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Abstract. Quantum attacks using superposition queries are known to
break many classically secure modes of operation. While these attacks
do not necessarily threaten the security of the modes themselves, since
they rely on a strong adversary model, they help us to draw limits on
the provable security of these modes.
Typically these attacks use the structure of the mode (stream cipher,
MAC or authenticated encryption scheme) to embed a period-finding
problem, which can be solved with a dedicated quantum algorithm. The
hidden period can be recovered with a few superposition queries (e.g.,
O(n) for Simon’s algorithm), leading to state or key-recovery attacks.
However, this strategy breaks down if the period changes at each query,
e.g., if it depends on a nonce.
In this paper, we focus on this case and give dedicated state-recovery at-
tacks on the authenticated encryption schemes Rocca, Rocca-S, Tiaoxin-
346 and AEGIS-128L. These attacks rely on a procedure to find a Boolean
hidden shift with a single superposition query, which overcomes the
change of nonce at each query. As they crucially depend on such queries,
we stress that they do not break any security claim of the authors, and
do not threaten the schemes if the adversary only makes classical queries.

Keywords: Quantum cryptanalysis, Quantum Fourier Transform, Authenti-
cated encryption, Boolean hidden shift, Rocca, Tiaoxin, AEGIS

1 Introduction

Since Shor [38], the enhanced computational power of quantum devices has
been known to impact the security of public-key cryptosystems. Nowadays, post-
quantum (public-key) cryptography is structured around several computational
problems (e.g., lattice sieving, decoding random codes. . . ) which are believed to
remain intractable.

The situation is more favorable in symmetric (secret-key) cryptography, since
most of it is expected to remain secure. Generic attacks on primitives are now
well understood, for example Grover’s quantum search [15] that accelerates the
recovery of a secret key from a time O(2κ) to O

(
2κ/2

)
, or the BHT algorithm [11]

which accelerates n-bit collision search from O
(
2n/2

)
to O

(
2n/3

)
. Afterwards,

many dedicated quantum attacks have been introduced, whether on block ci-
phers [8,23] or hash functions [19]. Most of the time, these attacks reach at most



a quadratic speedup (like Grover’s search). In this paper, we focus on superpo-
sition attacks on modes of operation, which are known to allow super-quadratic
speedups or sometimes total breaks of classically-secure schemes.

Superposition Queries. The literature separates quantum attacks on symmetric
schemes in two categories. In the Q1 setting, the adversary has only classical
access to the attacked function, typically an encryption scheme or MAC which
contains secret information (the key or internal states). Such attacks follow the
main threat model of post-quantum cryptography, which is that of an adversary
recording computations to decrypt them later in time. In the Q2 setting, also
named superposition query model, the adversary can query the function as a
quantum oracle, i.e., from within a quantum computation. Obviously, this can-
not model a “store now, decrypt later” scenario anymore. Despite this lack of
practical applications, Q2 attacks are still a relevant source of information on the
quantum security of these schemes, as they are known to break many classically
secure modes of operation [24,25,22,26]. On the one hand, they can be used as a
starting point or motivation for improved Q1 attacks [6,9]. On the other hand,
they can be seen as impossibility results, showing that any security proof must
consider an adversary making classical queries to the scheme [1].

Principle of Q2 Breaks. Consider a symmetric scheme EK : {0, 1}n → {0, 1}m
with a secret key K, to which we have quantum access.

Typically, Q2 attacks will combine some pre-processing function f and post-
processing function g so that the function g◦EK◦f has some property that can be
exploited. For example, the Even-Mansour cipher: Ek1,k2

: x 7→ k1⊕Π(k2⊕x) ,
where Π is a public permutation, can be attacked by noticing that Ek1,k2

⊕Π is
a periodic function on Fn

2 , of period k2 [25]. Simon’s algorithm [39] can recover
this period in O(n) quantum queries. Other attacks (for example in [7], using a
non-trivial f) may target an internal state instead. In MACs and authenticated
encryption (AE) schemes, this can lead to forgeries.

A typical limitation of Q2 attacks is when the construction EK admits a
nonce N , like many MACs and AE schemes. It is indeed common [2] to assume
that nonces remain classical values, and that they are not repeated from one Q2
query to another. While many attacks can also bypass the use of nonces [5,7],
they cannot apply in a situation where we would query: EK,N (x) = f(x ⊕
s(K,N)) where the secret internal state s depends on K and N .

New Strategy. In this paper, we use a hidden shift algorithm with a single query
from [32]. It follows a well-known strategy in quantum computing which was
previously applied in [13,33] and requires, in our case, a combination with a
state preparation technique [36].

We consider several AE schemes, where the recovery of the internal state leads
to forgery or key-recovery attacks. Our strategy is to perform a superposition
query with several message blocks which, with proper post-processing, can be
turned into an oracle:

|x⟩ |0⟩ 7→ |x⟩ g(x⊕ s′) |s⟩ ,
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Table 1. New quantum attacks and comparison with generic attacks (“Grover”). “Tof-
foli” is an approximate count of the Toffoli gates applied during the attack. Approx-
imately 103 to 104 qubits are required for all attacks, since the internal state of the
schemes is of order 103 bits.

Target Type Setting Queries Toffoli
Classical
time

Method

Rocca

key Q1 1 (encr.) 2145 negl. Grover

forgery Q2

264 (decr.) 280 negl. Grover

257 (encr.) 280 negl. Section 4.1
246.4 (encr.) 268.4 2125.4 Section 4.1

Rocca-S

key Q1 1 (encr.) 2145 negl. Grover

forgery Q2
230 (encr.) 298 negl. Section 4.2
263 (encr.) 285 negl. Section 4.2

Tiaoxin key
Q1 1 (encr.) 281 negl. Grover

Q2 234 (encr.) 256 negl. Section 4.3

AEGIS-128L
key Q1 1 (encr.) 281 negl. Grover

forgery Q2
262 (decr.)

+ 256 (encr.)
278 negl. Section 4.4

where g is a function to {−1, 1}, and s and s′ are values which, together, allow to
determine a whole internal state. We measure s immediately, but we cannot use
Simon’s algorithm to obtain s′ since it depends on the nonce, and will change
at the next query.

Instead, we use the hidden shift algorithm from [32]. This algorithm performs
a Hadamard transform:

1

2n/2

∑
x

g(x⊕ s′) |x⟩ H7−→ 1

2n

∑
y

(−1)s
′·y ĝ(y) |y⟩ ,

with ĝ the Walsh-Hadamard transform of g. It then computes a multiplication by
1/ĝ(y) in the amplitudes of this state. Such a multiplication cannot succeed with
probability 1, but when it does, we obtain

∑
(−1)s′·y |y⟩ which, after another

Hadamard transform, gives us s′. With s and s′, we solve a system of equations
which gives us the full internal state of the scheme.

The resulting attacks are summarized in Table 1.

Outline. We detail the targeted authenticated encryption schemes in Section 2.
In Section 3, we give the quantum building blocks of our attack and analyze its
success probability. In Section 4 we present our attacks.
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Table 2. Summary of parameters for studied AE schemes and their bits of security
(nonce-respecting) in the classical setting.

Cipher Key size Nonce size Tag size Forgeries Key-recovery

AEGIS-128L 128 128 128 128 128
Tiaoxin-346 128 128 128 128 128

Rocca 256 128 128 128 256
Rocca-S 256 128 256 256 256

2 Description of the Schemes

In this section, we recall the Authenticated Encryption with Associated Data
(AEAD) schemes AEGIS-128L [42], Tiaoxin-346 [31], Rocca [34] and Rocca-S [28].
Some details which are not relevant to our analysis will be omitted. In particular,
we omit the processing of Associated Data and the padding of input messages.

The levels of security against key-recovery and forgery are set according to
the generic attacks:

– Key-recovery: using a single classical known-plaintext query, an adversary
can always find the κ-bit key in O(2κ) computations (O

(
2κ/2

)
in the quan-

tum setting using Grover’s algorithm [15]);
– Forgery: with a t-bit tag, an adversary that can make decryption queries can

create a forgery in O(2t) queries classically. This attack can be accelerated
quantumly if one has access to a quantum decryption oracle. This would cost
O
(
2t/2

)
quantum queries using Grover’s algorithm. Of course, classically or

quantumly, this attack is relevant only if the key is larger than the tag.

All these designs are known to be insecure in the nonce-misuse scenario, i.e.,
if the adversary is allowed to perform multiple chosen-plaintext queries with the
same nonce.

2.1 AEGIS-128L

AEGIS was originally published at SAC [41], and later submitted to the CAE-
SAR competition [43]. We will focus here on the variant AEGIS-128L, which
can be found in [42]. In the CAESAR competition, AEGIS-128 appeared in the
final portfolio for use case 2 (high-performance applications), and AEGIS-128L
was a finalist for this use case.

All variants of AEGIS use a large internal state, made of several 128-bit
registers, and a simple round function which updates this state and mixes it
with additional registers of input (e.g., the message blocks). This round function
is based on the block cipher standard AES [29].

The AES Round. We denote the AES round function as: A = MC ◦ SR ◦ SB .
It applies on a state of 128 bits, represented as a 4 × 4 matrix of bytes. SB
(SubBytes) applies the AES S-Box in parallel to all bytes. SR (ShiftRows) shifts
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row number i in the matrix by i positions left. MC (MixColumns) multiplies
each column by the AES MDS matrix.

AEGIS-128L Algorithm. AEGIS-128L accepts a key and a nonce of 128 bits
each. The internal state is made of eight 128-bit registers denoted S[i], 0 ≤ i ≤ 7.
The round function R takes two additional 128-bit inputs X0, X1 and outputs
S′ = R(S,X0, X1) as:

S′[0] = X0 ⊕ S[0]⊕A(S[7]) S′[4] = X1 ⊕ S(4]⊕A(S[3])
S′[1] = S[1]⊕A(S[0]) S′[5] = S[5]⊕A(S[4])
S′[2] = S[2]⊕A(S[1]) S′[6] = S[6]⊕A(S[5])
S′[3] = S[3]⊕A(S[2]) S′[7] = S[7]⊕A(S[6])

Without AD, the algorithm has the following phases:

– Initialization: after loading the key K and nonce N into the state, we run
10 round updates R(S,N,K)

– Encryption: each round of encryption takes two plaintext blocks Mi,M
′
i

and returns two ciphertext blocks Ci, C
′
i. For all i = 0 to m− 1:

Ci =Mi ⊕ S[1]⊕ S[6]⊕AND(S[2], S[3])

C ′
i =M ′

i ⊕ S[2]⊕ S[5]⊕AND(S[6], S[7])

S ← R(S,Mi,M
′
i)

(1)

where AND denotes the bit-wise Boolean AND.
– Finalization: the state update function is called 6 times with X0, X1 de-

pending on the AD length and message length. The authentication tag is
obtained by XORing the 7 first registers.

Security. Third-party cryptanalysis has shown that AEGIS is nonce-misuse inse-
cure [21] and that it exhibits linear keystream biases [14]. However, these attacks
did not contradict its security claims. To the best of our knowledge, there has
been no quantum security analysis of AEGIS.

2.2 Tiaoxin-346

Tiaoxin-346 was submitted to the CAESAR competition [31] where it reached
the third round. It accepts 128-bit keys and 128-bit tags. The internal state T is
made of thirteen 128-bit registers separated into substates T3, T4, T6 with 3, 4 and
6 registers respectively denoted as Tj [i]. The round function R(T,X0, X1, X2)
takes a 3-register input X0, X1, X2 and updates the state as shown on Figure 1.
In particular, it can be noted that the round function processes independently
the substates Tj .

In the initialization phase, the key and nonce are loaded in T , then, 15 rounds
of the round function R(T,Z0, Z1, Z0) are applied where Z0 and Z1 are constants.
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Fig. 1. Round function of Tiaoxin-346.

In the encryption phase, message blocks are also encrypted by pairs Mi,M
′
i . For

all i = 0 to m− 1:
T ← R(T,Mi,M

′
i ,Mi ⊕M ′

i)

Ci = T3[0]⊕ T3[2]⊕ T4[1]⊕AND(T6[3], T4[3])

C ′
i = T6[0]⊕ T4[2]⊕ T3[1]⊕AND(T6[5], T3[2])

(2)

It can be noted that the state update is performed before outputting the cipher-
texts, and not after like the other designs in this section. Finally, the finalization
performs 20 unkeyed rounds R(T,Z1, Z0, Z1) and outputs the tag as the XOR
of all registers Tj [i].

Security. An important difference between Tiaoxin and AEGIS is that the round
function of Tiaoxin is invertible, as well as the initialization phase. Thus, recover-
ing the internal state at any point of the ciphering process leads to a key-recovery.
Furthermore it is enough to recover a single substate Tj .

A few third-party works have studied the security: a key-recovery attack
in a nonce-misuse scenario has been proposed [21], and Tiaoxin reduced to 8
rounds of initialization has been shown to have weak keys [27]. To the best of
our knowledge, there has been no quantum security analysis of Tiaoxin.

2.3 Rocca

Rocca is an AEAD for beyond-5G applications. As such, it also aims at quantum
security and uses keys of 256 bits. The internal state S is made of eight 128-bit
registers denoted S[i], 0 ≤ i ≤ 7. The round function R (Figure 2) takes two
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Fig. 2. Round function of Rocca.

additional 128-bit inputs X0, X1 and outputs S′ = R(S,X0, X1) defined as:

S′[0] = S[7]⊕X0 S′[4] = S[3]⊕X1

S′[1] = A(S[0])⊕ S[7] S′[5] = A(S[4])⊕ S[3]
S′[2] = S[1]⊕ S[6] S′[6] = A(S[5])⊕ S[4]
S′[3] = A(S[2])⊕ S[1] S[7] = S[0]⊕ S[6]

Algorithm. The specification that we give here is from the latest version (2023-03-
16) of the ePrint report [35]. After the publication of the conference version [34]
and subsequent third-party cryptanalysis [17], the authors added a key feedfor-
ward in the initialization phase to make it non-invertible, which was not present
in the conference version.

The key is divided into two 128-bit key blocks K0,K1. The scheme also uses
a pair of constants Z0, Z1. Rocca (without AD) runs as follows:

– Initialization phase: the state S is initialized using the nonce and key.
Then, 20 rounds R(S,Z0, Z1) are applied. Then, K0,K1 are XORed to
S[0], S[4] respectively.

– Encryption: message blocks are encrypted by pairs (Mi,M
′
i) into pairs of

ciphertexts (Ci, C
′
i). For all i from 0 to m− 1:

Ci = A(S[1])⊕ S[5]⊕Mi

C ′
i = A(S[0]⊕ S[4])⊕ S[2]⊕M ′

i

S ← R(S,Mi,M
′
i)

– Finalization: the state is updated 20 times using R(S, |AD|, |M |), where
|AD| and |M | are the respective lengths of the AD and message, and the
128-bit tag is computed as the XOR or all message blocks.

Classical Security. The authors of Rocca claimed 128-bit security against forgery
attacks and 256-bit security against key-recovery attacks. Importantly, they did
not make any claims in the nonce-misuse setting.
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In [17], Hosoyamada et al. introduced a nonce-misuse attack that could re-
cover the internal state using only one nonce-repeated pair. It follows a strategy
of introducing a difference in certain message blocks, in order to observe some
output differences, and solving the obtained equations to recover state values.
Since the finalization function is key-less, recovering the state allows to create
forgeries.

They then observed that one could turn this attack into a nonce-respecting
one, by making decryption queries (which are authorized to repeat the nonces).
After making a first nonce-respecting query to the encryption oracle, the adver-
sary introduces a difference in the obtained ciphertext and tries to decrypt by
trying all possible tags. If the number of decryption queries is not limited, this
will eventually succeed after 2128 such queries, leading to a recovery of the state.
In the first version of Rocca, where the initialization phase was invertible, the
state recovery led to a key-recovery attack, breaking the claims. However, with
the modified initialization, a recovery of the state does not lead to a recovery of
the key.

Quantum Security. The authors of Rocca made no claim against Q2 attacks.
Anand and Isobe studied specifically the quantum security of Rocca [3] and
found a forgery attack that requires 275 superposition queries. This attack is
nonce-respecting and makes Q2 decryption queries.

2.4 Rocca-S

Rocca-S is a new version of Rocca which was proposed for standardization by
the IETF [28]. Among the versions of the draft standard, we refer to the latest
one (published march 2nd, 2023).

Round Function. The internal state of Rocca-S is made of 7 registers of 128 bits.
The round function S′ = R(S,X0, X1) (Figure 3) updates this state as follows:

S′[0] = S[6]⊕ S[1] S′[4] = A(S[3])⊕X1

S′[1] = A(S[0])⊕X0 S′[5] = A(S[4])⊕ S[3]
S′[2] = A(S[1])⊕ S[0] S′[6] = A(S[5])⊕ S[4]
S′[3] = A(S[2])⊕ S[6]

Algorithm. The algorithm (without associated data) runs as follows:

– Initialization: after loading the keyK0,K1 and nonce, 16 rounds ofR(S,Z0, Z1)
are applied, followed by a key addition in all state registers.

– Encryption: for all i = 0 to m− 1:
Ci = A(S[3]⊕ S[5])⊕ S[0]⊕Mi

C ′
i = A(S[4]⊕ S[6])⊕ S[2]⊕M ′

i

S ← R(S,Mi,M
′
i)

(3)
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Fig. 3. Round function of Rocca-S.

– Finalization: the round function R(S, |AD|, |M |) is iterated 16 times. Then,
the 256-bit tag is computed as:

T = (S[0]⊕ S[1]⊕ S[2]⊕ S[3])∥(S[4]⊕ S[5]⊕ S[6]) . (4)

Security. The increased tag size allows the authors of Rocca-S to claim 256 bits
of security against forgery, state and key-recovery attacks (nonce-respecting). In
the quantum setting, they claim 128 bits of security against nonce-respecting
forgery and key-recovery attacks. However, like Rocca, they did not consider
attacks in the Q2 setting and did not make security claims in this model. To the
best of our knowledge, Rocca-S remains secure in the Q1 setting.

3 Tools

In this section we give the main algorithmic tools of our attacks. We assume basic
knowledge of the quantum circuit model [30] (Toffoli / CNOT / Hadamard gates,
ket |·⟩ notations). As is commonly done in previous works [5,12,22], we query
AE schemes using a standard oracle.

Definition 1 (Standard oracle). For f : {0, 1}n → {0, 1}m, the standard
oracle to f is the quantum circuit Of that maps |x⟩ |y⟩ to |x⟩ |y ⊕ f(x)⟩.

It is well-known that this oracle is equivalent to a phase oracle that maps
|x⟩ |y⟩ to (−1)y·f(x) |x⟩ |y⟩, by composing it with Hadamard transform. Also,
if one knows a classical circuit that implements f , both oracles are easy to
construct.

These AE schemes are nonce-based. While the nonce can be chosen by the
adversary, it cannot be repeated between two queries. Since Q2 queries are merely
an extension of classical queries, the same can be said in the quantum setting.
Therefore, we impose that each of the Q2 queries is answered using a different,
classical nonce. Using a classical nonce or randomness is common in proofs of
quantum security for encryption and AE modes [2,4].

That is, the adversary has access to a family of oracles: ON,m for different
nonces N and message lengths m (we assume that the AD is empty), and they
cannot make two queries with the same nonce.
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Each oracle encrypts several (pairs of) message blocks (Mi,M
′
i), depend-

ing on the selected length, and returns the corresponding (pairs of) ciphertexts
(Ci, C

′
i), and the tag:

ON,m : |M0,M
′
0, . . . ,Mm−1,M

′
m−1⟩ |y0, y′0, . . . , ym−1, y

′
m−1, y⟩

7→ |M0,M
′
0, . . . ,Mm−1,M

′
m−1⟩

|y0 ⊕ C0, y
′
0 ⊕ C ′

0, . . . , ym−1 ⊕ Cm−1, y
′
m−1 ⊕ C ′

m−1, y ⊕ T ⟩ .

Quantum Search. Grover’s exhaustive search algorithm [15] is a procedure to
find a “good” element in a search space of size 2n in

⌊
π
4 2

n/2
⌋
iterates; each

iterate queries a phase oracle that flips only the phase of this good element.
Amplitude amplification [10] generalizes this to any algorithmA (even a quantum
algorithm) that outputs a good element with probability p. It then makes about
π
4

1√
p iterates, with two calls to A and one query to the oracle per iterate, to

succeed with overwhelming probability.

Grover Search Cost Estimates. All AE schemes studied in this paper are based
on the AES round function. Quantum attacks on them require to implement AES
components. Since the scope of this paper is only to demonstrate the existence
of attacks, we will use approximate quantum gate and query counts (by a factor
2 at best). For example, Table 4 in [20] gives a count 12240 = 213.58 Toffoli gates
for a full (10-round) AES-128. We use this to assume that a single round of AES
can be implemented with 210 Toffoli gates (we focus only on Toffoli counts for
simplicity).

For all four schemes, implementing Grover’s exhaustive key search requires
to recompute the initialization of the scheme. The number of iterates depends
on the key size (128 or 256 bits) and the cost of the Grover iterate is dominated
by this initialization function which, in turn, can be estimated using the number
of AES rounds it contains. These estimates are summarized in Table 3.

Table 3. Toffoli count of Grover’s key search for studied schemes. The exponent is
rounded to the nearest integer.

Cipher Key length AES rounds Toffoli count

Rocca 256 4× 20 = 80 2145

Rocca-S 256 6× 16 = 96 2145

Tiaoxin 128 6× 15 = 90 281

AEGIS-128L 128 8× 10 = 80 281

3.1 Linear Post-processing

The generic approach to post-process the output of an oracle requires two iden-
tical calls, due to the reversibility of quantum computations. This is not doable
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in our case since we only query the oracle once. Fortunately, truncations [18]
and more generally linear functions [4] can be computed from a single call.

For our purposes, we need to separate the linear function in two parts, one
of which goes directly into the phase. This can be obtained using [4, Lemma 2]
as a black-box, but we give the whole proof (adapted directly from [4]) to be
self-contained.

Lemma 1 (Extended linear post-processing, adapted from [4]). Let f :
{0, 1}n → {0, 1}m be a function, let Of be a standard oracle for f : |x⟩ |0⟩ 7→
|x⟩ |f(x)⟩. Let g : {0, 1}m → {0, 1}ℓ and h : {0, 1}m → {0, 1} be two linear
functions, i.e., ∀x, y, g(x⊕y) = g(x)⊕g(y), h(x⊕y) = h(x)⊕h(y), with standard
oracles Og and Oh Then there exists a circuit implementing the operator:

|x⟩ |y⟩ 7→ (−1)h(f(x)) |x⟩ |y ⊕ g(f(x))⟩ ,

which makes a single query to Of , two queries to Og and two queries to Oh.

Proof. On input |x⟩ |y⟩, create the uniform superposition over outputs z and
append a qubit in the state H |1⟩ = 1√

2
(|0⟩ − |1⟩):

|x⟩ |y⟩ 1

2m/2

∑
z∈Fm

2

|z⟩ (H |1⟩)

Compute Oh with register z as input and the last qubit as output; compute Og

with register z as input and y as output:

|x⟩ 1

2m/2

∑
z∈Fm

2

|y ⊕ g(z)⟩ |z⟩ (−1)h(z) (H |1⟩)

Apply Of with register x as input and z as output:

|x⟩ 1

2m/2

∑
z∈Fm

2

(−1)h(z) |y ⊕ g(z)⟩ |z ⊕ f(x)⟩ (H |1⟩)

Redo the computations of Oh and Og:

|x⟩ 1

2m/2

∑
z∈Fm

2

(−1)h(z)+h(z⊕f(x)) |y ⊕ g(z)⊕ g(z ⊕ f(x))⟩ |z ⊕ f(x)⟩ (H |1⟩)

Erase the qubit (H |1⟩) and use the linearity of g, h to rewrite:

|x⟩ 1

2m/2

∑
z∈Fm

2

(−1)h(f(x)) |y ⊕ g(f(x))⟩ |z ⊕ f(x)⟩

= (−1)h(f(x)) |x⟩ |y ⊕ g(f(x))⟩ 1

2m/2

∑
z∈Fm

2

|z ⊕ f(x)⟩ .

The last register becomes disentangled and always contains a uniform superpo-
sition over {0, 1}m, which we can erase, leading to the result. ⊓⊔
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In particular, we can truncate the output of a stream cipher and separate it
in two parts, one that remains in the computational basis state, and one that
goes into the phase.

3.2 Properties of the Walsh Transform

Let f : {0, 1}n → {−1, 1} be a function. The Walsh-Hadamard transform of

f is defined as: f̂(y) =
∑

y∈{0,1}n(−1)x·yf(x). It corresponds to the Fourier

transform in the group Zn
2 . The quantum Hadamard transform H⊗n computes

a Walsh-Hadamard transform on the amplitudes of its n-qubit input state. That
is:

1

2n/2

∑
x

f(x) |x⟩ H⊗n

7−−−→ 1

2n

∑
y

f̂(y) |y⟩ .

In the following, we need the following important properties of the Walsh
transform.

Proposition 1. 1. (Shift) Let s ∈ {0, 1}n be a constant and g : x 7→ f(x⊕ s).
Then for all x, ĝ(x) = (−1)x·sf̂(x) .

2. (Convolution theorem) Let f, g : {0, 1}n → {−1, 1}. Then for all x,
̂̂
fĝ(x) =

2n
∑

y f(y)g(x⊕ y) .
3. (Product) Let g1, . . . , gn be functions of codomain {−1, 1}. Then the Walsh

transform of (x1, . . . , xn) 7→
∏

i gi(xi) is (x1, . . . , xn) 7→
∏

i ĝi(xi) .

3.3 Quantum Hidden Shift Algorithm with a Single Query

We want to solve the following problem.

Problem 1 (Hidden shift). Let g : {0, 1}n → {−1, 1} be a known function, and
s a secret value. Given access to f : x 7→ g(x⊕ s), find s.

The algorithm that we present here (Algorithm 1) is from [32], and uses quan-
tum rejection sampling. Several special cases have appeared before in cryptanal-
ysis: for example, shifted multiplicative characters [13] and bent functions [33].
In both cases, the algorithm avoids the rejection sampling by considering a situ-
ation in which the Fourier transform of the shifted function is easy to compute:
in the former case, it’s a multiplicative character, and in the latter, a constant.

Analysis of Algorithm 1. The first step is to query f and to perform a Hadamard
transform. This places the Walsh coefficients of f into the amplitudes of the state.
Next, we remark that by Proposition 1, these coefficients are actually those of
g, multiplied by (−1)x·s.

The next step is to correct the amplitudes by multiplying them by 1/ĝ(x).
There are several ways to perform this operation with high precision; we use
the method of [36]. Typically one appends a qubit register which is transformed
into a superposition of the form: M

|ĝ(x)| |0⟩ + |ψ⟩ where |ψ⟩ is a superposition of
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non-zero basis states. Then one tries to measure |0⟩ in the last register, which
collapses the state on the wanted superposition.

Ideally, we obtain the state
∑

(−1)x·s |x⟩, which is the Hadamard transform
of |s⟩. However, the product operation is not possible if ĝ(x) = 0. Furthermore, if
the smallest values of ĝ(x) are very small compared to the average, the probabil-
ity to measure 0 (and succeed) gets smaller. Thus, the best strategy, as suggested
in [32], is to dismiss the small Walsh coefficients of g.

We introduce some bound M and do the following: we multiply by M
ĝ(x) if

|ĝ(x)| ≥M , and otherwise, by 0, meaning that we eliminate the coordinate. Let
G = #{x, |ĝ(x)| ≥M}. Then, the rejection sampling succeeds with probability:

p =
1

22n

∑
x,|ĝ(x)|≥M

M2

|ĝ(x)|2
|ĝ(x)|2 =

M2

22n
G . (5)

When it succeeds (i.e., we measure 0 in the ancilla register), we obtain:

1√
G

∑
x,|ĝ(x)|≥M

(−1)x·s |x⟩ .

We then apply H:

1√
2nG

∑
y

∑
x,|ĝ(x)|≥M

(−1)x·s+x·y |y⟩ .

Afterwards, the probability to measure y = s is:

p′ =
1

2nG
×G2 =

G

2n
= Prx(|ĝ(x)| ≥M) . (6)

All in all, the total probability to succeed is: pp′ = M2G22−3n . We have to
choose M to maximize this probability, which requires to know ĝ. In the cases
we are interested in, g will be the product of many small-range independent
functions. Then ĝ is easy to compute by taking the product of Walsh coefficients
(see Proposition 1).

Remark 1 (Global phase). If we have access to ±g(x⊕s), where the leading sign
is not known, it turns into a global phase that is irrelevant for the algorithm. At
the final step, we will still measure s.

Remark 2 (Self-correlation). A technique similar to this algorithm appeared also
in [37], where instead of dividing by the Walsh coefficient, one multiplies by it.
This would compute the discrete convolution: (f ∗ g)(y) =

∑
x f(x ⊕ y)g(x) in

the amplitudes of the state, and lead to a similar result since (f ∗g)(y) is greater
for y = s. However the analysis when cutting off the small Walsh coefficients is
more difficult, so we settled for the easier method.
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Algorithm 1 Quantum hidden shift with rejection sampling and the technique
of [36].

Input: Quantum access to f(x) = g(x⊕ s) for a known g, a bound M
Output: s, with probability pp′

1: Start from n qubits initialized to 0 ▷ |0n⟩
2: Apply H⊗n ▷ 1

2n/2

∑
x |x⟩

3: Query f in the phase ▷ 1

2n/2

∑
x f(x) |x⟩

4: Apply H⊗n ▷ 1
2n

∑
x f̂(x) |x⟩ =

1
2n

∑
x(−1)x·sĝ(x) |x⟩

5: Compute the amplitude multiplier:

αx :=

{
M/|ĝ(x)| if |ĝ(x)| ≥ M

0 otherwise
(7)

where 0 ≤ αx ≤ 1 in an additional register ▷ 1
2n

∑
x(−1)x·sĝ(x) |x⟩ |αx⟩

▷ Notice that |ĝ(x)| is between 0 and 2n, so we compute to an n-bit precision here
6: Compute the sign βx = sgn(ĝ(x)) in the phase ▷ 1

2n

∑
x(−1)x·s|ĝ(x)| |x⟩ |αx⟩

7: Append an ancilla register |0n⟩ and apply H⊗n on it

1

2n

∑
x

(−1)x·s|ĝ(x)| |x⟩ |αx⟩
1

2n/2

∑
y

|y⟩ (8)

8: Perform a comparison between y and 2nαx and store the result in a new ancilla
qubit

1

2n

∑
x

(−1)x·s|ĝ(x)| |x⟩ |αx⟩
1

2n/2

 ∑
0≤y<2nαx

|y⟩ |0⟩+
∑

2nαx≤y<2n

|y⟩ |1⟩

 (9)

9: Apply H⊗n on the register holding y: the amplitude on the |0n+1⟩ component is
αx

10: Measure the last register. If the obtained value is different from 0n+1, abort
11: Otherwise, the state has collapsed to:

1√
G

∑
x,|ĝ(x)|≥M

(−1)x·s |x⟩ (10)

12: Apply H⊗n, measure and return the result.

14



3.4 Hidden Shift with Smaller Correlation

For the attack on AEGIS-128L (Section 4.4), we will not be able to query a
known function with a hidden shift. Instead, we can query a function of the
form: f(x) = g(x ⊕ s)h(x) where f, g, h all take values in {−1, 1}, and h is
unknown, but biased. We assume here that: Prx(h(x) = 1) = 1

2 (1 + c) for some
0 < c ≤ 1 (the correlation). The previous section considered the case c = 1.
Intuitively, the closer c is to 0, the harder it will be to recover some information
about s.

We follow Algorithm 1. We start by computing the state:

|ψ⟩ |1⟩+ 1

2n

∑
x,|ĝ(x)|≥M

M

ĝ(x)
f̂(x) |x⟩ |0⟩ .

Using the convolution theorem, we have that:

f̂(x) = 2−n
∑
z

(−1)z·sĝ(z)ĥ(x⊕ z) .

Notice that if h is constant and equal to 1, it has a single nonzero Walsh coeffi-
cient in 0 (z = x), equal to 2n, and we recover the equality f̂(x) = (−1)x·sĝ(x).

Next, we apply H, obtaining:

H |ψ⟩ |1⟩+ M

23n/2

∑
y

∑
x,|ĝ(x)|≥M

(−1)x·y f̂(x)
ĝ(x)

|y⟩ |0⟩ . (11)

We focus on the amplitude of |s⟩ |0⟩ in this state:

M

25n/2

∑
x,|ĝ(x)|≥M

(−1)x·s 1

ĝ(x)

(∑
z

(−1)z·sĝ(z)ĥ(x⊕ z)

)
. (12)

We separate the term z = x from the rest, noticing that ĥ(0) =
∑

x h(x) = 2nc
by our definition of c:

M

25n/2

∑
x,|ĝ(x)|≥M

(−1)x·s 1

ĝ(x)

∑
z ̸=x

(−1)z·sĝ(z)ĥ(x+ z)

+

M

25n/2

∑
x,|ĝ(x)|≥M

(−1)x·s 1

ĝ(x)
(−1)x·sĝ(x)(2nc) , (13)

where, introducing G := #{x, |ĝ(x)| ≥M} like before, the second term is equal
to MGc/23n/2.

In order to finish our analysis, we need to make a heuristic assumption. In-
deed, it seems that if g and h were not sufficiently independent, then the first
term could influence heavily the total amplitude. However, if they are indepen-
dent and random, the first term should be positive with probability 1/2. In that
case, we can lower bound the amplitude on |s⟩ |0⟩ by the second term.

15



It follows that, after performing this operation, we will measure |s⟩ |0⟩ with
probability at least: 2−1 × (MGc)2/23n.

As with the c = 1 case, if the second register is not 0 (and only in this case),
we know the process has failed. Following a similar computation, the probability
to measure 0 is equal to:

1

24n

∑
x,|ĝ(x)|≥M

∣∣∣∣∣ Mĝ(x)∑
z

(−1)z·sĝ(z)ĥ(x⊕ z)

∣∣∣∣∣
2

=
1

24n

∑
x,|ĝ(x)|≥M

∣∣∣∣∣∣M(2nc) +
M

ĝ(x)

∑
z ̸=x

(−1)z·sĝ(z)ĥ(x⊕ z)

∣∣∣∣∣∣
2

(14)

Under the same assumption of randomness for ĥ (except the coefficient in 0) and
ĝ, we can assume this probability to be close to the original one, multiplied by c2.
In other words, the additional error due to the imperfect correlation intervenes
in the first stage of the algorithm rather than the second one. We summarize
this by the following heuristic:

Heuristic 1. When f(x) = g(x⊕s)h(x), Prx(h(x) = 1) = 1
2 (1+c) and h and g

are independent, the sequence of operations of Algorithm 1 succeeds with proba-

bility approximately 2−1(pc2)p′ where pc2 = M2Gc2

22n approximates the probability

to measure 0 (succeed in the first step) and p′ = G
2n approximates the probability

to succeed in the second step.

4 Applications

4.1 State-recovery on Rocca

Our attack combines Algorithm 1 with linear post-processing to recover the
internal state. Recall that the nonce and key are fixed classical values, which
means that after initialization, the internal state is a fixed value. Assume that
we encrypt a couple of fixed message blocks (e.g., 0), then the internal state S
remains a fixed value. Our goal is to recover this S. We encrypt 5 pairs of message
blocks in superposition. We unroll several of the corresponding ciphertexts:

C0 =M0 ⊕ S[5]⊕A(S[1])
C ′

0 =M0 ⊕ S[2]⊕A(S[0]⊕ S[4])
C1 =M1 ⊕ S[3]⊕A(S[4])⊕A(S[7]⊕A(S[0]))
C ′

1 =M1 ⊕ S[1]⊕ S[6]⊕A(M0 ⊕M ′
0 ⊕ S[3]⊕ S[7])

C ′
2 =M2 ⊕ S[4]⊕ S[7]⊕A(S[0])⊕A(S[5])
⊕A(M1 ⊕M ′

1 ⊕ S[0]⊕ S[1]⊕ S[6]⊕A(S[2]))

C4 =M4 ⊕ S[0]⊕ S[6]⊕A(M0 ⊕ S[7])⊕A
[
M ′

2 ⊕ S[7]⊕A(S[0])⊕A(S[1]⊕ S[6])
]
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⊕A
[
S[4]⊕ S[7]⊕A(S[0])⊕A(S[5])

]
⊕A

[
M1 ⊕M ′

0 ⊕ S[0]⊕ S[3]⊕ S[6]⊕

A(M0 ⊕M2 ⊕ S[4]⊕ S[7]⊕A(S[5]))⊕A(S[3]⊕A(S[4]))
]
.

We now introduce 5 independent 128-bit variables X0, . . . , X4 and make the
message blocks depend on them as follows (the others are simply put to 0):

M0 = X2, M ′
0 = X0 ⊕X2, M1 = X0 ⊕X2 ⊕X4

M ′
1 = X0 ⊕X2 ⊕X4 ⊕X1, M2 = X2, M ′

2 = X3

So that the following equations are satisfied:

M0 ⊕M ′
0 = X0, M1 ⊕M ′

1 = X1, M0 = X2

M ′
2 = X3, M1 ⊕M ′

0 = X4, M0 ⊕M2 = 0

Next, we define:

T0 := S[3]⊕ S[7]
T1 := S[0]⊕ S[1]⊕ S[6]⊕A(S[2])
T2 := S[7]

T3 := S[7]⊕A(S[0])⊕A(S[1]⊕ S[6])
T4 := S[0]⊕ S[3]⊕ S[6]⊕A(S[4]⊕ S[7]⊕A(S[5]))⊕A(S[3]⊕A(S[4]))

Here, Ti is precisely the hidden shift that the variable Xi will allow us to obtain.
Because the message blocks are either constant, or linear functions of the

Xi variables, we can add them into the ciphertext Ci, C
′
i. Next, we use a linear

post-processing (Lemma 1). This gives us access to the oracle:

|X0, . . . , X4⟩ |0⟩

7→ |X0, . . . , X4⟩ |C0 ⊕M0, C
′
0 ⊕M ′

0, C1 ⊕M1⟩ (−1)F (C′
1⊕M ′

1,C
′
2⊕M ′

2,C4⊕M4) ,

where F is a linear function that we will define. Notice first that C0 ⊕M0, C
′
0 ⊕

M ′
0, C1⊕M1 are constants, so after making the oracle query we can already mea-

sure them without disrupting the rest of the algorithm. We obtain the following
values: 

S[5]⊕A(S[1])
S[2]⊕A(S[0]⊕ S[4])
S[3]⊕A(S[4])⊕A(S[7]⊕A(S[0]))

(15)

Hidden Shift Problem. Now we define the function F . Recall that A is a single
AES round, of the form: A = MC ◦ SR ◦ SB. Let us select an 8-bit mask β
of hamming weight 1 (i.e., a single bit). On input a 128-bit AES state Z =
(z0, . . . , z15), we define the function: L(Z) =

∑
i β · zi. Then, the function F is

simply: F (Z1, Z2, Z3) =
⊕

i L ◦MC−1(Zi). In other words, it removes the last
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MC layer, uses a single-bit linear mask on each byte and XORs them all. By
definition:

F (C ′
1⊕M ′

1, C
′
2⊕M ′

2, C4⊕M4) = L◦MC−1(S[1]⊕S[6])⊕L◦MC−1◦A(X0⊕T0)
⊕ L ◦MC−1(A(S[0])⊕A(S[5])⊕ S[4]⊕ S[7])⊕ L ◦MC−1 ◦A(X1 ⊕ T1)

⊕ L ◦MC−1(S[0]⊕ S[6]⊕A(S[4]⊕ S[7]⊕A(S[0])⊕A(S[5]))
⊕L ◦MC−1 ◦A(X2⊕T2)⊕L ◦MC−1 ◦A(X3⊕T3)⊕L ◦MC−1 ◦A(X4⊕T4) .

Notice that L ◦MC−1 ◦ A(X) = L ◦ SB(X) since L is invariant by permutation
of the bytes. Next, we define the functions g and f :{
g(X0, . . . , X4) := (−1)

∑
i<5 L(SB(Xi))

f(X0, . . . , X4) := (−1)F (C′
1⊕M ′

1,C
′
2⊕M ′

2,C4⊕M4) = ±g(X0 ⊕ T0, . . . , X4 ⊕ T4) ,

where f has a leading unknown bit depending on the constant terms.
We will now retrieve the hidden shift T0, . . . , T4 using Algorithm 1. We re-

name the individual bytes of X0, . . . , X4 as x0, . . . , x79 and rewrite g as:

g(x0, . . . , x79) =

79∏
i=0

(−1)β·S(xi) . (16)

In particular, f is still a shifted version of this function. Now, to bound the
runtime and success probability of Algorithm 1, we need to analyze the Walsh
coefficients of g.

Analysis of ĝ. Using Proposition 1, we notice that ĝ, like g, is the product of 80
individual functions of one byte: gs : x 7→ (−1)β·S(x). The Walsh transform of
such a function corresponds to a line in the Linear Approximation Table of S,
the AES S-Box. In fact, since we are interested only in the distribution of Walsh
coefficients, all lines are equivalent, i.e., we can take any non-zero mask β. For
example, we truncate the S-Box output to a single bit. The obtained distribution
is given in Table 4.

Table 4. Number of occurrences of Walsh coefficients with given absolute value for a
row of the AES S-box’s LAT.

|LAT coefficient| 0 22 2× 22 3× 22 4× 22 5× 22 6× 22 7× 22 8× 22

Occurences 17 48 36 40 34 24 36 16 5

It could be a priori difficult to compute the Walsh spectrum of g, since it has a
640-bit input. However, by representing the distribution of Walsh coefficients as
a table like in Table 4, we can compute the exact distribution, which is actually
quite sparse. For 80 S-Boxes, the table contains approximately 7.5 million non-
zero coefficients.
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To run Algorithm 1, we need to select the threshold M maximizing the
success probability. Recall that it is the product pp′, where G := #{x, |ĝ(x)| ≥
M}, p = M2

22nG is the success in the first step (which we can detect) and p′ = G
2n

is the success in the second step. Since we know the entire Walsh spectrum of g,
we select M to minimize pp′ =M2G22−3n:

M := 2326.23, G = 2610.60, p = 2−16.94, p′ = 2−29.40, pp′ = 2−46.34 .

These parameters will minimize the query complexity of the attack, however
they might not be the best if we want to minimize the time complexity, as we
will see below.

Quantum Arithmetic. Finally, we must design a quantum circuit that computes
ĝ(x), compares |ĝ(x)| withM and computesM/|ĝ(x)|. First, we notice that since
all Walsh coefficients are divisible by 22, we can actually rescale everything by
(22)80 = 2160 and we save 160 bits of precision. Next, we compute the coefficients
for the independent functions gs in parallel, and we take their product. We
perform the comparison with M , obtain the sign, and finish by a division with
640-bit precision.

We give only imprecise upper bounds for the cost of this circuit, using the
results of [40] and [16] for quantum arithmetic operations: we estimate that an
n-bit addition or comparison takes 2n − 1 Toffoli gates and an n-bit product
takes 3

2 (n
2 + n) Toffoli gates.

The computation of each gs requires a circuit with approximately 28 × 8× 4
Toffoli and CNOT gates that, for each i, compares its input with i, and writes
the corresponding output value. We do this 80 times in parallel. Overall, this
costs ≤ 220 Toffoli gates. Afterwards, we take the product of all coefficients,
two by two: the bit-length of the numbers that we multiply increases at each
product. This step costs ≤ 216 Toffoli gates.

The last step is to compute M/|ĝ(x)| to 640-bit precision. By taking the
same cost as a product, we obtain ≤ 220 Toffoli gates. In total, the overhead
in Algorithm 1 with respect to the query of f can be upper bounded by 222

Toffoli gates (with additional CNOT and NOT gates, that we did not count).

Recovering the Internal State: Step 1. When Algorithm 1 succeeds in both steps
(rejection sampling and final measurement), we obtain the values for all hidden
shifts T0, . . . , T4, byte by byte, which we combine with the values of Equation 15
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to create a system of equations:

S[5]⊕A(S[1])
S[2]⊕A(S[0]⊕ S[4])
S[3]⊕A(S[4])⊕A(S[7]⊕A(S[0]))
S[3]⊕ S[7]
S[0]⊕ S[1]⊕ S[6]⊕A(S[2])
S[7]

S[7]⊕A(S[0])⊕A(S[1]⊕ S[6])
S[0]⊕ S[3]⊕ S[6]⊕A(S[4]⊕ S[7]⊕A(S[5]))⊕A(S[3]⊕A(S[4]))

The next step is to solve this system. First, we obtain directly S[3] and S[7].
We then consider the smaller system:

(E1) S[5]⊕A(S[1])
(E2) S[2]⊕A(S[0]⊕ S[4])
(E3) A(S[4])⊕A(S[7]⊕A(S[0]))
(E4) S[0]⊕ S[1]⊕ S[6]⊕A(S[2])
(E5) A(S[0])⊕A(S[1]⊕ S[6])
(E6) S[0]⊕ S[6]⊕A(S[4]⊕ S[7]⊕A(S[5]))⊕A(S[3]⊕A(S[4]))

Focusing on (E2) to (E5), we deduce the following, where ∗ are known values: S[2]⊕A(S[0]⊕ S[4]) = ∗
A(S[4])⊕A(∗ ⊕A(S[0])) = ∗

A(S[0])⊕A(S[0]⊕A(S[2])⊕ ∗) = ∗
i.e.

 S[2]⊕A(S[0]⊕ S[4]) = ∗
SB(S[4])⊕ SB(∗ ⊕A(S[0])) = ∗

SB(S[0])⊕ SB(S[0]⊕A(S[2])⊕ ∗) = ∗

=⇒

 S[4] = SB−1 (SB(∗ ⊕A(S[0]))⊕ ∗)
S[2] = ∗ ⊕A [S[0]⊕ S[4]]

SB(S[0])⊕ SB [S[0]⊕A(S[2])⊕ ∗] = ∗
(17)

This sub-system in S[0], S[2], S[4] admits on average one solution, and we can
solve it in time 296 by the following strategy:

– Guess two columns and two diagonals of S[0]. Obtain two columns of S[4]
by the first equation

– Deduce two columns of S[0]⊕ S[4]
– Obtain two columns and two diagonals of A(S[2]) by the third equation
– Deduce two diagonals of S[2]
– Using the second equation, solve the obtained linear system in the 2 remain-

ing diagonals of S[2]; obtain the whole S[2] (on average one solution)
– Using the third equation, obtain S[0]. Each S-Box equation of the form
S(∗ ⊕ x) ⊕ S(∗ ⊕ x) = ∗ has on average one solution; half of the time they
have zero solutions and half of the time, they have two solutions. So, if one
of these equations has no solution, we backtrack.
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– Otherwise, we have found 216 possibilities for S[0]. We use the first equation
to compute S[4] and we check that all equations are satisfied.

Though we need to examine 216 solutions for S[0], this will be done only
296−16 times, so overall the time to solve the sub-system is 296. For each guess
there are a few AES rounds to compute and 16 S-Box differential equations to
solve.

Recovering the Internal State: Step 2. Having obtained S[0], S[2], S[3], S[4], S[7],
three equations remain: S[5]⊕A(S[1]) = ∗

S[1]⊕ S[6] = ∗
S[6]⊕A(∗ ⊕A(S[5])) = ∗

=⇒
{

S[5]⊕A(S[1]) = ∗
S[1]⊕A(∗ ⊕A(S[5])) = ∗ (18)

We solve this remaining sub-system as follows: we guess two diagonals of S[5],
which give two columns of A(S[5]), and two diagonals of A(S[5]), for a total
of 12 bytes. By the first equation, we deduce two diagonals of A(S[1]). By the
second, we deduce two columns of S[1]. This gives us a linear system in the 4
remaining bytes of S[1], which we solve. Afterwards, we check both equations.
The time complexity of this step is therefore slightly smaller than the first one,
since it does not require to solve S-Box differential equations.

Summary: Hybrid Attack. So far we are using a classical algorithm for the state-
recovery part. With the selection of M that minimizes the number of superpo-
sition queries, the adversary queries its oracle for Rocca a total of 246.34 times
on average. After each query, they perform the amplitude product, costing 222

Toffoli gates, and succeed in the first step 229.40 times on average. For each of
these successes, they retrieve a candidate value for the hidden shift and solve
the equation system. Once the system is solved, the candidate internal state can
be tested by computing backwards a few rounds and checking the ciphertexts.

Overall, this first hybrid attack costs 246.34 superposition queries, 296+29.4 =
2125.4 classical time to solve the system, and 268.34 additional Toffoli gates.

Quantum Attack. We can accelerate the attack by using quantum search to
speedup the system solving. To solve the first subsystem in S[0], S[2], S[4], we
proceed as follows: we create a quantum algorithm that samples a valid S[0], i.e.,
a value of S[0] that passes the S-Box differential equation, then tests if one of the
216 possibilities solves the entire system. We assume that solving a handful (16)
S-Box differential equations costs no more than computing a handful (around
10) AES rounds. Then this algorithm is a sequence of two Grover searches with
Toffoli count: (π

2
216/2 +

π

2
216/2

)
10× 210 ≃ 223 .

On the output of this algorithm, we use amplitude amplification [10]. By
design, the probability that one of the possibilities for S[0] solves the system is
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216−96, so there are around π
4 2

(96−16)/2 iterates to make, and the total time is:

π

2
2(96−16)/2 × 223 ≃ 264 .

At this point, our quantum attack requires 246.34 superposition queries and
264+29.4 = 293.4 Toffoli gates. We can optimize this by noticing how the (average)
Toffoli count depends on the probabilities p and p′ to succeed in both steps
of Algorithm 1:

1

p′

[
1

p

(
222
)
+ 264

]
. (19)

By solving exactly this minimization problem (since we know the entire dis-
tribution of the Walsh coefficients), we adopt:

M = 2306.52, G = 2624.97, p =
M2

22n
G = 2−42.00, p′ =

G

2n
= 2−15.03 (20)

which gives a complexity of 1/(pp′) = 257.03 Q2 encryption queries and

215.03
(
222+42 + 264

)
≃ 280

Toffoli gates. If we count that Q2 queries should have at least the same Toffoli
cost as quantum implementations of Rocca, the gate count is comparable to the
generic forgery attack in 264 Q2 queries, though we do not require decryption
queries anymore.

4.2 State-recovery on Rocca-S

The attack on Rocca-S is very similar to the one on Rocca. We have the same
strategy: combine Algorithm 1 with linear post-processing to recover enough
information on the internal state with a single query, and obtain this internal
state by solving a simple system of equations.

Starting from an internal state S, we encrypt several message blocks and
focus on the following outputs:

C0 =M0 ⊕ S[0]⊕A (S[3]⊕ S[5])
C ′

0 =M ′
0 ⊕ S[2]⊕A (S[4]⊕ S[6])

C1 =M1 ⊕ S[1]⊕ S[6]⊕A (S[3]⊕ S[6]⊕A (S[2])⊕A (S[4]))

C ′
1 =M ′

1 ⊕ S[0]⊕A (M ′
0 ⊕ S[4]⊕A (S[3])⊕A (S[5]))⊕A (S[1])

C ′
2 =M ′

2 ⊕ S[1]⊕ S[6]⊕A (M0 ⊕A (S[0]))⊕
A (M ′

0 ⊕M ′
1 ⊕A (S[3]⊕A (S[4]))⊕A (S[3])⊕A (S[6]⊕A (S[2])))

C ′
3 =M ′

3 ⊕M0 ⊕ S[4]⊕A (M1 ⊕A (S[1]⊕ S[6]))⊕A (S[0])⊕A (S[5])⊕

A
[
M ′

1 ⊕M ′
2 ⊕A (S[4]⊕A (S[0]⊕A (S[1]))⊕A (S[5]))⊕

A (S[6]⊕A (M ′
0 ⊕A (S[3]))⊕A (S[2]))⊕A (S[6]⊕A (S[2]))

]
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Similarly as before, we set 3 input variables X0, X1, X2 such that:

M ′
0 = 0, M ′

1 ⊕M ′
2 = 0

X0 =M0, X1 =M ′
0 ⊕M ′

1, X2 =M1 ,

and the other plaintext blocks are fixed to 0. With this input, the expression of
C0⊕M0, C

′
0⊕M ′

0, C1⊕M1 and C
′
1⊕M ′

1 becomes constant, so we can immediately
retrieve 4 expressions of the state S:

S[0]⊕A (S[3]⊕ S[5])
S[2]⊕A (S[4]⊕ S[6])
S[1]⊕ S[6]⊕A (S[3]⊕ S[6]⊕A (S[2])⊕A (S[4]))

S[0]⊕A (S[4]⊕A (S[3])⊕A (S[5]))⊕A (S[1])

(21)

Next, we run our attack. We define a similar periodic function, except that
it only combines 3× 16 = 48 S-Boxes instead of 80. This reduces somewhat the
gate count overhead for arithmetic operations, which we can still upper bound
at 222 Toffoli gates. More importantly, it modifies the values of M,G, p and p′.

When Algorithm 1 succeeds in both steps, we obtain the value of the hidden
shift in addition to the 4 state words already recovered, i.e., A(S[0]) (for the
variable X0), A (S[3]⊕A (S[4]))⊕A (S[3])⊕A (S[6]⊕A (S[2])) (for the variable
X1), A (S[1]⊕ S[6]) (for the variable X2). Using the knowledge of S[0], we can
simplify the system we have to solve into:

S[0]

S[3]⊕ S[5]
S[2]⊕A (S[4]⊕ S[6])
S[3]⊕ S[6]⊕A (S[2])⊕A (S[4])

A (S[4]⊕A (S[3])⊕A (S[5]))⊕A (S[1])

A (S[3]⊕A (S[4]))⊕A (S[3])⊕A (S[6]⊕A (S[2]))

S[1]⊕ S[6]

We will solve this system in about 264 quantum (or 2128 classical) computa-
tions. First, we guess S[5] and deduce S[3]. We use the fourth and sixth equations
of above, where ∗ denotes a known value:{

S[6]⊕A(S[2])⊕A(S[4]) = ∗
A(∗ ⊕A(S[4]))⊕A(S[6]⊕A(S[2])) = ∗

(22)

which implies A(∗⊕A(S[4]))⊕A(∗⊕A(S[4])) = ∗. We can compose by the inverse
of the AES linear layer to retrieve 16 independent differential S-Box equations
of the form: S(∗ ⊕ x) ⊕ S(∗ ⊕ x) = ∗, where the variable to recover is A(S[4])
(byte by byte). Like before, these equations have two solutions half of the time,
and otherwise zero. So we need to try on average 216 values of S[3] until all 16
equations have solutions, and in that case, we need to check the 216 different
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obtained values of A(S[4]). We will deduce the whole internal state and check
the equations.

Again, we assume that checking S[3] or checking a solution costs about 10×
210 Toffoli gates, or a full AES-128. We use amplitude amplification [10] over
an algorithm that: finds a valid S[3], then, searches through the corresponding
solutions using a Grover search. We will find the internal state in time:

π

2
2(128−16)/2

(π
2
216/2 +

π

2
216/2

)
10× 210 ≃ 280 .

Summary of the Attack and Optimization. We propose two optimizations of this
attack: one that minimizes the number of Q2 queries (i.e., maximizes pp′), and
one that minimizes the total time complexity. In the first case, we set:

M = 2195.40, G = 2365.62, p = 2−11.58, p′ = 2−18.37, pp′ = 2−29.95 .
(23)

The adversary queries its oracle for Rocca-S a total of 229.95 ≃ 230 times on
average before encountering a success. The quantum arithmetic requires an ad-
ditional time of 229.95 × 222 ≃ 252 Toffoli gates. Solving the equation system
happens only if the first step (amplitude product) succeeded, so 218.37 times. We
can solve it quantumly, for a total Toffoli count 218.37 × 280 ≃ 298.

However, the average Toffoli count can be expressed as:

1

p′

[
1

p
(222) + 280

]
(24)

By minimizing this expression instead, we obtain the following choice:

M = 2165.53, G = 2378.95, p = 2−58.00, p′ = 2−5.05, pp′ = 2−63.05 . (25)

which gives a complexity of ≃ 263 Q2 encryption queries and ≃ 285 Toffoli gates.

4.3 Key-recovery on Tiaoxin

Our method allows to recover the state T3 at some point of the encryption phase.
Afterwards, we can invert the round function on T3, and the initialization phase,
and recover the key which was loaded in the initial state.

Let us fix the state T3[0, 1, 2] at the beginning of the encryption phase and
unroll a few ciphertexts:

C0 =M0 ⊕ T3[0]⊕ T3[1]⊕A(T3[2])⊕A(T4[0])⊕AND(T6[2], T4[2])

C ′
0 =M0 ⊕M ′

0 ⊕ T4[1]⊕ T6[0]⊕A(T3[0])⊕A(T6[5])⊕AND(T6[4], T3[1])

C ′
1 =M0 ⊕M1 ⊕M ′

0 ⊕M ′
1 ⊕ T6[0]⊕A(M0 ⊕ T3[0]⊕A(T3[2]))⊕

A(T6[4])⊕A(T6[5])⊕A(T4[0])⊕AND(T6[3], A(T3[0]))

C ′
3 =M0 ⊕M1 ⊕M2 ⊕M3 ⊕M ′

0 ⊕M ′
1 ⊕M ′

2 ⊕M ′
3⊕

T6[0]⊕A(T6[3])⊕A(T6[4])⊕A(T6[5])⊕A(T6[2])
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A
[
M0 ⊕M1 ⊕M2 ⊕ T3[0]⊕A(T3[1])⊕A(T3[2])⊕A(A(T3[0]))

]
⊕

A
[
M ′

0 ⊕M ′
1 ⊕ T4[0]⊕A(T4[2])⊕A(T4[3])

]
⊕

AND(T6[1], A(M0 ⊕M1 ⊕ T3[0]⊕A(T3[1])⊕A(T3[2])))

We set the following as variables: X0 =M0, X1 =M0⊕M1, X2 =M0⊕M1⊕
M2. The rest is fixed. We focus on C ′

1 and C ′
3, and define the shift values:

R0 := T3[0]⊕A(T3[2])
R1 := T3[0]⊕A(T3[1])⊕A(T3[2])
R2 := T3[0]⊕A(T3[1])⊕A(T3[2])⊕A(A(T3[0]))

(26)

We then observe the XOR of C ′
1 and C ′

3. More precisely, let L be the function
that selects one bit in each column of the state and XORs them. We assume that
on these 4 bits, T6[1] = 1. Then we have:

L [AND(T6[1], A(M0 ⊕M1 ⊕ T3[0]⊕A(T3[1])⊕A(T3[2])))]
= L ◦A(M0 ⊕M1 ⊕ T3[0]⊕A(T3[1])⊕A(T3[2])) ,

and we define the function:

F (C ′
1⊕M0⊕M1⊕M ′

0⊕M ′
1, C

′
3⊕M0⊕M1⊕M2⊕M3⊕M ′

0⊕M ′
1⊕M ′

2⊕M ′
3)

= b⊕L ◦A(M0⊕R0)⊕L ◦A(M0⊕M1⊕R1)⊕L ◦A(M0⊕M1⊕M2⊕R2) ,

where b is an unknown bit depending on T . We have L◦A = (L◦MC◦SR)◦SB, so
column by column, we have a one-bit function of the S-Box outputs, which can be
rewritten as: (x0, x1, x2, x3) 7→

⊕
i αi · SB(xi) for well-chosen masks α0, . . . , α3.

The situation is thus the same as before, since the distribution of Walsh
coefficients is independent of the mask αi (as long as it’s nonzero). Recovering
the entire state T3[0, 1, 2] from the shifts R0, R1, R2 is trivial and costs only a
few AES rounds. Afterwards, we compute backwards through the 15 rounds of
initialization on the state T3 (30 AES rounds), and obtain a candidate key K
that we can immediately check. All of this can be done classically.

Since there are 16× 3 = 48 S-Boxes in the function, we optimize the proba-
bility similarly to Rocca-S and obtain pp′ ≃ 2−30. The Toffoli cost of the entire
attack is roughly 230 × 222 = 252 and it contains 230 Q2 queries. Note that
we need to multiply these numbers by 24, since we assumed to have guessed
correctly 4 bits of T6[1].

4.4 State-recovery on AEGIS-128L

Contrary to the rest of this section, the attack on AEGIS-128L uses a function
of smaller correlation, making our analysis dependent on Heuristic 1.

Starting from an initial state S, we encrypt pairs of message blocks (Mi,M
′
i)

with M ′
i = 0. To simplify the notations, we will express the ciphertext blocks in

function of T , the state after one update, that is, T [i] = S[i]⊕A(S[i− 1]). Our
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aim is to recover T . As they cannot be expressed from T , we ignore the first pair
of ciphertext blocks and focus on:

C1 =M1 ⊕ T [1]⊕ T [6]⊕AND(T [2], T [3])

C ′
1 =M ′

1 ⊕ T [2]⊕ T [5]⊕AND(T [6], T [7])

C ′
2 =M ′

2 ⊕ T [2]⊕ T [5]⊕A (M ′
0 ⊕ T [4])⊕A (T [1])

⊕AND(T [6]⊕A (T [5]) , T [7]⊕A (T [6]))

C6 =M6 ⊕A
[
M0 ⊕M1 ⊕M2 ⊕M3 ⊕M4 ⊕ T [0]⊕A (T [7]⊕A (T [6]))

⊕A (T [7])⊕A (T [7]⊕A (T [6]⊕A (T [5]))⊕A (T [6]))

⊕A
(
T [7]⊕A (T [6]⊕A (T [5]⊕A (M ′

0 ⊕ T [4]))⊕A (T [5]))

⊕A (T [6]⊕A (T [5]))⊕A (T [6])
)]

⊕A
[
M0 ⊕M1 ⊕M2 ⊕M3 ⊕ T [0]⊕A (T [7]⊕A (T [6]))⊕A (T [7])

⊕A (T [7]⊕A (T [6]⊕A (T [5]))⊕A (T [6]))
]

⊕A
[
M0 ⊕M1 ⊕M2 ⊕ T [0]⊕A (T [7]⊕A (T [6]))⊕A (T [7])

]
⊕A

[
M0 ⊕M1 ⊕ T [0]⊕A (T [7])

]
⊕A (M0 ⊕ T [0])⊕ Y ⊕AND(h′(M0,M1,M2,M3), h

′′(M0,M1,M2)) ,

where h′ and h′′ are two functions whose exact expression is irrelevant here, and
Y is a constant (an expression in which only T and M ′

i intervene). Similarly
to Tiaoxin, we use a linear post-processing which truncates C6 to only 4 bits.
Therefore, though it is completely unknown (and depends on the unknown state
T ), the AND term will become a function h with correlation 2−4. By making
M0 to M4 vary, we obtain 5 shifts which give us:

T [0] from the M0 shift
T [7] from the M1 shift, knowing T [0]
T [6] from the M2 shift, knowing T [0, 7]
T [5] from the M3 shift, knowing T [0, 6, 7]
T [4] from the M4 shift, knowing T [0, 5, 6, 7]

Next, we focus on the ciphertext blocks C1 to C
′
2 which we have also obtained.

Thanks to C ′
1 and all the state registers that we know, we obtain T [2]. Next,

thanks to C ′
2, we obtain T [1]. The only register of T that we are missing is T [3].

We can find half of it using the expression of C1: indeed, from the known T [i]
we can compute AND(T [2], T [3]). We can expect half the bits of T [2] to be one,
which gives us the the corresponding bits of T [3].

State-recovery Attack. After performing this partial state-recovery, we can do
a Grover search on the remaining 64 bits of the state. However, checking if we
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have obtained a valid internal state is not trivial. Indeed, the round function
of AEGIS is not invertible, so we cannot compute backwards and check with
previous ciphertexts. In fact, there do not seem to be other ciphertext equations
that we can exploit (either we have already used them, either they depend on
the varying Mi).

Consequently, we do a Grover search using superposition decryption queries
to test our guess of the state. That is, starting from the recovered internal state,
we compute the tag (approximately 6× 8 AES rounds, i.e., ≤ 216 Toffoli gates)
and we try to decipher with an oracle. If the internal state is guessed correctly,
the oracle will accept. This operation requires approximately: π

2 2
32 × 216 ≤ 249

gates and 233 decryption queries.
Since the number of S-Boxes is the same as in Rocca, the hidden shift al-

gorithm is actually the same. We keep the same p and p′, but introduce the
correlation c = 2−4. The Toffoli count and the number of queries are respec-
tively:

2

p′

(
1

p

1

c2
222 + 249

)
and

2

p′

(
1

p

1

c2
+ 233

)
. (27)

If we optimize the Toffoli count, we get the following parameters:

M = 2324.23, G = 2612.54, p = 2−19.00, p′ = 2−27.46 , (28)

which give 277.46 Toffolis, smaller than the cost of Grover search (281), and
2×233

p′ ≤ 262 decryption queries, which is also smaller than a forgery attack using

a Grover search. We also use 2
pp′c2 ≤ 256 encryption queries.

Remark 3. Our attack benefits from parallelization, since all 2
p′ instances of the

main loops can be run in parallel. For comparison, running a Grover search in
parallel to reduce the wall-clock time by a factor S increases its total computa-
tional cost by the same factor S.

5 Discussion

In all instances of our attack, the AE scheme (Rocca, Rocca-S, Tiaoxin, AEGIS)
is believed to be secure regarding guess-and-determine attacks that aim at re-
covering the state. Indeed, when one only observes the ciphertext blocks, the
obtained system of equations is intractable.

Our quantum attack works because we can observe hidden shifts in addition
to the ciphertexts. This allows us to reduce the state-recovery to a simpler system
of equations (the simplest being Tiaoxin-346 which only relies on three shifts).
However, there are limitations to this approach. Notably, if we have a ciphertext
C = S0⊕A(S1⊕M1), we have only two choices: either makeM1 = 0 a constant,
and observe S0 ⊕ A(S1), or make M1 a variable, and observe S1. In the latter
case, S0 is lost. Besides, we can only use one variable for one shift, i.e., if we have
C = A(S1⊕M1) and C

′ = A(S2⊕M1), we must drop one of the ciphertext blocks.
Another problematic case is when we observe A(S0 ⊕A(S1 ⊕M1)). Though we
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do have a shifted function, the function is now unknown (it depends on S0) and
more complex (two rounds of AES instead of one). The attack can proceed by
guessing enough bits of S0, but becomes more difficult.

In our examples, the choice of the shifts was done by hand, trying to obtain
the simplest equation system. More clever choices might still exist. Conversely,
making the schemes secure against this attack means ensuring that none of the
equation systems resulting from a combination of ciphertexts and shifts can be
tractable.

Previously, some Q2 quantum attacks have given rise to more efficient Q1
attacks [6]. However such methods do not appear to work in this scenario, as
classical queries will have different nonces, and cannot be brought together to
emulate a single quantum query. Therefore, all the schemes studied in this paper
remain secure against Q1 attacks.
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