. Note that almost
all our benchmarks require a bitwidth of around 50 and our
techniques result in significantly smaller LUTs than Pika
that are very efficient to compute securely. Moreover, our
recipe for approximating reciprocal square root is general
and applicable to any elementary function.

For each of the non-linearities, we describe our secure
protocol as a sequence of calls to protocols described in
Section 4 and security trivially holds in the simulation
paradigm using sequential composition [17], [47]. While for
ease of exposition, we describe our ideas for f = 12 that is
used by all our transformer benchmarks, they can easily be

−4 −2 0 2 4
0

0.1

0.2

x

δ(
x
)

Figure 4: Plot for δ(x) = ReLU(x)− GeLU(x).

generalized to higher precision values by using appropriately
larger LUTs.

5.1. GeLU

For a real number x, GeLU(x) = 0.5x(1 + erf(x/
√
2))

where erf is the error function [34]. Prior works, e.g.,
Crypten [41], Grotto [64], provide protocols for GeLU in
the same threat model as ours. However, these are an order
of magnitude less performant than SIGMA (Section 7.1).

Our main insight is that GeLU(x) is same as ReLU(x) :=
max(x, 0) almost everywhere except in a small interval
around 0. Let δ(x) = ReLU(x) − GeLU(x) (plot shown in
Figure 4). Given that ReLU(x) can be efficiently realized
using a call to DReLU and select, it suffices to efficiently
compute δ(x) for x near 0. Finally, we output GeLU(x) as
ReLU(x)−δ(x). We calculate δ(x) using an LUT. However,
for efficiency, we need to restrict the input domain of the
LUT, while ensuring that the results are precise enough.

First, we observe that δ(x) becomes negligible outside
the range (−4, 4) and for precision f = 12, δ(−4) =
δ(4) = 0. Hence, we first restrict the inputs to (−4, 4) or
equivalently [−2f+2 + 1, 2f+2 − 1] using a clip operation.
Formally, for n-bit values and clipping nodes A,B, we
define Clipn,A,B(x) as (i) A for x < A (ii) x for x ∈ [A,B],
and (iii) B for x > B.

Next, we observe that δ(x) is an even function between
(−4, 4). Hence, it suffices to compute the LUT using the
absolute value of the clipped input, that lies in [0, 2f+2−1]
and requires f + 2 bits to represent. We further reduce the
size of input domain to LUT by scaling down to 6-bits of
precision, retaining 8-bits of information that are used as
input to the LUT to compute δ(x).

We provide a formal description of our approximation
of GeLU(x) in Figure 5. Here, A = −2f+2 + 1 and B =
2f+2 − 1. Also, T ∈ U256

N is the table such that for all i ∈
U256, T [i] =

⌊
δ(i

26) · 2
f
⌋
. For f = 12, our approximation

achieves5 an ULP error of 31 which suffices to maintain
PyTorch accuracy for all benchmarks as shown in Section 7.

Next, we describe how we translate the above cleartext
function to secure protocols. We do a re-ordering of opera-
tions in the above description to achieve secure operations

5. We compute error by exhaustive testing on all inputs between (−4, 4)
as the error is 0 outside this domain.

GeLUn,f (x) :

1: p = ReLUn(x)
2: c = Clipn,A,B(x)
3: a = Absn(c)
4: t = TRn,f−6(a) mod 256
5: return p− LUT8,n,T (t)

Figure 5: Our approximation for GeLUn,f (x).

GeLU (CPU) ΠGeLUCPU
n,m,f (x̂)

1: ŷ ← Π̂TR
m,f−6(x̂ mod 2m)

2: d̂← Π̂DReLU
m−f+6(ŷ)

3: p̂← Π̂select
m−f+6(d̂, ŷ)

4: â← 2 · p̂− ŷ
5: î← Π̂DReLU

m−f+6(â− 256)⊕ 1

6: ĉ← Π̂select
8 (̂i, â− 255 mod 256) + 255

7: return Πselect
n (d̂, x̂)−ΠLUT

8,n,T (ĉ)

Figure 6: CPU-optimized protocol for GeLUn,m,f

on lower bitwidths, resulting in lower keysize, online com-
pute, and communication. Moreover, since the performance
bottlenecks are different on CPU and GPU, we provide two
different versions of the GeLU protocol. Looking ahead, for
GPUs, we trade-off lower keysize and communication with
higher compute compared to CPU.

5.1.1. CPU Protocol. We make the following optimizations.

Optimization 1. Since A = −B, it holds that
Absn(Clipn,A,B(x)) = Clipn,0,B(Absn(x)). Hence, we
switch the steps (2) and (3) in Figure 5 to a = Absn(x);
c = Clipn,0,B(a). This switch has 2 benefits. First, the
absolute value can be calculated for free given ReLU as
Absn(x) = 2 · ReLUn(x) − x. Second, since the input to
Clip is now guaranteed to be a positive number, it can be
realized by 1 comparison (with B) instead of 2 before (one
each with A and B).

Optimization 2. Since the lower f − 6 bits are going to
be discarded anyways, and do not affect the outcome of
comparisons in ReLU or Clip, it is safe to perform this
operation as the very first step. This reduces the bitwidth
of comparisons in ReLU and Clip by f − 6.

Optimization 3. This applies when domain knowledge helps
in restricting the inputs of GeLU to a sub-domain of UN . For
instance, in all transformers, GeLU is always preceded by
a linear layer that invokes a truncation by f after a matrix
multiplication. Due to this, the effective input bitwidth of
the GeLU input is m = n − f . Combining this with the
above, the comparisons can happen over m− (f − 6) bits.

Based on the above optimizations, we present our CPU-
optimized protocol ΠGeLUCPU

n,m,f for GeLUn,m,f in Figure 6,

where input/output bitwidths are n, effective input bitwidth
is m, and precision is f .

Cost Analysis. ΠGeLUCPU
n,m,f requires a key size equal to the

key size of 2 ΠDReLU
m−f+6, 1 ΠLUT

8,n,T , 1 ΠTR
m,f−6 and 3 calls

to Πselect of bitwidths n, m − f + 6 and 8. Online phase
compute consists of a single evaluation of each of these and
communication of 4(m− f) + 2n+ 46 bits in 6 rounds.

5.1.2. GPU Protocol. We note that the performance bot-
tlenecks on CPU and GPU are quite different. CPU im-
plementations are bottlenecked by compute (i.e., number of
AES calls). However, once AES calls are accelerated well
on GPU, performance bottlenecks become key transfer from
CPU RAM to GPU memory and communication between
the two parties. Thus, when creating a secure version of
Figure 5 for the GPU, we focus on reducing key size and
communication while tolerating a higher compute. We later
argue that this trade-off results in lower runtime compared
to a naı̈ve port of the CPU protocol.

Our starting point is the protocol outlined in Figure 6.
To allow computing on smaller bitwidths, we keep opti-
mizations 2 and 3 intact. Thus, we start by computing
y = TRm,f−6(x mod 2m). Crucially, we let go of opti-
mization 1, and combine ReLU and Clip differently. First,
we compute DReLU bit d = DReLU(y). We additionally
compute an interval containment bit i = 1{−255 ⩽ y ⩽
255} = DReLU(y − 256)− DReLU(y + 255). In doing so,
we compute one more DReLU than the CPU, i.e., a total of
3. However, crucially, since all the DReLU evaluations are
on y shifted by a constant, they can all use the same key.
Hence, unlike GeLUCPU, this requires a single DPF key.

Given i and d, we compute Abs(Clip(y)) as

Abs(Clip(y)) =


255 i = 0, d = 0

255 i = 0, d = 1

−y i = 1, d = 0

y i = 1, d = 1

As an optimization, similar to CPU, before a selection, we
first reduce y to 8 (relevant) bits and compute Abs(Clip(z)),
where z = y mod 256. Note that since i is com-
puted on y, it only allows the value of z to propagate
when −255 ⩽ y ⩽ 255. Since d already contains the
sign of y, the last 8 bits of y (captured by z), suf-
fice to correctly compute Abs(Clip(y)). For this selec-
tion based on i and d, we invoke Π̂

selectlinγ
8 (i, d, z) with

γ = {(0,255), (0,255), (−1,0), (1,0)}. This gives us
c = Abs(Clip(z)).

We provide the formal GPU protocol in Figure 7. We
also note that unlike the CPU version, this does not require
reconstructing ReLU(x) over m− f − 6 bits (Step 3 in Fig-
ure 6). This is because we extract the interval containment
bit needed for Clip from x and not from Abs(x). This allows
us to save on communication as well as one round, resulting
in efficient GPU implementation.

GeLU (GPU) ΠGeLUGPU
n,m,f (x̂)

1: ŷ ← Π̂TR
m,f−6(x̂ mod 2m)

2: d̂b ← ΠDReLU
m−f+6(ŷ)

3: îb ← ΠDReLU
m−f+6(ŷ + 255)⊕ΠDReLU

m−f+6(ŷ − 256)

4: (̂i, d̂) = reconstruct(̂ib, d̂b)
5: ẑ = ŷ mod 256
6: ĉ← Π̂

selectlinγ
8 (̂i, d̂, ẑ)

7: return Πselect
n (d̂, x̂)−ΠLUT

8,n,T (ĉ)

Figure 7: GPU-optimized protocol for GeLUn,m,f . The calls
to ΠDReLU in steps 2-3 can use same key.

Cost Analysis. ΠGeLUGPU
n,m,f requires a key size equal to the

key size of 1 DPFm−f+5 key (for the 3 calls to Π̂DReLU
m−f+6), 1

ΠLUT
8,n,T call, 1 Π̂TR

m,f−6 call and 2 calls to Πselect for bitwidths
8 and n. The online phase communicates 2(m−f)+2n+34
bits in 4 rounds.

Compared to CPU protocol for n = 64,m = 52, f =
12, the GPU protocol has 1.8× smaller keysize, 1.3× less
communication, and 1.5× larger number of half-PRG calls.
Empirically, on a microbenchmark of 1 million GeLUs, our
protocol takes about 70ms, of which 34ms is key transfer,
16ms is compute (of which about 88% is DReLU) and 20ms
is communication. This is about 1.4× faster than a naı̈ve
port of the CPU protocol.

5.2. Softmax

For a vector x ∈ Rk and xmax = max(x0, x1, . . . , xk−1),
softmax on x returns a vector y ∈ Rk such that:

y[i] =
ex[i]−xmax∑k−1

j=0 e
x[j]−xmax

Overview. We need protocols for max, exponentiation of
negative values and inverse. xmax can be computed using
k − 1 invocations of our protocols for comparison of 2
elements (Section 4.3) and select in 2 ⌈log2(k)⌉ rounds.
Now, we can subtract xmax from every element x[i] to obtain
x[i] − xmax and invoke the exponentiation protocol on this
value to obtain z[i]. We can then compute z =

∑k−1
j=0 z[i],

invoke our protocol for inverse on z to obtain z−1, and
compute y[i] = z−1 · z[i] followed by truncation. We use
ΠGapARS

n,f for the final truncation as y[i] ∈ [0, 1] with preci-
sion 2f (due to being a probability distribution) resulting in
the required gap.

Below, we describe our novel protocols for exponential
and inverse, both of which use the domain knowledge of
softmax for efficiency.

5.2.1. Negative Exponential. Define nExp(x) = e−x for
x ∈ R+. We first observe that nExp is a monotonically
decreasing function and for f = 12, x ⩾ 16, fixed-point
representation of nExp(x), i.e.,

⌊
e−x · 212

⌋
= 0. Hence, we

Negative Exponential ΠnExp
n,m,f (x̂)

1: d̂← Π̂DReLU
m ((x̂− 216) mod 2m)⊕ 1

2: ĉ← Π̂select
16 (d̂, x̂− (216−1) mod 216)+(216−1)

3: ĉ1 ← Π̂TR
16,8(ĉ); ĉ0 ← ĉ mod 256

4: t̂1 ← Π̂LUT
8,n,T1

(ĉ1); t̂0 ← Π̂LUT
8,n,T0

(ĉ0)

5: t̂← Π̂Mul
n (t̂0, t̂1)

6: return ΠGapARS
n,f (t̂)

Figure 8: Protocol for nExpn,m,f

first clip the inputs to the interval [0, 16) ⊂ R+ followed
by using an LUT to compute nExp for this interval. When
x ∈ [0, 16), we need 16-bits to represent fixed-point values
with precision f = 12. Now, directly using lookup for
exponentiation would require an LUT of size 216, which
is expensive.

Next, we use the technique from Seedot [29] for nExp
(also used in [58]) that allows reducing one 16-bit LUT to
two 8-bit LUTs. Let c = c1||c0 be the 16-bit clipped value
with f = 12, where c1 is upper 8-bits and c0 is lower 8-
bits. These can be calculated as c1 = TR16,8(c) and c0 = c
mod 256. Seedot showed that⌊

nExp
(c

212

)
· 2f

⌋
≈ ARSn,f (T1[c1] · T0[c0])

where T1,T0 are 8-bit LUTs with n-bit values such that
T1[i] = ⌊nExp(i/24) · 2f⌋ and T0[i] = ⌊nExp(i/212) · 2f⌋
for all i ∈ U28 . Here, ΠGapARS

n,f suffices to perform ARSn,f as
its input is always less than 22f , leading to a gap. Compared
to using 16-bit LUT, the above approach reduces online
compute by 100× (1022 half-PRG calls to 10 half-PRG
calls including TR and ARS).

We provide a formal description of our protocol ΠnExp
n,m,f

in Figure 8. Here, similar to GeLU, we introduce an addi-
tional parameter m that captures effective bitwidth and helps
reduce cost when possible from domain knowledge.

5.2.2. Inverse. We calculate inverse using an LUT of care-
fully chosen size. It is easy to see that for a softmax of
size k, the input to inverse z ∈ [1, k]. That is, it has a
non-zero integer part which is also upper bounded. Hence,
without losing any information, we reduce the bitwidth of
input from n to p = f+⌈log2(k + 1)⌉ retaining precision f .
Next, we create an approximate input with lower precision
by chopping off few lower bits6. In our specific case,
we reduce precision to 6, creating an input with bitwdth
q = 6+ ⌈log2(k + 1)⌉. Finally, we use a q-bit LUT to read
the output of inverse. The protocol for inverse ΠInv

n,f returns

ΠLUT
q,n,T

(
Π̂TR

p,f−6(x̂ mod 2p)
)

, where T ∈ U2q

N is a table
such that T [i] =

⌊
2f+6/i

⌋
for all i ∈ U2q .

6. While doing this in general can lose all information from the input
and result in garbage result for inverse, it is still safe to do in our setting
because the initial input has a meaningful lower bound.

5.3. Layer Normalization

Equation 1, Section 3.1 provides the mathematical ex-
pression for layer normalization. We note that all sub-
expressions in the equation can be implemented using our
existing protocols barring reciprocal square root. Below we
provide an overview of our protocol for reciprocal square
root and defer the details of the overall protocol and an
additional optimization to Appendix G.

5.3.1. Reciprocal Square Root. While we aim to approx-
imate the reciprocal square root using an LUT, securely
computing an n-bit LUT for a large n (e.g., 50) is not
efficient. So far, we have exploited two main ideas to reduce
the size of LUTs significantly. Either, the function is non-
zero only in a small domain (e.g., GeLU(x) − ReLU(x),
nExp(x)) or we use domain knowledge to restrict the input
domain (e.g., inverse in softmax). However, both these ideas
are inapplicable here. Although reciprocal square root is
a monotonically decreasing function, it only approximates
to 0 for very large values. Moreover, we do not have any
useful lower or upper bound on the input. Hence, our idea
is to shift to a representation that allows representing a
large dynamic range with a small number of bits. This is
exactly what floating-point representations allow. We use
domain knowledge to design a custom 13-bit floating-point
representation to encode the input and use it to index an
LUT. We provide a formal description in Appendix G.2.

5.4. Global Optimizations

Effective Bitwidth. In case of transformers, GeLU is always
preceded by a linear layer which invokes a truncation after
matrix multiplication. This means, for n bit inputs to the
linear layer, the output of truncation by f lies in range
[−2n−f−1, 2n−f−1). Hence, the effective bitwidth of the
input to GeLU is only m = n−f . This allows us to perform
comparisons on a smaller bitwidth of m instead of n.

Similarly, softmax is also preceded by a linear layer.
As the first step of softmax is to find the max element,
all the comparisons in max calculation can happen over an
effective bitwidth of m = n− f . Then, the max element is
subtracted from all the elements in the input vector before
being passed to the protocol for nExp. As both input vector
elements and max element have effective bitwidth of n−f ,
the input to nExp has effective bitwidth of m = n− f +1.
Attention Mask. In transformer models, for input with
sequence length k, the input to softmax is always a batch of
k vectors of size k. In many GPT models, including those
that we evaluate on, the upper triangular elements of the
softmax input are masked, i.e., their nExp is set to 0 in the
softmax computations. Hence, we can avoid calling the max
and nExp protocols for the masked elements and reduce their
number of calls to half.

6. Implementation
We have implemented two versions of SIGMA, one

which is optimized for CPUs and the other for GPUs.

GPU. The GPU-accelerated part has around 9K lines of
C++/CUDA code. For the GPU version, our starting point
is Orca [38], which is currently the state-of-the-art in
GPU-accelerated FSS. Similar to [38], [76], we use CUT-
LASS [1] to implement linear layers. We borrow Orca’s
ideas on AES acceleration, memory layout and payload
packing to build an efficient GPU-accelerated DPF kernel.
Securely realizing LUTn,ℓ,T (Section 4.1) requires comput-
ing Eval•n(b, k

•
b , x), ∀x ∈ UN [71]. For this, we follow the

depth-first approach of [43], while using Orca’s AES kernel.
Building on our optimized kernels for DPFs and LUTs,

we provide efficient GPU implementations of our protocols
for GeLU, Softmax, and LayerNorm. We carefully use
templating as in Orca [38] and Piranha [76] to ensure that
compute happens on lower bitwidths wherever possible. In
GeLU, for example, we use the fact that selectlin (Step 6
in Figure 7) runs on z ∈ U256 to run the protocol with the
uint8_t data-type on the GPU. This helps us reduce key
size, which, in turn, reduces the time to transfer keys from
CPU to GPU memory.

We also fuse kernels wherever possible to avoid repeated
accesses to GPU’s global memory. We notice that our pro-
tocols often evaluate a DPF on a unary function of the input
variable, or return a linear function of the DPF input and
output variables. Consider the protocol for DReLU outlined
in Figure 3. A naı̈ve implementation of this protocol would
first run a GPU kernel to compute ẑ = 2n−1− ŷ−1, invoke
the DPF kernel on ẑ to compute tb, and then run a third ker-
nel to compute the linear combination b ·MSBn(x̂)⊕rb⊕ tb
in Step 3. Together, these kernels require four loads and
three stores to GPU global memory. On the other hand, a
fused kernel for DReLU only requires 1 load for the input
and 1 store for the output which is more efficient.

Once the compute has been accelerated, key transfer and
communication dominate most of the runtime. For example,
communication and key transfer consume 35% and 44% of
the total runtime. To lower communication, we observe that
our protocols operate on non-powers-of-2 bitwidths. Hence,
there is often a gap between the size of a ring element and
the corresponding C++ data-type e.g., uint64_t. In some
cases, this gap can be quite large, e.g., secure inference for
BERT-large communicates ring elements with bitwidths 50
in linear layers, 44 in GeLU, and 39 in Softmax. Therefore,
we pack elements before transmitting them over the network
to achieve significant communication savings over a naı̈ve
implementation that transmits standard data-types7. For ex-
ample, we reduce communication by 35% for BERT-large.

We provide kernels for packing and unpacking elements
of arbitrary bitwidths on the GPU as a part of SIGMA. For
packing, we make each GPU thread responsible for writing
a segment of 8 bytes of data. It uses the size of the ring
elements it needs to communicate to fetch the elements that
belong to its segment. It also performs any shifts necessary
to accommodate ‘partial’ elements in its segment (e.g. to

7. While Orca packs 1 or 2-bit values, we support packing for all non-
powers-of-2 bitwidths in SIGMA, providing benefit in all our protocols.
While reporting improvements, we use the baseline that packs 1 or 2-bit
values but uses standard data-types for rest.

Model # GeLU # Softmax # Rsqrt # blocks h dmodel

BERT-tiny 131072 512 512 2 2 128
BERT-base 4718592 18432 3072 12 12 768
BERT-large 12582912 49152 6144 24 16 1024
GPT-2 4718592 18432 3072 12 12 768
GPT-Neo 25165824 49152 6144 24 16 2048

Table 1: Number of scalar GeLU, 128-length Softmax,
scalar reciprocal square roots, blocks, attention heads h and
embedding length dmodel for transformers.

AES or half-PRG Comm. (Bytes) Key Size (KB)
Grotto SIGMA Grotto SIGMA Grotto SIGMA

Gelu 753 78 320 58 1.97 1.43
Inverse 1092 254 320 36 1.97 0.17
Rsqrt 4215 1840 320 106 1.97 1.93

Table 2: SIGMA has lower computation, communication, and
key size than Grotto [64].

pack only the first 8 bits of an element). This allows us to
ensure that the packing is tight.

Since packing and unpacking require additional com-
putation, we are implicitly trading lower communication
for more computation. We find that GPUs can effectively
handle this additional computation due to their high degree
of parallelism. However, the cost of packing and unpacking
values on CPUs overshadows the benefit of lower commu-
nication. Therefore, we do not use this optimization in our
CPU implementation.
CPU. The CPU code is written with 7500 lines of C++
and uses OMP for multithreading, Eigen [30] for matrix
multiplications, and cryptoTools [61] for PRG imple-
mentations that use native x86 AES instructions.
SyTorch Frontend. We also develop SYTORCH, a C++-
based frontend, for specifying the architecture of machine
learning models to be used for secure inference. It allows
users to express models in a PyTorch-like high-level de-
scription and run them with various backends, e.g., fixed-
point cleartext or SIGMA’s protocols for CPUs/GPUs. We
provide a sample SYTORCH code snippet in Figure 11
(Appendix C). Given a SyTorch model and an input, the
outputs from all backends are bitwise equivalent.

The SyTorch program is compiled to a control flow
graph (CFG), which is automatically transformed, e.g., rel-
evant truncations are inserted and effective bitwidths are set
(Section 5.4). The final optimized graph is then interpreted.
For each operation occurring in the graph, the corresponding
protocol is executed.

7. Evaluation

We provide empirical results to justify the following
claims. SIGMA’s protocols for complex non-linearities are
up to 10× more efficient than (FSS-based) Grotto [64]
(Table 2) and up to 38× more efficient than CrypTen [41]
(Table 3). For end-to-end evaluation of transformers,
CrypTen [41] is our primary baseline. CrypTen is the state-
of-the-art that supports the operations present in transform-
ers, works in 2PC with preprocessing model, and provides

Model
GeLU Softmax LayerNorm

Time (s) Communication (GB) Time (s) Communication (GB) Time (s) Communication (GB)
CT S-CPU S-GPU CT S-CPU S-GPU CT S-CPU S-GPU CT S-CPU S-GPU CT S-CPU S-GPU CT S-CPU S-GPU

BERT-tiny 0.27 0.06 0.007 0.10 0.01 0.003 0.71 0.09 0.02 0.09 0.01 0.005 0.60 0.03 0.03 0.003 0.004 0.002
BERT-base 4.59 3.76 0.25 3.45 0.25 0.16 7.53 4.42 0.44 3.27 0.37 0.26 4.31 0.67 0.25 0.11 0.15 0.11
BERT-large 11.50 9.84 0.66 9.19 0.66 0.42 17.35 11.94 1.13 8.72 1.00 0.69 8.75 1.78 0.55 0.29 0.40 0.30
GPT-2 4.47 3.76 0.25 3.45 0.25 0.16 6.89 2.76 0.27 3.27 0.19 0.13 3.94 0.69 0.25 0.11 0.15 0.11
GPT-Neo 20.35 20.35 1.33 18.38 1.69 0.86 16.33 7.55 0.66 8.72 0.50 0.36 8.91 3.39 0.80 0.57 0.80 0.60

Table 3: SIGMA outperforms CrypTen (GPU) on GeLU, Softmax and LayerNorm. CT denotes CrypTen, and S-CPU and
S-GPU stand for SIGMA running on CPU and GPU respectively.

GPU-accelerated implementations. But unlike SIGMA that
provides standard 2PC security, CrypTen provides imper-
fect security because it uses fast but insecure local trunca-
tions [46]. End-to-end secure inference of transformers with
SIGMA is 11.5 − 19.4× faster than CrypTen and requires
8.4 − 11.6× lower communication (Table 4). We observe
that SIGMA running on CPUs is already faster than CrypTen
running on GPUs. Furthermore, SIGMA on GPUs is up to
an order of magnitude faster than SIGMA running on CPU
(Figure 9). Finally, we show that SIGMA scales efficiently
with the number of model parameters (Figure 10) by eval-
uating on GPT models with up to 13 billion parameters,
while CrypTen crashes on the larger models.
Models and datasets: We evaluate BERT-tiny, BERT-base,
and BERT-large models [69] on the SST2, QNLI, and
MRPC classification tasks from GLUE benchmark [74].
These models have 4.4 million, 110 million, and 330 mil-
lion parameters respectively. The prior work of Iron [33]
also considers these models and datasets. For a billion
parameter model, we evaluate the GPT-Neo-1.3B model at
huggingface [4] (225 thousand downloads in last month)
on the challenging Lambada dataset [54], which has next-
word-prediction tasks. We evaluate GPT-2 with 124 million
parameters from huggingface (downloaded 15 million times
within last month) on Lambada as well. These models use
GeLU and Softmax in abundance (Table 1). We also report
the number of reciprocal square roots arising because of
layer normalizations. Prior works have observed that these
non-linearities are the performance bottlenecks in secure
inference of transformers [33], [45]. Following Iron [33],
we evaluate all models on inputs of sequence length8 128.
We set the precision f = 12, and the bitwidths to be
large enough so that SIGMA’s accuracy matches that of
32-bit floating-point PyTorch (Appendix A). In particular,
for BERT-tiny a bitwidth of 37 suffices, whereas the other
models require a bitwidth of 50 or 51.
Hardware platform: We evaluate on two machines con-
nected via LAN with 9.4 Gbps bandwidth and 0.05 ms ping
time. Each machine has 1 TB RAM, an A6000 GPU with
46GB GPU memory, and an AMD Epyc 7742 processor.
Evaluation of SIGMA running on CPUs uses 4 threads.

7.1. Non-linearities

We show our performance improvements for GeLU,
Softmax, and layer normalization over the baselines.

8. We evaluate other sequence lengths in Appendix E.

7.1.1. Comparison with Grotto. Grotto [64] is a recent
work that provides FSS-based protocols for GeLU, inverse
(that arises in softmax), and reciprocal square root (that
arises in layer normalization). Table 2 shows that, for each
of these functions, SIGMA beats Grotto in all aspects: com-
putation, communication, and key size. Since the source
code of Grotto is unavailable, we cannot evaluate it on our
setup. However, the communication and the key size are
independent of the setup. The compute cost of FSS-based
protocols like Grotto and SIGMA is heavily dominated by
PRG calls, and we use these as a proxy for the computation
overheads.

7.1.2. Comparison with Orca. Orca [38] is the state-of-
the-art in GPU-accelerated FSS and it proposes the recipe
of using 2PC floating-point protocols [57] for complex non-
linearities like Softmax. The communication overheads of
this approach are severe and would require 7 GB (for
BERT-tiny) to 1.1 TB (for GPT-Neo) of communication for
evaluating GeLU and Softmax layers. In contrast, SIGMA’s
communication is between 20 MB and 4 GB (Table 4).

7.1.3. Comparison with CrypTen. We compare SIGMA
(both CPU and GPU implementations) and CrypTen by
measuring their latency and communication in evaluating
GeLU, Softmax and LayerNorm (Table 3). For GeLU and
Softmax, SIGMA’s communication is an order of magnitude
lower than CrypTen. Due to this, SIGMA’s protocols running
on CPUs outperform CrypTen on GPUs on all transformers.
For LayerNorm, CrypTen’s communication is low because
of its use of local truncation. However, our protocols for
reciprocal square root is more efficient and our runtimes for
LayerNorm on CPUs are 2.6−20× better. Furthermore, with
GPU acceleration, SIGMA outperforms CrypTen by at least
10× for all three non-linearities on all transformers. Finally,
the lower communication of SIGMA running on GPUs (vs.
CPUs) is due to communication packing (Section 6).

7.2. Transformers

We evaluate SIGMA on end-to-end9 transformer infer-
ence to show that it beats CrypTen in latency and communi-
cation, GPU acceleration is helpful for SIGMA, and SIGMA
scales well to larger models.

9. The preprocessing costs are not included for both CrypTen and
SIGMA; we describe SIGMA’s preprocessing cost in Appendix B.

Model Time (s) Communication (GB)
CrypTen SIGMA Speedup CrypTen SIGMA

BERT-tiny 1.71 0.09 19.4× 0.20 0.02
BERT-base 21.55 1.84 11.7× 8.34 0.99
BERT-large 54.53 4.73 11.5× 23.36 2.63
GPT-2 20.45 1.61 12.7× 8.34 0.82
GPT-Neo 108.30 7.43 14.6× 46.89 4.02

Table 4: SIGMA vs CrypTen on end-to-end inference.

7.2.1. Comparison with CrypTen. Table 4 shows the per-
formance of transformer models with CrypTen and SIGMA,
both running on GPUs. There are two factors at play
here. 1) SIGMA is using secure but more expensive trun-
cations which take more time and communication than
CrypTen’s local truncations, and 2) SIGMA’s protocols for
non-linearities have massive improvements over CrypTen
(Section 7.1.3). Overall, for end-to-end transformer infer-
ence, SIGMA outperforms CrypTen by 11.5 − 19.4× in
latency and 8.4− 11.6× in communication.

7.2.2. GPU acceleration. Figure 9 shows the speedups
of SIGMA running on CPUs and GPUs over CrypTen as
the baseline. We observe that for end-to-end transformer
inference, SIGMA running on CPUs is always faster than
CrypTen running on GPUs. SIGMA’s protocols for GPUs
are an order of magnitude faster compared to their CPU
counterparts for all models except BERT-tiny, which is too
small to leverage GPUs effectively.

7.3. Scaling to larger models

To evaluate how well SIGMA would scale to larger
models, we increase the number of parameters by increasing
the number of blocks, the embedding length, and the number
of attention heads (Appendix D). We evaluate SIGMA on
GPT models with 1.3, 2.7, 7, and 13 billion parameters in
Figure 10. SIGMA scales efficiently to larger models and
SIGMA running on GPUs is able to perform inference of
a 13 billion parameter GPT model within 30 seconds. In
contrast, CrypTen overflows GPU memory on the 7 billion
and 13 billion parameter models and crashes.

8. Related Work

Secure inference (with MPC or with other techniques
like TEEs [68] or FHE [27]) has a vast literature and we
don’t attempt to survey it. Here, we focus on works related
to transformers, GPU acceleration of MPC, and FSS.

After the success of large models like GPT3/GPT3.5
with 175 billion parameters, there are ongoing efforts to
reduce the cost and latency of inference by using smaller
models [6], [66], [67]. For example, phi-1 outperforms GPT-
3.5 models while using only 1.3 billion parameters [31].
Another approach to reduce the latency of secure inference
involves replacing complex non-linearities that are expensive
in MPC with simple non-linearities. The simple approxima-
tions significantly impact accuracy but, at least for BERT
class models, this accuracy loss can be recovered by further

Figure 9: SIGMA CPU and GPU speedups over CrypTen.

Figure 10: SIGMA scaling to larger models. CrypTen runs
out of memory for 7B and 13B models.

retraining of the simplified models [49]. THE-X [19], MPC-
former [45] and Privformer [7] use simple non-linearities.
In contrast, Iron [33], CrypTen [41], and SIGMA use pre-
cise approximations of complex non-linearities and there
is no accuracy loss. Recent pipelining optimizations have
improved the performance of CrypTen by up to 13% [75]
and such optimizations can benefit SIGMA as well.

There are several works that focus on accelerating se-
cure inference with GPUs, but to support CNNs and not
transformers. CryptGPU accelerates 3-party secure inference
with GPUs [65]. Piranha is a general framework that sup-
ports various number of parties [76]. Delphi performs a net-
work architecture search to navigate performance-accuracy
tradeoffs. GForce uses custom training approaches to im-
prove inference efficiency [53]. Beyond inference, Visor [56]
focuses on video analytics and general protocols like Yao’s
garbled circuits have also been accelerated with GPUs [36].

Several recent works consider 2PC in the preprocessing
model based on FSS techniques. The work of [14] initiated
this study and showed how to construct 2PC protocols
for any computation comprising of gates for which FSS
constructions exist for the corresponding offset gate. The
work of [11] provides various FSS protocols for functions
occurring in fixed-point arithmetic, while [32], [63], [71],
[77] provides specialized FSS protocols for ML operations.
The works of [63] and [38] accelerate FSS protocols on
GPUs while [5] and [64] consider FSS protocols for various
elementary functions such as sigmoid, GeLU, and so on.

9. Conclusion

We build SIGMA, the first system for FSS-based secure
inference of transformers. To this end, we build novel proto-

cols for GeLU, Softmax, and layer normalization. For end-
to-end transformer inference, SIGMA satisfies standard 2PC
security, matches PyTorch accuracy, while being an order
of magnitude faster than the baselines. Although we have
focused on GeLU activations, as prior work evaluates on
models that use them, the same techniques generalize to
construct efficient protocols for other activations such as
sigmoid, SiLU, etc. Similar to all prior works on secure
inference of transformers, SIGMA focuses on semi-honest
security and we leave security against malicious adver-
saries [18], [20], [25], [26], [40], [44] for future work.

References

[1] “CUTLASS,” https://github.com/NVIDIA/cutlass.

[2] “Nvidia a100 tensor core gpu architecture,” https:
//images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf.

[3] “GPT-2,” https://huggingface.co/gpt2, 2023.

[4] “GPT Neo,” https://huggingface.co/docs/transformers/model doc/
gpt neo, 2023.

[5] A. Agarwal, S. Peceny, M. Raykova, P. Schoppmann, and
K. Seth, “Communication efficient secure logistic regression,”
IACR Cryptol. ePrint Arch., p. 866, 2022. [Online]. Available:
https://eprint.iacr.org/2022/866

[6] L. A. Agrawal, A. Kanade, N. Goyal, S. K. Lahiri, and S. K.
Rajamani, “Guiding language models of code with global context
using monitors,” 2023.

[7] Y. Akimoto, K. Fukuchi, Y. Akimoto, and J. Sakuma, “Privformer:
Privacy-preserving transformer with mpc,” in EuroS&P, 2023.

[8] D. Beaver, “Efficient multiparty protocols using circuit randomiza-
tion,” in CRYPTO, ’91.

[9] R. Bendlin, I. Damgård, C. Orlandi, and S. Zakarias, “Semi-
homomorphic encryption and multiparty computation,” in EURO-
CRYPT, 2011.

[10] F. Boemer, R. Cammarota, D. Demmler, T. Schneider, and H. Yalame,
“MP2ML: a mixed-protocol machine learning framework for private
inference,” in ARES, 2020.

[11] E. Boyle, N. Chandran, N. Gilboa, D. Gupta, Y. Ishai, N. Kumar, and
M. Rathee, “Function secret sharing for mixed-mode and fixed-point
secure computation,” in EUROCRYPT, 2020.

[12] E. Boyle, N. Gilboa, and Y. Ishai, “Function secret sharing,” in
EUROCRYPT, 2015.

[13] ——, “Function secret sharing: Improvements and extensions,” in
CCS, 2016.

[14] ——, “Secure computation with preprocessing via function secret
sharing,” in TCC, 2019.

[15] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhari-
wal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh,
D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler,
M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei, “Language models are few-
shot learners,” 2020.

[16] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz,
E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. Lundberg, H. Nori, H. Palangi,
M. T. Ribeiro, and Y. Zhang, “Sparks of artificial general intelligence:
Early experiments with gpt-4,” 2023.

[17] R. Canetti, “Security and Composition of Multiparty Cryptographic
Protocols,” J. Cryptology, 2000.

[18] N. Chandran, D. Gupta, S. L. B. Obbattu, and A. Shah, “SIMC: ML
Inference Secure Against Malicious Clients at Semi-Honest Cost,” in
USENIX Security Symposium, 2022.

[19] T. Chen, H. Bao, S. Huang, L. Dong, B. Jiao, D. Jiang, H. Zhou,
J. Li, and F. Wei, “THE-X: privacy-preserving transformer inference
with homomorphic encryption,” in ACL, 2022.

[20] A. P. K. Dalskov, D. Escudero, and M. Keller, “Secure evaluation of
quantized neural networks,” PoPETs, 2020.

[21] I. Damgård, J. B. Nielsen, M. Nielsen, and S. Ranellucci, “The
tinytable protocol for 2-party secure computation, or: Gate-scrambling
revisited,” in CRYPTO, 2017.

[22] I. Damgård and S. Zakarias, “Constant-overhead secure computation
of boolean circuits using preprocessing,” in TCC, 2013.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language understand-
ing,” 2019.

[24] J. Doerner and A. Shelat, “Scaling ORAM for secure computation,”
in CCS, 2017.

[25] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Im-
proved primitives for MPC over mixed arithmetic-binary circuits,” in
CRYPTO, 2020.

[26] T. K. Frederiksen, T. P. Jakobsen, and J. B. Nielsen, “Faster mali-
ciously secure two-party computation using the gpu,” in SCN, 2014.

[27] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig,
and J. Wernsing, “Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy,” in ICML, 2016.

[28] O. Goldreich, S. Micali, and A. Wigderson, “How to Play any
Mental Game or A Completeness Theorem for Protocols with Honest
Majority,” in STOC, 1987.

[29] S. Gopinath, N. Ghanathe, V. Seshadri, and R. Sharma, “Compiling
kb-sized machine learning models to tiny iot devices,” in PLDI, 2019.

[30] G. Guennebaud and B. Jacob, “Eigen v3,” http://eigen.tuxfamily.org,
2010.

[31] S. Gunasekar, Y. Zhang, J. Aneja, C. C. T. Mendes, A. D. Giorno,
S. Gopi, M. Javaheripi, P. Kauffmann, G. de Rosa, O. Saarikivi,
A. Salim, S. Shah, H. S. Behl, X. Wang, S. Bubeck, R. Eldan, A. T.
Kalai, Y. T. Lee, and Y. Li, “Textbooks are all you need,” 2023.

[32] K. Gupta, D. Kumaraswamy, N. Chandran, and D. Gupta, “Llama: A
low latency math library for secure inference,” in PETS, 2022.

[33] M. Hao, H. Li, H. Chen, P. Xing, G. Xu, and T. Zhang, “Iron: Private
inference on transformers,” in NeurIPS, 2022.

[34] D. Hendrycks and K. Gimpel, “Bridging nonlinearities and
stochastic regularizers with gaussian error linear units,” CoRR, vol.
abs/1606.08415, 2016. [Online]. Available: http://arxiv.org/abs/1606.
08415

[35] Z. Huang, W. jie Lu, C. Hong, and J. Ding, “Cheetah: Lean and fast
secure two-party deep neural network inference,” in USENIX Security
Symposium, 2022.

[36] N. Husted, S. Myers, A. Shelat, and P. Grubbs, “Gpu and cpu
parallelization of honest-but-curious secure two-party computation,”
in ACSAC, 2013.

[37] Y. Ishai, E. Kushilevitz, S. Meldgaard, C. Orlandi, and A. Paskin-
Cherniavsky, “On the power of correlated randomness in secure
computation,” in TCC, 2013.

[38] N. Jawalkar, K. Gupta, A. Basu, N. Chandran, D. Gupta, and
R. Sharma, “Orca: Fss-based secure training with gpus,” Cryptology
ePrint Archive, Paper 2023/206, 2023.

[39] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low
latency framework for secure neural network inference,” in USENIX
Security Symposium, 2018.

[40] M. Keller, “MP-SPDZ: A versatile framework for multi-party com-
putation,” in CCS, 2020.

https://github.com/NVIDIA/cutlass
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://huggingface.co/gpt2
https://huggingface.co/docs/transformers/model_doc/gpt_neo
https://huggingface.co/docs/transformers/model_doc/gpt_neo
https://eprint.iacr.org/2022/866
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415

[41] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “CrypTen: Secure multi-party computation meets
machine learning,” in NeurIPS, 2021.

[42] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “CrypTFlow: Secure tensorflow inference,” in IEEE S&P,
2020.

[43] M. Lam, J. Johnson, W. Xiong, K. Maeng, U. Gupta, M. Rhu, H.-
H. S. Lee, V. J. Reddi, G.-Y. Wei, D. Brooks, and E. Suh, “GPU-
based Private Information Retrieval for On-Device Machine Learning
Inference,” CoRR, vol. abs/2301.10904, 2023.

[44] R. Lehmkuhl, P. Mishra, A. Srinivasan, and R. A. Popa, “Muse:
Secure inference resilient to malicious clients,” in USENIX Security
Symposium, 2021.

[45] D. Li, H. Wang, R. Shao, H. Guo, E. Xing, and H. Zhang, “MPC-
Former: Fast, performant and private Transformer inference with
MPC,” in ICLR, 2023.

[46] Y. Li, Y. Duan, Z. Huang, C. Hong, C. Zhang, and Y. Song, “Efficient
3PC for Binary Circuits with Application to Maliciously-Secure DNN
Inference,” in USENIX Security Symposium, 2023.

[47] Y. Lindell, “How to simulate it – a tutorial on the simulation proof
technique,” Tutorials on the Foundations of Cryptography, 2017.

[48] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious Neural Network
Predictions via MiniONN Transformations,” in CCS, 2017.

[49] N. W. Ming, Z. Wang, C. Liu, R. S. M. Goh, and T. Luo, “MA-BERT:
Towards matrix arithmetic-only BERT inference by eliminating com-
plex non-linear functions,” in ICLR, 2023.

[50] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference service for neural networks,” in
USENIX Security Symposium, 2020.

[51] P. Mohassel and P. Rindal, “ABY3: A Mixed Protocol Framework
for Machine Learning,” in CCS, 2018.

[52] P. Mohassel and Y. Zhang, “SecureML: A System for Scalable
Privacy-Preserving Machine Learning,” in IEEE S&P, 2017.

[53] L. K. L. Ng and S. S. M. Chow, “Gforce: Gpu-friendly oblivious
and rapid neural network inference,” in USENIX Security Symposium,
2021.

[54] D. Paperno, G. Kruszewski, A. Lazaridou, N. Q. Pham, R. Bernardi,
S. Pezzelle, M. Baroni, G. Boleda, and R. Fernandez, “The LAM-
BADA dataset: Word prediction requiring a broad discourse context,”
in ACL, 2016.

[55] A. Patra, T. Schneider, A. Suresh, and H. Yalame, “ABY2.0: Im-
proved Mixed-Protocol secure Two-Party computation,” in USENIX
Security Symposium, 2021.

[56] R. Poddar, G. Ananthanarayanan, S. Setty, S. Volos, and R. A. Popa,
“Visor: Privacy-preserving video analytics as a cloud service,” in
USENIX Security Symposium, 2020.

[57] D. Rathee, A. Bhattacharya, R. Sharma, D. Gupta, N. Chandran, and
A. Rastogi, “SecFloat: Accurate Floating-Point meets Secure 2-Party
Computation,” in IEEE S&P, 2022.

[58] D. Rathee, M. Rathee, R. K. K. Goli, D. Gupta, R. Sharma, N. Chan-
dran, and A. Rastogi, “SIRNN: A math library for secure inference
of RNNs,” in IEEE S&P, 2021.

[59] D. Rathee, M. Rathee, N. Kumar, N. Chandran, D. Gupta, A. Rastogi,
and R. Sharma, “CrypTFlow2: Practical 2-Party Secure Inference,” in
CCS, 2020.

[60] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schnei-
der, and F. Koushanfar, “Chameleon: A hybrid secure computation
framework for machine learning applications,” in ASIACCS, 2018.

[61] P. Rindal, “cryptoTools,” https://github.com/ladnir/cryptoTools.

[62] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “DeepSecure: Scalable
Provably-Secure Deep Learning,” in DAC, 2018.

[63] T. Ryffel, D. Pointcheval, and F. Bach, “ARIANN: Low-interaction
privacy-preserving deep learning via function secret sharing,” in
PETS, 2022.

[64] K. Storrier, A. Vadapalli, A. Lyons, and R. Henry, “Grotto: Screaming
fast (2 + 1)-pc for Z2n via (2, 2)-dpfs,” Cryptology ePrint Archive,
Paper 2023/108, 2023.

[65] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu: Fast privacy-
preserving machine learning on the GPU,” in IEEE S&P, 2021.

[66] R. Taori, I. Gulrajani, T. Zhang, Y. Dubois, X. Li, C. Guestrin,
P. Liang, and T. B. Hashimoto, “Stanford alpaca: An instruction-
following llama model,” https://github.com/tatsu-lab/stanford alpaca,
2023.

[67] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient
foundation language models,” 2023.

[68] F. Tramèr and D. Boneh, “Slalom: Fast, verifiable and private execu-
tion of neural networks in trusted hardware,” in ICLR, 2019.

[69] I. Turc, M. Chang, K. Lee, and K. Toutanova, “Well-read students
learn better: The impact of student initialization on knowledge distil-
lation,” CoRR, vol. abs/1908.08962, 2019.

[70] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NeurIPS, 2017.

[71] S. Wagh, “Pika: Secure Computation using Function Secret Sharing
over Rings,” PoPETs, 2022.

[72] S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” PoPETs, 2019.

[73] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and
T. Rabin, “Falcon: Honest-majority maliciously secure framework for
private deep learning,” PoPETs, 2021.

[74] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in ICLR, 2019.

[75] Y. Wang, R. Rajat, and M. Annavaram, “Mpc-pipe: an efficient
pipeline scheme for secure multi-party machine learning inference,”
CoRR, vol. abs/2209.13643, 2022.

[76] J.-L. Watson, S. Wagh, and R. A. Popa, “Piranha: A GPU Platform
for Secure Computation,” in USENIX Security Symposium, 2022.

[77] P. Yang, Z. L. Jiang, S. Gao, J. Zhuang, H. Wang, J. Fang, S. Yiu,
and Y. Wu, “Fssnn: Communication-efficient secure neural network
training via function secret sharing,” Cryptology ePrint Archive, Paper
2023/073, 2023.

[78] A. Yao, “How to Generate and Exchange Secrets (Extended Ab-
stract),” in FOCS, 1986.

https://github.com/tatsu-lab/stanford_alpaca

Appendix A.
Accuracy Results

Model Dataset Train Val PyTorch SIGMA BW
Size Size Acc Acc

SST2 67k 872 81.19% 81.42% 37
BERT-tiny MRPC 3.7k 408 72.54% 72.79% 37

QNLI 105K 5463 81.64% 81.73% 37
SST2 67k 872 90.59% 90.25% 50

BERT-base MRPC 3.7k 408 84.31% 83.82% 50
QNLI 105K 5463 88.72% 89.03% 50
SST2 67k 872 88.99% 88.99% 50

BERT-large MRPC 3.7k 408 78.67% 78.92% 50
QNLI 105K 5463 92.23% 92.31% 50

GPT2 Lambada - 5153 32.46% 33.28% 50
GPT-Neo Lambada - 5153 57.46% 57.81% 51

Table 5: For different models and datasets, we show the
size of the training set (BERT models need finetuning), the
size of validation set on which accuracy is measured, the
accuracy of PyTorch floating-point, SIGMA’s accuracy, and
the bitwidth BW used by SIGMA to get this accuracy.

Appendix B.
Preprocessing cost

We use a dealer to generate FSS keys and transfer
them to the machines performing secure inference. Since
the dealer has been accelerated with GPUs, the time to
generate the keys is small (even smaller than the secure
inference time) and the bulk of the preprocessing time goes
in transferring the keys from the dealer machines (Table 6).
Note that CPU key size is roughly 1.25× larger than the
GPU key size for the models in Table 6, due to differences
such as the protocols for GeLU (Section 5.1).

Model Key size
(GB)

Generation
time (s)

Transfer
time (s)

Online
time (s)

BERT-tiny 0.32 0.06 0.27 0.09
BERT-base 16.69 1.43 14.20 1.84
BERT-large 45.06 3.75 38.35 4.73
GPT2 14.17 1.26 12.06 1.61
GPT-Neo 75.57 6.25 64.32 7.43

Table 6: For different models, we show the size of FSS keys,
the time taken by the dealer to generate them, the time to
transfer them on the network, and online time of SIGMA.

Appendix C.
Sample SyTorch Code

TransformerBlock(u64 n_heads, u64 n_embd)
{

attn = new MultiHeadAttention<T>(n_heads,
n_embd);

ffn = new FFN<T>(n_embd, 4*n_embd);
ln0 = new LayerNorm<T>(n_embd);
ln1 = new LayerNorm<T>(n_embd);

}

Tensor<T> &_forward(Tensor<T> &input)
{

auto &ln0_out = ln0->forward(input);
auto &attn_out = attn->forward(ln0_out);
auto &attn_ip = add(attn_out, input);
auto &ln1_out = ln1->forward(attn_ip);
auto &ffn_out = ffn->forward(ln1_out);
auto &ffn_out_add = add(ffn_out, attn_ip);
return ffn_out_add;

}

Figure 11: SYTORCH code for a GPT-2 Transformer block.

Appendix D.
Large Model details

Parameters # blocks h dmodel

1.3B 24 16 2048
2.7B 32 20 2560

7B 32 32 4096
13B 40 40 5120

Table 7: Number of parameters, blocks, attention heads h
and embedding length dmodel for the larger transformers.

Appendix E.
Sequence Length

We evaluate SIGMA on input token sequences of lengths
between 64 and 1024 in Table 8. For reference, the lengths
for inputs in the Lambada dataset are below 180. The
speedups of SIGMA over CrypTen don’t vary much with
sequence length. As sequence length increases, the number
of GeLUs increases linearly but the compute of softmax
increases super-linearly. A sequence length of k requires
evaluating k softmax operations with inputs of length k.

Sequence Time (s) Comm (GB)
length CrypTen SIGMA CrypTen SIGMA

64 14.22 0.96 3.92 0.37
128 20.45 1.61 8.34 0.82
256 36.68 3.26 21.11 1.98
512 85.75 8.01 63.73 5.29

1024 269.06 23.17 228.97 15.92

Table 8: Secure inference of GPT2 with SIGMA and
CrypTen with varying sequence length.

Appendix F.
FSS Correctness and Security

Definition 2 (FSS: Correctness and Security [12], [13]).
Let G = {g} be a function family, PG = {ĝ} be the set
of descriptions of functions in G, and Leak be a function
specifying the allowable leakage about ĝ. When Leak is
omitted, it is understood to output only Gin and Gout. We
say that (Gen,Eval) as in Definition 1 is an FSS scheme for
G (with respect to leakage Leak) if it satisfies the following.

• Correctness: For all ĝ ∈ PG describing g : Gin → Gout,
and every x ∈ Gin, if (k0, k1) ← Gen(1λ, ĝ) then
Pr [Eval(0, k0, x) + Eval(1, k1, x) = g(x)] = 1.

• Security: For each b ∈ {0, 1} there is a PPT algo-
rithm Simb (simulator), such that for every sequence
(ĝλ)λ∈N of polynomial-size function descriptions from G
and polynomial-size input sequence xλ for gλ, the outputs
of the following Real and Ideal experiments are computa-
tionally indistinguishable:

– Realλ: (k0, k1)← Gen(1λ, ĝλ); Output kb.
– Idealλ: Output Simb(1

λ, Leak(ĝλ)).

Appendix G.
Layer Normalization

The functionality of layer normalization, as defined in
Section 5.3, calls reciprocal square root with variance of the
input vector as an input. Our protocol for reciprocal square
root (Appendix G.2) makes use of the protocol for interval
lookup (Appendix G.1). Finally, we provide the overall
optimized protocol for layer normalization in Appendix G.3.

G.1. Interval Lookup

Let p, q ∈ Uk
N be arrays defining k disjoint intervals

[p[i], q[i]]∀i ∈ [k], constrained with p[i+ 1] = q[i]∀i ∈ [k−
1], p[0] = 0 and q[k−1] = 2n−1. Let v ∈ Uk

L be a payload
array. We define the functionality IntervalLookupn,UL,p,q,v :
UN → UL which returns v[i] when x ∈ [p[i], q[i]] for some
i ∈ [k]. Since this functionality is equivalent to a 0-degree
spline, we use the protocol for splines from Grotto [64]
to implement this. Even though the protocol invokes DPF
evaluation k times, they significantly reduce the number
of half PRG calls compared to nk using the memoization
technique, which caches the intermediate seeds in DPF tree
to be reused in subsequent evaluations. We omit details and
directly summarize the costs of the protocol:

Theorem 7. Let ℓ = ⌈log2(|G|)⌉ and p, q ∈ Uk
N ,v ∈ Gk

be arrays of size k. There exists a protocol ΠIntervalLookup
n,G,p,q,v

which securely realizes IntervalLookupn,G,p,q,v such that
keysize(ΠIntervalLookup

n,G,p,q,v) = keysize(DPFn,1)+3ℓ. In the online
phase, the protocol requires k memoized evaluations of
DPFn,1 and communication of 4ℓ bits in 1 round.

G.2. Reciprocal Square Root

For bitwidth n, input precision f in and output precision
fout, we define the function RecSqrtn,f in,fout to be the
approximation of the reciprocal square root of a fixed-point
number x ∈ UN with scale f in. It returns a fixed-point num-
ber y ∈ UN with scale fout, i.e., uintn(y) ≈

√
2f in/x ·2fout

.
As discussed in Section 5.3.1, since the inputs of re-

ciprocal square root occurring in layer normalization are
unconstrained, to get a small LUT, we first convert the
input to a custom floating point representation. This allows
us to represent a large dynamic range using only a small
number of bits. A similar protocol for converting fixed-
point numbers to IEEE 32-bit floating-point numbers was
provided by Orca [38].

A floating-point representation has a sign bit, expo-
nent bits, and mantissa bits. Taking inspiration from the
bfloat16 datatype which is being extensively used in ML,
we also use a 7-bit mantissa. As we are only interested
in non-zero positive n-bit integers with n ≤ 64, a 6-bit
exponent suffices and we don’t need a sign bit. This 13-bit
index is used to look-up the fixed-point output.

Let x ∈ UN be the input to RecSqrt. We convert the
integer representation of x to float-like representation and
input precision f in would be handled in the LUT later. Let
m ∈ U128, e ∈ U64 represent the mantissa and exponent of
the floating point representation of x. So, it must hold that:

uintn(x) ≈ 2uint6(e) · (1 + uint7(m)

128
) (3)

From here on, we suppress uint(·) whenever it is clear
from context. Let k ∈ U64 be a number such that 2k−1 ≤
x < 2k. As 1 ≤ (1 + m/128) < 2, it holds that 2e ≤
2e · (1 +m/128) < 2e+1 and hence, we can set e = k − 1.
To calculate m, we plug e = k − 1 in Equation 3:

x ≈ 2k−1 · (1 + m

128
)

=⇒ m ≈ x · 128
2k−1

− 128 =
x · 2n−k

2n−8
− 128

Let u = 2n−k ∈ UN . As x < 2k, x · 2n−k < 2n and can be
encoded in n bits. So, we can approximate m as:

m ≈ TRn,n−8(x · u)− 128 mod 128

= TRn,n−8(x · u) mod 128 (4)

To securely calculate e = k − 1 and u = 2n−k, we can
use the protocol for interval lookup (Appendix G.1). Let
G = U213 × U2n . Let p, q ∈ Un

N ,v ∈ Gn be arrays s.t.
p[0] = 0, q[0] = 1, v[0] = (0, 2n−1), and ∀i ∈ [1, n− 1]:

p[i] = q[i− 1] + 1, q[i] = 2i+1 − 1, v[i] = (i, 2n−i−1)

Then, it trivially holds that:

(extend6,13(e), u) = IntervalLookupn,G,p,q,v(x)

Finally, we can calculate m using Equation 4 and concate-
nate e to get the required floating point representation as:

p = m||e = extend7,13(m) · 26 + extend6,13(e)

Reciprocal Square Root ΠRecSqrt
n,f in,fout(x̂)

1: (êb, ûb)← ΠIntervalLookup
n,G,p,q,v (x̂)

2: û = reconstruct(ûb)
3: t̂← Π̂Mul

n (x̂, û)
4: m̂b ← ΠTR

n,n−8(t̂) mod 128
5: p̂b ← extend7,13(m̂b) · 26 + êb
6: p̂ = reconstruct(p̂b)
7: return ΠLUT

13,n,T (p̂)

Figure 12: Protocol for RecSqrtn,f in,fout

Note that local extension suffices in case of m, as the result
is being multiplied by 26, due to which wrap error vanishes.
Now, we construct the required 13-bit look-up table. Let
T ∈ U213

N be a table such that for all i ∈ U213 , i = m||e
where m ∈ U128 and e ∈ U64, we have:

q = 2e · (1 + m

128
), T [i] =

⌊√
2f in/q · 2f

out

⌋
mod N

Based on the above discussion and using the table T , we
describe the protocol ΠRecSqrt

n,f in,fout in Figure 12.

G.3. Overall Protocol for Layer Normalization

Naı̈ve Protocol. A protocol for layer normalization for
fixed-point numbers can be implemented as follows. We first
locally add the elements of the vector x, locally multiply the
result with

⌊
2f/k

⌋
and truncate to get m. Then, we locally

subtract m from each element in x to get z. We then use
a beaver-like protocol to compute the sum of squares of
the elements in z and call it s. Note that s has precision
2f . Hence, we truncate by f . Next, we locally multiply
the result with

⌊
2f/k

⌋
and again truncate by f to get the

variance v. We then use the protocol ΠRecSqrt
n,f,f (Section 5.3.1)

to calculate the fixed-point number corresponding to the
reciprocal square root of v, which we securely multiply
with each element of z followed by truncation. Finally, we
multiply the result with γ, truncate and locally add β.
Optimization. As s is truncated and divided by k be-
fore eventually being passed to ΠRecSqrt

n,f,f , we can avoid the
truncation and division by k in the protocol by setting
f in = 2f+log2(k) while invoking the reciprocal square root
protocol. Note that even though fixed-point precision is an
integer, here we can use real valued precision as the protocol
RecSqrtn,f in,fout doesn’t impose any restriction on the input
precision f in and it is only handled while computing the
entries of the LUT.

Based on the above discussion, we provide the protocol
ΠLayerNorm

n,k,f for layer normalization in Figure 13. To avoid
invoking reciprocal square root on 0 we add 1 to s in
line 6. Here, we note that as the elements of p have an
absolute value less than

√
k (with precision 2f), leading

to a gap, we can use ΠGapARS
n,f to perform this truncation

cheaply. Similarly, as the model weight γ is a number

Layer Normalization ΠLayerNorm
n,k,f (x̂, γ̂, β̂)

1: ŷ =
⌊
2f/k

⌋
·
∑k−1

i=0 x̂[i]

2: m̂← Π̂ARS
n,f (ŷ)

3: ẑ = x̂− m̂
4: ŝb =

∑k−1
i=0 ΠMul

n (ẑ[i], ẑ[i])
5: ŝ = reconstruct(ŝb)
6: t̂← Π̂RecSqrt

n,2f+log2(k),f
(ŝ+ 1)

7: p̂← Π̂Mul
n (ẑ, t̂)

8: q̂ ← Π̂GapARS
n,f (p̂)

9: û← Π̂Mul
n (q̂, γ̂)

10: v̂b ← ΠGapARS
n,f (û) + b · β̂

11: return v̂b

Figure 13: Protocol for LayerNormn,k,f

with small magnitude and multiplication with elements of
q (bounded by

√
k in precision f) results in elements with

a gap, ΠGapARS
n,f can be used to truncate vector u as well.

Appendix H.
Proof of Lemma 2

To calculate 1{x̂ < rin}, consider four cases:
1) Case 1: MSBn(x̂) = 1 and MSBn(r

in) = 0.
Since x̂ ≥ 2n−1 > rin, 1{x̂ < rin} = 0 follows trivially.

2) Case 2: MSBn(x̂) = 0 and MSBn(r
in) = 1.

Since x̂ < 2n−1 ≤ rin, 1{x̂ < rin} = 1 follows trivially.
3) Case 3: MSBn(x̂) = MSBn(r

in) = 0.
As x < 2n−1 and rin < 2n−1, x+ rin < 2n =⇒ x̂ =
x+ rin mod 2n = x+ rin ≥ rin =⇒ 1{x̂ < rin} = 0.

4) Case 3: MSBn(x̂) = MSBn(r
in) = 1.

As x < 2n−1 and 2n−1 ≤ rin < 2n, x + rin ∈
[2n−1, 2n + 2n−1). But as x̂ ≥ 2n−1, x + rin < 2n.
Hence, x̂ = x + rin mod 2n = x + rin ≥ rin =⇒
1{x̂ < rin} = 0.

Hence, 1{x̂ < rin} = 1{MSBn(x̂) = 0 and MSBn(r
in) = 1} =

MSBn(r
in) · (1−MSBn(x̂)).

Appendix I.
Security Proofs

Let Sim<
n be the simulator for the FSS-scheme of com-

parison function from Theorem 2. As we use Gen•n from [13]
directly in this FSS-scheme, Definition 2 implies that the
security of the FSS-scheme for comparison trivially follows
from the security of DPF construction of [13].

I.1. DReLU

For b ∈ {0, 1}, let SimDReLU
b be the simulator for the

protocol ΠDReLU
n . It is given the input x̂ ∈ UN and output

ub ∈ {0, 1}. It simulates the view of party b, by simulating
the message rb||k•b from dealer by following these steps:

1) Set ŷ = x̂ mod 2n−1

2) Invoke Sim<
n to simulate the DPF keyk•b,sim

3) Set tb,sim ← Eval<n−1(b, k
•
b,sim, 2

n−1 − ŷ − 1)
4) Set rb,sim = b ·MSBn(x̂)⊕ ub ⊕ tb,sim.
5) Output rb,sim||k•b,sim.

I.2. LRS with Gap

For b ∈ {0, 1}, let SimGapLRS
b be the simulator for the

protocol ΠGapLRS
n,f . It is given the input x̂ ∈ UN and output

yb ∈ UN . It simulates the view of party b, by simulating the
message k•b ||r

(w)
b ||mb||rb from dealer and ŵ1−b from the

other party, by following these steps:
1) Sample r

(w)
b,sim, ŵ1−b,sim

$← {0, 1}.
2) Invoke Sim<

f to simulate DPF keys k•b,sim
3) Set ŵb,sim = Eval<f (b, k

•
b,sim, x̂ mod 2f)⊕ r

(w)
b,sim

4) Set ŵsim = ŵb,sim ⊕ ŵ1−b,sim, ẑsim = extend1,n(ŵsim)

5) Set ub,sim = bẑsim + r
(w)
b,sim − 2ẑsimr

(w)
b,sim

6) Sample mb,sim
$← UN .

7) Set tb,sim = mb,sim · extend1,n(1−MSBn(x̂))
8) Set rb,sim = yb − b · LRSn,f (x̂)− tb,sim + ub,sim

9) Output k•b,sim||r
(w)
b,sim||mb,sim||rb,sim and ŵ1−b,sim.

	Introduction
	Our Contributions

	Preliminaries
	Notation
	Threat Model
	Function Secret Sharing
	2PC with preprocessing from FSS
	Distributed Point Function (DPF)
	Comparisons using DPF Keys

	Overview of Transformers
	Architecture Overview
	Secure Inference of Transformers
	GPU-accelerated Secure Inference

	Crypto Building Blocks
	Protocols from Previous Works
	Our Truncation Protocol
	Our DReLU and Comparison Protocols

	Our protocols for complex non-linearities
	GeLU
	CPU Protocol
	GPU Protocol

	Softmax
	Negative Exponential
	Inverse

	Layer Normalization
	Reciprocal Square Root

	Global Optimizations

	Implementation
	Evaluation
	Non-linearities
	Comparison with Grotto
	Comparison with Orca
	Comparison with CrypTen

	Transformers
	Comparison with CrypTen
	GPU acceleration

	Scaling to larger models

	Related Work
	Conclusion
	References
	Appendix A: Accuracy Results
	Appendix B: Preprocessing cost
	Appendix C: Sample SyTorch Code
	Appendix D: Large Model details
	Appendix E: Sequence Length
	Appendix F: FSS Correctness and Security
	Appendix G: Layer Normalization
	Interval Lookup
	Reciprocal Square Root
	Overall Protocol for Layer Normalization

	Appendix H: Proof of [lem:lrs-msb]Lemma 2
	Appendix I: Security Proofs
	DReLU
	LRS with Gap

