
Mathematical Cryptology, 1(1): 1–6

An erf Analog for Discrete Gaussian Sampling
Nicolas Gama1,*, Anand Kumar Narayanan1, Ryder LiuLin1, Dongze Yue1

1SandboxAQ, Palo Alto, USA

Received: | Revised: | Accepted:

Abstract Most of the current lattice-based cryptosystems rely on finding Gaussian Samples from a lattice that
are close to a given target. To that end, two popular distributions have been historically defined and studied: the
Rounded Gaussian distribution and the Discrete Gaussian distribution. The first one is nearly trivial to sample:
simply round the coordinates of continuous Gaussian samples to their nearest integer. Unfortunately, the security
of resulting cryptosystems are not as well understood. In the opposite, the second distribution is only implicitly
defined by a restriction of the support of the continuous Gaussian distribution to the discrete lattice points. Thus,
algorithms to achieve such distribution are more involved, even in dimension one. The justification for exerting this
computational effort is that the resulting lattice-based cryptographic schemes are validated by rigorous security
proofs, often by leveraging the fact that the distribution is radial and discrete Gaussians behave well under
convolutions, enabling arithmetic between samples, as well as decomposition across dimensions.
In this work, we unify both worlds. We construct out of infinite series, the cumulative density function of a new
continuous distribution that acts as surrogate for the cumulative distribution of the discrete Gaussian. If 𝜇 is a
center and 𝑥 a sample of this distribution, then rounding 𝜇 + 𝑥 yields a faithful Discrete Gaussian sample. This
new sampling algorithm naturally splits into a pre-processing/offline phase and a very efficient online phase. The
online phase is simple and has a trivial constant time implementation. Modulo the offline phase, our algorithm
offers both the efficiency of rounding and the security guarantees associated with discrete Gaussian sampling.

Keywords: Gaussian distribution, Lattice-based cryptography, post-quantum cryptography
2010 Mathematics Subject Classification: 94A60, 11Y40

1 INTRODUCTION
The following sampling problem often arises in lattice-based cryptography: given a short basis of a lattice

(embedded in a high-dimensional Euclidean space) and a target point, find a lattice point close to the target. For
instance, such a sampling is critical to generating signatures in hash-and-sign [3] schemes culminating in Falcon
[2] as well as Fiat-Shamir with abort signature schemes [6]. The short basis is often part of the secret key; the
trapdoor enabling efficient computation. Deterministic solutions, such as finding the closest lattice point to the
target, leak information about the short basis/secret key. Therefore randomization is necessary and one has to
draw from a distribution of lattice points centered around the target. There are restrictions on the shape of the
distribution: for example, drawing uniformly from the intersection of the lattice and a parallelepiped centered at
the target also leaks the secret [8]. To not leak information about the secret key, it suffices to draw from a spherical
discrete Gaussian distribution on the lattice centered at the target [3]. We chose to motivate the sampling problem
through signature schemes instead of encryption schemes, as the former seems more demanding.

We call drawing samples from a spherical Gaussian distribution (with a prescribed center and standard deviation)
over a lattice, given a short basis generating the lattice as the discrete Gaussian sampling problem. This is a well
studied problem with two prominent algorithms respectively due to Klein [5] and Peikert [9]. Both algorithms
eventually split the problem into several discrete Gaussian sampling problems over the integers; as long as either
the basis is orthogonal or the standard deviation is larger than the smoothing factor [3]. The discrete Gaussian
sampling problem over the integers takes the following form. Given a center/mean 𝜇 ∈ R and a standard deviation
𝜎 ∈ R>0, draw samples (integers) from the distribution with the density function DZ,𝜎,𝜇 : Z −→ [0, 1] sending
𝑥 ↦−→ exp

(
−(𝑥−𝜇)2

2𝜎2

)
/∑𝑥∈Z exp

(
−(𝑥−𝜇)2

2𝜎2

)
. We refrain from formally defining the rounded Gaussian distribution

over lattices (c.f. [4, § 3.1]). Over cubical lattices, drawing from the rounded Gaussian is informally drawing
from the continuous Gaussian distribution with the same parameters and rounding each coordinate to the nearest
integer. Over the integers (that is, in one dimension), there exists a continuous bĳection 𝐸𝜎 : R → (0, 1) such
that a rounded Gaussian sample is ⌊𝐸−1

𝜎 (𝑟) + 𝜇⌋. Here, (𝜎, 𝜇) is the prescribed standard deviation-center pair and
𝑟 is a uniform sample from the unit interval (0, 1). Further, 𝐸𝜎 may be set to erf(𝑥−0.5√

2𝜎
) where erf is the error

function associated with the mean zero, standard deviation one continuous Gaussian. This inversion formula splits
*Corresponding Author: nicolas.gama@sandboxaq.com

1

N. Gama, A.K. Narayanan, R. LiuLin, D. Yue.

the sampling algorithm in two phases. An offline phase that samples from the uniform distribution in the unit
interval which it then inverts under 𝐸𝜎 . An online phase that adds the center and rounds by taking the floor. We
choose the floor function for rounding throughout as it is easier to implement (by bit truncation) than rounding to
the nearest integer.

We propose a novel analogue 𝐹𝜎 of the erf-based 𝐸𝜎 function, to sample discrete Gaussians of any prescribed
center and standard deviation over the integers. Key to our algorithm is the proof of existence (and explicit
construction) of such function𝐹𝜎 for discrete Gaussians analogous to the aforementioned𝐸𝜎 for rounded Gaussians.
That is, we construct a family of continuous strictly increasing functions 𝐹𝜎 : R→ (0, 1) parametrized by 𝜎 with
the property that sampling from the discrete Gaussian DZ,𝜎,𝜇 is identical to ⌊𝐹−1

𝜎 (𝑟) + 𝜇⌋ for uniform 𝑟 ∈ (0, 1).
Remarkably, our method and algorithm work for any desired 𝜇, 𝜎, even below the smoothing parameters. Our
construction of 𝐹𝜎 also allows to split the discrete Gaussian sampling algorithm as an offline and an online phase.
The Offline phase draws a uniform 𝑟 from the unit interval and computes the inverse 𝐹−1

𝜎 (𝑟). In the motivating
cryptographic schemes such as Falcon, the standard deviation 𝜎 of the Gaussian to sample from is determined
during key generation. The randomness 𝑟 is independent of the remainder of the protocol and hence can be
generated offline. We prove that this offline phase runs in polynomial time to obtain approximations of the inverses
𝐹−1
𝜎 to arbitrary precision, irrespective of whether 𝜎 is bigger or smaller than the smoothing parameter. It remains

an open problem to make this offline phase really efficient. The Online phase becomes as easy as adding the center
and rounding by taking floors. It is multiples order of magnitude faster than any known counterpart. Further, it
is trivial to implement the online phase in constant time, for applications (such as the Falcon signature scheme)
that demand it as a precaution against side-channel attacks. A constant time discrete Gaussian sampler with an
online/offline phase separation was first proposed by [7], using different techniques. Discrete Gaussian samplers
with fixed 𝜎 and varying centers were also proposed in [1]. We construct the function 𝐹𝜎 as a fraction of two
infinite series of Gaussians followed by a non trivial argument that 𝐹𝜎 is continuous and strictly increasing. In
particular, this proves that 𝐹−1

𝜎 exists, a key fact in our proof that DZ,𝜎,𝜇 is identical to ⌊𝐹−1
𝜎 (𝑟) + 𝜇⌋ for uniform

𝑟 ∈ (0, 1). In algorithms for inverting 𝐹𝜎 , we truncate the infinite series appearing in 𝐹𝜎 , validated by the tail
bounds we derive for the series. We describe two algorithms for performing the offline phase. The first is to invert
𝐹𝜎 by divide-and-conquer, guided by evaluations of 𝐹𝜎 using truncated series. The second is through rejection
sampling on the derivative 𝐹′𝜎 , which we prove is correct by showing that the 𝐹′𝜎 is sub-Gaussian.

2 A NEW DISCRETE GAUSSIAN SAMPLING ALGORITHM ON INTEGERS
Every lattice algorithm that involves discrete Gaussian Sampling recursively splits into calls of the 1-dimensional

samplingDZ,𝜎,𝜇 overZ, with a precomputed parameter𝜎, and varying center 𝜇. Let 𝜌(𝑥) := exp(−𝑥2/2𝜎2)/
√

2𝜋𝜎.
For 𝜎 ∈ R>0, consider the real function

𝐹𝜎 (𝑥) =
∑∞

𝑖=1 𝜌(𝑥 − 𝑖)∑
𝑖∈Z 𝜌(𝑥 − 𝑖)

=
𝜌(𝑥 − N∗)
𝜌(𝑥 − Z)

Our main result is that 𝐹𝜎 acts as a continuous cumulative distribution function for discrete Gaussian Samples in
the sense of the following theorem:

Theorem 1. For all 𝜎 ∈ R>0 and center 𝜇 ∈ R, the distribution of ⌊𝐹−1
𝜎 (𝑟) + 𝜇⌋ where 𝑟 has uniform distribution

in the interval (0, 1) is exactly DZ,𝜎,𝜇

In this theorem, it is easy to see that for all 𝜇 ∈ R and 𝑛 ∈ Z, 𝐹𝜎 (𝑛 − 𝑐) is by definition the probability that a
sample from DZ,𝜎,𝜇 is < 𝑛. The highly non-trivial fact is that 𝐹−1

𝜎 actually exists, if at first sight, we consider that
its denominator is periodic. Despite all odds, our main Lemma below proves that 𝐹𝜎 is continuous and strictly
monotonous from R to (0, 1), and thus, Theorem 1 holds without any condition on the parameter 𝜎.

Lemma 1. 𝐹𝜎 is defined 𝐶∞ and strictly increasing from R to]0, 1[(bĳective), and centered in (0.5, 0.5) (in the
sense 𝐹𝜎 (𝑥) + 𝐹𝜎 (1 − 𝑥) = 1).

Proof. • 𝐹𝜎 is 𝐶∞: the denominator is 1-periodic with an image > 0, and when written as
∑
𝑐𝑘𝑒
−2𝜋𝑘𝑥 ,

its Fourier coefficients are Gaussian (so 𝑐𝑘 = 𝑜(𝑛−𝑘)). In addition, we have normal convergence of the
successive derivatives of the numerator, which makes the function 𝐶∞.

• 𝐹𝜎 (𝑥)+𝐹𝜎 (1−𝑥) = 1: since 𝜌 being even implies
∑0

𝑖=−∞ 𝜌(𝑥−𝑖) =
∑∞

𝑗=1 𝜌(𝑥−(1− 𝑗)) =
∑∞

𝑗=0 𝜌((−𝑥+1)− 𝑗).
• 𝐹𝜎 is strictly increasing from R to]0, 1[: let (𝑢, 𝑣) ∈ R with 𝑢 < 𝑣. The numerator of 𝐹𝜎 (𝑣) − 𝐹𝜎 (𝑢) is∑

𝑖≥1, 𝑗∈Z 𝜌(𝑣 − 𝑖)𝜌(𝑢− 𝑗) −
∑

𝑖∈Z, 𝑗≥1 𝜌(𝑣 − 𝑖)𝜌(𝑢− 𝑗). All terms for 𝑖, 𝑗 ≥ 1 in both sums cancel out. Terms
that remain are those where the sign is different:

∑
𝑖≥1, 𝑗≤0 𝜌(𝑣 − 𝑖)𝜌(𝑢 − 𝑗) −

∑
𝑖≤0, 𝑗≥1 𝜌(𝑣 − 𝑖)𝜌(𝑢 − 𝑗).

2

An erf Analog for Discrete Gaussian Sampling

Swap 𝑖, 𝑗 in the second sum and regroup to get∑︁
𝑖≥1, 𝑗≤0

𝜌(𝑣 − 𝑖)𝜌(𝑢 − 𝑗) − 𝜌(𝑣 − 𝑗)𝜌(𝑢 − 𝑖).

Note that (𝑣 − 𝑗)2 + (𝑢 − 𝑖)2 > (𝑣 − 𝑖)2 + (𝑢 − 𝑗)2, simply because the difference is 2(𝑣 − 𝑢) (𝑖 − 𝑗) > 0. Since
𝑥 → exp(−𝑥) strictly decreases over positive 𝑥, each term 𝜌(𝑣 − 𝑖)𝜌(𝑢 − 𝑗) − 𝜌(𝑣 − 𝑗)𝜌(𝑢 − 𝑖) is > 0.

□

Figure 1: Comparison of 𝐹𝜎 (𝑥 + 1/2) and 𝐹′𝜎 (𝑥 + 1/2) versus the Gaussians CDF (erf𝜎) and PDF (𝜌𝜎). The
difference is plotted in green, and rescaled to make it visible.

2.1 THE FASTEST CONSTANT TIME ONLINE PHASE
In all practical cryptographic scenarios that require discrete Gaussians, 𝜎 is known in advance, and the center

𝜇 belongs to a discrete domain such as 2−𝑝Z where 𝑝 is a fixed precision parameter. Therefore, without any loss
of precision, it is sufficient for the offline phase to provide one floored sample 𝑥 = 2−𝑝 ⌊2𝑝 .𝐹𝜎 (𝑟)⌋ ∈ 2−𝑝Z where
𝑟 ∈ (0, 1) has uniform distribution, and the online phase returns ⌊𝑥 + 𝜇⌋ ∈ Z whose distribution is exactly DZ,𝜎,𝜇.

To give one concrete use-case, if we represent 252.𝑥 and 252.𝜇 as 64-bit signed integers, this online phase has
just one addition and one right shift: it is embarrassingly constant time and parallelizable, and at least 80x faster
than the online phase of Falcon’s official sampler.

As a bonus, for rare cases where the parameter 𝜎 is not known in advance, but just guaranteed to be above
the smoothing parameter 𝜎0 = 𝜂𝜀 (Z), the classical Discrete/Continuous convolution theorems still provide an
interesting online phase: 𝑧 = ⌊𝐹−1

𝜎0 (𝑟) + 𝑦⌋ where 𝑦 is a continuous Gaussian sample of mean 𝜇 and parameter

𝛽 =

√︃
𝜎2 − 𝜎2

0 . Indeed, the distribution of 𝑧 remains at statistical distance 𝜀 from DZ,𝜎,𝜇

2.2 POLYNOMIAL TIME ALGORITHMS FOR THE OFFLINE PHASE
We now sketch a few strategies for the offline phase that given a granularity 𝑝 ∈ N, a standard deviation 𝜎 > 0,

and a precision 𝜀 > 0, samples 𝑥 in time polynomial in 𝑝 and log(𝜀), whose distribution is at a distance at most 𝜀
from ⌊𝐹−1 (uniform)⌋2−𝑝 .

Binary search Since 𝐹 is increasing, the first strategy that comes to mind is to invert it by binary search. To that
end, all we need is to be able to obtain arbitrary precise evaluations of 𝐹 (𝑥). The denominator is approximated via
its Fourier series until the ratio of two consecutive terms is bounded by 1 + 𝜀/2, and then we do the same for the
numerator on the natural series. Both numerator and denominator series have a Gaussian decay, thus the number
of terms considered is in 𝑂 (

√︁
log(𝜀−1)). Such binary search can be bootstrapped by precomputing and storing a

table of 2𝑝′ values of 𝐹 (𝑘/2𝑝′) for 𝑘 ∈ [0, 2𝑝′]. In this case, the binary search recursion only requires 𝑝′ lookups
and 𝑝 − 𝑝′ evaluations of 𝐹. As a side note, if the parameter 𝜎 is larger than the smoothing parameter

√
2𝜋𝜂𝜀 (Z),

which is the case in all cryptographic applications, the denominator of 𝐹 is already within [1 − 𝜀, 1 + 𝜀] and does
not need to be evaluated at all.

Rejection sampling The binary search approach above is not "constant time", which means that a side-channel
analysis of the memory access patterns (especially in the lookup part and recursion parts) leak in general some
information about 𝑥. Making a binary search algorithm constant time is often detrimental to its performance; if

3

N. Gama, A.K. Narayanan, R. LiuLin, D. Yue.

constant-timeness is an issue for the use-case (e.g. digital signature), we can also obtain the offline phase samples
𝑥 by rejection sampling, which is enabled by the following lemma that shows that the tails of 𝐹′ are sub-Gaussian:

Lemma 2. For all 𝜎 > 0, 𝐶𝜎 = sup𝑡∈R 𝐹′𝜎 (𝑡 + 1/2)/𝜌𝜎 (𝑡) is finite. In addition, lim𝜎→∞ 𝐶𝜎 = 1

Before we prove this lemma, we point out that as an immediate consequence, the offline phase can operate
as follow: Draw a continuous Gaussian sample 𝑥 ← DR,𝜎,0 (e.g. via Box-Muller transform), return ⌊𝑥⌋2−𝑝 iff.
𝐹′𝜎 (𝑥) ≤ 𝐶𝜎 .𝜌𝜎 (𝑥 − 1/2), otherwise restart. The rejection probability is 1/𝐶𝜎 .

Proof. Let 𝑡 ∈ R, and N,D be the numerator and denominator of 𝐹, then 𝐹′𝜎 (𝑡) = 𝑁 ′ (𝑡)/𝐷 (𝑡)− (𝐷′ (𝑡)/𝐷 (𝑡)2)𝑁 (𝑡).
The functions 𝐷 and 𝐷′/𝐷2 are continuous and periodic, therefore bounded over R. Moreover, if 𝜎 ≥ 𝜂𝜀 (Z),
those bounds are respectively 1+ 𝜀 and 𝜀. It remains to bound 𝑁 (𝑡 + 0.5)/𝜌𝜎 (𝑡) and 𝑁 ′ (𝑡 + 0.5)/𝜌𝜎 (𝑡). By parity,
it is enough to consider 𝑡 = −𝑢 ≤ 0. Let H = 1/2 + N, we have

𝑁 ′ (𝑡 + 0.5)
𝜌𝜎 (𝑡)

=
∑︁
𝑖∈H

𝜌′𝜎 (𝑡 − 𝑖)
𝜌𝜎 (𝑡)

=
∑︁
𝑖∈H

𝑖 + 𝑢
𝜎2 exp

(
−2𝑖𝑢 − 𝑖2

2𝜎2

)
and

𝑁 (𝑡 + 0.5)
𝜌𝜎 (𝑡)

=
∑︁
𝑖∈H

exp
(
−2𝑖𝑢 − 𝑖2

2𝜎2

)
Now that both 𝑖 and 𝑢 are > 0, we therefore have����𝑁 ′ (𝑡 + 0.5)

𝜌𝜎 (𝑡)

���� ≤ (
𝑢

𝜎2

∑︁
𝑖∈H

exp
(
−𝑢 − 𝑖2

2𝜎2

))
+

(∑︁
𝑖∈H

𝑖

𝜎2 exp
(
−𝑖2
2𝜎2

))
and

����𝑁 (𝑡 + 0.5)
𝜌𝜎 (𝑡)

���� ≤∑︁
𝑖∈H

exp
(
−𝑖2
2𝜎2

)
The proof ends by noticing that 𝑢 exp(−𝑢) is bounded for 𝑢 ∈ R+ and these Gaussian sums

∑
𝑖∈H 𝑖𝜌𝜎 (𝑖) and∑

𝑖∈H 𝜌𝜎 (𝑖) are finite, and the limits of these terms are obtained via Riemann integration. □

2.3 EXPERIMENTAL VALIDATION
As a proof of concept, we implemented numerical evaluations of 𝐹 and 𝐹′. This allows to plot the corresponding

cdf and pdf from Figure 1 and compare it to the Gaussian counterpart. For 𝜎 = 1, the maximal ratio between 𝐹′𝜎
and 𝜌𝜎 (in log-scale in Figure 2) is already smaller than 1.1, which makes rejection sampling quite effective (less
than 10% of rejections).

Figure 2: Experimental plot of log(𝐹′𝜎 (𝑥 + 1/2)/𝜌𝜎) for 𝜎 = 1. The ratio is maximal at 0, and log(𝐶𝜎) is very
close to 0, which makes rejection sampling very effective.

We also implemented the binary search for 𝑝 = 24, and measured an Offline phase of 70 microseconds per
sample, and an online phase of 0.6 nanoseconds per sample. If the online phase is already optimal, the offline phase
on the other hand is practical, but sill a bit slow to to effectively replace the current bi-modal samplers. Therefore,
it remains an open problem to improve the offline phase by a few orders of magnitude, and/or to provide hardware
support for this important probability distribution.

REFERENCES
[1] Carlos Aguilar Melchor, Martin R. Albrecht and Thomas Ricosset. “Sampling from Arbitrary Centered

Discrete Gaussians for Lattice-Based Cryptography”. inInternational Conference on Applied Cryptography
and Network Security (ACNS 2017): Kanazawa, Japan, july 2017, pages 3–19. url: https://hal.science/
hal-02548105.

[2] Pierre-Alain Fouque andothers. “Falcon: Fast-Fourier lattice-based compact signatures over NTRU”. inSubmission
to the NIST’s post-quantum cryptography standardization process: 36.5 (2018).

4

https://hal.science/hal-02548105
https://hal.science/hal-02548105

An erf Analog for Discrete Gaussian Sampling

[3] Craig Gentry, Chris Peikert and Vinod Vaikuntanathan. “Trapdoors for hard lattices and new cryptographic
constructions”. inProceedings of the fortieth annual ACM symposium on Theory of computing: 2008,
pages 197–206.

[4] Andreas Hülsing, Tanja Lange and Kit Smeets. “Rounded Gaussians: fast and secure constant-time sampling
for lattice-based crypto”. English. inPublic-Key Cryptography - PKC 2018 - 21st IACR International Conference
on Practice and Theory of Public-Key Cryptography, Proceedings: byeditorMichel Abdalla and Ricardo
Dahab. Lecture Notes in Computer Science. 21st IACR International Conference on Practice and Theory
of Public-Key Cryptography (PKC 2018), PKC2018 ; Conference date: 25-03-2018 Through 29-03-2018.
Germany: Springer, 2018, pages 728–757. isbn: 9783319765778. doi: 10.1007/978-3-319-76581-5_25.
url: https://pkc.iacr.org/2018/.

[5] Philip Klein. “Finding the closest lattice vector when it’s unusually close”. inProceedings of the eleventh
annual ACM-SIAM symposium on Discrete algorithms: 2000, pages 937–941.

[6] Vadim Lyubashevsky. “Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures”.
inAdvances in Cryptology–ASIACRYPT 2009: 15th International Conference on the Theory and Application
of Cryptology and Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings 15: Springer. 2009,
pages 598–616.

[7] Daniele Micciancio and Michael Walter. “Gaussian Sampling over the Integers: Efficient, Generic, Constant-
Time”. inAdvances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II: byeditorJonathan Katz and Hovav Shacham.
volume 10402. Lecture Notes in Computer Science. Springer, 2017, pages 455–485. doi: 10.1007/978-3-
319-63715-0_16. url: https://doi.org/10.1007/978-3-319-63715-0%5C_16.

[8] Phong Q Nguyen and Oded Regev. “Learning a parallelepiped: Cryptanalysis of GGH and NTRU signatures”.
inAdvances in Cryptology-EUROCRYPT 2006: 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, St. Petersburg, Russia, May 28-June 1, 2006. Proceedings 25:
Springer. 2006, pages 271–288.

[9] Chris Peikert. “An efficient and parallel Gaussian sampler for lattices”. inAdvances in Cryptology–CRYPTO
2010: 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings 30:
Springer. 2010, pages 80–97.

A EXPERIMENTAL IMPLEMENTATION OF THE SAMPLER
We present DynXHalfBatchSamplerOnline, an online routine that generates batches of discrete Gaussian

samples fromDZ,𝜎,𝑐 with fixed 𝜎 and varying 𝑐. The fast online sampler largely depends on the inversion samples
pre-computed offline via DynXHalfBatchSamplerOffline, which draws points from uniform distribution and
computes their inversion of 𝐹.

Algorithm 1 DynamicXHalfBatchSamplerOnline
Require: N centers of discrete Gaussian distribution c = {𝑐𝑖}𝑖∈[0,𝑁−1] . N samples t = {𝑡𝑖}𝑖∈[0,𝑁−1] generated by

DynamicXHalfBatchSamplerOffline.
Ensure: Output are valid samples of DZ,𝜎,𝑐𝑖

1: return {⌊𝑡𝑖 + 𝑐𝑖⌋}𝑖∈[0,𝑁−1]

For the offline routine, we first wrote a naive inverter of 𝐹 that computes the truth table of the entire function
on a desired interval and input value resolution. For a given 𝑢, the naive inverter traverses through the truth table
and looks for the image closest to 𝑢 and returns its preimage. Immediately, from the fact that 𝐹 looks and behaves
like a Gaussian CDF, we can optimize a few things: first, we can avoid computing half the values of 𝐹, since if
0 ≤ 𝑢 ≤ 0.5, the inverse will be in the lower half, and vice versa. Moreover, we can avoid computing 𝐹 (𝑥) for 𝑥 far
from the center following the definition of standard deviation for Gaussian distributions. For example, we can be
99.7% sure that a random output’s input will exist if we stop computing 𝐹 (𝑥) when 𝑥 = 𝜇 ± 3𝜎. This optimization
also removes the need for specifying a desired interval of computation, instead changing the interval based on 𝜇
and 𝜎.

Lastly, we employ the binary search approach mentioned earlier to perform an approximate binary search to
look for the point within a 3𝜎 domain such that its evaluation in 𝐹 is closest to 𝑢 with the precision of 2−𝑝 . Since
the binary search routine only checks evaluations of 𝐹 at pivot points, we don’t need to precompute the full truth
table of 𝐹 and only need to lazily evaluate 𝐹 at the pivot points and their immediate neighbors. The final major
optimization we implemented was for sampling many different 𝑡 values at once. For a fixed 𝜎, center, and 𝑛sum,

5

https://doi.org/10.1007/978-3-319-76581-5_25
https://pkc.iacr.org/2018/
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-319-63715-0_16
https://doi.org/10.1007/978-3-319-63715-0%5C_16

N. Gama, A.K. Narayanan, R. LiuLin, D. Yue.

the evaluation of 𝐹 stays the same. Therefore, we can reuse the setup for as many randomly sampled outputs 𝑢𝑖 as
we want, yielding better amortized run time.

Experimentally, the batch sampling, together with the other optimizations to the routine, far outpaces all single-
sample algorithms, and since there are no dependencies between each sample, batch sampling can likely be further
parallelized. The graphs were generated using somewhat unoptimized Python code for visualization and testing’s
sake, but we also implemented the reference algorithm in C with no advanced compiler options or special instruction
sets and were able to draw 1000 samples with amortized performance of 70us per sample. The online phase takes
0.6ns per sample.

Algorithm 2 DynamicXHalfBatchSamplerOffline
Require: Resolution of linear space 𝑥res, standard deviation 𝜎, 𝑛res inversion resolution, 𝑛sum terms of summations

for 𝐹, 𝑁 samples to generate.
Ensure: Output are 𝑁 random inversions of 𝐹.

1: samples← []
2: 𝑖 ← 0
3: while 𝑖 < 𝑁 do
4: 𝑢 ← Uniform(0, 1)
5: start← 0.5 − 𝐾𝜎 if 𝑢 < 0.5 else 0.5
6: end← 0.5 if 𝑢 < 0.5 else 0.5 + 𝐾𝜎
7: samples.append(FindClosestInversion-BinarySearch(𝑢, start, end, 𝑛res, 𝜎, 𝑛sum))
8: 𝑖 ← 𝑖 + 1
9: end while

10: return samples

Algorithm 3 FindClosestInversion-BinarySearch
Require: Search target 𝑢. Start and end of the search, inversion resolution 𝑛res, standard deviation 𝜎, and number

of 𝐹 approximation terms 𝑛sum.
Ensure: Output is in range (start, end) such that its corresponding evaluation in 𝐹 with standard deviation 𝜎 up to

𝑛sum terms is closest to 𝑢 in the search range.
1: If 𝑢 ≤ 𝐹𝜎,𝑛sum (start), return start.
2: If 𝑢 ≥ 𝐹𝜎,𝑛sum (end), return end.
3: loop
4: If end − start ≤ 2−𝑝 , return start.
5: mid← (start + end)/2 and fmid = 𝐹𝜎,𝑛sum (mid)
6: If 𝑢 =fmid return mid.
7: if 𝑢 < fmid then
8: end← mid
9: else

10: start← mid
11: end if
12: end loop

6

	Introduction
	A new discrete Gaussian sampling algorithm on integers
	The fastest constant time online phase
	Polynomial time algorithms for the Offline phase
	Experimental validation

	Experimental implementation of the Sampler

