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Abstract. At ASIACRYPT 2022, Benedikt, Fischlin, and Huppert pro-
posed the quantum herding attacks on iterative hash functions for the
first time. Their attack needs exponential size of quantum random ac-
cess memory (qRAM). As the existence of large qRAM is questionable,
Benedikt et al. left open question for building low-qRAM quantum herd-
ing attacks.
In this paper, we answer this open question by building a quantum herd-
ing attack, where the time complexity is slightly increased from Benedikt
et al.’s 20.43n to ours 20.46n, but the size of qRAM is reduced from
Benedikt et al.’s 20.43n to ours O(n). Besides, we also introduce vari-
ous low-qRAM quantum attacks on hash concatenation combiner, hash
XOR combiner, Hash-Twice, and Zipper hash functions.

Keywords: Quantum computation · qRAM · Herding Attack · Hash
Combiner

1 Introduction

Shor’s seminal work [51] shows that sufficiently large quantum computers allow
factorization of large numbers and computation of discrete logarithms in polyno-
mial time, potentially dooming many public-key schemes in use today. In order
to meet the future, the public-key cryptography community and standardiza-
tion organizations have invested a lot of effort in the research of post-quantum
public-key schemes. In particular, NIST has initiated a process to solicit, eval-
uate, and standardize one or more quantum-resistant public-key cryptography
algorithms [48]. In contrast, research on how quantum computing could change
the security landscape of symmetric-key cryptography appears to be less active.
⋆ This is a preliminary version that will be revised and updated soon.
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For nearly last two decades, it has been generally accepted that Grover’s algo-
rithm [30] with quadratic speedup in an exhaustive search attack is the only
quantum advantage for symmetric-key cipher, and thus doubling the key length
solves this problem.

This view started to change with the initial work of Kuwakado and Morii,
who showed that the classically provably secure Even-Mansour cipher and the
three-round Feistel network can be broken in polynomial time with the help
of quantum computers [40,41]. A few years later, more quantum cryptanalysis
of symmetric primitives emerges [36,42,13,34,12,14,22]. Most of these attacks
that enjoy exponential speedup rely on Simon’s algorithm [52] to find a key-
dependent hidden period where access to a quantum superposition oracle of key
primitives is necessary. This is a fairly strong claim, and its actual relevance
is sometimes questioned. Therefore, a more complex attack still makes sense
if it does not require online queries to the superposition oracles of the keyed
primitives [10,31,15,11].

For keyless primitives, especially hash functions, quantum attacks are easier
to launch, since there is no need for online queries and all computations are public
that can be done offline. The classical algorithm finds collisions of n-bit output
hash functions with time complexity O(2n/2). In the quantum setting, the BHT
algorithm [17] finds collisions with a query complexity of O(2n/3) if O(2n/3)
quantum random access memory (qRAM) is available. However, it is generally
acknowledged that the difficulty of fabricating large qRAMs is enormous [28,27].
So quantum algorithms (even has relatively high time complexity) using less or
no qRAM is desirable. At ASIACRYPT 2017, Chailloux, Naya-Plasencia and
Schrottenloher first overcome the O(2n/2) classical bound without using large
qRAM [18]. The time complexity of the algorithm is O(22n/5), the quantum
memory is O(n), and the classical memory is O(2n/5). Also, a quantum algo-
rithm for the generalized birthday problem (or the k-XOR problem) in settings
with and without large qRAMs can be found in [29,47]. Besides the generic at-
tacks on hash functions, the first dedicated quantum attack on hash functionss
was presented at EUROCRYPT 2020 by Hosoyamada and Sasaki [32], showing
quantum attacks on AES-MMO and Whirlpool by exploring differentials whose
probability is too low to be useful in the classical setting. Later, refined collision
and preimage attacks on hash functions have been presented subsequently by
Dong et al. [22,24,23], Flórez Gutiérrez et al. [25], Hosoyamada and Sasaki [33],
Schrottenloher and Stevens [50].

The Merkle-Damgård construction [19,46] is a popular way to build hash
functions, where a single compression function is iteratively called to extend
the input domain from a fixed length to arbitrary length and the digest length
is usually the same as that of internal state. However, some widely deployed
hash function standards (such as MD5 and SHA-1) based Merkle-Damgård con-
struction have been broken [54,55,53]. Besides, Kelsey and Schneier [38] have
demonstrated a generic second-preimage attack against all hash functions based
on the classical Merkle-Damgård construction, when the challenge message is
long. At CRYPTO 2004, Joux [35] introduced multi-collision attacks on iterated
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hash functions. At EUROCRYPT 2006, Kelsey and Kohno [37] proposed the
herding attack, that the adversary committed to a hash value T of an iterated
hash function H , such that when later given a message prefix P , the adversary
is able to find a suitable “suffix explanation” S with H(P‖S) = T .

In order to obtain a more secure hash function, and to ensure compatibility,
researchers and developers try to combine the two outputs of two (or more)
independent hash functions to provide better security in case one or even both
hash functions are weak. Practical examples can be found in TLS [20] and SSL
[26]. There are several common hash combiners, such as concatenation combiner
[49], XOR combiner, Hash-Twice [2], and Zipper hash [44]. However, the security
of these hash combiners has also been challenged. At CRYPTO 2004, Joux [35]
revealed that the concatenation combiner provides at most n/2-bit security for
collision resistance and n-bit security for preimage resistance. Leurent and Wang
[43] and Dinur [21] showed that the combiners may even weaker than each hash
function. Besides, various cryptanalysis results [3,2,45,1,6,4] have been achieved
on the hash combiners.

At ASIACRYPT 2022, Benedikt, Fischlin, and Huppert [7] considered quan-
tum nostradamus attacks on iterative hash functions for the first time, and
realized attacks of complexity O(23n/7). The attack requires exponentially large
qRAM, which is inherited from the BHT algorithm [17]. Since fabricating large
qRAMs is difficult to realize [28,27], Benedikt et al. [7] left open questions for
building qRAM-free or low-qRAM quantum herding attack. In 2022, Bao et al.
[5] built a low-qRAM quantum herding attack based Chailloux et al.’s multi-
target preimage algorithm [18]. However, we find their algorithm is flawed and
incorrect when building diamond structure for herding. Therefore, the question
is still open.

Our contributions.

In this paper, for the first contribution, we answer the open question by
Benedikt et al. [7] to build the first valid low-qRAM quantum herding attack
on iterated hash functions. We first convert the quantum diamond-building al-
gorithm (it needs exponential large qRAM, i.e., 23n/7) proposed by Benedikt et
al. into a low-qRAM algorithm that only needs about 2n bits of qRAM. The
new algorithm is highly based on Chailloux et al.’s collision finding algorithm
[18] with various adaptions. In our herding attack, we choose the leaves of the
diamond structure to be prefixed with r-bit zeros, then again applying Chailloux
et al.’s collision finding to find the linking message S such that H(P‖S) hits one
of the leaves of the diamond structure. Note a previous work by Bao et al. [5]
also built a quantum herding attack. However, in their attack, the Chailloux
et al.’s multi-target preimage algorithm [18] is applied, which can not take the
advantage of the ability that attacker can choose the prefixed leaves of the di-
amond structure. Since Bao et al.’s low-qRAM attack was proved incorrect [5],
this paper becomes the first one to propose the low-qRAM quantum herding
attack.
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As the second contribution, we also introduce various quantum attacks
on the very important hash combiners, including the quantum herding attacks
on hash concatenation combiner, Hash-Twice, and Zipper hash functions by
exploiting their different features. All our quantum herding attacks not only
reduce the qRAM from previous exponential size to our polynomial size, but
also reduce the time complexities.

For the quantum preimage attack on hash XOR combiners, we introduce an
efficient low-qRAM quantum algorithm to build Leurent and Wang’s interchange
structure [43]. Then, based on Schrottenloher and Stevens’s quantum Meet-in-
the-Middle attack [50], we propose a low-qRAM preimage attack on hash XOR
combiner by reducing the qRAM 20.143n of previous attack [5] to ours 20.028n.
Moreover, the time complexity is also reduced from previous 20.495n to ours
20.485n.

For hash concatenation combiner, we introduce a low-qRAM quantum colli-
sion attack, which significantly reduce the needed qRAM from previous 20.143n

to ours O(n), while the time complexity is also reduced from 20.43n to ours 20.4n.
All the attacks are summarized in Table 1.

Table 1: A Summary of the Attacks.
Target Attacks Settings Time qRAM cRAM Generic Ref.

H Herding
Classical 20.67n - 20.33n - [37]
Quantum 20.43n 20.43n - - [7]
Quantum 20.46n O(n) 20.23n - Sect. 4

H1 ⊕H2 Preimage

Classical 20.83n - 20.33n 2n [43]
Classical 20.67n - - 2n [21]
Classical 20.612n - 20.61n 2n [4]
Quantum 20.495n 20.143n 20.2n 20.5n [5]
Quantum 20.485n 20.028n 20.2n 20.5n Sect. 5

H1∥H2

Collision
Classical 20.5n - - 2n [35]
Quantum 20.43n 20.143n 20.2n 20.67n [5]
Quantum 20.4n O(n) 20.2n 20.67n Sect. 6

Herding
Classical 20.67n - 20.33n - [2]
Quantum 20.49n 20.143n 20.2n - [5]
Quantum 20.467n O(n) 20.2n - Sect. 7

Hash-Twice Herding Classical 20.667n 20.33n - - [2]
Quantum 20.467n O(n) 20.2n - Sect. 8

Zipper Herding Classical 20.667n - 20.33n - [2]
Quantum 20.467n O(n) 20.2n - Sect. 9

2 Preliminaries

2.1 Quantum Computation and Quantum RAM

Superposition Oracles for Classical Circuit. Let the quantum oracle of a
function f : Fm

2 7→ Fn
2 be the unitary operator Uf that Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉
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with x ∈ Fm
2 and y ∈ Fn

2 . When Uf acts on superposition states, we have

Uf

∑
x∈Fn

2

ai |x〉 |y〉

 =
∑
x∈Fn

2

ai |x〉 |y ⊕ f(x)〉 . (1)

Variations on Grover’s Algorithm. The task is to find the labeled element
from the set X. Suppose we denote the subset of labeled elements by M ⊂ X and
know the fraction of the labeled elements ϵ = |M |/|X|. The classical algorithm
to solve this problem needs O(1/ϵ) iterations. A quantum algorithm can be
expressed as a function of two parameters.

– Setup operation, i.e., sampling a uniform element from X. Denote the cost
(execution time) of Setup as |Setup|RT .

– Checking operation, i.e. checking if an element is labeled. Denote the cost
(execution time) of Checking as |Checking|RT .

Grover’s algorithm [30] is a quantum search process for finding the labeled el-
ements, whose complexity is a function of the quantum Setup cost |Setup|RT

of construction of uniform superposition of all elements from X, and the quan-
tum Checking cost |Checking|RT . The time complexity of Grover’s algorithm is√
1/ϵ · (|Setup|RT + |Checking|RT ). Assuming the Setup and Checking steps are

simple, Grover’s algorithm can find the element x ∈ M at a cost of O(
√

1/ϵ).
Grover’s algorithm can also be described as a special case of quantum ampli-

tude amplification (QAA), which is a quantum algorithm introduced by Bras-
sard, Høyer, Mosca, and Tapp [16]. Intuitively, assuming there exists an quan-
tum algorithm A to produce a superposition of the good subspace and the bad
subspace of X. Let a be the initial success probability that the measurement
of A |0〉 is good. Let B be a function that classifies the outcomes of A as either
good or bad state. Quantum Amplitude Amplification (QAA) technique achieves
the same result as Grover’s algorithm with a quadratic improvement. The time
complexity of QAA is about√

1/a · (|A|RT + |B|RT ). (2)

Quantum Random Access Memories (qRAM). A quantum random access
memory (qRAM) is a quantum analogue of a classical random access memory
(RAM), which uses n-qubit to address any quantum superposition of 2n memory
cells. Given a list of classical data L = {x0, · · · , x2n−1} with xi ∈ Fm

2 , the qRAM
for L is modeled as an unitary transformation UL

qRAM such that

UL
qRAM : |i〉Addr ⊗ |y〉Out 7→ |i〉Addr ⊗ |y ⊕ xi〉Out , (3)

where i ∈ Fn
2 , y ∈ Fm

2 , and |·〉Addr and |·〉Out may be regarded as the address and
output registers respectively. Therefore, we can access any quantum superposi-
tion of the data cells by using the corresponding superposition of addresses:

UL
qRAM

(∑
i

ai |i〉 ⊗ |y〉

)
=
∑
i

ai |i〉 ⊗ |y ⊕ xi〉 . (4)
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For the time being, it is unknown how a working qRAM (at least for large
qRAMs) can be built. Nevertheless, this disappointing fact does not stop re-
searchers from working in a model where large qRAMs are available, in the
same spirit that people started to work on classical and quantum algorithms
long before a classical or quantum computer had been built. From another per-
spective, the absence of large qRAMs and the fact that a qRAM of size O(n)
can be simulated with a quantum circuit of size O(n) makes it quite meaningful
to conduct research in an attempt to reduce or even avoid the use of qRAM in
quantum algorithms.

CNS collision finding algorithm [18]. At ASIACRYPT 2017, Chailloux,
Naya-Plasencia and Schrottenloher [18] introduced the first quantum collision
finding algorithm without exponential size qRAM. Their algorithm is denoted as
CNS algorithm in this paper. The time complexity of the algorithm is O(22n/5),
with a quantum memory of O(n) and a classical memory of O(2n/5). The CNS
algorithm is based on a quantum membership algorithm.

Definition 1. Given a set L of 2k n-bit strings, a classical membership oracle
is a function fL that computes: fL(x) = 1 if x ∈ L and 0 otherwise.

A quantum membership oracle for L is an operator OL that computes fL:

OL(|x〉 |b〉) = |x〉 |b⊕ fL(x)〉 .

When the set L of size 2k is stored in some classical memory, Chailloux et al.
implement the quantum operator OL in time n2k with 2n + 1 bits of quantum
memory. CNS collision finding algorithm can be divided into two parts, i.e., the
precomputing part and the matching part.

Precomputing Part: Given a hash function h that h(m) = T , the CNS
algorithm first builds a table L of size 2k, where the r-bit most significant bits
(MSB) of all x ∈ L are zero, and store L in a classical memory. The way to
build L is to perform 2k times of Grover’s algorithm with time complexity of
2k × 2r/2 = 2k+r/2.

The Matching Part: Apply the QAA algorithm. In the setup phase A, the
Grover’s algorithm is applied to produce a superposition of m, where the r-bit
MSBs of m are zero. The time of the setup phase is |A|RT = 2r/2. Then, in the
checking phase B, a quantum membership algorithm is applied to classify that if
m is in L or not. |B|RT = 2k. Since the initial probability, that the measurement
of A |0〉 is good, is a = 2k

2n−r (since only the last n− r bits should be matched).
According to Equation (2), time complexity of this part is√

2n−r

2k
· (2r/2 + 2k). (5)

Totally, the time of the CNS algorithm is√
2n−r

2k
· (2r/2 + 2k) + 2k+r/2. (6)
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By assigning r = 2k = 2n/5, Equation (6) is achieve to be optimal, which is
O(22n/5). The quantum memory is used when applying quantum membership
algorithm, which is O(n). The classical memory is 2n/5 to store L.

In this paper, the CNS algorithm is frequently used. In several applications
of our paper, the CNS algorithm is only a local step, so its time complexity in
Equation (6) must be traded off against other complexities occur in other steps.
To better use the CNS algorithm, we define the matching part as CNSh(m,L)
for a given table L and h in the following.

Definition 2. Let CNSh(m,L) be the matching part of CNS algorithm, which
finds m so that h(m) ∈ L. Given the table L of size 2k stored in classi-
cal memory, whose elements are prefixed with r-bit zeros, the time complexity
|CNSh(m,L)|RT =

√
2n−r

2k
· (2r/2 + 2k).

Quantum Two-list Merging Algorithm. At CRYPTO 2022, Schrottenloher
and Stevens [50] introduced the quantum two-list merging algorithm to build
the quantum MitM attack: For a given global guess G ∈ Fg

2, two small lists are
computed and merged to on the fly. Suppose the two small lists are L1 and L2,
the goal is to determine if there are elements x ∈ L1 and y ∈ L2 such that x = y
(called a solution). Let Omerge be the unitary operator that

Omerge(|G〉 |b〉) = |G〉 |b⊕ f(G)〉 ,where f(G) =

{
1 if a solution occurs
0 otherwise . (7)

Lemma 1. [50] Assume that there exists an implementation of Omerge with time
complexity T . Then there is a quantum MitM attack with time complexity:

(
π

4
2g/2 + 1)× T. (8)

The T is roughly estimated by

min(|L1|, |L2|) +
√
max(|Lmerge|, |L1|, |L2|)), (9)

where Lmerge is the merged list. The quantum random access memory needed is
of size min(|L1|, |L2|).

2.2 Iterated Hash Constructions

Iterated hash functions H(IV,M) = T commonly first pad and split the message
M into message blocks of fixed length, i.e., M = m1‖m2‖ · · · ‖mL. The message
blocks are processed sequentially and iteratively by the compression function h,
i.e., xi = h(xi−1,mi), where x0 = IV is a public value, T = xL is the n-bit
digest, the chaining value xi ∈ Fn

2 . Two commonly used hash functions following
the classical Merkle-Damgård construction [19,46] and the HAIFA construction
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[8]. In this paper, we only consider the Merkle-Damgård construction and its
extensions.

The concatenation combiner H1(IV1,M)‖H2(IV2,M) = T1‖T2 is one of the
most studied hash combiner, that first described by Preneel in 1993 [49]. In 2004,
Joux [35] described the multi-collision attack and attack an 2n-bit output hash
combiner with 2n/2 for collision and 2n for preimage. Besides the concatenation
combiner, there are other constructions:

– The XOR hash combiner H1(IV1,M)⊕H2(IV2,M) = T .
– Hash-Twice is originally defined in [2]: H2(H1(IV,M),M) = T shown in

Figure 1.
– Zipper hash [44] is defined as H2(H1(IV,M),

←
M) = T shown in Figure 2.

IV1

IV2

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL ⊕

H1(M)

H2(M)

H(M)

Fig. 3: The XOR combiner

Generic attacks. To the best of our knowledge, no preimage attacks have been
shown against the XOR combiner. Therefore, the preimage security of the XOR
combiner against generic attacks is still an open problem and will be one of the
main topics of our work.

Security proof. Theoretically, the XOR combiner is robust concerning PRF
(Pseudo-Random Function) and MAC (Message Authentication Code) in the
black-box reduction model [Leh10]. Since the XOR combiner is length-preserving,
from the conclusions regarding the minimum output length of robust combiners,
it is not robust for collision resistance and preimage resistance. However, the
work of Hoch and Shamir [HS08] actually proves the security of the XOR com-
biner as an intermediate result: it is also indifferentiable from a random oracle
up to 2n/2 queries in the weak random oracle model. In particular, this proves
there are no generic attacks with complexity less than 2n/2. For collision resis-
tance, the bound is tight, since it is matched with the generic birthday attack
bound. On the other hand, for preimage resistance, there exists a gap between
the n/2-bit proven bound and the n-bit expected ideal security bound. Note
that the non-robustness result regarding preimage security does not imply that
the XOR of two concrete hash functions is weak, and the simplicity and short
output of this construction still make it quite attractive.

Analysis of Hash-Twice. Hash-Twice is a folklore hash construction that
hashes a (padded) message twice, with the output of the first hash value as
the value of the initialization vector of the second hash. In its original defini-
tion [ABDK09], the two underlying hash functions are identical, i.e., HT (M) ,
H(H(IV, M), M); here, we consider a generalized version, where the underlying
hash functions are independent, i.e., HT (M) , H2(H1(IV, M), M) (see Fig. 4).

IV1

xL

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL

xL

H(M)

Fig. 4: The Hash-Twice

Generic attacks. Towards the three basic security requirements, a second-preimage
attack on Hash-Twice (HT (M) , H(H(IV, M), M)) has been published by An-

7

Fig. 1: Hash-Twice Construction

dreeva et al. in [ABDK09]. The attack is based on a herding attack, which
exploits the diamond structure originally used in the herding attack on a single
hash function [KK06] (see Sect. 2.3 for an introduction). The complexity of the
attack is approximately 2(n+t)/2 + 2n−` + 2n−t, where 2t is the width of the
diamond structure, and 2` is the length of the challenge.

Security proof. To the best of our knowledge, there is no published formal proof
regarding the security of Hash-Twice. However, we can claim that they are at
least as secure as the original functions: a generic collision attack requires at
least 2n/2 (because we need a collision in one of the compression functions);
a preimage attack requires at least 2n (because we need a preimage for the
finalization function); a second-preimage requires at least 2n/2 (because it implies
a collision).

Analysis of the Zipper hash. The Zipper hash has been proposed with the
goal of constructing an ideal hash function from weak ideal compression functions
(by “weak ideal”, it means that the compression function is vulnerable to strong
forms of attack but is otherwise random). Similar to Hash-Twice, it cascades two
independent hash functions evaluating the same (padded) message. The differ-
ence is that the second hash processes the message blocks in reverse order, i.e.,
ZH , H2(H1(IV1, M),←−M) (see Fig. 5). Note that the messages are first padded
by a padding scheme and split into message blocks, and then they are processed
in forward and reverse order sequentially. Thus, the padded message block mL

is processed at the end of the first hash computation and at the beginning of the
second hash computation, i.e., in the middle of the whole processing procedure.
The padding scheme of Zipper was specified to be any injective function of the
message [Lis06]. In this paper, and as for all other combiners, we take the length
padding of the MD construction as the padding scheme.

IV1

H(M)

h1x0

h2y0

m1

h1x1

h2y1

m2

· · ·· · ·

· · ·· · ·

· · ·

h1xi−1

h2yi−1

mi

· · ·
xi

· · ·
yi

· · ·

h1xL−1

h2yL−1

mL

y L
=

x
L

Fig. 5: The Zipper hash

Generic attacks. To the best our knowledge, no generic attacks on the Zip-
per hash regarding the three basic security notions have been shown. However,
there are a number of works that consider other security notions, such as multi-
collision, herding attack or attacks assuming weak compression functions. Ex-
amples include [NS07,HS06,ABDK09,CJ15,JN15], some of which also consider
the corresponding security of Hash-Twice.

8

Fig. 2: Zipper Hash Construction

3 Basic techniques and their quantum versions

In this section, we give brief introductions of Joux’s multi-collision technique,
diamond structure (DS) and their quantum versions.

3.1 Joux’s multi-collision

At CRYPTO 2004, Joux [35] introduced an efficient method to build multi-
collision on iterated hash functions. As shown in Figure 3, started from x0, the
attacker performs t birthday attacks to find t collisions. Based on the message
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blocks m1,m2, · · ·mt and m′1,m
′
2, · · ·m′t, the attacker can build 2t collision mes-

sage pairs (denoted as 2t-MMC), e.g., (m1‖m′2‖ · · · ‖mt,m
′
1‖m2‖ · · · ‖m′t, ). The

time complexity to build the 2t collision message pairs is t · 2n/2. In quantum
setting, CNS’s algorithm can build one collision in time 22n/5. Therefore, the
time to build 2t-MMC is t · 22n/5. The quantum attack only uses a classical mem-
ory 2n/5.

Evaluating the Security of Merkle-Damgård Hash Functions and Combiners in Quantum Settings 7

3.1 Multi-Collision (MC [24]).

Joux in [24] proposes an efficient way to obtain a large set of messages mapping a starting state to
a common ending state on iterated hash functions, which is known as Joux’s multi-collisions.

x0

m1

m′
1

m2

m′
2

xt

mt

m′
t

≡ x0 xt

t

Figure 4: Multi-collision and its condensed representation in R.H.S. [23]

Multi-Collision (MC) in Quantum Settings. In Scenario R1, the t birthday attacks for finding t
collisions to build a 2t-MMC can be done by calling t times of BHT algorithm. As a result, the total
complexity, which is t ⋅ 2n/2 in the classical setting, is t ⋅ 2n/3 in the quantum setting. The quantum
counterpart of building a 2t-MMC is given in Algorithm 1.

The complexity of Algorithm 1 is dominated by calling the BHT algorithm t times; hence, it requires

Algorithm 1: Building a 2t-Joux’s MC in Quantum Settings
Require: Given an oracle of the compression hash function h, an initial value x0 and qRAM.
1. Initialize the data structure MMC to store pairs of message blocks.
2. For i = 1, ..., t:

(a) Start a BHT algorithm by querying 2n/3 message blocks m′
j to the oracle of h, sort according to the second

entry and store all the pairs in list L, if L contains a collision, output the collision immediately.
Store all pairs (m′

j , h(xi−1, m′
j)) in L to qRAM.

Construct the oracle: F ∶ {0, 1}n → {0, 1} by defining F (m) = 1 if and only if there exist (m′
j , h(xi−1, m′

j))
in qRAM such that h(xi−1, m′

j) = h(xi−1, m) and m′
j ≠m.

(b) In the BHT algorithm, apply the Grover’s search algorithm using oracle F :
i. Initialize the state of the Grover’s search to be the uniform superposition of 2n messages;

ii. After running about π

4
⋅ 2n/3 Grover steps, measure the state and return a pair of message blocks

(mi, m′
i) such that h(xi−1, mi) = h(xi−1, m′

i).
(c) Obtain xi = h(xi−1, mi), append (mi, m′

i) to MMC.
3. Output (xt,MMC).

O(t ⋅ 2n/3) quantum queries, O(t ⋅ 2n/3) computations, and O(2n/3) qRAM.
In Scenario R2, we can replace the BHT algorithm with the algorithm in [11], which requires

O(22n/5) computations and O(2n/5) classical memory. Then, the resulted quantum algorithm 1
requires O (t ⋅ 22n/5) quantum queries and O(2n/5) classical memory.

Note that this quantum version of the Joux’s multi-collision will be used in building more
complex structures (interchange structure in Sect. 3.4), and in the presented preimage attacks
(Sect. 5.1 and 5.2).

3.2 Expandable Message (EM [26]).

Kelsey and Schneier in [26] invented the expandable message, which is similar to Joux’s multi-
collision. By generating t collisions with pairs of message fragments of length (1, 2i + 1) for i ∈
{0, 1, . . . , t− 1}, one can get 2t colliding messages whose lengths cover the range of [t, t+ 2t − 1] (see
Fig. 5). The complexity is of 2t + t ⋅ 2n/2 computations. This expandable message can be used to
bypass the Merkle-Damgård strengthening and carry out a long message second-preimage attack
on MD with roughly 2n/L computations for a given challenge of L blocks.

Fig. 3: Joux’s multi-collision

3.2 Diamond structure and its New Quantum Algorithm in
qRAM-free setting

Kelsey and Kohno in [37] invented the diamond structure. Similar to Joux’s
multi-collisions and Kelsey and Schneier’s expandable message [38], diamond is
also a kind of multi-collision. The difference is that, instead of mapping a single
starting state to a final state in the form of sequential chain like Joux’s multi-
collisions, a 2t-diamond maps a set of 2t leaf states to a common root state as
shown in Figure 4. In classical setting, several improvements [9,39] on building
diamond structure have been proposed.
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Figure 6: A 23-diamond

In Algorithm 2, according to [8], to find a perfect matching4 in G, the probability p for each pair of
vertices being connected by an edge should be no less than (ln 2t)/2t ≈ t⋅2−t. So, for each state xi, the
required number of other states that can lead to a collision with xi is t. At this condition, we repeat
Grover’s algorithm t times for each state in Step 2. Then, the probability for each pair of (xi, xj)
being mapped to a collision is p ≈ (t⋅(L⋅S))/2n. That requires p ≈ (t⋅(L⋅S))/2n = (t⋅2n−t)/2n. That is,

L ⋅S ≈ 2n−t. Let
⎧⎪⎪⎨⎪⎪⎩

L = td1 ⋅ 2ℓ,

S = td2 ⋅ 2s,
then

⎧⎪⎪⎨⎪⎪⎩

d1 + d2 = 0,

ℓ + s = n − t.
To balance the complexity of Step 1 and Step

2, we set 2t ⋅t ⋅
√

S = 2t ⋅L, that is,
⎧⎪⎪⎨⎪⎪⎩

2 + d2 = 2d1,

s = 2ℓ.
Accordingly, we have

⎧⎪⎪⎨⎪⎪⎩

d1 = 2/3, ℓ = (n − t)/3
d2 = −2/3, s = 2(n − t)/3.

Therefore,
⎧⎪⎪⎨⎪⎪⎩

L = t2/3 ⋅ 2(n−t)/3

S = t−2/3 ⋅ 22(n−t)/3.
As a conclusion, using the above method in Scenario R1, the total

time complexity for building t layers of a 2t-diamond is O(t2/3 ⋅ 2(n+2t)/3), and memory complexity
is O(t2/3 ⋅ 2(n+2t)/3) qRAM.

In Scenario R2, the time complexity to find a collision is of (2n−t)2/5 computations. Therefore,
building a 2t-diamond structure requires O(t2/3 ⋅ 2t ⋅ 22(n−t)/5) = O(t2/3 ⋅ 2(2n+3t)/5) computations,
with O(t2/3 ⋅ 2t ⋅ 2(n−t)/5) = O(t2/3 ⋅ 2(n+4t)/5) classical memory.

This quantum version of the diamond structure will be used in the presented quantum herding
attack on the MD hash function (Sect. 4.3) and the quantum herding attack on combiners (Sect.
5.3).

3.4 Interchange Structure (IS [28]).

Leurent and Wang in [28] invented the interchange structure, which is used to devise a preimage
attack on the XOR combiner. The interchange structure contains a set of messages MIS and two
sets of states A and B, such that for any pair of states (Ai, Bj ∣ Ai ∈ A, Bj ∈ B), one can pick a
message M from MIS such that Ai = H1(IV1, M) and Bi = H2(IV2, M). To build a 2t-interchange
structure (with 2t states for each hash function), one can cascade 22t − 1 building modules named
switches. The effect of a switch is that a state in one computation chain of one hash function can
make pair with two states in two computation chains of the other hash function. A switch can be
built using multi-collisions and the birthday attack (see Fig. 7a). The total complexity to build a
2t-interchange structure is of Õ(22t+n/2) computations.

4 In graph G, if there exists a set of edges, no two of which share a vertex, then the set of edges is called a matching.
M is a maximum matching in G if no matching in G contains more edges than M does. If matching M in G contains
every vertex, then M is called a perfect matching. Our goal here, is to find a perfect matching in G = (V,E), of
which the vertex set is V = {x1, . . . , x2t} and (xi, xj) ∈ E if xi and xj generate an obtained collision.

Fig. 4: 23-diamond
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Bao et al. [5] initially introduced the quantum diamond structure algorithm
for both qRAM and qRAM-free scenarios. However, when try to replicate their
algorithm, we find their qRAM-free algorithm is incorrect 7.

Later, at ASIACRYPT 2022, Benedikt, Fischlin, Huppert [7] presented a
quantum diamond structure algorithm utilizing exponential qRAM, resulting in
a time complexity of t1/3·2(n+2t)/3. Consider a level s of the 2t-diamond structure
and try to connect 2s nodes {xs,1, · · · , xs,2s} in a pairwise manner. Benedikt et
al. split the 2s nodes into a upper and a lower half of 2s−1 nodes each. For
the upper half, they compute a list Y of 2l hash evaluations h(mj , xs,i) with
i = 1, · · · , 2s−1, which equally spread out over the 2s−1 nodes. Hence, for each
node, there are 2l

2s−1 hash evaluations. Store Y in qRAM, and apply Grover’s
algorithm to connect the first value xs,2s−1+1 of the lower half to some of these
2l values with some message block m′. Once a connection message is found,
remove the partner node from the upper half and all of its 2l/2s−1 entries from
Y . Then, add this amount of new values, again equally spread out over the
remaining 2s−1 − 1 values paired up, to fill the list Y up to 2l elements again.
Then connect the second note xs,2s−1+2 to Y . Continue till all 2s nodes are
connected, then proceed with the next level s− 1 until the entire tree is built.

xs,5

xs,4

xs,3

xs,2

xs,1

r1︷︸︸︷
0 · · · 0 ∥⋆

Grover

xs,5

xs,4

xs,3

xs,2

xs,1

xs−1,3

r1︷︸︸︷
0 · · · 0 ∥⋆

del/add

xs,5

xs,4

xs,3

xs,2

xs,1

xs−1,3

upper

lower

Fig. 5: building diamond

A new qRAM-free quantum algorithm to build the diamond structure.
In this section, we adapt Benedikt et al.’s [7] method into a qRAM-free version.
As shown in Figure 5, again consider a level s of the 2t-diamond structure and
try to connect 2s nodes {xs,1, · · · , xs,2s} in a pairwise manner.

7 The flaw has been confirmed by the authors of [5] through private communication.
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1. Begin with 2t leaf nodes that share a common suffix of r0 0s for the purpose
of connection.

2. Let’s consider a specific level s ≤ t of the tree where we aim to connect
the 2s nodes {xs,1, …, xs,2s} pairwise. Divide the 2s nodes into two halves,
the upper half with 2s−1 nodes {xs,1, · · · , xs,2s−1} and the lower half with
2s−1 nodes {xs,2s−1+1, xs,2s−1+2, · · · , xs,2s}. For the upper half, compute a
list Y of 2l hash values h(mj , xs,i) with i = 1, · · · , 2s−1, where the r1 MSBs
of h(mj , xs,i) are zero. The 2l hash values equally spread out over the 2s−1

nodes, with 2l

2s−1 hash values for each note. Here, similar to CNS algorithm
in Section 2.1 to build L whose elements are prefixed with r-bit zero, we also
apply Grover’s algorithm to build Y . For each note xs,i with i = 1, · · · , 2s−1,
run Grover’s algorithm to find mj so that the r1 MSBs of h(mj , xs,i) are zero.
The time to find one mj is 2r1/2. In order to find 2l

2s−1 such mj for node xs,i,
we apply 2l

2s−1 times of Grover’s algorithm. Therefore, to build Y , the total
time complexity is

2l × 2r1/2 = 2l+
r1
2 . (10)

3. Store Y in a classical memory with 2l elements (h(mj , xs,i),mj , xs,i) indexed
by h(mj , xs,i). For the first node xs,2s−1+1 of the lower half, apply CNS
algorithm in Section 2.1 to find a message block m′ so that h(m′, xs,2s−1+1)
hits one of the entries of Y . According to Definition 2, apply CNSh(m

′, Y )
to find such m′, whose time complexity is√

2n−r1

2l
· (2r1/2 + 2l). (11)

4. After m′ is found, delete the partner node and all of its 2l/2s−1 entries
from Y . Add 2l/2s−1 new values for Y with similar ways to Step 2 to fill
Y up to 2l elements again. Now each note of the upper half corresponds to
2l/2s−1 − 1 elements. Delete the first node xs,2s−1+1 from lower half. The
time complexity to fill Y again is

2l/2s−1 × 2r1/2 = 2l−s+1+
r1
2 . (12)

5. Repeat Step 3 and Step 4 until the lower half is empty. That means all the
nodes of the layer of level s have been connected pairwise.

To build the layer of level s, totally, the CNS algorithm in Step 3 is repeated
2s−1 times. After the i-th node xs,2s−1+i (i = 1, · · · , 2s−1 − 1) in the lower half
has been connected to Y , according to Step 4, 2l

2s−1−(i−1) elements have to be
generated to fill Y up to 2l again, whose time complexity is

2l

2s−1 − (i− 1)
× 2r1/2. (13)

Therefore, the total time complexity to build the layer of level s is

Ts = 2l×2r1/2+2s−1 ·
√

2n−r1

2l
·(2r1/2+2l)+

2s−1−1∑
i=1

2l

2s−1 − (i− 1)
×2r1/2. (14)
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To build the 2t-diamond structure which includes t layers, the total time is
2∑

s=t

Ts. (15)

We could calculate

Ts = 2s−1·
√

2n−r1

2l
·(2r1/2+2l)+2l·2r1/2·

2s−1∑
j=1

1

j
= 2s−1·

√
2n−r1

2l
·(2r1/2+2l)+O(s·2l+r1/2)

using
∑q

j=1
1
j ≤ ln q+ c for the harmonic series. Then Ts could be minimized to

O(s1/5 · 2(2n+4s+4)/5) by setting r1 = 2l and l = n+2s+2−2 log2 s
5 .

The final complexity is obtained from summing over all t levels:
t∑

s=1

O(s1/5 · 2(2n+4s+4)/5) ≤ O(2(2n+4+log2 t)/5 ·
t∑

s=1

2
4s
5 )

= O(2(2n+4+log2 t)/5 · 2 4t
5 )

= O(2(2n+4t+4+log2 t)/5),

which is about O(2(2n+4t)/5). The classical memory is dominated by O(2(n+2t)/5)
to store Y for the first layer. The size of qRAM is O(n) when applying CNS
algorithm.

4 Herding Attack in Quantum Settings with Low qRAM
The herding attack on iterated hash function is first given by Kelsey and Kohno
[37]. In the attack, the adversary chooses a public hash value hT , and then, she is
challenged with a prefix P . Her goal is to find a suffix S such that hT = H(P‖S).
At ASIACRYPT 2022, Benedikt, Fischlin, and Huppert [7] presented the quan-
tum herding attack with 3

√
n · 23n/7 on iterated hash function with n-bit digest

based on BHT algorithm. Their quantum attack also needs exponentially large
quantum memory (qRAM) inherited from the BHT algorithm [17]. Therefore
they left an open question on how to devise quantum herding attacks with poly-
nomial size of quantum memory (qRAM). In this section, we answer the open
question positively. As shown in Figure 6, our herding attack is consisted of four
steps:

– Step 1 is to build a 2k-diamond structure. In classical herding attack by
Kelsey and Kohno [37] and the quantum one by Benedikt et al. [7], the
leaves xi (1 ≤ i ≤ 2k) are randomly chosen. In our quantum attack, the r
most significant bits (MSB) of xi are zero.

– Step 2 and Step 3 is to find a single block message Mlink such that h(P‖Mlink)
collides with some value xj ∈ D.

– Step 4 is to produce the message M = P‖Mlink‖Mj , where Mj is a sequence
of message blocks linking xj to hT with the diamond structure.
Our quantum herding attack is given in Algorithm 1.
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which leads to the same final hash value hT . She then publicizes hT to commit.588

After receiving the challenged message P , the attacker applies Grover’s algorithm589

to find a suffix message block S. The detailed attack is described in Algorithm 5.590

Algorithm 5: Herding Attack on MD Hash in Quantum Settings

1. Build the diamond structure using the quantum algorithm describe in Sect. 3:

from 2k starting hash values D = {xi}2
k

i=1 to the root value hT . This step can be
done in O(k2/3 ⋅ 2(n+2k)/3) computations. Commit hT and publicize it.

2. Receive the challenged prefix: P .
3. Find a linking message: apply Grover’s algorithm to search for a single block

message Mlink such that the value h(P ∥Mlink) collides with some value xj in
D. This step can be done in O(2(n−k)/2) quantum queries and returns Mlink.

4. Produce the message: M = P ∥Mlink∥Mj where Mj is a sequence of message
blocks linking xj to hT following the diamond structure built before.

hT

x1

x2k

MDS

IV

P

xj

Mlink
Mj

(Step 1)

(Step 2)
(Step 3) (Step 4)

Attack in Scenario R1. The total complexity of the herding attack is k2/3 ⋅591

2(n+2k)/3 + 2(n−k)/2 quantum computations, with O(k2/3 ⋅ 2(n+2k)/3) quantum592

memory.593

The best-case Complexity. The best complexity is achieved when
n + 2k

3
=594

n − k

2
, i.e. k = n

7
, which results in the optimal Õ(23n/7) quantum computations.595

596

Attack in Scenario R2. In this model, the 2k-diamond structure can be built597

with time complexity of O(k2/3 ⋅ 2(2n+3k)/5); and the search of Mlink can be done598

by using multi-target preimage algorithm with time complexity of O(2n/2−k/6).599

Then the total complexity is O(k2/3 ⋅2(2n+3k)/5+2n/2−k/6) quantum computations,600

with O(k2/3 ⋅ 2(n+4k)/5) classical memory.601

The best-case Complexity. The optimal time complexity is achieved when602

2n + 3k

5
= n

2
−

k

6
, i.e., k = 3n

23
, which results in Õ(211n/23) time complexity and603

Õ(27n/23) classical memory.604

5 Security of Hash Combiners in Quantum Settings605

In this section, we present quantum attacks on hash combiners. For preimage,606

second-preimage, and herding attacks, the ideal quantum security are all 2n/2
607

20

Submission number 403 to Asiacrypt 2020: DO NOT DISTRIBUTE!

Fig. 6: Herding Attack on Iterated Hash Function

Algorithm 1: Herding Attack on Iterated Hash Function without
qRAM

1 Off-line precomputation: Precompute the diamond structure using CNS
quantum collision algorithm. Collect 2k starting chaining values
D = {x1, x2, · · · , x2k}, where the r MSBs of xi ∈ Fn

2 are zero. The root is
denoted as hT and publish hT .

2 On-line precomputation:
3 begin
4 Receive the challenged prefix P and compute the chaining value after

absorbing the message P : x̄ = H̄(IV, P ).
5 /* Finding the linking message Mlink by applying variant of CNS

collision-finding algorithm: */
6 Store D = {x1, x2, · · · , x2k} in a classical memory L.
7 Define

Sh
r := {(m,h(x̄,m)) : ∃z ∈ {0, 1}n−r, h(x̄,m) = 0 · · · 0︸ ︷︷ ︸

r times

∥z, z ∈ {0, 1}n−r},

where h is the compression function with n-bit chaining value x̄. Let
fh
L(m) := 1 if ∃x′ ∈ L, h(x̄,m) = x′, and fh

L(m) := 0 otherwise.
8 Apply quantum amplification algorithm:
9 begin

10 The setup A is the construction of |ϕ⟩ := 1√
|Sh

r |

∑
m∈Sh

r

|m,h(x̄,m)⟩.

11 The projector is a quantum oracle query to Ofh
L

meaning that

Ofh
L
(|m,h(x̄,m)⟩|b⟩) = |m,h(x̄,m)⟩|b⊕Ofh

L
(m)⟩. (16)

12 end
13 Let Mlink = m and produce the message: M = P∥Mlink∥Mj , where Mj is

a sequence of message blocks linking xj to hT following the diamond
structure built before.

14 end

Complexity. The time complexity to build the 2k diamond structure is k1/5 ·
2(2n+4k)/5 with a classical memory k3/5 · 2(n+2k)/5 according to Section 3.2. The
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time complexity of the setup phase is 2r/2 with Grover algorithm. According
to the quantum membership algorithm [18], the time complexity to implement
Ofh

L
is 2k. For (m,h(x̄,m)) ∈ Sh

r , fh
L(m) = 1 holds with probability of 2k−(n−r).

Therefore, about 2
n−r−k

2 calls of A, A†, Ofh
L

, O†
fh
L

are needed to produce the
correct Mlink = m. Hence, the time complexity to find the Mlink in Line 8 is
2

n−r−k
2 (2r/2 + 2k) with a classical memory 2k to store L. Hence, the total time

complexity is
2

n−r−k
2 (2r/2 + 2k) + k1/5 · 2(2n+4k)/5. (17)

The classical memory complexity is bounded by the construction of the diamond
structure, i.e., k3/5 · 2(n+2k)/5.

The best-case complexity. The optimal complexity is to balance the three for-
mulas, i.e., n−k

2 , n−r+k
2 , and 2n+4k

5 . When k = n/13 and r = 2n/13, the optimal
complexity is achieved which results in O(26n/13) = O(20.46n) time complexity
and O(23n/13) = O(20.23n) classical memory.

Remark. Bao et al. [5] also proposed a qRAM-free herding attack based on
a flawed method of building the diamond structure as shown in Section 3.2.
After correcting with our right algorithm in Section 3.2, Bao et al.’s qRAM-
free herding attack needs a time complexity of O(214n/29) = O(20.48n) with a
classical memory O(27n/29) = O(20.24n), which is inferior to our attacks.

5 Interchange Structure and Preimage attack on XOR
combiners

5.1 Basic Interchange Structure Technique [43]
At EUROCRYPT 2015, Leurent and Wang [43] invented the interchange struc-
ture (IS), which is used to devise a preimage attack on the XOR combiner,
i.e., H1(IV1,M) ⊕ H2(IV2,M) = T . The interchange structure contains a set
of messages MIS and two sets of states A and B, so that for any state pair
(Ai, Bj |Ai ∈ A, Bj ∈ B), the attacker can pick a message M ∈ MIS such that
Ai = H1(IV1,M) and Bj = H1(IV2,M). Suppose there is a 2k-interchange struc-
ture (the sizes of A and B are both 2k). In order to reach the target value T , they
select a random block m, and evaluate L1 = {A′i = h1(Ai,m), i = 1 · · · 2k} and
L2 = {B′j = T ⊕ h2(Bj ,m), j = 1 · · · 2k}, where h1 and h2 are the compression
functions. If there is a match between the two lists L1 and L2, then

h1(Ai,m) = T ⊕ h2(Bj ,m) ⇔ H1(IV1,M‖m)⊕H2(IV1,M‖m) = T. (18)

The above technique is exact an Meet-in-the-Middle approach. For a given m, it
produce the preimage with probability 22k−n with time complexity 2k. Therefore,
to find the preimage, 2n−2k m should be exhausted with a time complexity of
2n−2k × 2t = 2n−k.

To build a 2k-interchange structure (the sizes of A and B are both 2k), the
classical time complexity is Õ(22k+n/2) in [43].
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5.2 Low qRAM Quantum Version of Interchange Structure

For the hash XOR combiners H1(IV1,M)⊕H2(IV2,M) = T , the basic technique
to build interchange structure is to build a single switch. As shown in Figure
7(a), given the multi-collision set MMC of size 2t, ∀M ∈ MMC, h∗2(bk,M) = b′k.
The single switch algorithm (Alg. 2) is to find a pair M̂, M̂ ′ ∈ MMC, such that
h∗1(aj , M̂) = h∗1(ai, M̂

′).

In Scenario R2, the time complexity to find a collision is of 22(n−t)/5 computa-477

tions. Therefore, building a 2t-diamond structure requires O(t2/3 ⋅ 2t ⋅ 22(n−t)/5) =478

O(t2/3 ⋅ 2(2n+3t)/5) computations, with O(t2/3 ⋅ 2t ⋅ 2(n−t)/5) = O(t2/3 ⋅ 2(n+4t)/5)479

classical memory.480

Interchange Structure (IS [28]). Leurent and Wang in [28] invented the481

interchange structure, which is used to devise a preimage attack on the XOR482

combiner. The interchange structure contains a set of messages MIS and two483

sets of states A and B, such that for any pair of states (Ai, Bj ∣ Ai ∈ A, Bj ∈ B),484

one can pick a message M from MIS such that Ai = H1(IV1, M) and Bi =485

H2(IV2, M). To build a 2t-interchange structure (with 2t states for each hash486

function), one can cascade 22t−1 building modules named switches. The effect of a487

switch is that a state in one computation chain of one hash function can make pair488

with two states in two computation chains of the other hash function. A switch489

can be built using multi-collisions and the birthday attack (see Fig. 7a). The total490

complexity to build a 2t-interchange structure is of Õ(22t+n/2) computations.491

The interchange structure is used in the preimage attack on the XOR combiner492

to enables a meet-in-the-middle procedure, of which the optimal complexity is493

Õ(25n/6).494
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Figure 7: Interchange structure and its building block

Interchange Structure (IS) in Quantum Settings. The interchange structure starts495

with building a single switch, which is constructed by building a 2n/2-Joux’s496

multi-collision for the hash function H2 and finding a collision between the hash497

value of H1 from different states (ai, aj) and some pair of message (M̂, M̂ ′).498

These two steps can be replaced by the quantum algorithm for building Joux’s499

multi-collisions and the quantum walk algorithm for the element distinctness500

problem. The quantum algorithm for building a single switch is described as501

follows in Algorithm 3.502
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Fig. 7: Interchange structure and its building block

Complexity of Algorithm 2:

– In Line 1, the time to build 2t-MMC is t · 22n/5, with classical memory 2n/5

by applying CNS algorithm directly.
– In Line 3, with the superposition in Eq. (20), Grover algorithm is applied to

determine a M = (ml1
1 ,m

l2
2 , ...,m

lt
t ), such that the r MSBs of h∗1(aj ,M) are

zero, whose time complexity is 2r/2. To find 2x such M , the time complexity
is 2x+r/2. A classical memory of size 2x is needed to store L2.

– In Line 6 a), the setup phase is to produce the superposition of |ϕr〉, whose
time complexity is about 2r/2.
In Line 6 b), the projector is a quantum membership checking, whose time
complexity is about 2x. To ensure that there is at least one collision, we have
2t−r × 2x ≥ 2n−r, i.e., t+ x ≥ n. The total time complexity is

2
n−r−x

2 · (2r/2 + 2x) + 2x+r/2 + t · 22n/5. (23)

When x = r
2 = n

5 and t = 4n
5 , we get the optimal time complexity, i.e.,

O( 4n5 · 22n/5). The qRAM to store L1 is of polynomial size, which is O(t ·n).
The classical memory used to store L2 and in Line 1 is O(2n/5).



16 Xiaoyang Dong, Shun Li, and Phuong Pham, Guoyan Zhang

Algorithm 2: Building a Single Switch in Quantum Settings with Low
qRAM

1 Use the quantum Joux’s multi-collision algorithm to build a set MMC of 2t
messages for h∗2 that link the starting state bk to the same state b′k, i.e.,
∀M ∈ MMC, h

∗
2(bk,M) = b′k. The number of message blocks of M is t. Denote

the i-th collision message blocks in Joux’s multi-collision are (m0
i ,m

1
i ),

1 ≤ i ≤ t, which are stored in qRAM L1, whose size is about O(t · n).
2 Given |l1, l2, ..., lt⟩ 1 ≤ i ≤ t and li ∈ {0, 1}, Of is the quantum oracle that

computes Of (|l1, l2, ..., lt⟩|0⟩) = |l1, l2, ..., lt⟩|ml1
1 ,ml2

2 , ...,mlt
t ⟩ by accessing

qRAM L1. Therefore, we can obtain the superposition of Eq. (20)
a) Apply Hadamard H to the first t qubits of |0⟩, we get∑

l1,l2,...,lt∈{0,1}

|l1, l2, ..., lt⟩|0⟩. (19)

b) Apply Of to the superposition, we get

|ϕ⟩ =
∑

l1,l2,...,lt∈{0,1}

|l1, l2, ..., lt⟩|ml1
1 ,ml2

2 , ...,mlt
t ⟩. (20)

3 Select 2x (x ≤ t) M ∈ MMC, where the r MSBs of a′j = h∗1(aj ,M) are zero.
Store (a′j ,M) in classical memory L2, whose size is about 2x. Apply Grover
algorithm to produce L2 (combining with Eq. (20)) with complexity of
2x · 2r/2 = 2x+r/2.

4 Let M = (ml1
1 ,ml2

2 , ...,mlt
t ) ∈ MMC, and define g

h∗
1

L2
(M) := 1 if

a′i = h∗1(ai,M) ∈ L2, and g
h∗
1

L2
(M) := 0 otherwise. // quantum membership

checking
5 Define

S
h∗
1

r := {M : ∃z ∈ {0, 1}n−r, h∗1(ai,M) = 0 · · · 0︸ ︷︷ ︸
r times

∥z, z ∈ {0, 1}n−r,M ∈ MMC}.

6 Run a variant of CNS algorithm. Apply quantum amplification algorithm
(QAA) to determine the collision.

a) The setup phase of QAA is to compute the following superposition together with
Eq. (20)

|ϕr⟩ :=
1√
|Sh∗

1
r |

∑
x∈S

h∗
1

r

|M⟩ (21)

b) The projector of the QAA is applying quantum oracle O
g
h∗
1

L2

, let

M = (ml1
1 ,ml2

2 , ...,mlt
t ),

O
g
h∗
1

L2

|M⟩|y⟩ = |M⟩|y ⊕ g
h∗
1

L2
(M)⟩ (22)
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5.3 Preimage attack on XOR combiners with Low qRAM

In classical setting, Leurent and Wang [43] built preimage attack on the XOR
combiner with an Meet-in-the-Middle approach. Leurent and Wang first built a
2k-interchange structure (the sizes of A and B are both 2k) as shown in Section
5.1. In this section, in quantum setting, we apply Schrottenloher and Stevens’
quantum MitM attack and quantum merging algorithm [50] (also refer to Section
2.1) to perform our quantum attack on XOR combiners. As shown in Section
5.1, the sizes of L1 and L2 should be equal in Leurent and Wang’s classical
attack to achieve the optimal time complexity. However, according to Equation
(9), L1 and L2 should of different sizes. According to (18), the matching bits are
n bits, therefore, the size of Lmerge that contains messages satisfy (18) is very
small when compared to L1 and L2. Actually, we only find one preimage, so that
|Lmerge| is about 1. Without loss of generality, we assume |L1| is bigger. Then
(9) is simplified as

|L2|+
√

|L1|. (24)

To reach an optimal balance, we choose |L1| = 22k and |L2| = 2k, so that
the complexity of the quantum merging algorithm is O(2k). We denote this
kind of interchange structure as (22k, 2k)-interchange structure, which is built
by applying 23k − 1 quantum single switches (Algorithm 2) as the following:

1. Build a single switch from (a0, b0) to each of (a0, bj) j = 0, ..., 2k − 1,
2. For each j, build switches from (a0, bj) to all (ai, bj) for all i = 0, ..., 22k − 1,
3. To reach the chain (ai, bj) from (a0, b0), we first find the switch to jump from

(a0, b0) to (a0, bj) in the first step, then find the switch to jump from (a0, bj)
to (ai, bj) in the second step (see Figure 7(b)).

The time complexity is O( 4n5 · 23k+2n/5) with O(2n/5) classical memory to build
the (22k, 2k)-interchange structure.

According to Lemma 1, we first guess the message block m ∈ Fg
2, and build

the two list L1 and L2 with |L1| = 22k and |L2| = 2k, then build the Omerge with
complexity O(2k) according to Equation (24). To find at least one preimage, we
have 2g+k+2k = 2n, so that g = n − 3k. According to Equation (8), the time
complexity of the quantum MitM attack is about 2n−3k

2 ×2k = 2
n−k

2 . The qRAM
needed in the quantum MitM attack is |L2| = 2k.

The overall time complexity including the time to build (22k, 2k)-interchange
structure and the quantum MitM attack is 4n

5 · 23k+2n/5 + 2
n−k

2 . The optimal
complexity is 217n/35 = 20.485n by setting k = n/35. The classical memory is
O(2n/5). The qRAM is 2n/35 = 20.0285n.

6 Collision attack on Concatenation Combiners in
Quantum Settings

For a hash concatenation combiner H1(IV1,M)‖H2(IV2,M) = T1‖T2, the colli-
sion attack is to find two distinct M and M ′, so that H1(IV1,M)‖H2(IV2,M) =
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H1(IV1,M
′)‖H2(IV2,M

′). Classically, based Joux’s multi-collision method [35],
the collision attack can be built in O(2n/2). Here, we introduce a new quantum
collision attack on the hash combiners in Algorithm 3.

Complexity of Alg. 3. Alg. 3 is quite similar to Alg. 2. When we let t = n,
x = 2n/5, r = 22n/5, the attack is optimal. The time complexity is n · 22n/5 with
a classical memory of 2n/5 and polynomial size of qRAM (n2).

7 Herding Attack on Concatenation Combiners in
Quantum Setting

Algorithm 7: Herding Attack on Concatenation Combiners in Quantum
Settings

Phase 1 - off-line precomputation.

(a) Build a diamond MDS1 for H1, which starts from 2k states D1 = {xi}2
k

1 and are
all mapped to the root value xT . That can be done using the quantum algorithm
in Sect. 3. From the hash value xT , build a 2n−k-Joux’s multi-collision MMCs, in
which all messages map xT to a state xM0

. Continue to build a 2nk/2-Joux’s
multi-collision (consists of k fragments and each fragment is of length n/2) on
H1 from the starting state xM0

and mapping to the state T1, and denote it by
MMCℓ. Denote the terminal states of each of the k fragments of MMCℓ by xMi

for i from 1 to k (note that xMk
= T1).

(b) Build a diamond MDS2 for H2, which starts from 2k states D2 = {yi}2
k

1 . The
messages used to building MDS2 are all chosen from the set MMCℓ. For example,
the messages mapping the first layer of 2k states to the 2k−1 states in MDS2

are chosen from the set of 2n/2 messages in the first fragment of MMCℓ mapping
xM0

to xM1
. To build the next layer from D2, use the quantum walk algorithm

to find a collision in the set of 2n/2 messages for pairs of states in D2, with
O(2n/3) quantum computations. Repeats this step until reaching a root T2 for
MDS2. Note that, the building method for MDS2 is different from the quantum
algorithm describe in Sect. 3. That is because, the messages should be selected
from the set MMCℓ, which is limited. Therefore, building the diamond structure
MDS2 costs O(2k ⋅ 2n/3) = O(2(n+3k)/3) computations.

(c) Commit T1∥T2 to the public.

Phase 2 - on-line. Being challenged with a prefix P , proceed as follows.
(a) Compute the two intermediate states xP = h∗1(IV1, P ) and yP = h∗2(IV2, P ).
(b) Search for a message block m∗ that maps xP to one of the leaf states xj of
MDS1. This is done by using Grover’s algorithm, which accesses the quantum
oracle of h1 to find m∗ in O(2(n−k)/2 steps.

(c) Retrieve the message S1 in MDS1 that maps xj to the root. Compute yT =
h∗2(IV2, P ∥m∗∥S1).

(d) Search for a message fragment S2 among MMCs that maps yT to one of the leaf
states yi of MDS2. This is done by using Grover’s algorithm again.

(e) Retrieve the message fragment S3 in MDS2 that maps yi to the root, which is
T2. Due to the way of construction of MDS2 in Phase 1, for H1, the message
fragment S3 also maps the starting state of MMCℓ to T1.

(f) Response with M = P ∥m∗∥S1∥S2∥S3.

xT

x1

x2k

MDS1

IV1

P
m∗ S1

xM0 T1

S2 S3

(Phase 1)

(Phase 2)

T2

y1

y2k

MDS2

IV2

P S1m∗

S2
S3

(Phase 1)

(Phase 2)
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Fig. 8: Herding Attack on Concatenation Combiners in quantum settings

The herding attack on concatenation combiners in quantum settings is given
in Figure 8 and Algorithm 4.

Complexity of Algorithm 4.
– In the off-line precompuation phase (Line 2 to 6), the time complexity to

build MDS1, MMCs , MMCℓ , and MDS2 is

2k+2n/5 + t · 22n/5 + 4nk/5 · 22n/5 + 2k+2n/5 ≈ 2k+2n/5,

where t = O(n).
– In the online phase (Line 8 to 18), the time to find m∗ and S2 are both

2
n−r−k

2 (2r/2 + 2k).
Therefore, the overall optimal time complexity of Algorithm 4 is O(27n/15) by
balancing the off-line and on-line computation phases and assigning k = n/15,
r = 2k, and t = n. The memory cost is dominated by building Joux’s multi-
collision with CNS, i.e., O(2n/5) classical memory and O(n) qRAM.
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Algorithm 3: Collision attack on Concatenation combiners in Quan-
tum Settings with Low qRAM

1 Use the quantum Joux’s multi-collision algorithm to build a set MMC of 2t
messages for H2 that link the starting state IV2 to the same state T2, i.e.,
∀M ∈ MMC,H2(IV2,M) = T2. The block length of M is t. Denote the i-th
collision message blocks in Joux’s multi-collision are (m0

i ,m
1
i ), 1 ≤ i ≤ t.

Store (m0
i ,m

1
i ) in qRAM L1 (to be used in the construction of

superposition), whose size is about O(t · n).
2 Given |l1, l2, ..., lt⟩ 1 ≤ i ≤ t and li ∈ {0, 1}, Of is the quantum oracle that

computes Of (|l1, l2, ..., lt⟩|0⟩) = |l1, l2, ..., lt⟩|ml1
1 ,ml2

2 , ...,mlt
t ⟩ by accessing

qRAM L1. Therefore, we can obtain the superposition of Eq. (26)
a) Apply Hadamard H to the first t qubits of |0⟩, we get∑

l1,l2,...,lt∈{0,1}

|l1, l2, ..., lt⟩|0⟩. (25)

b) Apply Of to the superposition, we get

|ϕ⟩ =
∑

l1,l2,...,lt∈{0,1}

|l1, l2, ..., lt⟩|ml1
1 ,ml2

2 , ...,mlt
t ⟩. (26)

3 Select 2x (x ≤ t) M ∈ MMC, where the r MSBs of T1 = H1(IV1,M) are zero.
Store (T1,M) in classical memory L2, whose size is about 2x. L2 is produced
by applying Grover algorithm and combining with Eq. (26). The time
complexity is 2x · 2r/2 = 2x+r/2.

4 Let M = (ml1
1 ,ml2

2 , ...,mlt
t ) ∈ MMC, and define gH1

L2
(M) := 1 if

y = H1(IV1,M) ∈ L2, and gH1
L2

(M) := 0 otherwise. /* The quantum
membership algorithm. */

5 Define SH1
r := {M : ∃z ∈ {0, 1}n−r,H1(IV1,M) = 0 · · · 0︸ ︷︷ ︸

r times

∥z, z ∈

{0, 1}n−r,M ∈ MMC}.
6 /* Run a variant of CNS algorithm. Apply quantum amplification

algorithm (QAA). */
7 The setup phase of QAA is the construction

|ϕr⟩ :=
1√
|SH1

r |

∑
x∈SH1

r

|M⟩ (27)

8 The projector of the QAA is applying quantum oracle O
g
H1
L2

, let

M = (ml1
1 ,ml2

2 , ...,mlt
t ),

O
g
H1
L2

|M⟩|y⟩ = |M⟩|y ⊕ gH1
L2

(M)⟩ (28)
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Algorithm 4: Quantum Herding Attack on Concatenation Combiners
with low qRAM

1 Off-line precomputation:
2 begin
3 Build a diamond MDS1 for H1, which starts from 2k states D1 = {xi}2

k

1 ,
where the r MSBs of xi ∈ Fn

2 are zero. To build MDS1, we do not use the
method given in Section 3.2, but only use CNS algorithm to build each
collision until the root xT is derived. Totally,
2k−1 + 2k−2 + · · ·+ 1 = 2k − 1 times of CNS are applied with time
complexity 2k+2n/5 and memory complexity of 2n/5. The root is xT .
From the hash value xT , build a 2t-Joux’s multi-collision MMCs , in which
all messages map xT to a state xM0 . Continue to build a 2k·

4n
5 -Joux’s

multi-collision MMCℓ (consists of k fragments and each fragment is of
length 4n/5) on H1 from the starting state xM0 and mapping to the state
T1. Denote the terminal states of each of the k fragments of MMCℓ by xMi

for i from 1 to k (note that xMk = T1).
4 Build a diamond MDS2 for H2, which starts from 2k states D2 = {yi}2

k

1 ,
where the r MSBs of yi ∈ Fn

2 are zero.. The messages used to building
MDS2 are all chosen from the set MMCℓ . For example, the messages
mapping the first layer of 2k states to the 2k−1 states in MDS2 are chosen
from the set of 24n/5 messages in the first fragment of MMCℓ mapping
xM0 to xM1 . To build MDS2, we do not use the method given in Section
3.2, but only apply 2k − 1 times CNS algorithm variant given by
Algorithm 2 to find 2k − 1 collisions in MMCℓ . Note that Algorithm 2 is
exactly the method to find two messages from a set of multi-collisions
that make two states collides (as shown in Figure 7(a)). The time to
build MDS2 is O(2k+2n/5) with a classical memory 2n/5.

5 Commit T1∥T2 to the public.
6 end
7 On-line phase:
8 begin
9 Receive the challenged prefix P and compute the internal chaining value

xP = h∗1(IV1, P ) and yP = h∗2(IV2, P ).
10 /* Finding the linking message m∗ by applying variant of CNS

collision-finding algorithm: */
11 Store D1 in a classical memory L1.
12 Apply Line 6 to 12 of Algorithm 1 to determine linking message m∗ that

maps xP to one of the leaf state xj of MDS1, and retrieve the message S1

that link the leaf xj to the root xT .
13 Compute yT = h∗2(IV2, P∥m∗∥S1).
14 /* Finding the linking message S2 by applying variant of CNS

collision-finding algorithm: */
15 Store D2 in a classical memory L2.
16 Apply CNS algorithm variant given by Algorithm 2 to find S2 ∈ MMCs ,

which maps yT to one of the leaf state yj of MDS2, and retrieve the
message S3 that link the leaf yj to the root T2.

17 M = P∥m∗∥S1∥S2∥S3 is the returned message.
18 end



Title Suppressed Due to Excessive Length 21

8 Quantum Herding attack on Hash-Twice

The attack on Hash-Twice shares the fundamental ideas of the attack on the
concatenation combiners, as depicted in Figure 9. The attacker selects T2 as their
commitment and subsequently faces a challenge involving an unknown prefix P .
The attack is the same to the attack on concatenation combiner. Please see
Algorithm 4 for details. The only difference is that the IV2 is replaced by T1.
Therefore, the overall optimal time complexity is also O(27n/15) with a classical
memory of O(2n/5) and a qRAM of O(n).

xT

x1

x2k

MDS1

IV

P
m⇤ S1

xM0 T1

S2 S3

(Phase 1)

(Phase 2)

T2

y1

y2k

MDS2

T1

P S1m⇤
S2

S3

(Phase 1)

(Phase 2)

Fig. 9: Herding attack on Hash-Twice

9 Quantum Herding Attack on Zipper Hash

As stated by Andreeva et al. [2], the traditional herding attack with a prefix P
can not be applied to Zipper Hash. Therefore, Andreeva et al. [2] gave a variant
of the herding attack, where the challenge is placed at the end: as shown in
Figure 10, the adversary commits to a hash value hT , then she is challenged
with a suffix S, and has to produce S1‖m∗ such that H(IV, S1‖m∗‖S) = hT .
The complexity of Andreeva et al.’s classical attack is O(22n/3).

In this section, we introduce a quantum version Andreeva et al.’s attack in
Algorithm 5. The complexity of the off-line phase dominated by building MDS,
which is about O(2k+2n/5). The on-line phase is 2

n−r−k
2 · (2r/2 +2k) with t = n.

Let k = n
15 , r = 2k, the optimal complexity is achieved to be 27n/15. The memory

is 2n/5.

Conclusion

This paper evaluated the quantum attacks on iterated hash functions and var-
ious important hash combiners. Most of the attacks only require polynomial
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IV xM0 x̄

Sm∗S1

hT

y1

y2k

SS1 m∗
ȳ

(Phase 1)

(Phase 2)

Fig. 10: Herding attack on Zipper Hash

sizes of quantum random access memory (qRAM), or significantly reduce the
qRAM from previous 20.143n to 20.028n. Since the existence of large qRAM is
still questionable, buiding quantum attacks with low-qRAM is of practical rele-
vance. Since for hash functions, the attackers do not need online superposition
queries, quantum attacks on hash functions are more friendly than on other
keyed primitives like block ciphers. Therefore, exploring the quantum attacks on
hash functions is of more practical relevance.
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