
Proof-Carrying Data from Multi-folding Schemes

Zibo Zhou1, Zongyang Zhang1, and Jin Dong2

1 School of Cyber Science and Technology, Beihang University, Beijing, China
{zbzhou,zongyangzhang}@buaa.edu.cn

2 Beijing Academy of Blockchain and Edge Computing, BABEC
dongjin@baec.org.cn

Abstract. Proof-carrying data (PCD) is a powerful cryptographic primitive that allows mutually
distrustful parties to perform distributed computation defined on directed acyclic graphs in an efficiently
verifiable manner. Important efficiency parameters include prover’s cost at each step and the recursion
overhead that measures the additional cost apart from proving the computation.

In this paper, we construct a PCD scheme having the smallest prover’s cost and recursion overhead
in the literature. Specifically, the prover’s cost at each step is dominated by only one O(|C|)-sized multi-
scalar multiplication (MSM), and the recursion overhead is dominated by only one 2r-sized MSM, where
|C| is the computation size and r is the number of incoming edges at certain step. In contrast, the state-
of-the-art PCD scheme requires 4r + 12 O(|C|)-sized MSMs w.r.t. the prover’s cost and six 2r-sized
MSMs, one 6r-sized MSM w.r.t. the recursion overhead. In addition, our PCD scheme supports more
expressive constraint system for computations—customizable constraint system (CCS) that supports
high-degree constraints efficiently, in contrast with rank-1 constraint system (R1CS) that supports only
quadratic constraints used in existing PCD schemes.

Underlying our PCD scheme is a multi-folding scheme that reduces the task of checking multiple
instances into the task of checking one. We generalize existing construction to support arbitrary number
of instances.

Keywords: proof-carrying data · folding schemes · recursive zero-knowledge proofs.

1 Introduction

Proof-carrying data (PCD), introduced by Chiesa and Tromer [13], is a powerful cryptographic
primitive that enables mutually distrustful parties to perform distributed computations defined on
directed acyclic graphs, while every intermediate state of the computation can be verified efficiently.
It generalizes incrementally verifiable computation (IVC) [32] which enables a possibly infinite
computation defined on path graphs such that the correctness can be verified efficiently at any point.
PCD has found numerous applications to enforcing language semantics [15], verifiable MapReduce
computations [14], verifiable photo editing [27], verifiable registries [31], and blockchains [4,11,20].

There has been tremendous interest and progress in designing efficient PCD schemes. A classic
method for constructing PCD is via recursive composition of succinct non-interactive argument of
knowledge (SNARK) [2,1,12]. Informally, at each step i, the prover uses a SNARK to prove that the
i-th step of the computation is executed correctly and the SNARK verifier expressed as an arithmetic
circuit has accepted the SNARK proof from step i− 1. Important efficiency parameters include the
prover’s cost at each step and the recursion overhead, i.e., the verifier’s operations expressed as
an arithmetic circuit that the prover must prove at each step besides proving the computation.
This method yields a secure PCD construction but the concrete efficiency is limited by the use of
cycles of expensive pairing-friendly elliptic curves for pairing-based SNARKs [1] or heavy use of
cryptographic hash functions for hash-based SNARKs [12].



Bünz et al. [8], denoted as BCMS20, introduced an alternative method for constructing PCD
by formalizing a novel notion—atomic accumulation scheme from Halo [5]. Instead of expressing
the whole SNARK verifier as a circuit, BCMS20 only requires expressing the verifier of the atomic
accumulation scheme as a circuit, whose size is much smaller. However, the prover at each step has to
perform expensive fast Fourier transforms (FFTs) and the recursion overhead is still dominated by
group operations that scale logarithmically with the size of the computation. Later, Bünz et al. [7],
denoted as BCLMS21, extended the notion of atomic accumulation scheme to split accumulation
scheme. By designing a non-interactive argument of knowledge with a split accumulation scheme for
rank-1 constraint system (R1CS) [19], they constructed a PCD scheme whose recursion overhead
is dominated by constant number of group operations. But the prover at each step still has to
generate a proof, resulting in slightly high prover’s cost and recursion overhead. Kothapalli and
Setty [23] avoided generating a proof by introducing and constructing a multi-folding scheme for
customizable constraint system (CCS) [29]. Nevertheless, their multi-folding scheme is tailored to
fold two instances and thus results in an IVC scheme that is only a special case of PCD.

1.1 Our Contributions

In this paper, we generalize the multi-folding scheme of Kothapalli and Setty [23] and then con-
struct a PCD scheme having the smallest prover’s cost and recursion overhead in the literature.
Table 1 shows the comparison between the state-of-the-art PCD scheme and ours. We elaborate our
contributions below.

A Multi-folding Scheme for Arbitrary Number of Instances. We generalize the multi-folding
scheme of Kothapalli and Setty [23] to support folding arbitrary number of instances. Our scheme
could reduce the task of checking multiple instances into the task of checking a single instance. By
using the Fiat-Shamir transformation [18] we could make it non-interactive, which is the basis of
our PCD scheme.

An Efficient PCD Scheme Supporting Customizable Constraint System. We construct an
efficient PCD scheme that supports a more expressive constraint system—customizable constraint
system (CCS). The recursion overhead of our PCD scheme is dominated by only one multi-scalar
multiplication (MSM)3 of size 2r, and the prover’s cost at each step is dominated by only one
MSM of size O(n), where r is the number of incoming edges of a node at certain step and n is the
number of variables in the constraint system. The proof size is logarithmic and the verifier’s cost is
dominated by only one MSM of size n. Therefore, our PCD scheme not only has smaller prover’s cost
and recursion overhead, but also reduces the proof size exponentially and reduces the verifier’s cost
significantly. Besides, the CCS our PCD scheme supports can generalize not only R1CS without
overhead but also Plonkish which supports constraints with degree larger than two and thereby
represents certain program executions more succinctly. In particular, when t = 3, q = 2, d = 2, the
data showed in Table 1 measures the efficiency of our PCD scheme using R1CS.

However, achieving zero-knowledge in our PCD scheme requires the multi-folding scheme to be
zero-knowledge and an additional invocation of a general zero-knowledge succinct non-interactive
argument of knowledge (zkSNARK), which we leave in future work.
3 For field elements a1, . . . .ar and elliptic curve group elements G1, . . . , Gr, the multi-scalar multiplication denotes

the operation a1G1 + · · ·+ arGr. The group scalar multiplication denotes the operation a1G1.
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1.2 Related Work

IVC/PCD from SNARKs. Chiesa and Tromer [13] introduced the notion of proof-carrying data
(PCD) which generalizes incrementally verifiable computation (IVC) [32]. Bitansky et al. [2] proved
that any SNARK for machine computation can be efficiently transformed into a corresponding PCD
scheme for constant-depth graphs via recursive composition. But it was not realized in practice due
to enormous computational cost. Ben-Sasson et al. [1] achieved the first implementation of PCD
using pairing-based SNARKs instantiated via pairing-friendly cycles of elliptic curves. But these
curves must be constructed over large (780-bit) fields due to their low embedding degrees, resulting
in poor concrete efficiency. Chiesa et al. [12] obtained the first efficient realization of post-quantum
transparent PCD, but the number of constraints needed to express the verifier’s computation in a
circuit is dominated by numerous hash function invocations.

Table 1. Comparison of proof-carrying data schemes

BCLMS21 [7] This work
Constraint system R1CS CCS

Recursion
overhead

6 (2r)-MSM

1 (6r)-MSM

5r G
r + 3 RO

O
(
d logm+ r · (logm+ t+ dq)

)
F

1 (2r)-MSM

r + 1 H

2 log2 m+ 2 RO

Prover’s cost
(each step)

O(r · (N +m+ n)) F
4r + 12 (m)-MSM

6 (2r)-MSM

1 (6r)-MSM

5r G
r + 4 RO

O
(
r · (N + tm+ n+ qmd log2 d)

)
F

1 (2r)-MSM

1 O(n)-MSM

2 log2 m+ 2 RO

Proof size
O(m+ n) F

15 G
O(d logm+ t+ logn) F

O(logn) G

Verifier’s cost
O(N) F

10 O(m)-MSM

1 RO

O(d logm+ t+ dq + logn) F
1 O(n)-MSM

O(logm+ logn) RO

Zero-knowledge yes no

Notations: R1CS denotes rank-1 constraint system with parameters (m,n,N) where N = Ω(max(m,n)). CCS
denotes customizable constraint system with parameters (m,n,N, t, q, d). r denotes the number of incoming edges
of a node at certain step. G denotes group scalar multiplications when measuring overhead/cost or group elements
when measuring proof size. Similarly, F denotes field operations or field elements. H denotes the invocation of hash
functions. RO denotes the invocation of random oracles. 1 (2r)-MSM denotes one multi-scalar multiplication of
size 2r.
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IVC/PCD from accumulation/folding schemes. Bünz et al. [8] developed and formalized a
novel approach from Bowe et al. [5] to construct PCD, i.e., PCD from atomic accumulation schemes.
Following this line of works, Boneh et al. [3] formalized a method to construct PCD from additive
polynomial commitment schemes with a (public/private) aggregation scheme. Meanwhile, Bünz et
al. [7] improved [8] by introducing the notion of split accumulation schemes to construct PCD.

Later, many researchers focus on IVC instead of PCD for its conceptual simplicity and practical
applications in verifiable delay functions and zkEVM. Kothapalli et al. [24] introduced the notion
of folding schemes and constructed an IVC scheme—Nova whose recursion overhead is dominated
by only two group scalar multiplications. Kothapalli and Setty [21] adapted Nova to SuperNova
that realizes non-uniform IVC with the same recursion overhead. Nova and SuperNova both express
each step of an incremental computation with R1CS, which is restricted to checking quadratic
constraints in a specific form. In practice, practitioners often use custom constraint systems such as
Plonkish that allows gates to compute custom high-degree polynomials. To overcome this limitation,
Mohnblatt [26] introduced Sangria which adapted the folding scheme of Nova to handle Plonkish, but
the number of group operations grows linearly in the gate degree. Recently, Kothapalli and Setty [23]
introduced HyperNova, an IVC scheme for CCS that simultaneously generalizes Plonkish, R1CS,
and algebraic intermediate representation (AIR) without overheads. Bünz and Chen [10] introduced
ProtoStar, a non-uniform IVC scheme for Plonkish/CCS. Eagen and Gabizon [17] continued the
work of ProtoStar and constructed an efficient folding scheme—ProtoGalaxy for multiple instances.
Kothapalli and Setty [22] introduced CycleFold—a conceptually simple approach to instantiate
folding-scheme-based IVCs over a cycle of elliptic curves.

2 Preliminaries

For t ∈ N, let [t] denote the set {1, 2, . . . , t}. We use F to denote a finite field, Ft to denote a vector
space of dimension t over F, and F[ℓ] to denote the family of ℓ-variate multilinear polynomials over
F. For x ∈ Ft, let xi denote the i-th element. We use y $←− S to denote the assignment of a uniformly
random element in set S to y. We use y := c to denote the assignment of the constant value c to y.
When A is an algorithm, we use y ← A(x) to denote the assignment of the output of A on input x to
y. We use λ to denote the security parameter and will drop it from the notation when it is implicit.
We use negl(λ) to denote a negligible function in λ. Let PPT denote probabilistic polynomial time.
A multiset is an extension of the concept of a set where every element has a positive multiplicity.
For a tuple containing a semicolon, those variables listed before the semicolon are public (known to
both the prover and the verifier), and those listed after it are secret (known only to the prover).

Lemma 1 (Multilinear Extension [16]). For every function f : {0, 1}ℓ → F, there is a unique
ℓ-variate multilinear polynomial f̃ : Fℓ → F such that f̃(x) = f(x) for all x ∈ {0, 1}ℓ. We call f̃ the
multilinear extension (MLE) of function f , and f̃ can be expressed as

f̃(X) =
∑

x∈{0,1}ℓ
f(x) · ẽq(X,x),

where ẽq(X,x) =
∏ℓ

i=1

(
xiXi + (1− xi)(1−Xi)

)
and itself is the MLE of function

eq(X,x) : {0, 1}ℓ → F, and eq(X,x) =

{
1 if X = x

0 otherwise
.
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Lemma 2 (Lagrange Interpolation of Multilinear Polynomials [30, Lemma 3.6]). For ℓ ∈
N, any ℓ-variate multilinear polynomial P could be expressed as P (X) =

∑
x∈{0,1}ℓ ẽq(X,x) · P (x).

Lemma 3 (Schwartz-Zippel Lemma [28]). Let f : Fℓ → F be a non-zero ℓ-variate polynomial
of total degree d. Let S be any finite subset of F. Then for x $←− Sℓ, Pr[f(x) = 0] ≤ d

|S| .

2.1 The Sum-Check Protocol

We adapt the description from Kothapalli and Setty [23]. The sum-check protocol [25] is an inter-
active protocol allowing a prover P to convince a verier V of the validity of the statement

T =
∑

x1∈{0,1}

· · ·
∑

xℓ∈{0,1}

g(x1, . . . , xℓ),

where g : Fℓ → F is an ℓ-variate polynomial over some finite field F, and the degree of each variable
is at most d. While V could directly compute T using O(2ℓ) evaluation of g, the sum-check protocol
reduces V’s work to be polynomial in ℓ. In the protocol, V takes as input randomness r ∈ Fℓ and
interacts with P over a sequence of ℓ rounds. At the end of this interaction, V outputs a claim about
the evaluation g(r). We denote the sum-check protocol as c ← ⟨P,V(r)⟩ (g, ℓ, d, T ), and it satisfies
the following properties.

• Completeness. If T =
∑

x∈{0,1}ℓ g(x), then for an honest P and for all r ∈ Fℓ, Prr
[
c ←

⟨P,V(r)⟩ (g, ℓ, d, T ) ∧ g(r) = c
]
= 1.

• Soundness. If T ̸=
∑

x∈{0,1}ℓ g(x), then for any adversary P∗ and for all r ∈ Fℓ, Prr
[
c ←

⟨P∗,V(r)⟩ (g, ℓ, d, T ) ∧ g(r) = c
]
≤ ℓ · d/F.

• Succinctness. The communication cost is O(ℓ · d) elements in F.

2.2 Polynomial Commitment Schemes

Definition 1 (Polynomial Commitment Schemes for Multilinear Polynomials [9]). A
polynomial commitment scheme for multilinear polynomials is a tuple PCS = (Setup,Com,Open,Eval)
where

− pppcs ← Setup(1λ, ℓ) takes the security parameter λ with the unary form and the number of
variables ℓ in a multilinear polynomial as input, and outputs some public parameter pppcs;

− C ← Com(pppcs, g) takes pppcs and an ℓ-variate multilinear polynomial over a finite field g ∈ F[ℓ]
as input, and outputs a commitment C;

− 1/0← Open(pppcs, C, g) takes pppcs, C, g as input, and outputs 1/0 to denote that C is indeed a
commitment to g or not.

− 1/0 ← Eval(pppcs, C, ℓ, r, v; g) is an interactive protocol between a prover P and a verifier V.
Both of them know pppcs, C, ℓ, r ∈ Fℓ, v ∈ F. P additionally knows g and attempts to convince V
that C = Com(pppcs, g) and g(r) = v. The outputs 1/0 denote that V accepts or not.

A polynomial commitment scheme PCS should satisfy completeness, binding and knowledge
soundness defined below.

• Completeness. PCS has completeness if for any ℓ-variate multilinear polynomial g ∈ F[ℓ],

Pr

[
Eval(pppcs, C, ℓ, r, v; g) = 1

∧ g(r) = v

pppcs ← Setup(1λ, ℓ);

C ← Com(pppcs, g)

]
≥ 1− negl(λ).
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• Binding. PCS has binding if for any PPT adversary A, size parameter ℓ ≥ 1,

Pr

[
b0 = b1 ̸= 0

∧ g0 ̸= g1

pppcs ← Setup(1λ, ℓ); (C, g0, g1)← A(pppcs);
b0 ← Open(pppcs, C, g0); b1 ← Open(pppcs, C, g1)

]
≤ negl(λ).

• Knowledge soundness. PCS has knowledge soundness if given pppcs ← Setup(1λ, ℓ), Eval is a
succinct argument of knowledge for NP relation

REval(pppcs) =
{
(C, r, v; g) : g ∈ F[ℓ] ∧ g(r) = v ∧ Open(pppcs, C, g) = 1

}
.

PCS is additively homomorphic if for all ℓ and public parameters pppcs, and for any ℓ-variate
multilinear polynomial g1, g2 ∈ F[ℓ], Com(pppcs, g1) + Com(pppcs, g2) = Com(pppcs, g1 + g2).

A polynomial commitment to an ℓ-variate multilinear polynomial can be viewed as a commitment
to a 2ℓ-sized vector. In this paper, we instantiate the polynomial commitment scheme for multilinear
polynomials with Bulletproofs [6], whose proof size is dominated by O(ℓ) group elements and verifier’s
cost is dominated by one MSM of size O(2ℓ) in the Eval protocol.

2.3 Multi-folding Schemes

Definition 2 (Multi-folding Schemes [23]). Consider relations R1 and R2 over public parame-
ters, structure, instance, and witness tuples, a predicate compat that structures in R1 and R2 must
satisfy, and size parameters µ, ν ∈ N. A multi-folding scheme for (R1,R2, compat, µ, ν) is a tuple
of algorithms MFS = (G,K,P,V) where

− fpp ← G
(
1λ
)

is a PPT generator algorithm. It takes the security parameter λ with the unary
form as input, and outputs some public parameter fpp;

− (fpk, fvk)← K(fpp, (s1, s2)) is a deterministic encoder algorithm. It takes fpp and structure s1, s2
among the instances to be folded as input, and outputs a prover key fpk and a verifier key fvk;

− (u,w)←
〈
P(fpk, # ”w1,

# ”w2),V(fvk)
〉(

#”u1,
#”u2
)

denotes the interaction between a PPT prover P and a
PPT verifier V. P inputs fpk, a vector of instances #”u1 in R1 of size µ with structure s1, a vector
of instances #”u2 in R2 of size ν with structure s2, and corresponding witnesses # ”w1,

# ”w2. V inputs
fvk, #”u1,

#”u2. At the end of the interaction, P outputs a folded instance-witness pair (u,w) in R1

with structure s1, and V outputs a folded instance u in R1 with structure s1.

Let R(n) be the relation so that
(
fpp, s, #”u , #”w

)
∈ R(n) if and only if

(
fpp, s, #”u i,

#”w i

)
∈ R for all

i ∈ [n]. A multi-folding scheme MFS should sastisfy perfect completeness and knowledge soundness
defined below.

• Perfect Completeness. MFS has perfect completeness if for all PPT adversaries A,

Pr


(fpp, s1, u,w) ∈ R1

fpp← G
(
1λ
)
;(

(s1, s2), (
#”u1,

# ”w1), (
#”u2,

# ”w2)
)
← A(fpp);

compat(s1, s2) = true;(
fpp, s1,

#”u1,
# ”w1

)
∈ R(µ)

1 ;
(
fpp, s2,

#”u2,
# ”w2

)
∈ R(ν)

2 ;

(fpk, fvk)← K(fpp, (s1, s2));
(u,w)←

〈
P(fpk, # ”w1,

# ”w2),V(fvk)
〉(

#”u1,
#”u2
)


= 1.
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• Knowledge Soundness. MFS has knowledge soundness if for any expected polynomial time
adversary A and P∗, there exists an expected polynomial time extractor E such that over all
randomness ρ,

Pr


(
fpp, s1,

#”u1,
# ”w1

)
∈ R(µ)

1

∧
(
fpp, s2,

#”u2,
# ”w2

)
∈ R(ν)

2

fpp← G
(
1λ
)
;(

(s1, s2), (
#”u1,

#”u2), st
)
← A(fpp, ρ);

compat(s1, s2) = true;
( # ”w1,

# ”w2)← E(fpp, ρ)

 ≥

Pr

 (fpp, s1, u,w) ∈ R1

fpp← G
(
1λ
)
;(

(s1, s2), (
#”u1,

#”u2), st
)
← A(fpp, ρ);

compat(s1, s2) = true;
(fpk, fvk)← K(fpp, (s1, s2));

(u,w)←
〈
P∗(fpk, st),V(fvk)

〉(
#”u1,

#”u2
)

− negl(λ).

• Efficiency. We consider MFS non-trivial if the communication costs and V’s computation are
lower in the case where V participates in the multi-folding scheme and then checks a witness sent
by P for the folded instance than the case where V checks witnesses sent by P for each of the
original instances.

Construction 1 (Non-interactive Multi-folding Schemes [23]). A public-coin multi-folding
scheme where all the messages sent from V to P are chosen uniformly at random could be trans-
formed into a non-interactive multi-folding scheme NIMFS = (G′,K′,P ′,V ′) using the Fiat-Shamir
transformation [18] where

− fpp′ ← G′
(
1λ
)

takes 1λ as input, and outputs some public parameter fpp′;
− (fpk′, fvk′)← K′(fpp′, (s1, s2))) takes fpp′ and structures s1, s2 as input, and outputs a prover key

fpk′ and a verifier key fvk′;
− (u,w, π)← P ′(fpk′, ( #”u1,

# ”w1), (
#”u2,

# ”w2)
)

takes fpk′, ( #”u1,
# ”w1), (

#”u2,
# ”w2) as input, and outputs a folded

instance-witness pair (u,w) and a proof π;
− u← V ′

(
fvk′, #”u1,

#”u2, π
)

takes fvk′, #”u1,
#”u2, π as input, and outputs a folded instance u.

2.4 (Linearized) Committed Customizable Constraint System

Setty et al. [29] introduced customizable constraint systems (CCS), a new constraint system that
generalizes arithmetic circuits. Later, Kothapalli and Setty [23] described two variants of CCS—
committed customizable constraint systems (CCCS) and linearized committed customizable con-
straint systems (LCCCS)—that are amenable to construct their multi-folding schemes. In particular,
they let R1 be the LCCCS relation RLCCCS and R2 be the CCCS relation RCCCS, a NP-complete
relation. We follow their work and adapt their definition of CCCS and LCCCS.

For a matriceM ∈ Fm×n wherem,n ∈ N and let s = log2m, s
′ = log2 n, interpret it as a function

{0, 1}s × {0, 1}s′ → F. Then we could define its unique multilinear extension M̃ as a multilinear
polynomial in s+s′ variables such that for all x ∈ {0, 1}s, y ∈ {0, 1}s′ , M̃(x, y) =M(x, y). Similarly,
for a vector w ∈ Fm, interpret it as a function {0, 1}s → F. Then we let w̃ denote its unique
multilinear extension.

Definition 3 (Committed Customizable Constraint System [23]). A CCCS relation RCCCS

consists of tuples containing public parameters, structure, instance and witness where
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− public parameters consist of size bounds m,n,N, ℓ, t, q, d ∈ N and pppcs, where assume that
n = 2 · (ℓ+ 1) for simplicity, pppcs ← Setup(1λ, log2 n− 1);

− the structure consists of:
• a sequence of sparse multilinear polynomials in s + s′ variables M̃1, . . . , M̃t such that they

evaluate to a non-zero value in at most N = Ω(max(m,n)) locations over the Boolean
hypercube {0, 1}s × {0, 1}s′, where assume that s = log2m, s

′ = log2 n, and for i ∈ [t], M̃i is
the unique multilinear extension of matrice Mi ∈ Fm×n;
• a sequence of q multisets (S1, . . . , Sq), where an element in each multiset is from the set [t]

and the cardinality of each multiset is at most d;
• a sequence of q constants (c1, . . . , cq), where each constant is from F;

− the instance is (C, x), where C is a commitment to a multilinear polynomial in s′ − 1 variables
and x ∈ Fℓ;

− the witness is a multilinear polynomial w̃ in s′ − 1 variables, where w̃ is the unique multilinear
extension of vector w ∈ Fℓ+1.

Given public parameters, a RCCCS structure-instance tuple is satisfied by a RCCCS witness if
C = Com

(
pppcs, w̃

)
and for all x ∈ {0, 1}s,

q∑
i=1

ci ·
(∏

j∈Si

( ∑
y∈{0,1}s′

M̃j(x, y) · z̃(y)
))

= 0,

where z̃ is the unique multilinear extension of vector (1, x, w) ∈ Fn, i.e., an s′-variate multilinear
polynomial such that z̃(y) = ˜(1, x, w)(y) for all y ∈ {0, 1}s′.

Definition 4 (Linearized Committed Customizable Constraint System [23]). A LCCCS
relation RLCCCS consists of tuples containing public parameters, structure, instance and witness
where the public parameters and structure are the same as those in a CCCS relation. The instance
and witness are as follows:

− the instance is (C, u, x, r, v1, . . . , vt), where u ∈ F, x ∈ Fℓ, r ∈ Fs, vi ∈ F for all i ∈ [t], and C is
a commitment to a multilinear polynomial in s′ − 1 variables;

− the witness is a multilinear polynomial w̃ in s′ − 1 variables, where w̃ is the unique multilinear
extension of vector w ∈ Fℓ+1.

Given public parameters, a RLCCCS structure-instance tuple is satisfied by a RLCCCS witness if
C = Com

(
pppcs, w̃

)
and for all i ∈ [t],

vi =
∑

y∈{0,1}s′
M̃i(r, y) · z̃(y),

where z̃ is is the unique multilinear extension of vector (u, x, w) ∈ Fn, i.e.,an s′-variate multilinear
polynomial such that z̃(y) = ˜(u, x, w)(y) for all y ∈ {0, 1}s′ .

2.5 Proof-Carrying Data

We refer to the definition of Bünz et al [7]. Define a transcript T as a directed acyclic graph where
each vertex v ∈ V (T) is labeled by local data z(v)loc and each edge e ∈ E(T) is labeled by a message
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z(e) ̸=⊥. The output o(T) of a transcript T is z(e) where e = (v, v′) is the lexicographically-first
edge such that v′ is a sink. For a class of compliance predicates F, define that a vertex v ∈ V (T) is
φ-compliant for φ ∈ F if for all outgoing edges e = (v, v′) ∈ E(T):

• (base case) if v has no incoming edges, φ
(
z(e), z

(v)
loc ,⊥, . . . ,⊥

)
accepts;

• (recursive case) if v has incoming edges e1, . . . , er, φ
(
z(e), z

(v)
loc , z

(e1), . . . , z(er)
)

accepts.

We say that T is φ-compliant if all of its vertices are φ-compliant.

Definition 5 (Proof-Carrying Data [7]). A proof-carrying data scheme for a class of compliance
predicates F is a tuple of algorithms PCD = (G,K,P,V) where

− pp ← G
(
1λ
)

takes the security parameter λ with the unary form as input, and outputs some
public parameter pp;

− (pk, vk) ← K(pp, φ) takes pp and a compliance predicate φ ∈ F as input, and outputs a prover
key pk and a verifier key vk;

− Π ← P
(
pk, z, zloc, {zi, Πi}ri=1

)
takes pk, message z of the outgoing edge, local data zloc, messages

{zi}ri=1 of incoming edges and their corresponding proofs {Πi}ri=1 as input, and outputs a new
proof Π to attest the correctness of z;

− 0/1← V
(
vk, z,Π

)
takes vk, z,Π as input, and outputs 0/1 to reject or accept.

A proof-carrying data scheme PCD should sastify perfect completeness and knowledge soundness
defined below. Note that we do not require it to satisfy zero-knowledge here as our PCD scheme needs
an auxiliary zkSNARK to achieve zero-knowledge which is not the main focus of this paper.

• Perfect Completeness. PCD has perfect completeness if for every adversary A,

Pr


V
(
vk, z,Π

)
= 1

pp← G
(
1λ
)
;(

φ, z, zloc, {zi, Πi}ri=1

)
← A(pp);

(pk, vk)← K(pp, φ);

φ ∈ F;φ(z, zloc, z1, . . . , zr) = 1;

∀i ∈ [r], zi =⊥ or V
(
vk, zi, Πi

)
= 1;

Π ← P
(
pk, z, zloc, {zi, Πi}ri=1

)


= 1.

• Knowledge Soundness. PCD has knowledge soundness (w.r.t. an auxiliary input distribution
D) if for every expected polynomial time adversary P∗, there exists an expected polynomial time
extractor EP∗ such that for every set Z,

Pr

 φ ∈ F
∧ (pp, ai, φ, o(T), ao) ∈ Z
∧ T is φ-compliant

pp← G
(
1λ
)
;

ai← D(pp);
(φ,T, ao)← EP∗(pp, ai)

 ≥

Pr


φ ∈ F

∧ (pp, ai, φ, o, ao) ∈ Z
∧ V

(
vk, o, Π

)
= 1

pp← G
(
1λ
)
;

ai← D(pp);
(φ, o, Π, ao)← P∗(pp, ai);

(pk, vk)← K(pp, φ)

− negl(λ).
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3 A Multi-folding Scheme for Arbitrary Number of Instances

Recall that a multi-folding scheme for (R1,R2, compat, µ, ν) allow a prover and a verifier to reduce
the task of checking µ instances in R1 with structure s1 and ν instances in R2 with structure s2 into
the task of checking a single instance in R1 with structure s1. In our case, we let R1 = RLCCCS,
R2 = RCCCS, and compat(s1, s2) require s1 = s2. Kothapalli and Setty [23] constructed a multi-
folding scheme for (RLCCCS,RCCCS, compat, 1, 1). We continue their work and construct a multi-
folding scheme for arbitrary values of µ, ν, which is the basis of our proof-carrying data scheme.

3.1 Overview

Suppose that there are µ RLCCCS instance-witness pairs {ϕk}k∈[µ], ν RCCCS instance-witness pairs

{ψk′}k′∈[ν], where ϕk := (C1, u, x1, rx, v1, . . . , vt; w̃1), ψk′ := (C2, x2; w̃2). Let ϕk.z̃1 := ˜(ϕk.u, ϕk.x1, ϕk.w1),

ψk′ .z̃2 := ˜(1, ψk′ .x2, ψk′ .w2). The prover P and the verifier V both input µ RLCCCS instances
{ϕk.(C1, u, x1, rx, v1, . . . , vt)}k∈[µ] and ν RCCCS instances {ψk′ .(C2, x2)}k′∈[ν]. P additionally inputs
the corresponding witnesses {ϕk.w̃1}k∈[µ], {ψk′ .w̃2}k′∈[ν]. To obtain the folded instance and witness,
we rely on the random linear combination technique.

For k ∈ [µ], according to RLCCCS, for i ∈ [t], we have

ϕk.vi =
∑

y∈{0,1}s′
M̃i(ϕk.rx, y) · ϕk.z̃1(y)

=
∑

x∈{0,1}s
ẽq(ϕk.rx, x) ·

( ∑
y∈{0,1}s′

M̃i(x, y) · ϕk.z̃1(y)
)

By Lemma 2

We first perform a random linear combination of these values {ϕk.vi}k∈[µ],i∈[t], i.e., for γ $←− F,

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi =

µ∑
k=1

t∑
i=1

γ(k−1)t+i ·
∑

x∈{0,1}s
Lk,i(x), (1)

where Lk,i(X) := ẽq(ϕk.rx, X) ·
(∑

y∈{0,1}s′ M̃i(X, y) · ϕk.z̃1(y)
)
.

For k′ ∈ [ν], according to RCCCS, we have for all x ∈ {0, 1}s,

q∑
i=1

ci ·
∏
j∈Si

( ∑
y∈{0,1}s′

M̃j(x, y) · ψk′ .z̃2(y)
)
= 0.

Denoting the left-hand side of the above equation as a polynomial qk′(X), we have for x ∈ {0, 1}s,
qk′(x) = 0. Then the polynomial

Gk′(X) :=
∑

x∈{0,1}s
ẽq(X,x) · qk′(x)

is multilinear and vanishes on all x ∈ {0, 1}s. Hence, we have Gk′(X) is a zero polynomial. For
β

$←− Fs, Gk′(β) = 0. Let Qk′(X) := ẽq(β,X) · qk′(X). We have for k′ ∈ [ν],
∑

x∈{0,1}s Qk′(x) =

10



Gk′(β) = 0. Then based on Equation (1), we further perform a random linear combination that

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi =

µ∑
k=1

t∑
i=1

γ(k−1)t+i ·
∑

x∈{0,1}s
Lk,i(x) +

ν∑
k′=1

γµt+k′ ·
∑

x∈{0,1}s
Qk′(x).

Let

g(X) :=

µ∑
k=1

t∑
i=1

γ(k−1)t+i · Lk,i(X) +
ν∑

k′=1

γµt+k′ ·Qk′(X).

We have ∑
x∈{0,1}s

g(x) =

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi,

which is exactly a statement that a sum-check protocol could prove. Therefore, the task of checking
µ RLCCCS instances and ν RCCCS instances is reduced into the task of performing a sum-check
protocol. With r′x

$←− Fs, P and V run c← ⟨P,V(r′x)⟩
(
g, s, d+ 1,

∑µ
k=1

∑t
i=1 γ

(k−1)t+iϕk.vi
)
. Now,

V has to check the equation g(r′x) = c. We let P first compute some intermediate values and then
V compute g(r′x) using these values. Specifically, P computes and sends {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t] to
V, where

σk,i :=
∑

y∈{0,1}s′
M̃i(r

′
x, y) · ϕk.z̃1(y), θk′,i :=

∑
y∈{0,1}s′

M̃i(r
′
x, y) · ψk′ .z̃2(y). (2)

Then V computes

g(r′x) :=

µ∑
k=1

t∑
i=1

γ(k−1)t+i · ẽq(ϕk.rx, r′x) · σk,i +
ν∑

k′=1

γµt+k′ · ẽq(β, r′x) ·
( q∑
i=1

ci ·
∏
j∈Si

θk′,j

)
and compares it with c. Nevertheless, V still has to check the correctness of {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t].
Observe that equations in (2) are exactly LCCCS relations. Thus, we could first perform a random
linear combination of {σk,i, θk′,i}k∈[µ],k′∈[ν] for i ∈ [t] and then prove the correctness of the folded
RLCCCS instance. Now, the task of checking µ RLCCCS instances and ν RCCCS instances is reduced
into the task of checking a single RLCCCS instance.

3.2 Formal Description

Construction 2 (A Multi-folding Scheme for Arbitrary Number of Instances). We for-
mally present our multi-folding scheme as follows.

fpp← G
(
1λ
)
:

1. Sample size bounds m,n,N, ℓ, t, q, d ∈ N with n = 2 · (ℓ+ 1).

2. Compute pppcs ← Setup(1λ, log2 n− 1), and output fpp := (m,n,N, ℓ, t, q, d, pppcs).

(fpk, fvk)← K(fpp, (s1, s2)):

1. Parse s1 = s2 as
(
(M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)

)
.
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2. Output fpk := (fpp, s1), fvk := (fpp, s1).

(u,w)←
〈
P(fpk, # ”w1,

# ”w2),V(fvk)
〉(

#”u1,
#”u2
)

1. Parse ( #”u1,
# ”w1) as {ϕk}k∈[µ], ( #”u2,

# ”w2) as {ψk′}k′∈[ν].

2. V samples γ $←− F, β $←− Fs and sends them to P. V then samples r′x
$←− Fs.

3. P and V run the sum-check protocol

c←
〈
P,V(r′x)

〉 (
g, s, d+ 1,

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi
)
.

V aborts once he outputs “reject” in the sum-check protocol.

4. P computes and sends {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t] to V.

5. V computes {ek,1 := ẽq(ϕk.rx, r
′
x)}k∈[µ], e2 := ẽq(β, r′x), and aborts if

c ̸=
µ∑

k=1

t∑
i=1

γ(k−1)t+i · ek,1 · σk,i +
ν∑

k′=1

γµt+k′ · e2 ·
( q∑
i=1

ci ·
∏
j∈Si

θk′,j

)
.

6. V samples ρ $←− F and sends it to P.

7. P and V output the folded RLCCCS instance u := (C ′, u′, x′, r′x, v
′
1, . . . , v

′
t), where for all i ∈ [t],

C ′ :=

µ∑
k=1

ρk−1 · ϕk.C1 +
ν∑

k′=1

ρµ−1+k′ · ψk′ .C2,

u′ :=

µ∑
k=1

ρk−1 · ϕk.u+

ν∑
k′=1

ρµ−1+k′ · 1,

x′ :=

µ∑
k=1

ρk−1 · ϕk.x1 +
ν∑

k′=1

ρµ−1+k′ · ψk′ .x2,

v′i :=

µ∑
k=1

ρk−1 · σk,i +
ν∑

k′=1

ρµ−1+k′ · θk′,i.

8. P outputs the folded RLCCCS witness w := w̃′, where

w̃′ :=

µ∑
k=1

ρk−1 · ϕk.w̃1 +

ν∑
k′=1

ρµ−1+k′ · ψk′ .w̃2.

Theorem 1. Construction 2 is a public-coin multi-folding scheme for (RLCCCS,RCCCS, compat, µ, ν)
with perfect completeness and knowledge soundness.

Proof. We now describe the proof of Theorem 1. We mainly refer to the proof of the multi-folding
scheme of Kothapalli and Setty [23].
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Perfect Completeness. For public parameters fpp = (m,n,N, ℓ, t, q, d, pppcs) and s = log2m, s
′ =

log2 n, consider arbitrary adversarially chosen structure s1 = s2 =
(
(M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)

)
,

µ satisfied RLCCCS instance-witness pairs {ϕk}k∈[µ] and ν satisfied RCCCS instance-witness pairs
{ψk′}k′∈[ν]. We show that V will not abort and the folded RLCCCS instance (C ′, u′, x′, r′x, v

′
1, . . . , v

′
t)

is satisfied by the folded RLCCCS witness w̃′.
Firstly, since {ϕk}k∈[µ] are satisfied RLCCCS instance-witness pairs, we have for k ∈ [µ], i ∈ [t]

and ϕk.z̃1 = ˜(ϕk.u, ϕk.x1, ϕk.w1),

ϕk.vi =
∑

y∈{0,1}s′
M̃i(ϕk.rx, y) · ϕk.z̃1(y) By precondition

=
∑

x∈{0,1}s
ẽq(ϕk.rx, x) ·

( ∑
y∈{0,1}s′

M̃i(x, y) · ϕk.z̃1(y)
)

By Lemma 2

=
∑

x∈{0,1}s
Lk,i(x) By construction.

Furthermore, since {ψk′}k′∈[ν] are satisfied RCCCS instance-witness pairs, we have for k′ ∈ [ν],

ψk′ .z̃2 = ˜(1, ψk′ .x2, ψk′ .w2) and x ∈ {0, 1}s,
q∑

i=1

ci ·
∏
j∈Si

( ∑
y∈{0,1}s′

M̃j(x, y) · ψk′ .z̃2(y)
)
= 0.

Denoting the left-hand side of the above equation as a polynomial qk′(X), we have for x ∈ {0, 1}s,
qk′(x) = 0. Then the polynomial Gk′(X) :=

∑
x∈{0,1}s ẽq(X,x) · qk′(x) is multilinear and vanishes

on all x ∈ {0, 1}s. Hence, we have Gk′(X) is a zero polynomial. For β $←− Fs, Gk′(β) = 0. By
construction, we have for k′ ∈ [ν],

∑
x∈{0,1}s Qk′(x) = Gk′(β) = 0.

Therefore, for γ $←− F, we have

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi =

µ∑
k=1

t∑
i=1

γ(k−1)t+i
( ∑
x∈{0,1}s

Lk,i(x)
)
+

ν∑
k′=1

γµt+k′
∑

x∈{0,1}s
Qk′(x)

=
∑

x∈{0,1}s

( µ∑
k=1

t∑
i=1

γ(k−1)t+iLk,i(x) +
ν∑

k′=1

γµt+k′Qk′(x)
)

=
∑

x∈{0,1}s
g(x).

Thus, by the completeness of the sum-check protocol, V will not output “reject” inside it. Moreover,
we have

c = g(r′x) =

µ∑
k=1

t∑
i=1

γ(k−1)t+iLk,i(r
′
x) +

ν∑
k′=1

γµt+k′Qk′(r
′
x)

=

µ∑
k=1

t∑
i=1

γ(k−1)t+i · ek,1 · σk,i +
ν∑

k′=1

γµt+k′ · e2 ·
( q∑
i=1

ci ·
∏
j∈Si

θk′,j

)
.
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We finally have that V will not abort.
Secondly, by construction, we have that for k ∈ [µ], k′ ∈ [ν],(

ϕk.C1, ϕk.u, ϕk.x1, r
′
x, σk,1, . . . , σk,t;ϕk.w̃1

)
,(

ψk′ .C2, 1, ψk′ .x2, r
′
x, θk′,1, . . . , θk′,t;ψk′ .w̃2

)
are all satisfied RLCCCS instance-witness pairs. Therefore, for z̃′ = ˜(u′, x′, w′) and i ∈ [t], we have
that

v′i =

µ∑
k=1

ρk−1 · σk,i +
ν∑

k′=1

ρµ−1+k′ · θk′,i By construction

=

µ∑
k=1

ρk−1 ·
( ∑
y∈{0,1}s′

M̃i(r
′
x, y) · ϕk.z̃1(y)

)
+

ν∑
k′=1

ρµ−1+k′ ·
( ∑
y∈{0,1}s′

M̃i(r
′
x, y) · ψk′ .z̃2(y)

)

=
∑

y∈{0,1}s′
M̃i(r

′
x, y) ·

( µ∑
k=1

ρk−1 · ϕk.z̃1(y) +
ν∑

k′=1

ρµ−1+k′ · ψk′ .z̃2(y)
)

=
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃′(y).

By the additive homomorphism property of the polynomial commitment scheme, we have that
C ′ = Com

(
pppcs, w̃′

)
. Therefore, (C ′, u′, x′, r′x, v

′
1, . . . , v

′
t) is a satisfied RLCCCS instance and w̃′ is

the corresponding witness.
We conclude that Construction 2 has perfect completeness.

Knowledge Soundness. Consider a malicious prover P∗ that succeeds with probability ϵ. For
public parameters fpp = (m,n,N, ℓ, t, q, d, pppcs) and s = log2m, s

′ = log2 n. Consider an adver-
sary A that adaptively picks structures s1 = s2 =

(
(M̃1, . . . , M̃t), (S1, . . . , Sq), (c1, . . . , cq)

)
that

satisfy compat, µ RLCCCS instances {ϕk.u1 := ϕk.(C1, u, x1, rx, v1, . . . , vt)}k∈[µ], ν RCCCS instances
{ψk′ .u2 := ψk′ .(C2, x2)}k′∈[ν] and some auxiliary state st. We construct an expected polynomial time
extractor E that succeeds with probability ϵ−negl(λ) in obtaining satisfied witnesses for the original
instances as follows.(
{ϕk.w̃1}k∈[µ], {ψk′ .w̃2}k′∈[ν]

)
← E (fpp, ρ):

1. Invoke A to obtain the output tuple:
(
(s1, s2), {ϕk.u1}k∈[µ], {ψk′ .u2}k′∈[ν], st

)
← A (fpp, ρ) .

2. Compute (fpk, fvk)← K(fpp, (s1, s2)).

3. Run the interaction
(
u(1), w̃(1)

)
←

〈
P∗(fpk, st),V(fvk)

〉(
{ϕk.u1}k∈[µ], {ψk′ .u2}k′∈[ν]

)
once with

the final verifier challenge ρ(1) $←− F.

4. Abort if
(
fpp, s1, u

(1), w̃(1)
)
/∈ RLCCCS.

5. Rerun the interaction
(
u(1), w̃(1)

)
←

〈
P∗(fpk, st),V(fvk)

〉(
{ϕk.u1}k∈[µ], {ψk′ .u2}k′∈[ν]

)
with dif-

ferent verifier’s final challenges while maintaining the same prior randomness. Keep doing so
until it obtains µ+ ν− 1 folded RLCCCS instance-witness pairs

{(
u(k

′′), w̃(k′′)
)}

k′′∈[2,...,µ+ν]
such

that
(
fpp, s1, u

(k′′), w̃(k′′)
)
∈ RLCCCS for all k′′ ∈ [2, . . . , µ + ν]. Let

{
ρ(k

′′)
}

denote the corre-
sponding verifier’s final challenges.
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6. Abort if there exists a collision in the verifier’s final challenges.

7. Interpolate points
{(
ρ(k

′′), w̃(k′′)
)}

k′′∈[µ+ν]
to retrieve witnesses

(
{ϕk.w̃1}k∈[µ], {ψk′ .w̃2}k′∈[ν]

)
such that for k′′ ∈ [µ+ ν],

µ∑
k=1

ρ(k
′′)k−1 · ϕk.w̃1 +

ν∑
k′=1

ρ(k
′′)µ−1+k′ · ψk′ .w̃2 = w̃(k′′). (3)

8. Output
(
{ϕk.w̃1}k∈[µ], {ψk′ .w̃2}k′∈[ν]

)
.

We now demonstrate that the extractor E runs in expected polynomial time and succeeds with
probability ϵ− negl(λ).

Firstly, the extractor E runs the interaction ⟨P∗,V⟩ once, and if it does not abort, keeps rerunning
the interaction until it obtains µ+ ν − 1 satisfied folded RLCCCS instance-witness pairs. Thus, the
expected number of times E runs the interaction is

Pr[First call to ⟨P∗,V⟩ fails] · 1+

Pr[First call to ⟨P∗,V⟩ succeeds] ·
(
1 +

µ+ ν − 1

Pr[⟨P∗,V⟩ succeeds]

)
=(1− ϵ) · 1 + ϵ ·

(
1 +

µ+ ν − 1

ϵ

)
= µ+ ν.

Assuming that µ, ν are polynomial in the security parameter, we have that E runs in expected
polynomial time.

Secondly, let E1 denote the event that E successfully produces some outputs in less than T
times of running the interaction ⟨P∗,V⟩. Given E1, let E2 denote the event that the outputs of E
are satisfied witnesses. We have that

Pr[E succeeds] = Pr[E1] · Pr[E2].

We now analyze Pr[E1] and Pr[E2]. By the success probability of P∗, we have that E does not
abort in step (4) with probability ϵ. Given that E does not abort in step (4), by Markov’s inequality,
we have that E runs the interaction ⟨P∗,V⟩ more than T times with probability µ+ν

T . Given that E
runs the interaction less than T times, which has probability 1 − µ+ν

T , we have E tests at most T
values for ρ. Thus, the probability that E does not abort in step (6) is 1− T 2

|F| . Thus, we have

Pr[E1] =
(
1− µ+ ν

T

)
· ϵ ·

(
1− T 2

|F|

)
.

Setting T = 3
√
|F| and assuming T ≥ µ+ ν, we have that Pr[E1] = ϵ− negl(λ).

To analyze Pr[E2], we first show that the retrieved witnesses are valid openings to the correspond-
ing polynomial commitments in the instance, and then show that they satisfy the remaining algebraic
relations with some probability. For k′′ ∈ [µ+ ν], let u(k′′) =

(
C(k′′), u(k

′′), x(k
′′), r′x, v

(k′′)
1 , . . . , v

(k′′)
t

)
.
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Since w̃(k′′) is a satisfied RLCCCS witness, we have that
µ∑

k=1

ρ(k
′′)k−1 · Com

(
pppcs, ϕk.w̃1

)
+

ν∑
k′=1

ρ(k
′′)µ−1+k′ · Com

(
pppcs, ψk′ .w̃2

)
=Com

(
pppcs,

µ∑
k=1

ρ(k
′′)k−1 · ϕk.w̃1 +

ν∑
k′=1

ρ(k
′′)µ−1+k′ · ψk′ .w̃2

)
By additive homomorphism

=Com
(
pppcs, w̃

(k′′)
)

By Equation (3)

=C(k′′) Witness w̃(k′′) is a satisfied opening

=

µ∑
k=1

ρ(k
′′)k−1 · ϕk.C1 +

ν∑
k′=1

ρ(k
′′)µ−1+k′ · ψk′ .C2 By the verifier’s computation

Treat the above equation as a univariate polynomial equation in ρ(k
′′). Since it holds for all k′′ ∈

[µ+ ν], we must have that for k ∈ [µ], k′ ∈ [ν],

ϕk.C1 = Com
(
pppcs, ϕk.w̃1

)
, ψk′ .C2 = Com

(
pppcs, ψk′ .w̃2

)
,

which means that
(
{ϕk.w̃1}k∈[µ], {ψk′ .w̃2}k′∈[ν]

)
are valid openings.

Next, by the extractor’s construction we have that {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t] sent by the prover
are identical across all executions of the interaction ⟨P∗,V⟩. By the verifier’s computation, we have
that for k′′ ∈ [µ+ ν], i ∈ [t],

v
(k′′)
i =

µ∑
k=1

ρ(k
′′)k−1 · σk,i +

ν∑
k′=1

ρ(k
′′)µ−1+k′ · θk′,i. (4)

Since
{
w̃(k′′)

}
k′′∈[µ+ν]

are satisfied RLCCCS witnesses, we have that for k′′ ∈ [µ+ ν], i ∈ [t],

v
(k′′)
i =

∑
y∈{0,1}s′

M̃i(r
′
x, y) · z̃(k

′′)(y), (5)

where z̃(k′′) = ˜(
u(k′′), x(k′′), w̃(k′′)

)
. By Equations (3), (4), (5) and the verifier’s computation, we

have that for k′′ ∈ [µ+ ν], i ∈ [t],

µ∑
k=1

ρ(k
′′)k−1 · σk,i +

ν∑
k′=1

ρ(k
′′)µ−1+k′ · θk′,i

=
∑

y∈{0,1}s′
M̃i(r

′
x, y) · z̃(k

′′)(y)

=
∑

y∈{0,1}s′
M̃i(r

′
x, y) ·

( µ∑
k=1

ρ(k
′′)k−1 · ϕk.z̃1(y) +

ν∑
k′=1

ρ(k
′′)µ−1+k′ · ψk′ .z̃2(y)

)

=

µ∑
k=1

ρ(k
′′)k−1 ·

∑
y∈{0,1}s′

M̃i(r
′
x, y) · ϕk.z̃1(y) +

ν∑
k′=1

ρ(k
′′)µ−1+k′ ·

∑
y∈{0,1}s′

M̃i(r
′
x, y) · ψk′ .z̃2(y),
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where ϕk.z̃1 = ˜(ϕk.u, ϕk.x1, ϕk.w1) and ψk′ .z̃2 = ˜(1, ψk′ .x2, ψk′ .w2). Treat the above equation as a
univariate polynomial equation in ρ(k

′′). Since it holds for all k′′ ∈ [µ + ν], we must have that for
k ∈ [µ], k′ ∈ [ν], i ∈ [t],

σk,i =
∑

y∈{0,1}s′
M̃i(r

′
x, y) · ϕk.z̃1(y), θk′,i =

∑
y∈{0,1}s′

M̃i(r
′
x, y) · ψk′ .z̃2(y).

Then since the verifier does not abort, we have that

c =

µ∑
k=1

t∑
i=1

γ(k−1)t+i · ek,1 · σk,i +
ν∑

k′=1

γµt+k′ · e2 ·
( q∑
i=1

ci ·
∏
j∈Si

θk′,j

)

=

µ∑
k=1

t∑
i=1

γ(k−1)t+i · ẽq(ϕk.rx, r′x) · σk,i +
ν∑

k′=1

γµt+k′ · ẽq(β, r′x) ·
( q∑
i=1

ci ·
∏
j∈Si

θk′,j

)

=

µ∑
k=1

t∑
i=1

γ(k−1)t+i · Lk,i(r
′
x) +

ν∑
k′=1

γµt+k′ ·Qk′(r
′
x)

= g(r′x),

which by the soundness of the sum-check protocol, implies that with probability 1−O(s · d)/|F| =
1− negl(λ) over the choice of r′x,

µ∑
k=1

t∑
i=1

γ(k−1)t+iϕk.vi =
∑

x∈{0,1}s
g(x)

=
∑

x∈{0,1}s

( µ∑
k=1

t∑
i=1

γ(k−1)t+i · Lk,i(x) +
ν∑

k′=1

γµt+k′ ·Qk′(x)

)

=

µ∑
k=1

t∑
i=1

γ(k−1)t+i ·
∑

x∈{0,1}s
Lk,i(x) +

ν∑
k′=1

γµt+k′ ·
∑

x∈{0,1}s
Qk′(x).

By the Schwartz-Zippel lemma [28], this implies that with probability 1−O(µ·t+ν)/|F| = 1−negl(λ)
over the choice of γ, we have for k ∈ [µ], i ∈ [t],

ϕk.vi =
∑

x∈{0,1}s
Lk,i(x), (6)

and for k′ ∈ [ν],
0 =

∑
x∈{0,1}s

Qk′(x). (7)

Expanding Equation (6), we have that

ϕk.vi =
∑

x∈{0,1}s
Lk,i(x)

=
∑

x∈{0,1}s
ẽq(ϕk.rx, x) ·

( ∑
y∈{0,1}s′

M̃i(x, y) · ϕk.z̃1(y)
)

=
∑

y∈{0,1}s′
M̃i(ϕk.rx, y) · ϕk.z̃1(y). By Lemma 2
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Since we have argued that {ϕk.w̃1}k∈[µ] are valid openings, we have that they are satisfied RLCCCS

witnesses with probability 1− negl(λ).
Expanding Equation (7), we have that

0 =
∑

x∈{0,1}s
Qk′(x)

=
∑

x∈{0,1}s
ẽq(β, x) ·

( q∑
i=1

ci ·
∏
j∈Si

( ∑
y∈{0,1}s′

M̃j(x, y) · ψk′ .z̃2(y)
))

=

q∑
i=1

ci ·
∏
j∈Si

( ∑
y∈{0,1}s′

M̃j(β, y) · ψk′ .z̃2(y)
)
.

By the Schwartz-Zippel lemma, this implies that with probability 1−O(s ·d)/|F| = 1−negl(λ) over
the choice of β, we have that for all x ∈ {0, 1}s,

q∑
i=1

ci ·
∏
j∈Si

( ∑
y∈{0,1}s′

M̃j(x, y) · ψk′ .z̃2(y)
)
= 0.

Since we have argued that {ψk′ .w̃2}k′∈[ν] are valid openings, we have that they are satisfied RCCCS

witnesses with probability 1− negl(λ). Hence, we have that Pr[E2] = 1− negl(λ).
Therefore, we have that

Pr[E succeeds] = Pr[E1] · Pr[E2] =
(
ϵ− negl(λ)

)
·
(
1− negl(λ)

)
= ϵ− negl(λ).

We conclude that Construction 2 has knowledge soundness. ⊓⊔

A Non-interactive Multi-folding Scheme. Since our multi-folding scheme is public-coin, we
could transform it into a non-interactive multi-folding scheme NIMFS = (G′,K′,P ′,V ′) for the tuple
(RLCCCS,RCCCS, compat, µ, ν) using the Fiat-Shamir transformation, according to the Lemma 3 of
Kothapalli and Setty [23].

Efficiency. Fot the prover’s cost, the sum-check protocol requires the prover to generate some
proof, which could be completed with O

(
µ(N + tm) + ν(N + tm + qmd log2 d)

)
field operations

according to [29]. For {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t], we have that

σk,i :=
∑

y∈{0,1}s′
M̃i(r

′
x, y) · ϕk.z̃1(y)

=
∑

y∈{0,1}s′

( ∑
a∈{0,1}s

∑
b∈{0,1}s′

Mi(a, b) · ẽq
(
(r′x, y), (a, b)

))
· ϕk.z̃1(y) By multilinear extension

=
∑

y∈{0,1}s′

( ∑
a∈{0,1}s

ẽq(r′x, a)
∑

b∈{0,1}s′
Mi(a, b) · ẽq(y, b)

)
· ϕk.z̃1(y)

=
∑

a∈{0,1}s
ẽq(r′x, a) ·

∑
b∈{0,1}s′

Mi(a, b) · ϕk.z̃1(b) By the definition of ẽq
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According to [33],
{
ẽq(r′x, a)

}
a∈{0,1}s could be computed with O(m) field operations. Based on these

values, the computation of {σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t] could be accomplished with O
(
m+(µ+ ν) ·N

)
field operations. When instantiating the polynomial commitment scheme with Bulletproofs [6], the
computation of C ′ and w̃′ requires one MSM of size µ + ν and O

(
(µ + ν) · n

)
field operations,

respectively. Thus, the total cost is dominated by O
(
µ(N + tm+ n) + ν(N + tm+ n+ qmd log2 d)

)
field operations and one MSM of size µ+ ν.

For the verifier’s cost, verification in the sum-check protocol requires O(d logm) field opera-
tions [30]. The computation of {ek,1 := ẽq(ϕk.rx, r

′
x)}k∈[µ], e2 := ẽq(β, r′x) and checking c require

O(µ logm + µt + νdq) field operations. The computation of C ′ requires one MSM of size µ + ν.
Thus, the total cost is dominated by O(d logm+µ logm+µt+ νdq) field operations and one MSM
of size µ+ ν.

The communication cost consists of elements sent from P to V in the sum-check protocol and
{σk,i, θk′,i}k∈[µ],k′∈[ν],i∈[t], which sums up to O(d logm) + t · (µ+ ν) field elements.

4 PCD from Non-interactive Multi-folding Schemes

Recall that PCD enables a set of parties to carry out an indefinitely long distributed computation
where every step along the way is accompanied by a proof of correctness. We rely on our non-
interactive multi-folding scheme to construct PCD scheme where the computation and the circuit
expressing verifier at each step are together expressed as CCCS, a NP-complete constraint system.

4.1 Overview

At each step, the prover P receives r previous outputs {zi}i∈[r] each with a proof Πi that consists
of a satisfied RLCCCS instance-witness pair (Ui,Wi) and a satisfied RCCCS instance-witness pair
(ui,wi) in our case. In addition, P has some local input zloc. With zloc, z1, . . . , zr, P computes z such
that φ(z, zloc, z1, . . . , zr) accepts. Then he should provide a proof to the next party that attests not
only to the correctness of his local computation, but also to the correctness of all his inputs {zi}i∈[r].
To this end, P first invokes the non-interactive multi-folding scheme to fold {(Ui,Wi), (ui,wi)}i∈[r]
into a single RLCCCS instance-witness pair (U,W). Define a circuit Rφ that represents the compli-
ance predicate φ as well as the verifier of the non-interactive multi-folding scheme, which could be
expressed as a RCCCS structure. Then P generates a satisfied RCCCS instance-witness pair (u,w)
by computing Rφ on input appropriate values from his prior computations.

Let the new PCD proof Π consist of (U,W), (u,w). Now, by checking (u,w), we have that
φ(z, zloc, z1, . . . , zr) accepts and {Ui, ui}i∈[r] is corrected folded into U. Further by checking (U,W)
and the knowledge soundness of the multi-folding scheme, we have that there exists satisfied wit-
nesses {Wi,wi}i∈[r] for instances {Ui, ui}i∈[r], which attests to the correctness of {zi}i∈[r]. Therefore,
we maintain the invariant that if (U,W) is a satisfied RLCCCS instance-witness pair and (u,w) is a
satisfied RCCCS instance-witness pair, then the distributed computation is correct up to this step.

However, the above description elides some subtlety. Since the proof Π passed to the next party
includes U, the public IO of the circuit Rφ, i.e., u.x should include U. The next party will fold u,U
into a new RLCCCS instance as described above. But now U is part of u, they can not be folded.
To address this issue, inspired by Nova [24], we modify Rφ to additionally hash z,U and let the
output be the circuit’s public IO, which ensures that u.x does not contain U but still binds with
it. To achieve recursion, we further modify Rφ to include the verifier’s work of checking that the
inputs satisfy the hash relation, i.e., ui.x is the hash of zi,Ui for i ∈ [r].
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Note that since the PCD proof includes the entire witnesses W,w, its size is linear in the size of
the circuit. However, as in HyperNova [23], we could use a general SNARK such as SuperSpartan [29]
to prove the knowledge of a valid PCD proof, which could reduce the proof size exponentially.

4.2 Formal Description

Construction 3 (A PCD Scheme from Non-interactive Multi-folding Schemes). We for-
mally present our PCD scheme as follows. Let (u⊥,w⊥) be a default trivially satisfied RLCCCS

instance-witness pair. Given a compliance predicate φ, the circuit Rφ that realizes the recursion is
as follows.

0/1← Rφ

(
h; (z, zloc, {zi,Ui, ui}ri=1, fvk

′,U, π)
)
:

1. Check that the compliance predicate φ(z, zloc, z1, . . . , zr) accepts.

2. If zi =⊥ for all i ∈ [r], then check that h = hash(fvk′, z, u⊥).

Else, check that

(a) for i ∈ [r], ui.x = hash(fvk′, zi,Ui), where ui.x is the public IO of ui.

(b) U = NIMFS.V ′
(
fvk′, {Ui}i∈[r], {ui}i∈[r], π

)
.

(c) h = hash(fvk′, z,U).

3. If the above checks hold, output 1; otherwise, output 0.

Since Rφ can be computed in polynomial time, it can be represented as a RCCCS structure. Let

(u,w)← trace
(
Rφ,

(
h, (z, zloc, {zi,Ui, ui}ri=1, fvk

′,U, π)
))

denote the satisfiedRCCCS instance-witness pair for the execution ofRφ on input
(
h, (z, zloc, {zi,Ui, ui}ri=1,

fvk′,U, π)
)
.

We define the PCD scheme (G,K,P,V) as follows.

pp← G
(
1λ
)
:

1. Compute fpp′ ← NIMFS.G′
(
1λ
)
, and output pp := fpp′.

(pk, vk)← K(pp, φ):

1. Compute (fpk′, fvk′)← NIMFS.K′(fpp′, Rφ), and output (pk, vk) :=
(
(fpk′, fvk′), fvk′

)
.

Π ← P
(
pk, z, zloc, {zi, Πi}ri=1

)
:

1. For i ∈ [r], parse Πi as
(
(Ui,Wi), (ui,wi)

)
, where (Ui,Wi) is a satisfied RLCCCS instance-witness

pair and (ui,wi) is a satisfied RCCCS instance-witness pair.

2. If zi =⊥ for all i ∈ [r], then set (U,W, π) := (u⊥,w⊥,⊥).

Else, compute (U,W, π)← NIMFS.P ′(fpk′, {(Ui,Wi)}i∈[r], {(ui,wi)}i∈[r]
)

3. Compute h← hash(fvk′, z,U).
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4. (u,w)← trace
(
Rφ,

(
h, (z, zloc, {zi,Ui, ui}ri=1, fvk

′,U, π)
))

.

5. Output Π :=
(
(U,W), (u,w)

)
.

0/1← V
(
vk, z,Π

)
:

1. Parse Π as
(
(U,W), (u,w)

)
.

2. Check that u.x = hash(fvk′, z,U).

3. Check that W is a satisfied RLCCCS witness to U and w is a satisfied RCCCS witness to u.

4. If the above checks hold, output 1; otherwise, output 0.

Theorem 2. Construction 3 is a PCD scheme with perfect completeness and knowledge soundness.

Proof. We now describe the proof of Theorem 2.

Perfect Completeness. For public parameter pp, consider arbitrary adversarially chosen
(
φ, z, zloc, {zi, Πi}ri=1

)
such that the perfect completeness precondition is satisfied. We show that givenΠ ← P

(
pk, z, zloc, {zi, Πi}ri=1

)
,

V
(
vk, z,Π

)
= 1 with probability 1.

If zi =⊥ for all i ∈ [r], by the construction of P, we have that (U,W) = (u⊥,w⊥) is a trivially
satisfied RLCCCS instance-witness pair, and h = hash(fvk′, z,U). By the perfect completeness pre-
condition, we have that φ(z, zloc, z1, . . . , zr) = 1. Therefore, P could construct a satisfied RCCCS

instance-witness pair (u,w) that represents the correct computation of Rφ. Moreover, by the con-
struction of Rφ, we have u.x = hash(fvk′, z,U). Therefore, V

(
vk, z,Π

)
= 1 with probability 1.

If ∃i ∈ [r] such that zi ̸=⊥, by the perfect completeness precondition, {(Ui,Wi)}i∈[r] are satisfied
RLCCCS instance-witness pairs, {(ui,wi)}i∈[r] are satisfied RCCCS instance-witness pairs, and ui.x =
hash(fvk′, zi,Ui). Then by the perfect completeness of the multi-folding scheme, we have that (U,W)
is a satisfied RLCCCS intance-witness pair. Therefore, P could construct a satisfied RCCCS instance-
witness pair (u,w) that represents the correct computation of Rφ. Additionally, by the construction
of Rφ, we have that u.x = hash(fvk′, z,U). Therefore, V

(
vk, z,Π

)
= 1 with probability 1.

In conclusion, we conclude that Construction 3 has perfect completeness.

Knowledge Soundness. We mainly refer to the proof of the PCD scheme of Bünz et al [7]. Fix
a set Z, and for pp← G

(
1λ
)
, ai← D(pp), consider an expected polynomial time adversary P∗ that

succeeds with probability ϵ. We construct an expected polynomial time extractor EP∗ that with
input (pp, ai), outputs (φ,T, ao) such that φ ∈ F, (pp, ai, φ, o(T), ao) ∈ Z and T is φ-compliant with
probability ϵ− negl(λ).

Referring to existing works [8,7], we assume that every node has a unique outgoing edge. Thus,
the extracted transcript T will be a tree. Let every node v be labeled with a local data z(v)loc , the
label z(v) of its unique outgoing edge and a proof Π(v) that proves the correctness of z(v). We first
present the construction of EP∗ that extracts the labels of all the nodes in T, and then explain its
correctness.

We construct EP∗ via an iterative process that constructs a sequence of extractors E0, E1, . . . , Ed,
where d is the depth of T and for i ∈ {0, 1, . . . , d}, Ei outputs a tree Ti of depth i+1. In particular,
the nodes of Td at depth d + 1 are all empty nodes. We argue later that the extractor Ed is then
equal to EP∗ .
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In the base case, we define E0(pp, ai) to compute (φ, o, Π, ao)← P∗(pp, ai) and output (φ,T0, ao),
where T0 is a single node labeled with (o, Π).

Next, we construct the extractor Ei inductively for each i ∈ [d], given that we have already
constructed Ei−1. We denote ST(i) as the set of nodes of T at depth i. We first construct an
adversary P∗

i−1 for the non-interactive multi-folding scheme using Ei−1, which implies an extractor
EP∗

i−1
corresponding to P∗

i−1 by the knowledge soundness of the multi-folding scheme, and then
construct Ei using P∗

i−1, EP∗
i−1

.

P∗
i−1(pp, ai, ρ):

1. Compute (φ,Ti−1, ao)← Ei−1(pp, ai). If Ti−1 is not a tree of depth i, abort.

2. For each node v ∈ STi−1
(i), denote its label as (z(v), Π(v)).

3. Parse Π(v) as
(
(U(v),W(v)), (u(v),w(v))

)
.

4. Obtain
{
U
(v)
j , u

(v)
j , z

(v)
j

}
j∈[r], π

(v) from w(v).

5. Let Si−1 :=
{
v ∈ STi−1

(i) | ∃j ∈ [r], z
(v)
j ̸=⊥

}
.

6. Output
({{

U
(v)
j , u

(v)
j

}
j∈[r],U

(v),W(v), π(v)
}
v∈Si−1

, (φ,Ti−1, ao)
)
.

By the knowledge soundness of the multi-folding scheme, there exists an extractor EP∗
i−1

that for

v ∈ Si−1, outputs
{
W

(v)
j ,w

(v)
j

}
j∈[r] such that

{(
U
(v)
j ,W

(v)
j

)}
j∈[r] are satisfied RLCCCS instance-

witness pairs and
{(

u
(v)
j ,w

(v)
j

)}
j∈[r] are satisfied RCCCS instance-witness pairs.

Given P∗
i−1, EP∗

i−1
, we construct Ei as follows.

(φ,Ti, ao)← Ei(pp, ai):

1. Compute
({(

U
(v)
j ,W

(v)
j

)
,
(
u
(v)
j ,w

(v)
j

)}
j∈[r],v∈Si−1

, (φ,Ti−1, ao)
)
← EP∗

i−1
(pp, ai, ρ). If Ti−1 is not

a tree of depth i, abort.

2. Retrieve {w(v)}v∈STi−1
(i) from the internal state of P∗

i−1, and obtain z(v)loc ,
{
z
(v)
j

}
j∈[r] from w(v).

3. Append z(v)loc to the label of v ∈ STi−1
(i).

4. For each node v ∈ Si−1, let Sv :=
{
j ∈ [r] | z(v)j ̸=⊥

}
. Construct Ti of depth i + 1 from

Ti−1 by adding, for each node v ∈ Si−1,
(
z
(v)
j , Π

(v)
j

)
to the label of its child j ∈ Sv, where

Π
(v)
j =

((
U
(v)
j ,W

(v)
j

)
,
(
u
(v)
j ,w

(v)
j

))
.

5. Output (φ,Ti, ao).

We now show inductively that the extractors are correct. We define the inductive hypothesis as
that for i ∈ {0, 1, . . . , d}, Ei(pp, ai) outputs (φ,Ti, ao) in expected polynomial time such that with
probability ϵ − negl(λ), 1) φ ∈ F, (pp, ai, φ, o(Ti), ao) ∈ Z, 2) Ti is φ-compliant up to depth i, and
3) for all v ∈ STi

(i+ 1), V
(
vk, z(v), Π(v)

)
= 1.

In the base case, by the premise of P∗, E0 satisfies the inductive hypothesis.
Next, supposing that Ei−1 satisfies the inductive hypothesis, we show that Ei also satisfies

the inductive hypothesis. By the premise of Ei−1, we have that with probability ϵ − negl(λ),
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φ ∈ F, (pp, ai, φ, o(Ti−1), ao) ∈ Z, Ti−1 is φ-compliant up to depth i − 1, and for all v ∈ STi−1
(i),

V
(
vk, z(v), Π(v)

)
= 1. By the check of V, we have that (1)

{
(U(v),W(v)), (u(v),w(v))

}
v∈STi−1

(i)
are

satisfied instance-witness pairs. Additionally by the construction of Rφ and the collision-resistant
property of the hash function, we have that (2) for v ∈ STi−1

(i), φ
(
z(v), z

(v)
loc , z

(v)
1 , . . . , z

(v)
r

)
accepts,

(3) for v ∈ Si−1, U(v) = NIMFS.V ′
(
fvk′, {U(v)

j }j∈[r], {u
(v)
j }j∈[r], π(v)

)
, and (4) for v ∈ Si−1, j ∈

[r], u
(v)
j .x = hash

(
fvk′, z

(v)
j ,U

(v)
j

)
. Condition (2) implies that Ti is φ-compliant up to depth i,

and φ ∈ F, (pp, ai, φ, o(Ti), ao) ∈ Z with probability ϵ − negl(λ). Conditions (1)(3) imply that
P∗
i−1 succeeds in producing satisfied folded instance-witness pairs

{
U(v),W(v)

}
v∈Si−1

for instances{
U
(v)
j , u

(v)
j

}
j∈[r],v∈Si−1

with probability ϵ− negl(λ). Then by the knowledge soundness of the multi-

folding scheme, we have that EP∗
i−1

succeeds in outputing satisfied witnesses
{
W

(v)
j ,w

(v)
j

}
j∈[r],v∈Si−1

with probability ϵ − negl(λ). Additionally by Condition (4), we have that V
(
vk, z(v), Π(v)

)
= 1 for

all v ∈ STi
(i+ 1) with probability ϵ− negl(λ). Since Ei−1 runs in expected polynomial time, EP∗

i−1

also runs in expected polynomial time, and thereby so does Ei. Therefore, we have that Ei satisfies
the inductive hypothesis.

In conclusion, we conclude that Construction 3 has knowledge soundness. ⊓⊔

Efficiency. The recursion overhead, i.e., verifier’s computations expressed as circuits is dominated
by the computations in Rφ except for checking the compliance predicate φ, containing r+1 calls to
hash and one call to NIMFS.V ′. The cost of NIMFS.V ′ is dominated by O

(
d logm+r·(logm+t+dq)

)
field operations, one MSM of size 2r and 2 log2m+2 calls to the random oracle RO to achieve non-
interactivity, where RO could be instantiated with an appropriate cryptographic hash function.

The prover’s work at each step is dominated by invoking NIMFS.P ′, and computing the satisfied
RCCCS instance-witness pair (u,w) for the execution of Rφ. The cost of NIMFS.P ′ is dominated by
O
(
r ·(N+ tm+n+qmd log2 d)

)
field operations, one MSM of size 2r, and 2 log2m+2 calls to RO to

achieve non-interactivity. The cost of computing (u,w) is dominated by computing the commitment
C which requires one MSM of size O(n) when instantiating the polynomial commitment scheme
with Bulletproofs [6].

The proof Π consists of (U,W, u,w) whose size is linear in the size of Rφ. However, as in
HyperNova [23], we could use a general SNARK to compress the proof. Specifically, the prover
invokes (U′,W′, π′)← NIMFS.P ′(fpk′, (U,W), (u,w)

)
, and then uses a general SNARK to generate

a proof πU′ that proves the knowledge of W′. NowΠ consists of (U, u, π′, πU′). When instantiating the
SNARK with SuperSpartan [29] excluding the first sum-check invocation and using the polynomial
commitment scheme based on Bulletproofs [6], the proof size is then dominated by O(d logm+ t+
log n) field elements and O(log n) group elements.

The verifier’s work is dominated by checking (U,W), (u,w), whose cost is linear in the size
of Rφ. However, by compressing the proof, the work is now dominated by performing U′ ←
NIMFS.V ′

(
fvk′,U, u, π′

)
and verifying πU′ , whose cost is dominated by O(d logm + t + dq + log n)

field operations, O(logm+ log n) calls to RO, and one MSM of size O(n).

5 Conclusion

In this paper, we first construct a multi-folding scheme for arbitrary number of instances, which
could reduce the task of checking multiple instances into the task of checking one. Based on this

23



scheme, we construct a PCD scheme having the smallest prover’s cost at each step and recursion
overhead in the literature. Supposing that there are r incoming edges of a node at certain step and n
variables in the constraint system, the prover’s cost is dominated by one MSM of size O(n), and the
recursion overhead is dominated by one MSM of size 2r. Besides, our PCD scheme supports more
expressive constraint system, i.e., CCCS that allows gates to compute high-degree polynomials.

Recently, Eagen and Gabizon [17] proposed a folding scheme for multiple instances—ProtoGalaxy
with novel efficiency characteristics. How to construct PCD schemes based on ProtoGalaxy and
analyse the concrete efficiency is an interesting future study.
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